
DVSS: A Distributed Version Storage Server for CAD Applications

Denise J. E&Lund. Earl F. Eckhnd, Jr.. Robert 0. Eifris, and Fred M. Tonge

Computer Research Lab, Tektronix Laboratories
Tektronix, Inc., Beaverton. Gregon 97077 USA

Abstract

The Distributed Version Storage Server (DVSS) provides
an underlying storage mechsniim for a CAD-oriented data
model. DVSS supports such project management features as
version histories. alternate data versions, and multi-reader
multi-writer access control in a heterogeneous network of
workstations and fileservers.

Each design object is managed as a rooted directed acy-
clic graph @AG) of versions. At any time, one path in an
object’s DAG is designated as its principal path; the current
version in the principal path is the current version of the object.
Other paths contain alternate versions of the object. Updates to
any version path must be seriali&le. but derivation of alternate
versions is not subject to this constraint.

Clients interact with DVSS using the checkoutlcheckin
paradigm. Each object has a primary site, which synchroniis
actions on the object Group operations requiring multiple
locks follow a deadlock avoidance scheme.

DVSS is robust in that it supports multi-reader and
multi-writer data access in the presence of failures. Traditional
data replication supports continued read access. Write-write
conflicts resulting from continued write access during network
partition are resolved at recovery time by creation of altemate
versions. The cost of resolution is minimized by employing a
unilaterally computable algoritiun at each site.

1. IIJtroduction

That CAD database applications have several properties
not well supported by a traditional relational DBMS is a widely
accepted view [1.3,4,5.7.12.13.14.16.17,19,201.

In particular. a database system for CAD must provide support
for the following:

1. Long transactions that may extend over hours or days.
2. Complex relationships among components of a design.
3. Modeling designs as complex objects.
4. Design versions and alternative designs.
5. Modeling con@urations of a design as complex objects.
6. Design data availability regardless of other users activities

oc ryslem failures.

Further, it is frequently observed that design data objects
have arbitrary formats. That is, the set of objects occurring in a
design with the same format tends to be small, and is frequently
a singleton set. This implies that database storage techniques
based on multiple occurrences of objects with a regular format
(e.g., records or tuples) are inadequate to manage design data.

In the Computer Research Laboratory of Tektronix Labs
we are developing an experimental engineering design data&e
system to be used by computer aided design tools. The system
will support team engineering in a heterogeneous environment
of engineering workstations inter-connected by a network. The
network may also wmect the wakstations to one or more sites
acting as file servers. Gur development is being done on
6801~based UNIX’ w&stations connected with VAX2
1 l/780%.

It is our thesis that an engineering database system should
have twc levels: an abstraction management level and a storage
management level. An example of a multi-layer computer-
aided engineering system is shown in Figure 1. Versions and
con&rations of design objects are modeled at the abstraction
level along with relationships and other semantic properties of
design objects. The storage level provides primitive support for
versions, con8gurations. and complex objects, including clus-
tering and recursive retrieval.

In this paper we present DVSS, a Distributed Version
Storage Server, as the storage manager in our experimental
engineering design databam system. We fust describe OUT
design goals and discuss related work. We then present the
client’s view of DVSS. followed by discussion of some aspects
of the DVSS implementation. We close with a sketch of future
work and conclusions.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987 443

Figure 1: Layered CAFL System

2. Goals

In the development of DVSS we set and attained four
goals. Two goals (I& 2) assert DVSS semantics visible to the
client programs (or users), and two goals (3 & 4) address imple-
mentation issues.

1. Provide partition transparent storage system behavior.

2. Support distributed multi-reader and multi-writer access.

3. Rovide a robust storage mechamsm.

4. IvCmixe multi-phase protocols by using unilaterally
computable algorithms.

Ourprimarygoalistoprovideadistributedsystemin
which the behavior perceived by a user is independent of the
current site conftgumtion or connectivity of the network. in so
far as possible. In particular the functioning of DVSS, while
the system configuration is in a partitioned state, should not
depend on the presence of any specitic site or quorum of sites.
The presentation of partition transparency is facilitated by using
a multi-writer access paradigm.

DVSS’ multi-reader and multi-writer xcess control pam-
digm was introduced by Ecklund and Price [IO]. The multi-
reader paradigm allows any number of clients to concurmndy
read any accessible copy of the same data. The multi-writer
paradigm allows any number of clients to write new versions as
successors of the same data. Under the DVSS multi-reader and
multi-writer mechanism, requests that fcmn read-write or
write-read conflicts are not abetted. and writewrite confhcts
are resolved by the creation of alternate versions. Timing
aspects of non-blocking reads and creation of alternate versions
due to write-write conflicts can be visible to DVSS client pro
grams and end users.

Partition transparent behavior is possible when reading
data if any replicated copy of the data is accessible. Given that
write-write conflicts are resolved by the creation of alternate

Versions. it is possible to allow all write operations to be per-
formed locally while sites are separated by a communication
failUre. Thus, Clhts Of the storage system may experience no
disruption in service due to site or communication failures
(depending on the placement of copies of data).

A robust storage mechanism provides reliable storage of
data and maximal access to that data during failures. Our goal
for robustness is to incrra~e the likelihood of an object being
available in a network partition, to allow a client to read any
available copy of an object. and to allow all writes to complete.
DVSS achieves robusmess through reliable distributed proto-
cols. data replication. and the muhi-reader and multi-writer
access control paradigm.

In any distriiuted system it is desirable to minimize the
numba of messages required to maintain mutual consistency
among a set of sites. Most dism%uted protocols require multi-
ple phases (e.g., 2 phase commit). In DVSS the number of
message phases required by distriiuted recovery is minimized
by defining mulaterally computable resolution protocols. In a
nnilatmal comjuUaIion, a set of sites performs a single
exchange of state information. Upon receiving state informa-
tion from the other sites, each site independently computes a
mutually consistent result based on the information exchanged.
No further negotiation phases are required.

3. Relation to Other Work

Several version servers have been proposed in the litem-
ture. These servers support intricate models of versions where
many attributes and relationships such as time of creation. ver-
sion type, access permissions, ownership, test status, type of
dabbase the version resides in, predecessor, successor,
configurrtion, and equivalence ate maintained by the server.
Our stomge saver provides primitive support for those atui-
bums and relationships that am essential in modeling versions.
The abstraction level of an engineering database system must
model arbitrary relationships and an arbitrary number of attri-
butes. It is our contention that it is not desirable to model at the
s&xage level any relationships that can be easily managed by
the general mechanisms already required in the abstraction
layer or by some minimal interaction between the two levels.
Following is a brief discussion of three such version servers.

Katz. Anwarrudin. and Chang have proposed a disui-
buted version server for CAE applications [15]. Their server
supports multi-reader and single-writer access to untyped data.
Structural relationships among the data versions are tracked by
the server. Data is classifted in three planes: the version plane
relates temporal and alternate versions (which they call deriva-
tives and alteanaUves respectively); the con6guration plane
relates those instances that comprise a version of a higher level
object and the equivalence plane relates different physical
repmsentuions of the same entity. DVSS manages the version
plane directly. The configumtion plane and the equivalence
plane are supported by DVSS group operations. but creation of
versions in these planes is the responsibility of the abstraction
laYU.

Weiss, Rot&. Rhyne, and Goldfein have proposed the
Design Objects’ Storage System (DOSS) (221. DOSS stores
temporal and alternate versions of objects and supports mulli-

444 Proceedings of the 13th VLDB Conference, Brighton 198

reader and single-writer access to those objects in contrast to
DVSS’s multi-writer access. The system is distributed in that
any site having sufficient storage space stores copies of the data
and functions as a server. All server sites maintain fully redun-
dant directories of the data stored by the system. The non-
server sites may cache information on the location of data
objects they have referenced. The system provides for the per-
manent removal of machines from the network with facilities
for migrating data stored on those machines to other sites. simi-
lar to DVSS’s abandon and withdraw facilities.

Chou and Kim have proposed a system far controlling
versions in a CAD environment [a]. The environment deEnes
three database types: the public dambase. project databases. and
private databases. Versions of CAD objects are classified as
released versions, working versions, or transient versions. A
version’s classitication restricts the operations that may be per-
formed on that version and the type of database the version may
reside in. DVSS provides a general federation mechanism that
can be used by the abstraction layer to define databases with
any desired scope of access. Chou and Kim’s version server
uses checkout, checkin, derivation, and promotion to achieve a
multi-reader and multi-writer access control mechanism. Other
major features of this mode.1 provide direct suppott for
contiguration management

DVSS is unique in that it provides partition transparency
and a f&ration mechanism to define arbitrary data access
scopes. DVSS also supports multi-writer access, which has
recently been incorporated by Chou and Kim. Of those pro
posed version servers that have been implemented, most pro
vi& distributed access to cenhalized objects. DVSS has been
designed to provide robust distributed access to distributed
objects.

4.1 users

Ea:h user in a federation is a virtual urer representing a
set of related login account.3 (e.g., those of a single user on dif-
ferent sites). Virtual users own and have access rights to the
data objects stored by the DVSS. A virtual user is a capability
consisting of a globally unique name and a password. A valid
virtual user name and password must be provided, via the
openfed operation, before any data manipulating operation can
be performed in that federation. The virtual user mechanism
may also be used to form groups of related users (e.g., the
MMU design team) which are composed of distinct individuals
with identical access rights to data objects in DVSS.

Virtual users are created by the newuser operation, and
are destroyed by the secede operation (see figure 4). Each Vir-
tual User is either an associate member cr a participating
member of a federation. Participating members may create and
update objects. Associate members may only view the objects
stored by the federation. The moduser operation allows a vir-
tual user to change his name, password or promote himself
from associate to participant status.

4.2 Objects

Clients store and retrieve objects using the
checkoutlcheckin paradigm. ‘A client process checks out a copy
of an object, modities the copy of the object, and updates the
moditied object by adding a new version of the object to the
dambase. The storage server tracks the evolution of each object
by storing and maintaining access to versions of each object.
Objects themselves are not updated in place, but the directories,
which contain information about the objects, are updated in
pli-iCe.

Versions of a single object are related by incremental
4. Client View of the Distributed Version Storage Server refinement, by derivation, or by consolidation. Incremental

Clients of DVSS (e.g., a DML interpreter) implement a
data model and its abstractions. These client programs view
DVSS as a reliable distributed me&at&n for storing and
retrieving design data for teams of engineers. DVSS organizes
design data under an association abstraction called afederarion
[9]. We have chosen the word federation to indicate that it is a
loosely associated collection of sites and users whose patticipa-
tion in the federation is strictly voluntary. Fcmnally. a federa-
tion is characterized by a triple (0. S. U j , where 0 is the set of
data objects, S is the set of sites which belong to the federation,
and U is the set of users who belong to the federation.

retinement (see figure 2A) is a one&-one relationship resulting
from single-writer activity. Derivation (see figure 2B) is a
one-to-many relationship between a version and a set of succes-
sor versixts. Consolidation (see figure 2C) is a many-to-one
relationship between a set of predecessor versions and a single
successor version. A set of versions related by incremental
reiinement, derivaticn, and consolidation form a rooted directed
acyclic graph of versions for each object.

when multiple users checkout the same version V of an
object, the ftrst user to perform an update operation will cream a
new successor version N, which is related to V by incremental
refinement. Subsequent updates based on versionV will create
alternab versions of V. These alternate versions are successors
related to V by derivation.

We anticipate that federations will be used to represent
design projects. component libraries, software module libraries,
public databases, and private databases. One user employs the
de$ne operation to create and name a federation. The defining
user and the site local to the define operation are members of
the federation. Other tam members use the enroll operation to
add their sites to the federations. The enrolling site must
specify the name of the federation and the name of a site that
participates in the federation. In this case, the distributed nature
of the federation is not completely transparent to the users.

Each version has at most one successof related by incrc-
mental refinement; this is its principal successor. The principal
successor is a member of the same version path as the predeces-
ser. while each alternate version is a member of a distinct ver-
sion path. Figure 2(B) illustrates versions with alternate succes-
sors related by derivation and a principal successor related by
refinement. The derivation relationship may arise from multi-
writer be savior.

Proceedings of the 13th VLDB Conference, Brighton 1987

Objl m
the -0 4 5 11

(A) - tncremental refinements of Obji .

(B) - Alternate versions of Obj2. . ObJ3 cgy-g
(C) - V is a consolidated version of (Pl ,P2).

refinement derivation consolidation
1111111111111 ry%xxxxxL

Figmt.2: Versioningaconceptual object ’

when multiple writas have ueated a set of altemate ver-
sions P,, P*, Pk. it may be desind that those vasions be con-
solidated to faam a single new v&on V. l%e version V is the
source of a new version path in the version graph. Figure 2(C)
illustmtea a new version V famed from multiple predecessors
p,. Pz, ..a* Pk Version V has no predecessors related by incre
mental &nement, but a set of predecessors related by consoli-
dation. The predecessor instances Pt and Pz may be updated by
incremental relinement within their respective version paths.

43 Referencing Objects

Clientprogramsusetokenstorefertosubsetsofrelated
versions in a v&on graph. A token is a unique symbol #N
assigned by DVSS. Figure 3 shows a DVSS object and its ass@
hated tokens. Each object has an associated token repnsenting
the graph of versions. Each version path in the graph has an
associated token and an implicit alias nwnber. A version path
token or an object name with its v&on path implicit alias
number may be used to refer to a set of versions related by
incremental re6nement. Each individual version has an associ-
ated token. Object tokens and version path tokens ax used to
make pwlins rrfircnces. Version tokens make fucd r&r-
ences.

One version path in the gmph is designated as the princi-
pal version path. lie object token is a floating reference to the
newest version in the principal v&on path of the version
graph. In figure 3 version path Obj3(1) is the principal version
path. The assign operation is used to select a version path as
the principal version path of an object.

Any token that makes a floating reference may be
suf!ixed with a time specification. The search for the refer-
HICIXI version begins by mapping the token to the current ver-
sion in the Specified version path. The incremental retinement
relationship is used D IraverSe the path of incremental prede-
cessots to locate the version that was current at the time
specified. If the principal v&on path of an object 0 has been
assigned to a different vaslon pa& then a time suffixed refer-
~etoomaymaptodiffaentversionsbeforeandafterthe
assign opatiw is performed. It is also possible that no version
existed at the time spei%ed.

When checking out objects, a client specities a set of
tokens. A floating token reference is mapped at checkout time
to the appropriate version in some version path. A 6xed token
reference is mapped to a specific v&on. regardless of its rela-
tionship with other vasions of the object.

4.4 Not&atioo

DVSS provides a notification mechanism whereby events
~wntoDVSSandofporentialintcresttoausacanbemade
known to that user. Examples of events which may be of
inta’est w a user can include (1) contlicting checkouts (read-
read conlXcts). (2) conflicting updates (read-write and write-
write conflicts), (3) resolution of conflicts and the unilateral
creation of alternate version paths by the partition merge pro-
cedure, and (4) any state changes of DVSS directories.

Conflicting checkouts, wnilicting updates, and the results
of merge resolution are events that result in automatic
mi6cation of the users involved. Users may receive additional
notibtions by using the ndcfurc operation to specify events of
which the user wishes to be notified. Events are specified by a
pattern that defines a set of objects, a set of operations on those
objects, and a set of users who will perform those operations.
(A valid specification may include all objects in a federation, all
operations suppmcd by DVSS, or all usas in a federation.)

DVSS persistently queues noti6cation messages, describ
ing the occurrence of a default 01 user specified event, until
they are prcxead by the client who created the specification.
The nread operation is used to read noti6cation messages or,
optionally, to block waiting for future notifications. Waiting for
notitications &es not block the entire client because the DVSS
client interf& provides many dynamically created concurrent
sessions within a single lFC connection to the server.

5. Implemeotiog DVSS

DVSS implements the services described above. Each
site executes a single DVSS process serving all federations on
that site. Each site stores. for each federation it is a member of,
a fully redundant directory and partially redundant data. The
directory at a site contains the full description of each object in
the federations of which that site is a member. An object
description consists of: the object’s name; references to the
object’s @@al path, the currem version of the object, the vir-
tual user who owns the object. the virtual users who may access
the object; a full description of each version path in the object, a
list of site locations for each version of the object, and partition
tags used to maintain mutual consistency (see 05.3). We now

Proceedings of the 13th VLDB Conference, Brighton 1987

Obj3 = #2

Name Collection
TYP

Reference Collection Current
Type Token Version

Obj3 Object
Obj3(1) Version Path
Obj3(2) Version Path

Obj3(3) Version Path

Obj3(4) Version Path

Obj3(l)[t*0] Version

.

#16

.

Version

Floating

Floating

Floating

Floating

Floating

Fixed

#2

#3

#8

#11

#19

#3

.

Fixed

.

#ll

. . .

Figure 3: A DVSS Object and its AssoWed Tokens

#?

#7

#9

#16

#20

#4

#16

.

discuss in more detail how our DVSS implementation stores
design objects, performs operations on the relationships among
versions. and makes the system robust in the event of site or
communication failure.

5.1 Storing Objects

DVSS stores multiple copies of each object version and
manages the relationships of incremental refinement. derivation,
and consolidation among those versions. Storing redundant
copies of each version provides increased speed of access and
increased availability of data. Default replication facto= can be
set for each object or on a federa!ion-wide basis. The replica-
tion factor and the most-prefeti storage sites can he specified
by the user at the time of a version’s creation (ii the creafe.
update. uphold, or write operations). If such a specification is
not made. the replication factor and preferred site list are inher-
ited from the object. If the object has no such specifications,
federation wide defaults are used.

DVSS attempts to conserve storage space by storing
related object vcxsions as differences. If copies of a version and
its immediate predecessor (s) both reside on the same site,
DVSS will store the predecessor(s) as a backwards difference
[21] with aspect to the given vusion. If a predecessor has
more than one successor, an arbitrary choice is made of the suc-
cessor to difference from. Because floating references should
be more common than fixed references to older versions, the
newest version in each version path is stored in its entirety.
(‘Ibe pmtice of storing backward differences of old versions
related by incremental refinement has been shown [18] to
reduce the storage space umsumed by the old versions by as
much as 98 per ca%)

DVSS attempts to maximize the benefits of backward
diffcsences by storing replicated versions on the same sites as
their predecessors whenever possible. Calculation of a differ-
ace can be time consuming and for thii reason is performed as
a background process.

Proceedings of the 13th VLDB Conference, Brighton 1987 447

DCJinC wedtea a new federetion (which exist8 only on the cliem’s site).

Enroll 1 dd l now rite (the site whore the mll im executed) to l tietion which exists on I remote site.

MOdUSU rllowr a Virtual Um to chenge his nmnc. pessword e&x convert 6mn essocete to paticipent stetus.

N#UW UCUSS~WWVhWlllW.

secede allows a virtwl user to remove himself fb3m a federation. Any references to the seceding usex am optionally replaced with refer-
ence~ to a virtual wcr whor neme end pessword M speci&d (othuwise all nferences UC inherited by the definer).

Withdraw ranoves e rire &om Ihe federation efter ralveging the data stored on that site.

Grout Operations

1 Checht 1 reads a set of object versions (for update). I

ReCld

Return

update

reads a set of object versions (not updateable).

disc& DVSS’ record of. checkout without updating any of the objects.

dds new versiws to chcckcd out objects. The 6% of versions can be a subset of the vexsiom checked out, with the remaining
versions being rctumed.

Uphold 1 dds IYW vasions to checked out objects and mates a new checkout of the versions cumntly held by the client.

Write adds new succesm versions to a set of objects without previously checking out their predecessors.

I Side Entitv Onerations I

Assign changes the primary parh of a data object.

Create 1 ueates an inithl version of e new obiect in a federation. I

Delete

Derive

logically ranovcs m object 6om a federation. Delete fails if versions rre checked out

creates m akcmatc version path as the bwcessor of a version.

I Erase
I

updates l version with a copy of its predecessor or 1ogicaUy removes m entire version path from an object If my of the erased
v-ions have been chsckai out, an altemete path will be derived when the corresponding update occurs.

Newown

Setperm

allown the owner of a vmion path or object IO give away the o&p of the version peth or object elong with all of its
plivkdges.

~6 global pumissii nd access lists for each object and version path.

Closefed tamGnete# 6 session within l clientto-DVSS amnection.

COppit chmgw the &fsulr mphtion d/or copysite looatiom of a fedcrUion or object. When epplied to a specific vain the current
lowtiow and rcpliuLion foaor are dunged.

Enquire providea rudima~tery query faciliti for DVSS dimcbny infonnetion.
I

Nactive 1 eaahles (or disables) a meseage queue for receiving ww not&&m meesages.

N&yine 1 crc&a a notitic~ion message queue and an event selector (pattern).

Ndestroy 1 desaoyc a notihtion queue and my queued murages.
I

Nread reads norification mcsssgcs fmm I muned queue or waits for new notiJicrtions.

Openfed cru6sorre-&tincsa amaurent se&on within a single DVSS connection. The session may optionally restricted to a single
feduuionorssinglevhaluscr.

Figure 4: DVSS operations

448 Prouxdings of the 13th VLDB Conference, Brighton 1987

53 Operations

The DVSS client interface consists of operations such as
assign. checkout. create, deJine, delete, enroll, return, setpenn,
and update. Figure 4 gives a brief description of the set of
DVSS operations implemented at this time.

The checkout, read, return, update. uphold, and write
operations are group operations because they can deal with a
set of versions in an atomic manner. This mechanism is
designed to support operations on complex entities (i.e., entities
represented by many DVSS objects). DVSS does not currently
provide a means for constructing the group of objects from
object references stored in other objects (e.g., configuration
objects). A recmsive checkout mechanism will be implemented
at the storage level during integration with the abstraction level
(see 06.2).

The checkout operation reads a set of object versions
with intention to update; the read operation reads a set of object
versions for viewing only. The return operation tetums
checked out versions without update. The update operation
adds new versions to some or all of a set of checked out objects;
objects not modified are returned. The uphold operation per-
forms an update of modified versions followed by a checkout of
the totsl set of versions now held by the client. The write
operation adds new versions to a set of objects without tequir-
ing a previous checkout

The group operations of read and checkout can span mul-
tiple federations. The group operations of update, uphold, and
write may be executed in one federation only. Given that a
federation is used to control the scope of access, an individual
engineer may wish to read or checkout design data 6om other
federations (e.g.. a library), but it is not reasonable to update
designs from distinct federations in a single update operation.
Instead, one would expect to create local objects in the current
federation for the modified library objects.

In an environment free of communication failures, the
directories on all sites in a federation maintain mutual con-
sistency under the following algorithm. An operation is ini-
tiated by client software on site A and communicated to DVSS
by interptocess communication. DVSS acquires all appropriate
locks on the directory entries to be modified by the operation.
Each partition (see 85.3) has one lock site. A single lock
request message acquires all locks (in an order which precludes
deadlock). Once all locks have been acquired, site A performs
and commits the modifications to its local directory structures.
Shadowing of the directories is used to ensure atomicity of each
DVSS transaction. Next, a multicast message is sent to all other
sites in the federation. The message informs these sites to
update their directories in an identical manner. Once all sites
have acknowledged the directory change, site A releases its
locks.

Note that only the directory entries are locked and
updated in place. New copies of the data, which constitute ver-
sions of the objects themselves, are moved between DVSS and
its client before the directories are locked and moditied, and
bmveea sites (if necessary) after the directories are mod&d
and unlocked.

5.3 Achieving Partition Transparency

The multi-reader and multi-writer paradigm allows
DVSS’ tiusmess mechanism to hide almost all site and com-
munication failures. Multi-readers can continue as long as
replicated object versions are reachable. Multi-writers may
always continue. Conflicting updates from noncommunicating
sites are detected when the communication failures are
correcti.

To achieve faihxe transparency. DVSS must distinguish
between failures and the correction of failures. The fault-
tolerant Virtuul Partition control algorithm [l l] is used as a
basis for tracking sets of commtmicating sites. A virtual psrti-
tion is a named collection of sites that believe they can com-
municate with one another. Each partition name is a unique
token from an ordered set. Every site maintains a history of the
names of its virtual partitions. When DVSS processes client
requests, each site will communicate only with the sites belong-
ing to its current virtual partition. When a directory entry is
modified, the name of the current virtual partition is written
with the modified data. ‘Ibis partition tag obviates the need for
a separate log of changes made within a partition.

A possible site or communication failure within a virtual
partition is detected when one or more sites do not receive a
reply from another site in a timely manner. The correction of a
possible failure is detected when one site receives a message
from a site outside its current virmal partition. (Each site util-
izes a frndrr tusk that periodically attempts to send messages to
sites outside of the local site’s current virtual partition.) When
a possible failure or correction of a possible failure is detected,
recovery begins with a twophase protocol to form a new virtual
partition. In phase one, one or more sites send proposal mes-
sages to ail known sites. A site receiving a proposal may accept
the invitation if the partition name ptoposed in the invitation is
“largef than any partition known to this site. An accepting site
acknowledges the invitation by sending its partition history to
the initiating site. If the proposed partition name is not accept-
able, then the receiving site may become an initiator and send
partition proposal messages to all sites. If an initiator has
received no “‘better” invitations and has received or timed out
all acknowledgements, a commit message is sent to all sites that
acknowledged the invitation. The commit message specifies the
list of sites that will form the new virtual partition. For each
virtual p2rtition there exists a distinguished site called the purti-
tion initlztor. that is, the site that successfully proposed the
newly formed partition. Client requests in the recovering
federation are suspended during the recovery process.

When a site or communication failure occurs, a set of Sur-
viving sites (partition) S loses contact with the set of down or
disconnected sites D. The new virtual partition S performs a ’
divergence recovery to achieve a mutually consistent view of
the objects and sites in S, and must continue to process requests
for their local clients. Mutual consistency is achieved by pro-
pagating any multicast messages originating from a site in D
and not received by a subset of the sites in S. Continued client
service is achieved by releasing all locks that are held by
requests originating at sites in D. If the lock site for partition
(S u D) is a member of D, the partition initiator is selected as
the lock site for partition S.

fioceedings of the 13th VLDB Conference, Brighton 1987 449

whalrfailuleiscomcted.twoormorepartitionswill
merge to fam a single mutually cutsistrsrt partition. Merge
recovery a&eves mutual umsistency by decommissioning the
lock sites of the merging partitions, by selecting the partition
~astbeaewbcksite,andbypsopseatingsmongtheset
ofmagingsitesallresuttsthatareunknownbyanyofthe
merging sites.

Merge recovery begins with the two-phase negotiation
protocol. The commit message specifies the list of sites that
will fam the new virtual partition, a represetuufive de for each
of the merging partitions, and the partition history for each of
the merging pa&ions. By compating the merging partitions’
histoiia meh rqrcsautive site calculates a mutually
exchlsive (tt of paltitial names that are @art of the
mpreseatative*shistoryandareomittedfromtbehistoryofat
least one of the merging partitions. Based on this mutually
exclusive set of partition names, each representative constructs
a chongc li.u comaming all directory information whose associ-
fUKlptiIiODtegVdlCiSinthiSset

Inthethhdphaseofamergemcovery,aUsitesacquirea
copy of each change list. Each change list consists of two dis-
tinct patts: (1) information about urch group update (write or
uphold) operation, ordered by update tokens; and (2) infcrma-
tion on modified directory entries, ordered first by object token,
next by version path token within the object, and tinally by ver-
sion token within the version path.

Change lists distribute new information and enable the
discovery of conflicting requests. The process of conflict reso
lution is de&d so that each merging site tmilaterally computes
the same resohtion. To resolve confiicting group updates, each
merging site reads and stores all group update information from
theftrstpattofeachchangebst. Fromthisinformationthe
group update conflicts are easily detected. When a set of
conflieting group updates ate discovaed, at most one update
may be selected as the winning update (i.e., the versions added
by that update remain in the version path they were originally
placedin)end~bsingupdateswilleventuallybeaddedtothe
version graph as alternate versions. TIE algnithtn for resolving
conflicts attanpts to maximize the numba of wimIing group
updates. Pinding the maximal solution is an NP-Complete
problem. DVSS employs heuristics to order all group updates
reported by the merging partitions. A greedy algorithm is then
applied to select an approximately maximal sea of non-
conflicting gmup updates

The heuristic used by DVSS to rank each group update is
a function of the breudth and dcprh of the update. lbe breadth
ofagroupupdateisthenumberofnewversionsaddedbythat
update. lbetreadthofanupdateisusedasanindicamrofthe
complexity of the entity being updated. The more complex the
entity, tbe mrxe complex the update activity; therefore, we
would like the most complex updates to be winning updates.
The depth of a group update is the maximum depth of any ver-
sion added by that update. The depth of a version is the number
ofpredccessorversionsthatarereportedinthesamechange
list. The depth of a group update reflects the amount of update
activity on spectic vasion paths. Note that depth may be an
inadequate measure of the complexity of tbe update activity

because some DVSS clients will perform updates (creating new
vasions) more often than other clients.

Selection of winning group updates begins with the list of
all reprkd group updates (ordered by the heuristic weighting),
an anpty set of winning updates. and an empty set of losing
updates. Each update in the ordered list is tested for conflict
withanyupdateinthesetofwinningupdates. Tbeconflicttest
ir stati BS follows: A group update G confiicts with a winniig
updatcif(l)Gupdatesanyvasionpsthupdatedbyanywin-
ninsupdate,n(2)foreachllpdatePthatcreatedapredecessor
version of one of the versions created by G, the update P
conflicts with any winning update. Clearly, the second condi-
tion of the conflict test is recursive. If an update G does not
conllict.thenGandaUupdatesthatcreatedapredecessorof
oneofthevetsionsueatedbyGareranovedframthe~~
listofupdatesandaddedtothesttofwinningupdates. Ifan
update G conflicts. then G and every update that created a suc-
cessor of one of the versions created by G is removed from the
ordered list of updates and added to the set of losing updates.

Figum 5: FW%ssing Change Lists for a K Partition Merge.

When all winning group updates have been determined,
each merging site reads and processes the second part of every
change list. Given that each change list is ordered by tokens,
the merging sites process the information in a manner akin to a
K-way merge. Figure 5 illustrates the basic merge strategy.
For each object token appwring in one or mere change lists, a
model of that object’s DVSS dimctay entries is created in
memory using infcrmation from tbe change lists, the selected
set of winning group updates, and the local disk resident direc-
tory. lf multiple change lists report updates to the same version
path, the set of winning updates (computed from part one infor-
mation) specifies, as the true continuation of the version path, a
set of versions from at most one change list. All versions
resulting from losing updater are added to the object model as

450 Proceedings of the 13th VLDB Conference, Brighton 1987

new alternate version paths. New version path tokens are unila-
terally created for these paths. When the model is completed, it
is incorporuted into the local system directory. Incorporation is
the act of adding all new information and overwriting all
mcdihed information.

If a site fails to complete a merge recovery @cause the
site fails or a representative site fails), that site must rollback to
its previous partition state and attempt to initiate a new virtual
partition. If a site successfully completes the merge process,
that site’s partition history is the union of all of the merging
partitions’ histories. Complete details of divergence tecovery.
merge recovery, conflict resolution, and incorporation am con-
tamed in [8] along with arguments that divergence recovery and
merge recovery maintain mutual consistency within a newly
formed virtual partition.

5.4 Replication and Migration

DVSS keeps a vector of sites ordered by storage priority
for every version of every object. The vector is distributed to
all sites in the current partition as part of the version creation
multicast message. The vector may specify sites that are not in
the current virtual partition. Once a directory entry for the new
version has been created, background tasks are created on the
first m multicast receivers (in the current partition) listed in the
vector to acquire copies of the new version from the creating
client’s site. m is the minimum of the replication factor (n) and
the number of multicast receiving sites in the current partition.
If a site’s attempt to acquire a copy is successful, that site will
multicast this fact to the current partition so that directories can
be updated.

Note that the creating client’s site will always appear in
the copy site vector, but it may not be among the first n sites. In
this case, the number of copies can become n+l if all sites
acquire copies. When the number of copies exceeds n, the
least-preferred sites (in this case, the creating client’s site) can
remove their copies of this version. This removal is done con-
servatively by requiring that each storage site confirm the pres-
ence of a copy prior to removing the local copy.

The copysites command can change the replication factor
and/or preferred site list for a federation or object; this modifies
the defaults used for future version creation. When the copy-
sites operation is applied to a specific version of an object. the
sites on which that version resides are changed. A new vector
of sites is either specified explicitly or generated from the
defaults. Any sites that currently hold copies and are not listed
in the new vector are added to the new vector as the least pre-
ferred sites. When a site discovers that it is one of the m most
favored sites and it does not hold a copy, it will attempt to
acquire one.

The procedure described above is called propagation
because it is perfcrmed on a version by version basis, to be dis-
tinguished from mfgrufion which deals with moving versions
between sites due to changes in the current partition or due to
the withdrawal of a site from the federation. Each server runs
one background migration task that examines all object versions
to see if the local site needs to acquire or remove a local copy.
The mechanism is the same as described for propagation.
Migration is also used on sites with archival storage (e.g., opti-

cal disks) to absorb obsolete object versions. In this case, the
multicast of acquisition by an archival site will enable all non-
archival sites to remove their copies.

6. Ongoing Development

The first prototype of DVSS was completed in 1985. and
the present (rearchitected) prototype has been running since
1986. Our early emphasii was on the functionality of the disni-
buted multi-mader/multi-write algorithms and the recovery
mechanism. We are now enhancing DVSS to meet the client
interface requirements of a data model. In the following se0
tions we discuss issues associated with three of our current
efforts.

6.1 Storage Reclamation

Storage reclamation is required for client operations
delete and erase, which explicitly deallocate versions and their
associated directmy entries. In addition there are entities in the
DVSS’ directories generated by client operations that can be
re-used. Examples include (1) access list slots freed by the set-
perm operation, (2) the list of checked out versions freed by
update. (3) the vhual partition history list for a site, and (4)
notifications already read by a client. We believe that tagging
data as “removed” without reclaiming the reusable storage (log-
ical removuf) is not adequate in the long term. However, the
logically removed state is necessary in the short term to provide
partition uanspamncy. A logically removed entity is recluim-
able on a site if it is known on this site that ahsites in the
federation have knowledge of its logical removal. Knowledge
of logical removal of an entity is inferred from the confirmed
site membership lists for each partition in the partition history.
These partition histories are communicated to the initiator site
who then determines (by transitivity of the pmdecessor partition
relation) the set of partitions that are reclaimable. Logical dele-
tions, like any other changes in the DVSS, are tagged with the
partition in which they occur. If a logical deletion is tagged as
occurring in a rehimablc pa&ion. it can be realized. We note
that (1) the predecessors of reclaimable partitions are reclaim-
able and 12) a partition containing all sites in a federation (i.e., a
muximui purtition) is always reclaimable. The partition history
is truncated at the most recent reclaimable partition along each
directed arc in the partition history digraph.

DVSS servers will attempt to perform storage reclama-
tion under either of the following situations: (1) following a
merge recovery, when it becomes known that all sites SUCCCSS-

fully completed the merge processing. then new reclaimable
partitions are calculated and directory space freed during those
partitions is realized; (2) while opemting in a maximal partition,
after a sufficiently large number of logical deletions have taken
place, a two phase synchronization protocol. is carried out to
ensure that the partition is still maximal and ah logical deletions
carried out during the maximal partition can be realized. If a
site fails during reclamation, the reclamation transaction will be
backed out when the site recovers. thus deferring that site’s
realization of the deletions until the next merge recovery.

Proceedings of the 13th VLDB Conference, Brighton 1987 451

63 Integration with Data Model Clients

While implementing DVSS, we have been developing a
data model (TEDh4) that fulfills the modeling requirements for
an en-g database system (see Anderson, et al. 121). We
intend that an object-oriented data model, such as TEDM. be
the client of DVSS. Although one might map TEDM objects to
DVSS storage objects in a oneto-one manner. and deal with the
efficiency considerations of providing storage and access to
“small objects”, we intend to heat DVSS storage objects as
storage segments. The data model must cluster its objects into
DVSS segments based on relationships existing among
instances of the objects. (For design databases, clustering on
rdati~nship attributes is expected to have more impact than
clustaing on vahre attributes.)

X
A

IA X&o *

x&l A%.

%,

8

r, r,
%,

%, A’

0

A 8’ c

c x 1.1
‘..

Figure 6: Versions of objects A, B, and C clustered in
versions of segment X

Both the abstraction level (e.g., TEDM) and the staage
level (i.e.. DVSS) of our system have some notion of versions
and their associated semantics. A straight-forward technique
for integrating these systems would be to store a cluster of
TEDM objects in one DVSS segment, and represent each ver-
sion of the cluster in a version of the segment Figure 6 illus-
trates versions of segment X containing versions of the
clustered objects A, B, and C. Notice that a new version of C
can be made without modifying A. but the same may not be true
of B. Issues such as when a new version of a component
triggers a new version of the containing complex object (i.e.,
version propagation [17]. or percolation [3]), and when an
update is an update-in-place or when it is versioned must be
managed by an engineering DBMS. We are developing a
specification fat the semantics of versions to ensure that there
ue no incompatibilities between the client data model version
semantics and DVSS version semantics.

A significant task in integrating TEDM and DVSS is
making the meta-information regarding the format of TEDM
objects accessible to and interpretable by DVSS. Thii is neces-
sary in order to encapsulate the architectural heterogeneity of
the computing environment within DVSS. Inter-site access
must take architectural disparities (e.g., byte ordering, floating
point formats) into account where applicable; DVSS will send
its objects in a network standard format, which can be
configured to agree with the architecture of the workstations.
Another need of DVSS for TEDM scheme information is tc
perform atomic recursive checkout of a co@uration object.
Access to the scheme of objects wi.U also be required to use
fields within objects as the units of granularity for DVSS’ dif-
ferencing algorithm.

In principle. DVSS will provide both transparent data dis-
tribution and concurrency control to its client data model. We
intend tc integrate a single-site single-user implementation of
TEDM with DVSS, leveraging off DVSS for both its multi-user
and distributed data capabilities.

6.3 Productivity under a Multi-Reader and Multi-Writer
Mechanism

The multi-reader and multi-writer &cess control mechan-
ism supported by DVSS is an optimistic mechanism in the
strongest sense. Compared with single-writer mechanisms, the
clients of DVSS achieve higher throughput, which affects pro-
ductivity of the end-users (e.g., design engineers). Under a
multi-reader and multi-writer access control mechanism, clients
can create alternate versions unintentionally. In such cases, it is
likely that consolidation will be. performed to effect a combined
version. The end-user cost of performing consolidation must be
weighed against the increased throughput to determine whether
or not a multi-reader and multi-writer access control mechsnism
increases the productivity of the system’s end-users. We are
currently building simulations of a singlewriter distriiuted sys-
tem based on locking and of DVSS. We intend to compare the
two systems under several models of user behavior in an
attempt to measure the effects of each access control mechsn-
ism on end-user productivity.

7. Conclusions

We have developed a Distributed Version Storage Server
for the storage level of an Engineering Design Database
Management System. DVSS is intended to be integrated with a
data model client, which will provide a suitable abstraction
level. Designing DVSS has presented two interesting problems:
developing the semantics of a versioned storage model, and
developing and implementing distributed algorithms for the
DVSS operations. The latter was by far the more challenging.

DVSS is designed to be robust and in so far as possible 10

make failures transparent to its clients and users. We wish to
support ongoing use of the system by clients during network
partitioning in such a way that the system behaves consistently
whether or not a failure has occurred Supporting the ability of
users in mere. than one network partition to concurrently effect
operations against DVSS precludes using a concurrency control
mechanism based on a voting algorithm. Fortunately, versions
and multi-writer algorithms for concurrent operations can be

452 Proceedings of the 13th VLDB Conference, Brighton 1987

used to provide service during network failures in a manner that
appears uniform to the client, except for delayed notification
due to concurrent operations on the same objects.

In a distributed database system where conflicting com-
putations can proceed concurrently in two or more partitions,
the amount of data that must be exchanged to process merge
recovery can be substantial. In addition, conflicts must be
detected and resolved as there is no guarantee that all actions
are serializable. Thus, the recovery protocol must guarantee
that a consistent resolution of conflicts occurs at each site. The
agreement on a new virtual partition and exchange of recovery
merge data requires a two phase protocol. Verification of a

8. D. Ecklund. “Robustness in a Distributed Storage Server
for Engineering Design Data with Versions,” Ph.D.
Thesis, Oregon State University, December, 1986.

9. E. Ecklund, D. Price, R. Krull. and D. Ecklund, “Federa-
tions: Scheme Management in Locally Distributed Data-
bases,” in Proceedings of the Nineteenth Hawaii Interna-
tional Conference on System Science, pp. 395407.1986.

10. E. F. Ecklund. Jr. and D. M. Price, “Multiple Version
Management of Hypothetical Databases,” in Proceedings
of the Eighteenth Hawaii International Conference on
System Sciences. pp. 163-173.1985.

consistent merge resolution would require an additional proto- 11. A. ElAbbadi, D. Skeen. and F. Cristian. “An Efficient,
co1 of at least two phases. A merge algorithm that performs a Fault-Tolerant Protocol for Replicated Data Manage-
unilateral computation at each site and that produces a provably merit,” in Proceedings of the Fourth ACM SIGACT-
consistent result of the merge avoids this costly verification pro- SIGMOD Symposium on Principles of Database Systems,
tocol. pp. 215-229, Portland, Oregon, March 2527,1985.

Acknowledgement

We thank the VLDB reviewers for their helpful corn-
ments and suggestions on improving this paper.

References

1. The Department for Defense Requirements for Engineer-
ing Information Systems, Volume 1: Operational Con-
cepts. ed. J. L. Linn and R. I. Winner, July 2.1986.

2. T. Anderson, E. Ecklund. and D. Maier. “PROTEUS:
Objectifying the DBMS User Interface,” in 1986 Inter-
national Workshop on Object-Oriented Database Sys-
tems, pp. 133-145, September 1986.

3. T. Atwood, “An Object-Oriented DBMS for Design Sup-
port Applications,” in Proceedings of Computer Aided
Technologies COMPINT 85, IEEE, Montreal, Quebec,
Canada, September 1985.

4. F. Bancilhon, W. Kim, and H. Kortb, “A Model for CAD
Transactions,” in Proceedings of the Eleventh Interna-
tional Conference on Very Large Data Bases, pp. 25-33,
Stockholm, Sweden, August 1985.

5. J. Banerjee, W. Kim, D. Woelk, N. Ballou, and H. Chou,
“Database Support for Object-Oriented Applications
(Extended Abstract),” in Workshop on Information Sys-
tem Support for Integrated Design and Manyfacturing
Processes, 1986.

6. H. Chou and W. Kim, “A Unifying Framework for Ver-
sion Control in a CAD Environment,” in Proceedings of
the Twelfth International Conference on Very Large Data
Bases, pp. 336-344, Kyoto. Japan, August 1986.

7. H. C. Du and S. Ghanta, “A Framework for Efficient
ICjVLSI CAD Databases,” in Proceedings of the Third
International Conference on Data Engineering, pp. 619-
625, February, 1987.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Gray, “Databases for Computer-Aided Design,” in
Proceedings of the Second International Conference on
Databases, pp. 247-258, Heyden, September 1983.

C. Jullien, A. Leblond. and J. Lecourvoisier. “A Data-
base Interface for an Integrated CAD System,” in
Proceedings of the Twenty-third ACMIIEEE Design
Automation Conference, pp. 760-767. June 1986.

R. Katz, “Transaction Management in the Design
Environment.” in Proceedings of the Second Interna-
tional Conference on Databases, pp. 259-273. Heyden,
September 1983.

R. Katz, M. Anwarrudin, and E. Chang, “A Version
Server for Computer-Aided Design Data.” in Proceed-
ings of the Twenty-third ACM/IEEE Design Automation
Co&erence, pp. 27-33. June 1986.

W. Kim, H. Chou. and J. Banerjee, “Operations and
Implementation of Complex Objects,” in Proceedings of
the Third International Conference on Data Engineering,
pp. 626-633, February, 1987.

G. S. Landis, “Design Evolution and History in an
Object-Oriented CAD/CAM Database,” in Proceedings
of Compcon Thirty-First IEEE Computer Society Interna-
tional Confe rence, San Francisco, California, March
1986.

D. Leblang and G. McLean, Jr., “Configuration Manage-
ment for Large-Scale Software Development Efforts,” in
Workshop of Software Engineering Environments for
Programming-in-the-Large. pp. 122-127, Harwichport,
Massachusetts, June. 1985.

R. Lorie and W. Plouffe, “Complex Objects and Their
Us in Design Transactions,” in Proceedings of the 1983
ACM Engineering Design Applications, pp. 115-121,
May, 1983.

D. Price and D. Maier, “Data Model Requirements for
Engineering Applications,” in Proceedings of the Inter-
national Workshop on Expert Database Systems, ed. L.
Kerschberg, 1984.

Proceedings of the 13th VLDB Conference, Brighton 1987 453

21. D. Severance and G. I&man, “Differential Files: Their
Application to the Maintenance of Large Databases.”
ACM Transactions on Databare Systems, vol. 1. no. 3.
pp. 256267, Septeanbu 1976.

22. S. Weiss, K. Rot&l. T. Rhyne. and A. Goldfein,
“DOSS: A Storage System for Design Data,” in
Proceedings of the Twenty-third AChMEEE Design
Automation CorJerence, pp. 4147, June 1986.

454 proceedings of the 13th VLDB Conference, Brighton 1987

