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Abstract 

The Distributed Version Storage Server (DVSS) provides 
an underlying storage mechsniim for a CAD-oriented data 
model. DVSS supports such project management features as 
version histories. alternate data versions, and multi-reader 
multi-writer access control in a heterogeneous network of 
workstations and fileservers. 

Each design object is managed as a rooted directed acy- 
clic graph @AG) of versions. At any time, one path in an 
object’s DAG is designated as its principal path; the current 
version in the principal path is the current version of the object. 
Other paths contain alternate versions of the object. Updates to 
any version path must be seriali&le. but derivation of alternate 
versions is not subject to this constraint. 

Clients interact with DVSS using the checkoutlcheckin 
paradigm. Each object has a primary site, which synchroniis 
actions on the object Group operations requiring multiple 
locks follow a deadlock avoidance scheme. 

DVSS is robust in that it supports multi-reader and 
multi-writer data access in the presence of failures. Traditional 
data replication supports continued read access. Write-write 
conflicts resulting from continued write access during network 
partition are resolved at recovery time by creation of altemate 
versions. The cost of resolution is minimized by employing a 
unilaterally computable algoritiun at each site. 

1. IIJtroduction 

That CAD database applications have several properties 
not well supported by a traditional relational DBMS is a widely 
accepted view [1.3,4,5.7.12.13.14.16.17,19,201. 

In particular. a database system for CAD must provide support 
for the following: 

1. Long transactions that may extend over hours or days. 
2. Complex relationships among components of a design. 
3. Modeling designs as complex objects. 
4. Design versions and alternative designs. 
5. Modeling con@urations of a design as complex objects. 
6. Design data availability regardless of other users activities 

oc ryslem failures. 

Further, it is frequently observed that design data objects 
have arbitrary formats. That is, the set of objects occurring in a 
design with the same format tends to be small, and is frequently 
a singleton set. This implies that database storage techniques 
based on multiple occurrences of objects with a regular format 
(e.g., records or tuples) are inadequate to manage design data. 

In the Computer Research Laboratory of Tektronix Labs 
we are developing an experimental engineering design data&e 
system to be used by computer aided design tools. The system 
will support team engineering in a heterogeneous environment 
of engineering workstations inter-connected by a network. The 
network may also wmect the wakstations to one or more sites 
acting as file servers. Gur development is being done on 
6801~based UNIX’ w&stations connected with VAX2 
1 l/780%. 

It is our thesis that an engineering database system should 
have twc levels: an abstraction management level and a storage 
management level. An example of a multi-layer computer- 
aided engineering system is shown in Figure 1. Versions and 
con&rations of design objects are modeled at the abstraction 
level along with relationships and other semantic properties of 
design objects. The storage level provides primitive support for 
versions, con8gurations. and complex objects, including clus- 
tering and recursive retrieval. 

In this paper we present DVSS, a Distributed Version 
Storage Server, as the storage manager in our experimental 
engineering design databam system. We fust describe OUT 
design goals and discuss related work. We then present the 
client’s view of DVSS. followed by discussion of some aspects 
of the DVSS implementation. We close with a sketch of future 
work and conclusions. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and the 
title of the publication and its date appear, and notice is given that 
copying is by permission of the Very Large Data Base Endow- 
ment. To copy otherwise, or to republish, requires a fee and/or spe- 
cial permission from the Endowment. 

Proceedings of the 13th VLDB Conference, Brighton 1987 443 



Figure 1: Layered CAFL System 

2. Goals 

In the development of DVSS we set and attained four 
goals. Two goals (I& 2) assert DVSS semantics visible to the 
client programs (or users), and two goals (3 & 4) address imple- 
mentation issues. 

1. Provide partition transparent storage system behavior. 

2. Support distributed multi-reader and multi-writer access. 

3. Rovide a robust storage mechamsm. 

4. IvCmixe multi-phase protocols by using unilaterally 
computable algorithms. 

Ourprimarygoalistoprovideadistributedsystemin 
which the behavior perceived by a user is independent of the 
current site conftgumtion or connectivity of the network. in so 
far as possible. In particular the functioning of DVSS, while 
the system configuration is in a partitioned state, should not 
depend on the presence of any specitic site or quorum of sites. 
The presentation of partition transparency is facilitated by using 
a multi-writer access paradigm. 

DVSS’ multi-reader and multi-writer xcess control pam- 
digm was introduced by Ecklund and Price [IO]. The multi- 
reader paradigm allows any number of clients to concurmndy 
read any accessible copy of the same data. The multi-writer 
paradigm allows any number of clients to write new versions as 
successors of the same data. Under the DVSS multi-reader and 
multi-writer mechanism, requests that fcmn read-write or 
write-read conflicts are not abetted. and writewrite confhcts 
are resolved by the creation of alternate versions. Timing 
aspects of non-blocking reads and creation of alternate versions 
due to write-write conflicts can be visible to DVSS client pro 
grams and end users. 

Partition transparent behavior is possible when reading 
data if any replicated copy of the data is accessible. Given that 
write-write conflicts are resolved by the creation of alternate 

Versions. it is possible to allow all write operations to be per- 
formed locally while sites are separated by a communication 
failUre. Thus, Clhts Of the storage system may experience no 
disruption in service due to site or communication failures 
(depending on the placement of copies of data). 

A robust storage mechanism provides reliable storage of 
data and maximal access to that data during failures. Our goal 
for robustness is to incrra~e the likelihood of an object being 
available in a network partition, to allow a client to read any 
available copy of an object. and to allow all writes to complete. 
DVSS achieves robusmess through reliable distributed proto- 
cols. data replication. and the muhi-reader and multi-writer 
access control paradigm. 

In any distriiuted system it is desirable to minimize the 
numba of messages required to maintain mutual consistency 
among a set of sites. Most dism%uted protocols require multi- 
ple phases (e.g., 2 phase commit). In DVSS the number of 
message phases required by distriiuted recovery is minimized 
by defining mulaterally computable resolution protocols. In a 
nnilatmal comjuUaIion, a set of sites performs a single 
exchange of state information. Upon receiving state informa- 
tion from the other sites, each site independently computes a 
mutually consistent result based on the information exchanged. 
No further negotiation phases are required. 

3. Relation to Other Work 

Several version servers have been proposed in the litem- 
ture. These servers support intricate models of versions where 
many attributes and relationships such as time of creation. ver- 
sion type, access permissions, ownership, test status, type of 
dabbase the version resides in, predecessor, successor, 
configurrtion, and equivalence ate maintained by the server. 
Our stomge saver provides primitive support for those atui- 
bums and relationships that am essential in modeling versions. 
The abstraction level of an engineering database system must 
model arbitrary relationships and an arbitrary number of attri- 
butes. It is our contention that it is not desirable to model at the 
s&xage level any relationships that can be easily managed by 
the general mechanisms already required in the abstraction 
layer or by some minimal interaction between the two levels. 
Following is a brief discussion of three such version servers. 

Katz. Anwarrudin. and Chang have proposed a disui- 
buted version server for CAE applications [15]. Their server 
supports multi-reader and single-writer access to untyped data. 
Structural relationships among the data versions are tracked by 
the server. Data is classifted in three planes: the version plane 
relates temporal and alternate versions (which they call deriva- 
tives and alteanaUves respectively); the con6guration plane 
relates those instances that comprise a version of a higher level 
object and the equivalence plane relates different physical 
repmsentuions of the same entity. DVSS manages the version 
plane directly. The configumtion plane and the equivalence 
plane are supported by DVSS group operations. but creation of 
versions in these planes is the responsibility of the abstraction 
laYU. 

Weiss, Rot&. Rhyne, and Goldfein have proposed the 
Design Objects’ Storage System (DOSS) (221. DOSS stores 
temporal and alternate versions of objects and supports mulli- 
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reader and single-writer access to those objects in contrast to 
DVSS’s multi-writer access. The system is distributed in that 
any site having sufficient storage space stores copies of the data 
and functions as a server. All server sites maintain fully redun- 
dant directories of the data stored by the system. The non- 
server sites may cache information on the location of data 
objects they have referenced. The system provides for the per- 
manent removal of machines from the network with facilities 
for migrating data stored on those machines to other sites. simi- 
lar to DVSS’s abandon and withdraw facilities. 

Chou and Kim have proposed a system far controlling 
versions in a CAD environment [a]. The environment deEnes 
three database types: the public dambase. project databases. and 
private databases. Versions of CAD objects are classified as 
released versions, working versions, or transient versions. A 
version’s classitication restricts the operations that may be per- 
formed on that version and the type of database the version may 
reside in. DVSS provides a general federation mechanism that 
can be used by the abstraction layer to define databases with 
any desired scope of access. Chou and Kim’s version server 
uses checkout, checkin, derivation, and promotion to achieve a 
multi-reader and multi-writer access control mechanism. Other 
major features of this mode.1 provide direct suppott for 
contiguration management 

DVSS is unique in that it provides partition transparency 
and a f&ration mechanism to define arbitrary data access 
scopes. DVSS also supports multi-writer access, which has 
recently been incorporated by Chou and Kim. Of those pro 
posed version servers that have been implemented, most pro 
vi& distributed access to cenhalized objects. DVSS has been 
designed to provide robust distributed access to distributed 
objects. 

4.1 users 

Ea:h user in a federation is a virtual urer representing a 
set of related login account.3 (e.g., those of a single user on dif- 
ferent sites). Virtual users own and have access rights to the 
data objects stored by the DVSS. A virtual user is a capability 
consisting of a globally unique name and a password. A valid 
virtual user name and password must be provided, via the 
openfed operation, before any data manipulating operation can 
be performed in that federation. The virtual user mechanism 
may also be used to form groups of related users (e.g., the 
MMU design team) which are composed of distinct individuals 
with identical access rights to data objects in DVSS. 

Virtual users are created by the newuser operation, and 
are destroyed by the secede operation (see figure 4). Each Vir- 
tual User is either an associate member cr a participating 
member of a federation. Participating members may create and 
update objects. Associate members may only view the objects 
stored by the federation. The moduser operation allows a vir- 
tual user to change his name, password or promote himself 
from associate to participant status. 

4.2 Objects 

Clients store and retrieve objects using the 
checkoutlcheckin paradigm. ‘A client process checks out a copy 
of an object, modities the copy of the object, and updates the 
moditied object by adding a new version of the object to the 
dambase. The storage server tracks the evolution of each object 
by storing and maintaining access to versions of each object. 
Objects themselves are not updated in place, but the directories, 
which contain information about the objects, are updated in 
pli-iCe. 

Versions of a single object are related by incremental 
4. Client View of the Distributed Version Storage Server refinement, by derivation, or by consolidation. Incremental 

Clients of DVSS (e.g., a DML interpreter) implement a 
data model and its abstractions. These client programs view 
DVSS as a reliable distributed me&at&n for storing and 
retrieving design data for teams of engineers. DVSS organizes 
design data under an association abstraction called afederarion 
[9]. We have chosen the word federation to indicate that it is a 
loosely associated collection of sites and users whose patticipa- 
tion in the federation is strictly voluntary. Fcmnally. a federa- 
tion is characterized by a triple (0. S. U j , where 0 is the set of 
data objects, S is the set of sites which belong to the federation, 
and U is the set of users who belong to the federation. 

retinement (see figure 2A) is a one&-one relationship resulting 
from single-writer activity. Derivation (see figure 2B) is a 
one-to-many relationship between a version and a set of succes- 
sor versixts. Consolidation (see figure 2C) is a many-to-one 
relationship between a set of predecessor versions and a single 
successor version. A set of versions related by incremental 
reiinement, derivaticn, and consolidation form a rooted directed 
acyclic graph of versions for each object. 

when multiple users checkout the same version V of an 
object, the ftrst user to perform an update operation will cream a 
new successor version N, which is related to V by incremental 
refinement. Subsequent updates based on versionV will create 
alternab versions of V. These alternate versions are successors 
related to V by derivation. 

We anticipate that federations will be used to represent 
design projects. component libraries, software module libraries, 
public databases, and private databases. One user employs the 
de$ne operation to create and name a federation. The defining 
user and the site local to the define operation are members of 
the federation. Other tam members use the enroll operation to 
add their sites to the federations. The enrolling site must 
specify the name of the federation and the name of a site that 
participates in the federation. In this case, the distributed nature 
of the federation is not completely transparent to the users. 

Each version has at most one successof related by incrc- 
mental refinement; this is its principal successor. The principal 
successor is a member of the same version path as the predeces- 
ser. while each alternate version is a member of a distinct ver- 
sion path. Figure 2(B) illustrates versions with alternate succes- 
sors related by derivation and a principal successor related by 
refinement. The derivation relationship may arise from multi- 
writer be savior. 
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Figmt.2: Versioningaconceptual object ’ 

when multiple writas have ueated a set of altemate ver- 
sions P,, P*, . . . . Pk. it may be desind that those vasions be con- 
solidated to faam a single new v&on V. l%e version V is the 
source of a new version path in the version graph. Figure 2(C) 
illustmtea a new version V famed from multiple predecessors 
p,. Pz, ..a* Pk Version V has no predecessors related by incre 
mental &nement, but a set of predecessors related by consoli- 
dation. The predecessor instances Pt and Pz may be updated by 
incremental relinement within their respective version paths. 

43 Referencing Objects 

Clientprogramsusetokenstorefertosubsetsofrelated 
versions in a v&on graph. A token is a unique symbol #N 
assigned by DVSS. Figure 3 shows a DVSS object and its ass@ 
hated tokens. Each object has an associated token repnsenting 
the graph of versions. Each version path in the graph has an 
associated token and an implicit alias nwnber. A version path 
token or an object name with its v&on path implicit alias 
number may be used to refer to a set of versions related by 
incremental re6nement. Each individual version has an associ- 
ated token. Object tokens and version path tokens ax used to 
make pwlins rrfircnces. Version tokens make fucd r&r- 
ences. 

One version path in the gmph is designated as the princi- 
pal version path. lie object token is a floating reference to the 
newest version in the principal v&on path of the version 
graph. In figure 3 version path Obj3(1) is the principal version 
path. The assign operation is used to select a version path as 
the principal version path of an object. 

Any token that makes a floating reference may be 
suf!ixed with a time specification. The search for the refer- 
HICIXI version begins by mapping the token to the current ver- 
sion in the Specified version path. The incremental retinement 
relationship is used D IraverSe the path of incremental prede- 
cessots to locate the version that was current at the time 
specified. If the principal v&on path of an object 0 has been 
assigned to a different vaslon pa& then a time suffixed refer- 
~etoomaymaptodiffaentversionsbeforeandafterthe 
assign opatiw is performed. It is also possible that no version 
existed at the time spei%ed. 

When checking out objects, a client specities a set of 
tokens. A floating token reference is mapped at checkout time 
to the appropriate version in some version path. A 6xed token 
reference is mapped to a specific v&on. regardless of its rela- 
tionship with other vasions of the object. 

4.4 Not&atioo 

DVSS provides a notification mechanism whereby events 
~wntoDVSSandofporentialintcresttoausacanbemade 
known to that user. Examples of events which may be of 
inta’est w a user can include (1) contlicting checkouts (read- 
read conlXcts). (2) conflicting updates (read-write and write- 
write conflicts), (3) resolution of conflicts and the unilateral 
creation of alternate version paths by the partition merge pro- 
cedure, and (4) any state changes of DVSS directories. 

Conflicting checkouts, wnilicting updates, and the results 
of merge resolution are events that result in automatic 
mi6cation of the users involved. Users may receive additional 
notibtions by using the ndcfurc operation to specify events of 
which the user wishes to be notified. Events are specified by a 
pattern that defines a set of objects, a set of operations on those 
objects, and a set of users who will perform those operations. 
(A valid specification may include all objects in a federation, all 
operations suppmcd by DVSS, or all usas in a federation.) 

DVSS persistently queues noti6cation messages, describ 
ing the occurrence of a default 01 user specified event, until 
they are prcxead by the client who created the specification. 
The nread operation is used to read noti6cation messages or, 
optionally, to block waiting for future notifications. Waiting for 
notitications &es not block the entire client because the DVSS 
client interf& provides many dynamically created concurrent 
sessions within a single lFC connection to the server. 

5. Implemeotiog DVSS 

DVSS implements the services described above. Each 
site executes a single DVSS process serving all federations on 
that site. Each site stores. for each federation it is a member of, 
a fully redundant directory and partially redundant data. The 
directory at a site contains the full description of each object in 
the federations of which that site is a member. An object 
description consists of: the object’s name; references to the 
object’s @@al path, the currem version of the object, the vir- 
tual user who owns the object. the virtual users who may access 
the object; a full description of each version path in the object, a 
list of site locations for each version of the object, and partition 
tags used to maintain mutual consistency (see 05.3). We now 
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Figure 3: A DVSS Object and its AssoWed Tokens 

#? 

#7 

#9 

#16 

#20 

#4 

#16 

. 

discuss in more detail how our DVSS implementation stores 
design objects, performs operations on the relationships among 
versions. and makes the system robust in the event of site or 
communication failure. 

5.1 Storing Objects 

DVSS stores multiple copies of each object version and 
manages the relationships of incremental refinement. derivation, 
and consolidation among those versions. Storing redundant 
copies of each version provides increased speed of access and 
increased availability of data. Default replication facto= can be 
set for each object or on a federa!ion-wide basis. The replica- 
tion factor and the most-prefeti storage sites can he specified 
by the user at the time of a version’s creation (ii the creafe. 
update. uphold, or write operations). If such a specification is 
not made. the replication factor and preferred site list are inher- 
ited from the object. If the object has no such specifications, 
federation wide defaults are used. 

DVSS attempts to conserve storage space by storing 
related object vcxsions as differences. If copies of a version and 
its immediate predecessor (s) both reside on the same site, 
DVSS will store the predecessor(s) as a backwards difference 
[21] with aspect to the given vusion. If a predecessor has 
more than one successor, an arbitrary choice is made of the suc- 
cessor to difference from. Because floating references should 
be more common than fixed references to older versions, the 
newest version in each version path is stored in its entirety. 
(‘Ibe pmtice of storing backward differences of old versions 
related by incremental refinement has been shown [18] to 
reduce the storage space umsumed by the old versions by as 
much as 98 per ca%) 

DVSS attempts to maximize the benefits of backward 
diffcsences by storing replicated versions on the same sites as 
their predecessors whenever possible. Calculation of a differ- 
ace can be time consuming and for thii reason is performed as 
a background process. 
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Return 

update 
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disc& DVSS’ record of. checkout without updating any of the objects. 
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feduuionorssinglevhaluscr. 

Figure 4: DVSS operations 
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53 Operations 

The DVSS client interface consists of operations such as 
assign. checkout. create, deJine, delete, enroll, return, setpenn, 
and update. Figure 4 gives a brief description of the set of 
DVSS operations implemented at this time. 

The checkout, read, return, update. uphold, and write 
operations are group operations because they can deal with a 
set of versions in an atomic manner. This mechanism is 
designed to support operations on complex entities (i.e., entities 
represented by many DVSS objects). DVSS does not currently 
provide a means for constructing the group of objects from 
object references stored in other objects (e.g., configuration 
objects). A recmsive checkout mechanism will be implemented 
at the storage level during integration with the abstraction level 
(see 06.2). 

The checkout operation reads a set of object versions 
with intention to update; the read operation reads a set of object 
versions for viewing only. The return operation tetums 
checked out versions without update. The update operation 
adds new versions to some or all of a set of checked out objects; 
objects not modified are returned. The uphold operation per- 
forms an update of modified versions followed by a checkout of 
the totsl set of versions now held by the client. The write 
operation adds new versions to a set of objects without tequir- 
ing a previous checkout 

The group operations of read and checkout can span mul- 
tiple federations. The group operations of update, uphold, and 
write may be executed in one federation only. Given that a 
federation is used to control the scope of access, an individual 
engineer may wish to read or checkout design data 6om other 
federations (e.g.. a library), but it is not reasonable to update 
designs from distinct federations in a single update operation. 
Instead, one would expect to create local objects in the current 
federation for the modified library objects. 

In an environment free of communication failures, the 
directories on all sites in a federation maintain mutual con- 
sistency under the following algorithm. An operation is ini- 
tiated by client software on site A and communicated to DVSS 
by interptocess communication. DVSS acquires all appropriate 
locks on the directory entries to be modified by the operation. 
Each partition (see 85.3) has one lock site. A single lock 
request message acquires all locks (in an order which precludes 
deadlock). Once all locks have been acquired, site A performs 
and commits the modifications to its local directory structures. 
Shadowing of the directories is used to ensure atomicity of each 
DVSS transaction. Next, a multicast message is sent to all other 
sites in the federation. The message informs these sites to 
update their directories in an identical manner. Once all sites 
have acknowledged the directory change, site A releases its 
locks. 

Note that only the directory entries are locked and 
updated in place. New copies of the data, which constitute ver- 
sions of the objects themselves, are moved between DVSS and 
its client before the directories are locked and moditied, and 
bmveea sites (if necessary) after the directories are mod&d 
and unlocked. 

5.3 Achieving Partition Transparency 

The multi-reader and multi-writer paradigm allows 
DVSS’ tiusmess mechanism to hide almost all site and com- 
munication failures. Multi-readers can continue as long as 
replicated object versions are reachable. Multi-writers may 
always continue. Conflicting updates from noncommunicating 
sites are detected when the communication failures are 
correcti. 

To achieve faihxe transparency. DVSS must distinguish 
between failures and the correction of failures. The fault- 
tolerant Virtuul Partition control algorithm [l l] is used as a 
basis for tracking sets of commtmicating sites. A virtual psrti- 
tion is a named collection of sites that believe they can com- 
municate with one another. Each partition name is a unique 
token from an ordered set. Every site maintains a history of the 
names of its virtual partitions. When DVSS processes client 
requests, each site will communicate only with the sites belong- 
ing to its current virtual partition. When a directory entry is 
modified, the name of the current virtual partition is written 
with the modified data. ‘Ibis partition tag obviates the need for 
a separate log of changes made within a partition. 

A possible site or communication failure within a virtual 
partition is detected when one or more sites do not receive a 
reply from another site in a timely manner. The correction of a 
possible failure is detected when one site receives a message 
from a site outside its current virmal partition. (Each site util- 
izes a frndrr tusk that periodically attempts to send messages to 
sites outside of the local site’s current virtual partition.) When 
a possible failure or correction of a possible failure is detected, 
recovery begins with a twophase protocol to form a new virtual 
partition. In phase one, one or more sites send proposal mes- 
sages to ail known sites. A site receiving a proposal may accept 
the invitation if the partition name ptoposed in the invitation is 
“largef than any partition known to this site. An accepting site 
acknowledges the invitation by sending its partition history to 
the initiating site. If the proposed partition name is not accept- 
able, then the receiving site may become an initiator and send 
partition proposal messages to all sites. If an initiator has 
received no “‘better” invitations and has received or timed out 
all acknowledgements, a commit message is sent to all sites that 
acknowledged the invitation. The commit message specifies the 
list of sites that will form the new virtual partition. For each 
virtual p2rtition there exists a distinguished site called the purti- 
tion initlztor. that is, the site that successfully proposed the 
newly formed partition. Client requests in the recovering 
federation are suspended during the recovery process. 

When a site or communication failure occurs, a set of Sur- 
viving sites (partition) S loses contact with the set of down or 
disconnected sites D. The new virtual partition S performs a ’ 
divergence recovery to achieve a mutually consistent view of 
the objects and sites in S, and must continue to process requests 
for their local clients. Mutual consistency is achieved by pro- 
pagating any multicast messages originating from a site in D 
and not received by a subset of the sites in S. Continued client 
service is achieved by releasing all locks that are held by 
requests originating at sites in D. If the lock site for partition 
(S u D) is a member of D, the partition initiator is selected as 
the lock site for partition S. 
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whalrfailuleiscomcted.twoormorepartitionswill 
merge to fam a single mutually cutsistrsrt partition. Merge 
recovery a&eves mutual umsistency by decommissioning the 
lock sites of the merging partitions, by selecting the partition 
~astbeaewbcksite,andbypsopseatingsmongtheset 
ofmagingsitesallresuttsthatareunknownbyanyofthe 
merging sites. 

Merge recovery begins with the two-phase negotiation 
protocol. The commit message specifies the list of sites that 
will fam the new virtual partition, a represetuufive de for each 
of the merging partitions, and the partition history for each of 
the merging pa&ions. By compating the merging partitions’ 
histoiia meh rqrcsautive site calculates a mutually 
exchlsive (tt of paltitial names that are @art of the 
mpreseatative*shistoryandareomittedfromtbehistoryofat 
least one of the merging partitions. Based on this mutually 
exclusive set of partition names, each representative constructs 
a chongc li.u comaming all directory information whose associ- 
fUKlptiIiODtegVdlCiSinthiSset 

Inthethhdphaseofamergemcovery,aUsitesacquirea 
copy of each change list. Each change list consists of two dis- 
tinct patts: (1) information about urch group update (write or 
uphold) operation, ordered by update tokens; and (2) infcrma- 
tion on modified directory entries, ordered first by object token, 
next by version path token within the object, and tinally by ver- 
sion token within the version path. 

Change lists distribute new information and enable the 
discovery of conflicting requests. The process of conflict reso 
lution is de&d so that each merging site tmilaterally computes 
the same resohtion. To resolve confiicting group updates, each 
merging site reads and stores all group update information from 
theftrstpattofeachchangebst. Fromthisinformationthe 
group update conflicts are easily detected. When a set of 
conflieting group updates ate discovaed, at most one update 
may be selected as the winning update (i.e., the versions added 
by that update remain in the version path they were originally 
placedin)end~bsingupdateswilleventuallybeaddedtothe 
version graph as alternate versions. TIE algnithtn for resolving 
conflicts attanpts to maximize the numba of wimIing group 
updates. Pinding the maximal solution is an NP-Complete 
problem. DVSS employs heuristics to order all group updates 
reported by the merging partitions. A greedy algorithm is then 
applied to select an approximately maximal sea of non- 
conflicting gmup updates 

The heuristic used by DVSS to rank each group update is 
a function of the breudth and dcprh of the update. lbe breadth 
ofagroupupdateisthenumberofnewversionsaddedbythat 
update. lbetreadthofanupdateisusedasanindicamrofthe 
complexity of the entity being updated. The more complex the 
entity, tbe mrxe complex the update activity; therefore, we 
would like the most complex updates to be winning updates. 
The depth of a group update is the maximum depth of any ver- 
sion added by that update. The depth of a version is the number 
ofpredccessorversionsthatarereportedinthesamechange 
list. The depth of a group update reflects the amount of update 
activity on spectic vasion paths. Note that depth may be an 
inadequate measure of the complexity of tbe update activity 

because some DVSS clients will perform updates (creating new 
vasions) more often than other clients. 

Selection of winning group updates begins with the list of 
all reprkd group updates (ordered by the heuristic weighting), 
an anpty set of winning updates. and an empty set of losing 
updates. Each update in the ordered list is tested for conflict 
withanyupdateinthesetofwinningupdates. Tbeconflicttest 
ir stati BS follows: A group update G confiicts with a winniig 
updatcif(l)Gupdatesanyvasionpsthupdatedbyanywin- 
ninsupdate,n(2)foreachllpdatePthatcreatedapredecessor 
version of one of the versions created by G, the update P 
conflicts with any winning update. Clearly, the second condi- 
tion of the conflict test is recursive. If an update G does not 
conllict.thenGandaUupdatesthatcreatedapredecessorof 
oneofthevetsionsueatedbyGareranovedframthe~~ 
listofupdatesandaddedtothesttofwinningupdates. Ifan 
update G conflicts. then G and every update that created a suc- 
cessor of one of the versions created by G is removed from the 
ordered list of updates and added to the set of losing updates. 

Figum 5: FW%ssing Change Lists for a K Partition Merge. 

When all winning group updates have been determined, 
each merging site reads and processes the second part of every 
change list. Given that each change list is ordered by tokens, 
the merging sites process the information in a manner akin to a 
K-way merge. Figure 5 illustrates the basic merge strategy. 
For each object token appwring in one or mere change lists, a 
model of that object’s DVSS dimctay entries is created in 
memory using infcrmation from tbe change lists, the selected 
set of winning group updates, and the local disk resident direc- 
tory. lf multiple change lists report updates to the same version 
path, the set of winning updates (computed from part one infor- 
mation) specifies, as the true continuation of the version path, a 
set of versions from at most one change list. All versions 
resulting from losing updater are added to the object model as 
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new alternate version paths. New version path tokens are unila- 
terally created for these paths. When the model is completed, it 
is incorporuted into the local system directory. Incorporation is 
the act of adding all new information and overwriting all 
mcdihed information. 

If a site fails to complete a merge recovery @cause the 
site fails or a representative site fails), that site must rollback to 
its previous partition state and attempt to initiate a new virtual 
partition. If a site successfully completes the merge process, 
that site’s partition history is the union of all of the merging 
partitions’ histories. Complete details of divergence tecovery. 
merge recovery, conflict resolution, and incorporation am con- 
tamed in [8] along with arguments that divergence recovery and 
merge recovery maintain mutual consistency within a newly 
formed virtual partition. 

5.4 Replication and Migration 

DVSS keeps a vector of sites ordered by storage priority 
for every version of every object. The vector is distributed to 
all sites in the current partition as part of the version creation 
multicast message. The vector may specify sites that are not in 
the current virtual partition. Once a directory entry for the new 
version has been created, background tasks are created on the 
first m multicast receivers (in the current partition) listed in the 
vector to acquire copies of the new version from the creating 
client’s site. m is the minimum of the replication factor (n) and 
the number of multicast receiving sites in the current partition. 
If a site’s attempt to acquire a copy is successful, that site will 
multicast this fact to the current partition so that directories can 
be updated. 

Note that the creating client’s site will always appear in 
the copy site vector, but it may not be among the first n sites. In 
this case, the number of copies can become n+l if all sites 
acquire copies. When the number of copies exceeds n, the 
least-preferred sites (in this case, the creating client’s site) can 
remove their copies of this version. This removal is done con- 
servatively by requiring that each storage site confirm the pres- 
ence of a copy prior to removing the local copy. 

The copysites command can change the replication factor 
and/or preferred site list for a federation or object; this modifies 
the defaults used for future version creation. When the copy- 
sites operation is applied to a specific version of an object. the 
sites on which that version resides are changed. A new vector 
of sites is either specified explicitly or generated from the 
defaults. Any sites that currently hold copies and are not listed 
in the new vector are added to the new vector as the least pre- 
ferred sites. When a site discovers that it is one of the m most 
favored sites and it does not hold a copy, it will attempt to 
acquire one. 

The procedure described above is called propagation 
because it is perfcrmed on a version by version basis, to be dis- 
tinguished from mfgrufion which deals with moving versions 
between sites due to changes in the current partition or due to 
the withdrawal of a site from the federation. Each server runs 
one background migration task that examines all object versions 
to see if the local site needs to acquire or remove a local copy. 
The mechanism is the same as described for propagation. 
Migration is also used on sites with archival storage (e.g., opti- 

cal disks) to absorb obsolete object versions. In this case, the 
multicast of acquisition by an archival site will enable all non- 
archival sites to remove their copies. 

6. Ongoing Development 

The first prototype of DVSS was completed in 1985. and 
the present (rearchitected) prototype has been running since 
1986. Our early emphasii was on the functionality of the disni- 
buted multi-mader/multi-write algorithms and the recovery 
mechanism. We are now enhancing DVSS to meet the client 
interface requirements of a data model. In the following se0 
tions we discuss issues associated with three of our current 
efforts. 

6.1 Storage Reclamation 

Storage reclamation is required for client operations 
delete and erase, which explicitly deallocate versions and their 
associated directmy entries. In addition there are entities in the 
DVSS’ directories generated by client operations that can be 
re-used. Examples include (1) access list slots freed by the set- 
perm operation, (2) the list of checked out versions freed by 
update. (3) the vhual partition history list for a site, and (4) 
notifications already read by a client. We believe that tagging 
data as “removed” without reclaiming the reusable storage (log- 
ical removuf) is not adequate in the long term. However, the 
logically removed state is necessary in the short term to provide 
partition uanspamncy. A logically removed entity is recluim- 
able on a site if it is known on this site that ahsites in the 
federation have knowledge of its logical removal. Knowledge 
of logical removal of an entity is inferred from the confirmed 
site membership lists for each partition in the partition history. 
These partition histories are communicated to the initiator site 
who then determines (by transitivity of the pmdecessor partition 
relation) the set of partitions that are reclaimable. Logical dele- 
tions, like any other changes in the DVSS, are tagged with the 
partition in which they occur. If a logical deletion is tagged as 
occurring in a rehimablc pa&ion. it can be realized. We note 
that (1) the predecessors of reclaimable partitions are reclaim- 
able and 12) a partition containing all sites in a federation (i.e., a 
muximui purtition) is always reclaimable. The partition history 
is truncated at the most recent reclaimable partition along each 
directed arc in the partition history digraph. 

DVSS servers will attempt to perform storage reclama- 
tion under either of the following situations: (1) following a 
merge recovery, when it becomes known that all sites SUCCCSS- 

fully completed the merge processing. then new reclaimable 
partitions are calculated and directory space freed during those 
partitions is realized; (2) while opemting in a maximal partition, 
after a sufficiently large number of logical deletions have taken 
place, a two phase synchronization protocol. is carried out to 
ensure that the partition is still maximal and ah logical deletions 
carried out during the maximal partition can be realized. If a 
site fails during reclamation, the reclamation transaction will be 
backed out when the site recovers. thus deferring that site’s 
realization of the deletions until the next merge recovery. 
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63 Integration with Data Model Clients 

While implementing DVSS, we have been developing a 
data model (TEDh4) that fulfills the modeling requirements for 
an en-g database system (see Anderson, et al. 121). We 
intend that an object-oriented data model, such as TEDM. be 
the client of DVSS. Although one might map TEDM objects to 
DVSS storage objects in a oneto-one manner. and deal with the 
efficiency considerations of providing storage and access to 
“small objects”, we intend to heat DVSS storage objects as 
storage segments. The data model must cluster its objects into 
DVSS segments based on relationships existing among 
instances of the objects. (For design databases, clustering on 
rdati~nship attributes is expected to have more impact than 
clustaing on vahre attributes.) 
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Figure 6: Versions of objects A, B, and C clustered in 
versions of segment X 

Both the abstraction level (e.g., TEDM) and the staage 
level (i.e.. DVSS) of our system have some notion of versions 
and their associated semantics. A straight-forward technique 
for integrating these systems would be to store a cluster of 
TEDM objects in one DVSS segment, and represent each ver- 
sion of the cluster in a version of the segment Figure 6 illus- 
trates versions of segment X containing versions of the 
clustered objects A, B, and C. Notice that a new version of C 
can be made without modifying A. but the same may not be true 
of B. Issues such as when a new version of a component 
triggers a new version of the containing complex object (i.e., 
version propagation [17]. or percolation [3]), and when an 
update is an update-in-place or when it is versioned must be 
managed by an engineering DBMS. We are developing a 
specification fat the semantics of versions to ensure that there 
ue no incompatibilities between the client data model version 
semantics and DVSS version semantics. 

A significant task in integrating TEDM and DVSS is 
making the meta-information regarding the format of TEDM 
objects accessible to and interpretable by DVSS. Thii is neces- 
sary in order to encapsulate the architectural heterogeneity of 
the computing environment within DVSS. Inter-site access 
must take architectural disparities (e.g., byte ordering, floating 
point formats) into account where applicable; DVSS will send 
its objects in a network standard format, which can be 
configured to agree with the architecture of the workstations. 
Another need of DVSS for TEDM scheme information is tc 
perform atomic recursive checkout of a co@uration object. 
Access to the scheme of objects wi.U also be required to use 
fields within objects as the units of granularity for DVSS’ dif- 
ferencing algorithm. 

In principle. DVSS will provide both transparent data dis- 
tribution and concurrency control to its client data model. We 
intend tc integrate a single-site single-user implementation of 
TEDM with DVSS, leveraging off DVSS for both its multi-user 
and distributed data capabilities. 

6.3 Productivity under a Multi-Reader and Multi-Writer 
Mechanism 

The multi-reader and multi-writer &cess control mechan- 
ism supported by DVSS is an optimistic mechanism in the 
strongest sense. Compared with single-writer mechanisms, the 
clients of DVSS achieve higher throughput, which affects pro- 
ductivity of the end-users (e.g., design engineers). Under a 
multi-reader and multi-writer access control mechanism, clients 
can create alternate versions unintentionally. In such cases, it is 
likely that consolidation will be. performed to effect a combined 
version. The end-user cost of performing consolidation must be 
weighed against the increased throughput to determine whether 
or not a multi-reader and multi-writer access control mechsnism 
increases the productivity of the system’s end-users. We are 
currently building simulations of a singlewriter distriiuted sys- 
tem based on locking and of DVSS. We intend to compare the 
two systems under several models of user behavior in an 
attempt to measure the effects of each access control mechsn- 
ism on end-user productivity. 

7. Conclusions 

We have developed a Distributed Version Storage Server 
for the storage level of an Engineering Design Database 
Management System. DVSS is intended to be integrated with a 
data model client, which will provide a suitable abstraction 
level. Designing DVSS has presented two interesting problems: 
developing the semantics of a versioned storage model, and 
developing and implementing distributed algorithms for the 
DVSS operations. The latter was by far the more challenging. 

DVSS is designed to be robust and in so far as possible 10 

make failures transparent to its clients and users. We wish to 
support ongoing use of the system by clients during network 
partitioning in such a way that the system behaves consistently 
whether or not a failure has occurred Supporting the ability of 
users in mere. than one network partition to concurrently effect 
operations against DVSS precludes using a concurrency control 
mechanism based on a voting algorithm. Fortunately, versions 
and multi-writer algorithms for concurrent operations can be 
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used to provide service during network failures in a manner that 
appears uniform to the client, except for delayed notification 
due to concurrent operations on the same objects. 

In a distributed database system where conflicting com- 
putations can proceed concurrently in two or more partitions, 
the amount of data that must be exchanged to process merge 
recovery can be substantial. In addition, conflicts must be 
detected and resolved as there is no guarantee that all actions 
are serializable. Thus, the recovery protocol must guarantee 
that a consistent resolution of conflicts occurs at each site. The 
agreement on a new virtual partition and exchange of recovery 
merge data requires a two phase protocol. Verification of a 
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