
PRIMA - a DBMS Prototype Supporting Engineering Applications

T. HBrder, K. Meyer-Wegener, B. Mitschang, A. Sikeler

University of Kaiserslautern
Erwin-Schriidinger StraBe, D-6750 Kaiserslautern, West-Germany

Abstract
The design of the Molecule-Atom Data model, aimed at the
effective support of engineering applications, is justified
and described with its essential properties and features.
MAD offers direct and symmetric management of network
structures and recursiveness, dynamic object definition
and object handling allowing for both vertical and horizontal
access. Its prototype implementation PRIMA is discussed
using a multi-level model for the DBMS architecture. Our
DBMS kernel provides a variety of access path structures,
tuning mechanisms, and performance enhancements trans-
parent at the data model interface. PRIMA is assumed to be
used in different run-time environments including work-
station coupling and multi-processor systems. In particular,
it serves as a research vehicle to investigate the exploi-
tation of ‘semantic parallelism’ in single user operations.

1. Introduction

Conventional DBMS have failed to provide appropriate
support and satisfactory performance for a wide variety of
engineering applications [HL82, DB83]. Therefore, consider-
able research efforts are directed to the design and imple-
mentation of a new generation of DBMS architectures inclu-
ding data models, extensible implementations, storage
structures, transaction concepts and so on. Of course, the
chosen data model and its specific properties play the
dominant role in all these approaches; most of them can be
classified in the following manner:
. They focus on the flat relational model with a few selected

enhancements [SRSS, LMP86, CDSS].
l They concentrate on integrating and superimposing

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

hierarchical structures on relations [LK84, PSSWD87,
Da86, RKB85].

Apparently, the provision of genuine and symmetric support
of network structures or even recursive structures has
drawn much less attraction, although it is urgently needed in
many application areas for natural and accurate modeling
and efficient processing of their objects. To identify their
specific needs, we have thoroughly investigated three differ-
ent application areas - their structures and algorithms - by
implementing and evaluating sizable prototype systems:
VLSI circuit design, construction of solids in 3D modeling,
and map handling in geographic information systems
[HHLM87]. Our observations may be summarized as
follows:
l There is a considerable share of meshed (non-hierarchi-

cal) structures due to extensive occurrence of n:m rela-
tionships.

l No general preference of execution direction (traversal of
data structures) is found, that is, efficient support for sym-
metric traversal is required.

l Locality of reference strongly depends on the algorithms
used; they typically perform non-uniform references to
subobjects. As a consequence, selective access to large
objects is desirable.

l To enhance integrity control and semantic expressive-
ness, all essential relationships (beyond hierarchical
ones) should be preserved by the data model.

These observations have motivated our research efforts
and have strongly influenced many features and functions
of our engineering DBMS. The rationale of our approach may
best be characterized by the following design guidelines:
l object-orientation of the data model allowing for mani-

pulation of complex objects at the data model interface
l direct representation of n:m relationships along with sym-

metrii traversal and use of objects
l dynamic construction of complex objects as opposed to

their static representation
l set-orientation at the data model interface and in internal

layers where appropriate
l support of object processing by a variety of storage struc-

tures, use of tuning mechanisms, and performance enhan-
cements transparent at the data model interface.

We have designed and are implementing a DBMS kernel for
so-called non-standard applications, in particular for those
applied in various engineering disciplines: Numerous papers

Proceedings of the 13th VLDB Conference, Brighton 1987 433

were published justifying the kernel architecture approach,
its benefits, and its key properties [Da86, HR85,
PSSWD871. Therefore, we can start immediately with the
description of our own way, which resulted in substantial
differences with other DBMS kernel designs. We feel that
the above guidelines have provoked quite a number of novel
ideas, which are incorporated in
- the design of the ‘Molecule-Atom Rata model’, called MAD

model
- its implementation by a database kernel named PRIMA

(eaototype implementation of the MD model)
- the processing model for PRIMA to take advantage of ‘se-

mantic parallelism’ in powerful operations used in engineer-
ing applications.

The results of our system design are described in the
following.

2 The Molecule-Atom Data Model

One of the most demanding requirements in engineering
applications is accurate modeling and efficient management
of application objects. Starting with an analysis and charac-
terization of the application objects, we point out the essen-
tial requirements to facilitate application modeling. The
shortcomings of existing data models gave rise to the
development of the MAD model as an object-oriented data
model. We describe and exemplify both its modeling and
processing concepts. Additionally, we introduce the Mol-
ecule Query Language (MQL) by illustrating its query
facilities as well as its data manipulation and data definition
capability.

2.1 Data Model Requirements for Englneerlng
Appllcatlons

For our purpose, the best reference is [BB84] where a
thoroughgoing analysis and characterization of the
application objects in engineering disciplines revealed the
general concept of molecular objects - in [LK 841 and in
the introduction above called complex objects. These
objects are seen and manipulated on different levels of
abstraction. At higher levels, they are treated as atomic
units of data, e.g. moved or copied as a whole. Futhermore,
each entire entity is described by several attributes. At
lower levels, they reveal their internal structure. Their
components may again be complex objects, or just primitive
objects without internal structure. Complex objects are of
the same type, if all their attributes and components have
the same type.

Mapping complex objects to data objects leads to a record
data type containing the attributes of the complex object, a
record data type for each component, and a relationship
between them meaning ‘consists of’. Hence, the complex
object is represented by all data elements related in this
way. They are said to form a ‘molecule’ with the data
elements (records) resembling ‘atoms’, respectively.

Two different complex objects may share components, for
instance, 3D solids share the face where they are ‘glued’

together. In this case, according to [BB84] they are called
non-disjoint, and their molecules overlap; hence, the
consists-of relationship must be of type many-to-many
(n:m). Otherwise, they are called disjoint, building non-
overlapping molecules and a one-to-many (l:n) relationship.
Additionally, complex objects are called recursive, if they
are composed of objects of the same type; otherwise, they
are called non-recursive. For example, solids in 3D
modeling are ‘constructed’ using previously defined solids,
thus forming a recursive consists-of relationship.

What makes up a complex object depends on the actual
view of the application, that is the level of abstraction and
the way of processing. Thus, it seems much more adequate
to define the molecules dynamically instead of predefining
molecules statically. Referring to 3D modeling, these
dynamics are apparent: One important representation of
solids, especially for graphical output, is the boundary
representation (BREP) depicted in Fii. 2.1. It consists of
faces, which are, in turn, composed of its borderlines
(edges) limited by endpoints (cf. the Entity-Relationship
diagram of Fig. 2.1). Some applications need face objects
with their edges and points, while in another processing
state it may be necessary to handle just the inverse object
nesting, that is a point object with its neighboring faces
forming the point-edge-face hierarchy.

Existing data models do not match these requirements
properly. When modeling in an hierarchic manner, one has
to cope with redundancy. This holds for the classical
models like IMS [Mc771, as well as for novel ones such as
non-first-normal-form models [SS87. RKB85] and the so-
called complex-object model [LK84]. Fig. 2.1 illustrates the
consequence using our BREP schema. A first obsetvation
is, that the hierarchical schema is not equivalent to the
network schema. Second, a substantial portion of redun-
dancy is introduced. There are several independent repre-
sentations for every edge and every point. Since the DBMS
is not aware of this redundancy, it must be handled by the
application (or at least above the data model interface). This
may lead to problems concerning integrity (no gap between
faces), preservation of topology, update, etc.

The network approach avoids redundancy, but at the cost
of introducing a number of ‘relation records’ that represent
n:m relationships. The mentioned data models only support
non-recursive, disjoint objects referring to a static object
type in a non-symmetric manner, e.g., looking from points to
all corresponding edges and faces is not possible in the
hierarchical example in Fig. 2.1. On the right-hand side of
Fig. 2.1 we have shown the desired modeling approach,
referred to as direct and symmetric modeling, thus avoiding
the above mentioned problems.

In managing engineering objects, we have to cope with two
different kinds of access. The most challenging is called
vertical access. It is characterized by accessing the
object as a whole, i.e., fetching all constituting (more
primitive) components. In addition, vertical access may
select only some components of an object that fulfill given
qualification criteria. This kind of access is expected to be

434 Proceedings of the 13th VLDB Conference, Brighton 1987

1

racp r&J

4 4

rel 1

t '

rel2

t'

edee reU point

I bw I

Figure 2.1: Madding spproachm to boundary repraentatbn

much more frequent compared to horizontal access.
The latter derives all objects of a common type, i.e.,
accessing all stored maps, circuits or solids, perhaps
satisfying some special qualification criteria.

Summarizing the arguments and considerations, we can
definitely argue for the following essential data model
requirements:
l direct and symmetric management of network structures

and recursiveness
l dynamic object definitiin
9 adequate object handling supporting both vertical as well

as horizontal access.
Due to these requirements, an adequate data model has to
provide
l support for molecular/complex objects, i.e. some kind of

object-orientation comprising
- modeling techniques describing the structure of an

object as well as the object as an integral entity
- operational semantic including object management
- appropriate granularization of data and operations due

to the composition/decomposition concept inherent to
dynamic object definition and management (dynamic
object handling)

- support for more structural integrity (consistency in
case of nondisjointness)

l in particular
- support for vertical access with efficient derivation and

assembling of the corresponding heterogeneous data or
record sets, i.e. efficient record-type crossing oper-
ations (operative foreign/primary-key connections) in
both directions (symmetry)

- a descriptive language allowing for the processing of
sets of heterogeneous records

- a set-oriented embedding into the application program.

To satisfy these requirements, we have developed the MAD
model. An important design goal was the consistent exten-
sion of processing homogeneous to processing heterogen-
eous record sets, defined by molecules. The basic

Proceedings of the 13th VLDB Conference, Brighton 1987

mechanism is the association implemented by attributes
containing logical pointers or references to other records (of
the same or different type). These associations may be
used to efficiently map n:m relationships and recursions. An
association is symmetric in that the referenced record must
contain a back-reference that can be used in exactly th&
same way.

The concept of dynamic molecules is based on such
associations. Molecules are defined - in the query lan-
guage, not in the schema - by naming the atom types and
their associations. Any of the associations can be used to
construct molecules. The molecule structure is superim-
posed dynamically on sets of atoms linked by associations,
thus introducing the required objectorientation in the MAD
model. lts operational power lies in adequate means for
molecule processing, provided in MQL, which is similar to
SQL [X3H286].

2.2 Key Properties of the MAD hkdel

In the following, we present a brief introduction of modeling
as well as operational aspects of the MAD model. For this
purpose, we use the example of Fig. 2.1 and the syntactical
simplicity of MQL as an explanatory vehicle.

The objects the user has to deal with are called molecule
occurrences, shortly molecules. Each molecule consists
of more primitive molecules and belongs to its molecule
type. This type determines both the molecule structure and
the corresponding molecule set, grouping all the molecules
with the same structure. Each molecule type is defined in
terms of its component types. The most primitive molecules
are called atoms. Each atom is composed of attributes of
various types, has an identifier, and belongs to its corre-
sponding atom type. The atom type is put together by the
constituent attribute types to be chosen from a richer selec-
tion than in conventional data models. For identification and
connection of atoms, we have introduced two special types
of attributes, comprising the above mentioned association

435

pq .,,] fq pq .,,,,,................ ;-Ipt pq .aI,,,.......... yrt tayspseosclion .*a*.......*..... 411 .*** I:Q. 2 *........,.......,,, ATj

: IDENTIFIER : IDENTIFIER

ATii>ATj : SET-OF (REF-TO (ATj))) Alj->ATi : REF-TO (Al-i))

Figure 2.2: Expressing relationship types in terms of association types

concept. The IDENTIFIER type serves as a surrogate
[ML33] which allows for the identification of each atom.
Based on this attribute type it is easy to define the REFER-
ENCE type allowing for typed references to other atoms.
The extended type concept also includes RECORD,
ARRAY, and the repeatinggroup types SET and LIST.

The three binary association types shown in Fig. 2.2. can be
used to express all kinds of relationship types between two
atom types, combining the attribute type REFERENCE with
the repeating-group type SET. As an example, we have
added the declaration of an 1:n association type. lt is
defined by two REFERENCE-based attributes (dotted
arrows), one in each atom type. Transformation of an Entity-
Relationship schema to an equivalent MAD schema is

a) MAO scbmad@ram

c) molecule type delinitions

OEFlNE WLECULE TYPE edge-obj
FROM edge-pain!

OEFlNE MOLECULE TYPE face-ob]
FROM lace-edge-&

OERNE MOLECULETYPE brep-obj
FROM brep - face-obj

DEFINE MOLECULETYPE piecelist
FRCM solid.sub -solid (recursive)

data definition
of association
types

straightforward. Details of such a transformation and an
example of the data definiion language (DDL) are illustrated
by Fig. 2.3. The transformation replaces all entity types by
corresponding atom types and all relationship types by
association types (which are built into the resp. atom
types). The usefulness of the extended type concept and
the cardinality restriiions that can be associated with the
SET type (i.e. exact mapping of relationship types allowing
for refined structural integrity enforced by the system) are
also illustrated in Fig. 2.3.

Although molecules are generally defined as part of a query,
it is allowed to give a name to often used molecule types
(Fig. 23c). A molecule type definition specifies the mol-
ecule type name and the corresponding structure. In the

b) atom type definitions
CREATE ATOM-lYPE solid

(W-B : IOBlTlFlER.
solii_no : INTffiER
description : CHAR-VAR
sub : SET-OF (FIEF-TO (solld.super)).
super : SET-OF (FIEF-TO (8olid.wb)),
bP : REF-TO @rap&d))
KEYS-ARE(solid_no)

CREATE ATOM-WPE bmp
(bw-a : IDENTIFIER.

hP_nO : INTEGER.
hull : HULL-OIM(3).
eo!M : REF-TO (solii.brep).
face3 : SET-OF (REF-TO (facabmp)) (4,VAR).
edees : SET-OF (REF-TO (edgabrep)) (6,VAR).
points : SET-OF (REF-TO (pokbrep)) (4,VAR))
KEYS-ARE (bmp-no)

CREATE ATOM-TYPE face
(faca_id : IOENTlflER,

squat-dlm : REAL.
border : SET-OF (REF.-TO (edgeface)) (3,VAR),
cmsspoint : SET-OF (REF-TO (polti.face)) (3,VAR),
W : REF-TO (bmp.tace6))

CREATE ATOM-TYPE edge

(za
: IOENllflER.
: REAL,

boundely : SET-OF (REF-TO (point.line)) (2,VAR),
face : SET-OF (REF-TO (faceborder)) (2,VAR).
bw : REFJO (bmp.edges))

CREATE ATOM-TYPE point
(PoiK~ : IDENTIFIER,

placement :RECORO
x_awd, y-coord, z-ccad : REAL,

llne :% OF (REF-TO (adgekundery)) (1 *‘JAR),
: SEi;OF (REF-TO (lacac~nt)) (l.VAR)
: R-J-0 bv@W 1

Figure 2.3: Solld represet&Mon expreseed In tern of the M&O-OOL

Proceedings of the 13th VLDB Conference, Brighton 1987

FROM-clause, the constituent molecule subtypes connec-
ted with the selected association types are listed (in case of
ambiguity the reference attribute has to be denoted; for ex-
ample see the definition of molecule type piece-list). Here it
becomes apparent, that the MAD model supports - at least
structurally - the concept of molecular objects to its full
extend. To illustrate the operational support as well, we now
focus on the molecule processing, i.e. query and data
manipulation facilities. The syntax of MQL follows the
examples of SQL [X3H286] and its derivates [PA86,
RKB85].

Vertical access to a network structure is illustrated in the
query of table 2.la. First, all atoms constituting the brep
molecules defined in the FROM-clause are assembled. This
starts with the brep atoms and uses the associations to
deduce the dependent face, edge, and point atoms. Then
the (optional) WHERE-clause restricts this resuft set of
molecules by evaluating qualification terms. In table 2.lb
retrieval of a recursive structure is specified with piece-list
as a pre-defined recursive molecule type (cf. Fig. 2.3~).
Therefore, we first have to specify all roots of the desired
recursive molecules, using the ‘seed-qualification’ predi-
cate in the WHERE-clause. For all qualified root atoms
(there is only one because the qualification of a key
attribute is used), we have to evaluate the recursion in a
stepwise manner going from one level to the next
subordinate level using the solid.sub references.

Table 2.1~ shows some kind of horizontal access: Here, we
want to retrieve all primitive solids, i.e. solids not having any
subpart-hierarchy. This query also shows the use of the
projection expressed in the SELECT-clause. Some other
important features are illustrated in table 2.ld. First, the
FROM-clause shows the definition of a tree-like molecule
type; branching (as well as combination, not exemplified
here) is done using brace-expressions. The WHERE-clause
includes a quantified qualification term testing for the
existence of at least 2 edges that satisfy the length
qualification. The ALLquantifier could also be used as
qualification term. The SELECT-clause describes the final
result set of the whole query. Here, we use the socalled
qualified projection for proper specification of the
result set. Only those faces are finally selected, whose
square-d/m value satisfies the qualification. Exploiting this
capability, we are able to retrieve only those components of
a ‘surrounding’ molecule we are interested in.

Based on these powerful query facilities, we now sketch the
remaining parts of molecule management: Analogously to
retrieval capabilities, insert, delete, and modify operations
allow for dealing with an integral molecule as well as its
components. Modification especially supports connection
and disconnection of molecule components. The delete
statement reflects removal of single components as well as
of whole component sets, thereby automatically discon-
necting these parts from the specified surrounding mol-
ecules. The same holds for the insert statement inversely.
Common to all manipulation operations is the system-
enforced support for structural integrity, i.e., modifying a
REFERENCE attribute implies the automatic maintenance of

a) vertical access to network molecules

SELECT ALL
FROM brep-face-edge-point
WHERE brep-nc = 1713 C qualitication ‘)

b) vertical access to recursive molecules

SELECT ALL
FROM piecs_lit (’ pra-defined lT&cula type l)
WHERE piece-list [O].solid-no = 4711 (’ seed qualification l)

c) horizontal access combined with unqualified projection

SELECT solid-no, description
FROM solid

(’ unquafifii projection l)

WHERE sub = EMPTY

d) miscellaneous query

SELECT edge, (point, (’ unqualified projection pl ‘)
face := SELECT facejd, square_dim

FROM face C qualified projection q3, p2 l)
WHERE square-dim > 1.9E4)

FROM brepedge (face, point)
WHERE txep-no= 1713 (’ qualifrcatfon ql ‘)

AND
EXISTS-AT-LEAST (2) edge : edge.fength > 1 .OE2)

C quantffti restdctfon Cp ‘)

Table 2.1: Some handpicked query examples

the corresponding back-reference.

Due to space limitations we cannot give a more detailed
language discussion. An in-depth description of the MQL
can be found in [Mi87]. It is apparent that the relational as
well as the extended relational model [LK84] are just special
cases of the MAD model. Equivalence or inclusion of the
NF2 model [SSSS] is subject to further investigations.

Summarizing the above introduced concepts, the
operational power of the MAD model, i.e. MQL, comprises:
- molecule insertion, deletion, modification, and retrieval by

optionally using the FROM- and WHERE-clause
- component management, i.e. component insertion, dele-

tion, modification, and retrieval by mandatory use of the
FROM- and WHERE-clause to specify the surrounding mol-
ecules.

2.3 The LDL for ‘Transparent Performance
Enhancements

Molecules specified at the MAD interface are built
dynamically from atoms which are represented by record
structures. To effectively support this dynamics, a variety
of storage and access path structures are provided by
PRIMA. However, the MAD model itself makes no reference
to such physical objects (to preserve data independence).
Therefore, we need a separate mechanism for the specifi-
cation of an appropriate set of storage structures suppor-
ting a given application.

For this purpose, we have defined a load definition lan-
guage (LDL) used by the database administrator to provide

Proceedings of the 13th VLDB Conference, Brighton 1987 437

user interface
-> application-oriented

,~,““‘..“““““““““““““‘5

,

, application layer :
,
: :

’ - molecule sets

,,,... a. molecules

atoms

access system **rrr-r physical records

P
R
I

M
A

- data model interface
-> molecule-set-oriented,

object-oriented

storage structures
-> atom-oriented

page allocation structures
-> page-oriented

disc accesses

segments, pages,
page sets

] - files, blocks

external devices

Figure 3.1 : Implementation model of PRIMA

some ‘hints’ for the access system (fig 3.1) which is respon-
sible for the creation of appropriate storage structures,
tailored access paths, and special tuning mechanisms. The
main concepts for performance control are
l several access methods for one or more attributes per-

mitting multidimensional access
l partitioning of physical records to improve clustering of fre-

3.1 The Data System

quently accessed attributes
l sort orders to speed up sequential processing according

to given sort criteria
l ‘physical cluster’ to provide physical contiguity for atoms

belonging to frequently requested molecules.

The main task of the data system is to perform the complex
mapping of the molecule-oriented interface onto the atom-
oriented interface of the access system. This is done by
translating the user-submitted MQL statements into an
executable form (in terms of access system calls), while pre-
serving their original meaning. The design of query trans-
lation and optimization is guided by extensibility and mainte-
nance requirements, yielding a socalled modular data
system [Fr86].

Depending on the processing needs, LDL may be used to
introduce controlled redundancy in the storage structures
(e.g. two different sort orders for the same object or
physical clusters for objects in n:m relationships). Such
measures only serve to improve performance - they are
controlled by the access system and are not visible to the
application referencing the MAD interface.

3. The lmplementatlon Model

So far, we have outlined the features of the MAD model and
its transparent support by application-dependent tuning
mechanisms. In the following, we present an overview of the
concepts and ideas used for its implementation.

The query validation and modlflcatlon checks the in-
itial query for syntactic and semantic correctness, performs
the resolution of predefined molecule types as well as the
resolution of a meshed molecule type into an equivalent
hierarchical one which is easier to cope with. Finally, it
generates some internal representation of the query, i.e.
the processing plan. The query simplification trans-
forms qualiiied projections and nested query blocks into a
symmetric query structure, lf possible, and uses query parti-
tioning otherwise [Ki82]. Finally, query preparation cre-
ates a finer grained processing plan adding functional des-
criptors for sorting, duplicate elimination, evaluation of quali-
fied projection, molecule join as well as recursion. Here, we
have to deal with the optimization of molecule join and
recursion thereby exploiting information from the metadata,
join strategies, and different strategies solving recursion.

A multi-layer DBMS architecture [As76, HR85] with well-
defined internal interfaces is a prerequisite to modularity,
data independence, and extensibility in the various layers.
Our implementation model for PRIMA illustrated in Fig. 3.1
distinguishes three different layers for mapping molecules
visible at the MAD interface onto blocks stored on external
devices. In the following, we want to present the abstraction
as well as processing capabilities of each layer, as far as
the consecutive steps of data mapping in the multi-level
hierarchy are concerned.

A one-molecule-at-a-time interface is provided by the
molecule management. It delivers all molecules of a
specified ‘simple’ (non-recursive) molecule type by offering
a molecule-type-scan facility. A molecule-type-specific
optimization has to be aware of access methods, sort
orders, partitions of atom types, and physical clusters.
Finally, molecule processing has to cope with cursor
management and cluster management. hiding the
underlying access system interface. tt deals with searching
the qualified parts of the desired molecule and combining
these parts, while performing ‘simple’ projections and

438 ~meedhzs Of the 13th VLDB Conference. Briphn

qualifications ‘pushed down’ for efficiency reasons. Cursor
management and cluster management allow for projected
and qualified scanning the resp. types.

3.2 The Access System

The access system offers - like the Research Storage
System (RSS) of the System R prototype [As761 - an atom-
oriented interface which allows for retrieval and update of
single atoms [Si87j. To satisfy the retrieval requirements of
the data system, it supports direct access to atoms as well
as access to atom sets. Performing update operations, it is
responsible for the automatic maintenance of referential
integrity defined by reference attributes (system-enforced
integrity). An update operation on a reference attribute thus
includes implicit update operations on other atoms to adjust
the appropriate back-reference attributes.

Update operations and direct access are restricted to
atoms identified by their logical address. A logical
address (or surrogate [ML83]) is used to implement the
IDENTIFIER attribute as well as the REFERENCE attributes.
A is generated by the access system when an atom is
inserted, and it is released when the atom is deleted.

When inserting an atom, values are assigned to all or only
selected attributes. Accordingly, it is allowed to modify only
some attributes of an atom (excluding the logical address)
and to select attributes when reading an atom. The projec-
tion of frequently used attributes may be supported by
means of partitions, i.e. separate storage of attribute
combinations. This is one of the tuning mechanisms
triggered by the LDL.

The other tuning mechanisms - access paths, sort orders,

and clusters - are implemented in the access system, too.
While access paths and sort orders are known from
conventional DBMS, the concept of clustering to support
molecule processing shows new aspects. In order to speed
up construction of frequently used molecules, we introduce
the concept of atom clusters. They serve to allocate in
physical contiguity all atoms of the ‘main lanes’ to be
traversed during molecule derivation. These clusters may
be installed via LDL commands; the access system is in
charge of maintaining this selective redundancy and of
guaranteeing all related issues of consistency.

An atom-cluster type is declared by naming the atom types
whose atoms are to be clustered. Such an atom cluster
corresponds mostly to a heterogeneous and sometimes to a
homogeneous atom set defined by a so-called
characteristic atom. This characteristic atom simply
contains references to all atoms, grouped by atom types,
belonging to the atom cluster (Fig. 3.2a). Inserting a
characteristic atom generates a new atom cluster
consisting of the characteristic atom and all atoms
referenced by it. Modifying a characteristic atom adds new
atoms to an atom cluster and deletes old ones whereas
deleting a characteristic atom deletes a whole atom duster.

All tuning mechanisms - atom clusters as well as access
paths, sort orders, and partitions - generate additional
storage structures which materialize homogeneous or .
heterogeneous result sets. For example, an atom cluster
serves to materialize molecules, whereas partitions collect
the results of projections. The underlying idea is to make
storage redundancy available to speed up molecule
processing. Such a redundant structure - specified by an
LDL statement - may be generated and dropped at any time.

charactoriuic atom

4 ,LJ

m--+-m-
1’ 4,
l’-- ,
I ’ -,+--- ---------, I ----mm

.--m----- w-w-- I
aswclations L,-,--,-,-,..-s-m-..

atom type A

w atom type B

wj atom type c

b) mapped onto a physkxl record

c)mappedonloasadpges

Figure 3.2: Alam cluster

proceedings of the 13th VLDB Conference, Brighton 1987 439

To manage redundancy in the access system, physlcal
records are introduced as byte strings of variable length.
They are stored consecutively in ‘containers’ offered by the
storage system. Depending on the storage structure, a
physical record corresponds to either a part of an atom (a
partition), an entire atom (in a sort order) or an atom cluster
(Fig. 3.2b). This establishes an n:m relationship between
atoms and physical records, whereas the usual mapping of
conceptual to internal schema is built on a 1:l relationship.
A sophisticated addressing structure is required to manage
such n:m relationships [Si87).

Storage redundancy may introduce substantial overhead
when an atom is modified (and necessarily all its allocated
physical records). To limit the amount of immediate
overhead, deferred update is used, i.e., during an
update operation only one physical record is modified
whereas all others are modified later. The advantage of the
redundancy becomes obvious when accessing an atom,
since any physical record can be used. The one with
minimum access cost should be selected. This has to be
supported by the storage system.

Effective processing of data system operations critically
depends on the availability of powerful navigational
capabilities. This includes the notion of a ‘positiolI in a set
of atoms, that is, a current position has to be maintained
under traversal and modification operations. For that
purpose, scans are introduced as a concept to control a
dynamically defined set of atoms, to hold a current position
in such a set, and to successively accept single atoms
(NEXT/PRIOR) for further processing.

The simplest of these scans is the atom-type scan. tt
successively reads all atoms of one atom type in a system-
defined order - either as a whole or only selected attributes.
In addition, the result set of the scan can be restricted by a
simple search argument decidable on each atom. Hence,
the atom-type scan corresponds to the relation scan of the
RSS [As76].

Unlike the atom-type scan, the sort scan serves to read
all atoms of one atom type in a ‘user’- defined order
according to a specified sort criterion. In this case, the
result set can be restricted by a simple search argument as
well as a start/stop condition. Since sorting an entire atom
type is expensive and time consuming, the sort scan may
be supported by a redundant storage structure, the sort
order. tt consists of a sorted list of physical records, one
for each atom of the resp. type. But the sort scan also
works without such a sort order. lt may engage an access
path if available, or has to perform the sort explicitly
creating a (temporary) sort order.

A main usage of scans is on access paths where start and
stop conditions conveniently provide access to value
ranges and where value orders may be exploited for free
(access-path scan). Since we offer multidimensional
access path structures, the effect of key-sequential
accesses needs some explanation. Linear orders based on
B.-trees only allow sequential NEXT/PRIOR traversal. With

n keys, navigation has much more degrees of freedom.
Therefore, start/stop conditions and directions may be
specified individually for every key involved in the scan;
hence, the user - the data system - determines the
selection path for elements in an n-dimensional space.

Whereas the first three scan operations support only
horizontal access to a homogeneous atom set belonging to
one atom type, the last two scan operations allow for the
vertical access to a heterogeneous atom set across
several atom types. The atom-cluster-type scan reads
all characteristic atoms of an atom-cluster type in a system-
defined order, possibly restricted by a simple search
argument which now has to be decidable in one pass
through a single atom cluster (single scan property
[DPS86]). Subsequently, direct access to all atoms
belonging to an atom cluster is possible as each
characteristic atom contains the corresponding logical
addresses. The atom-cluster scan, however, offers
another possibility for accessing the atoms of an atom
cluster. It reads all atoms of a certain atom type within one
single atom cluster in a system-defined order, again with the
possible restriction by a simple search argument.

3.3 The Storage System

As in conventional systems the objects, i.e. containers,
offered by the storage system [Si87] are segments divided
into pages of equal size. In contrast to them, the storage
system of PRIMA supports pages of different length. The
page size of each segment can be chosen to be Il2, 1,2,4
or 8 Kbyte. The number of page sizes is restricted to these
five values for two reasons. The first one is due to the file
manager of the underlying operating system [Ne87], it
supports exactly these block sizes. Hence, mapping
between blocks and pages is very simple. The second
reason refers to the problems arising from the management
of the database buffer. As the existing replacement algo-
riihms (LRU, etc. [EH82]) are only tailored to one page size,
new approaches concerning the management of different
page sizes within one buffer are necessary. One way is the
division of the buffer into several independent parts, each
of which managed by a dedicated replacement algorithm.
Such a static partitioning is not very flexible when reference
patterns change. Another possibility is to develop or modify
a replacement algorithm in such a way that it can handle
different page sizes. This idea has been pursued in the sto-
rage system, i.e., the well-known LRU algorithm was altered
in an appropriate way [Si87]. Hence, we provide at least
limited set-orientation when accessing blocks on disks.

The five page sizes, however, do not meet the most
important requirement of the access system concerning
containers of arbitrary length. The restriction to a certain
page size, say 8 Kbyte, is too stringent, especially
considering atom clusters and strings like texts and
images. Therefore, the storage system offers at its
interface page sequences as additional containers. A
page sequence treats an arbitrary number of pages as a
whole. One of these pages is the so-called header page, all
others are component pages. The header page contains the

440 Proceedings of the 13th VLDB Conference, Brighton 1987

usual page header used for identification, description, and
fault tolerance, and a page sequence header, i.e. a list of all
pages belonging to the appropriate Page sequence. A page
sequence is supported by a cluster mechanism of the
underlying file manager enabling an optimal transfer of the
whole page sequence, e.g. by chained I/O.

The mapping of an atom cluster onto such a page sequence
is shown in Fig. 3.2~. An auxilliary addressing structure
[Si87j - together with the page-sequence header - provides
relative addressing within the page sequence thereby
achieving faster access to single atoms of the atom cluster.

4. Conclusions and Future Plans

We have presented our design of the MAD model and its
implementation by a DBMS kernel. The focus of the paper
has primarily been on justifying the design decisions and on
discussing the major features instead of providing a
detailed and complete description of the data model and the
kernel system.

For the data model, we have advocated a symmetric and
neutral approach allowing for more powerful and complex
constructs as the flat relational model, but avoiding the bias
on static data structuring and top-down traversal of hierar-
chical models. Its main philosophy is the ability to dynami-
cally construct molecules using atoms as elementary buil-
ding blocks which may be conceived as a dynamic view
mechanism for complex objects. Symmetric representation
of all relationships (including n:m) and derivation of complex
objects at run time are considered prime prerequisites to
accurate and effective modeling in engineering applications
where the ‘view’of the object frequently changes.

A number of concepts used in the PRIMA implementation
pays attention to DBMS performance requirements. Most
important are the facilities of the load definition language
which are transparent at the MAD interface. They provide a
variety of access paths, redundant sort orders, partitioning
of records, and physical clustering to support efficient mol-
ecule construction. Kernel controlled redundancy may be
introduced to further improve frequent types of operation.

Currently, the single-user version of PRIMA is being
finished. For our purpose, PRIMA is considered a research
vehicle for a variety of DBMS applications in possibly dis-
tributed engineering environments. Therefore, it is intended
to run as a ‘generic kernel in different kinds of either cen-
tralized or multi-processor environments. Here, we can only
present a brief overview of its prospective usages:

l The conceptually simplest system structure would be
obtained by using PRIMA without additional components
as a ‘complete’ DBMS. The services at the MAD interface
are directly made available to its users. Hence, the
particular application itself has to refer to its ‘neutral’
object-oriented interface - providing access to molecules
(sets of heterogeneous records) - to construct (more)
application-specific objects in order to facilitate object

management for its higher program levels.
l Since application objects require quite complex mapping

functions identical or similar for an entire class of
applications, e.g. 3D-CAD, it might be a good idea to
extract such mapping functions from each particular
application program and to provide a ‘standardized
interface for the entire application class. As already
indicated in Fig. 3.1, we consider such class-specific
extensions as our main concept to derive application-
oriented objects under DBMS control. Hence, a variety of
application layers (AL) as the top-most DBMS layer may
be designed tailoring PRIMA services to application
classes to be supported.

l Effective workstation-host coupling is a prime require-
ment for interactive engineering applications. Hence, the
architectural separation of PRIMA and AL may be
exploited by allocating AL close to the application in the
corresponding workstation. The set-oriented MAD inter-
face is a major prerequisite to reduce communication over-
head as far as possible. Locality of reference is enhanced
by integrating an application-related object management
into AL. Large buffer sizes may help to perform most of
the DBMS work locally, after the required molecules are
transferred to an ‘object buffer’ (checkout). Ideally,
modified or newly created molecules are moved back to
PRIMA at commit time (checkin) [HHMM87, KLMP84].

l In an architecture dedicating only a single processor to
PRIMA, DBMS processing may apparently become a
system bottleneck as the number of applications
increases. Therefore, multi-processor architectures
should be investigated to enhance processing power of
the DBMS kernel.

l Engineering applications with their ‘sizable’ operations on
complex objects incorporate substantial ‘portions of
inherent parallelism’ [HHM86] which may not be exploited
when such operations are synchronously invoked and
serially executed - in the traditional manner. To overcome
these ‘unnecessary’ restrictions, we have defined the
concept of semantic decomposition: units of wok
decomposed from a single user operation are said to allow
for inherent semantic parallelism when they do not conflict
with each other at the level of decomposition. Such
decomposed units of work (DU’s) may be scheduled and
executed concurrently by the DBMS - given an
appropriate processing architecture. Here, we can only
point to this particularly important usage of multi-
processor PRIMA which embodies our research vehicle to
investigate DBMS parallelism within a single user
operation and its exploitation.

Due to space restrictions it is not possible to discuss other
important aspects of dynamic system behavior in sufficient
depth. Since transaction execution is distributed across AL
and potentially multiple PRIMA processors, we need a
distributed control structure to keep track of transaction
dynamics and to ensure transaction atomicity. Therefore, a
flexible transaction concept is mandatory which should also
focus on fine grained intra-transaction parallelism and
selective in-transaction recovery in various failure events.
We have decided to refine the concept of nested
transactions [Mo81] as a generic mechanism for all

Proo&ings of the 13th VLDB Conference, Brighton 1987 441

proposed uses of PRIMA. A detailed description of the
transaction concept including application-structuring for
long transactions [KLMP84] and dynamic control structures
across AL-PRIMA processes as well as its distributed
implementation is prepared in a subsequent paper.

5. References

As76

8884

CD87

Da86

DB83

DPS86

EH82

Fr86

HHLM87

HHM86

Astrahan, MM., et al.: SYSTEM R: A Relational
Approach to Database Management, in: ACM
TODS, Vol. 1, No. 2,1976, pp. 97-137.
Batory, D.S., Buchmann, A.P.: Molecular
Objects, Abstract Data Types and Data Models:
A Framework, in: Proc. 10th VLDB Conf.,
Singapore, 1984, pp. 172-184.
Carey, M.J., Dewitt, D.J., et al.: The
Architecture of the EXODUS Extensible DBMS,
in: Proc. Int. Workshop on Object-Oriented
Database Systems, Pacific Grove, 1986, pp. 52-
65.
Dadam, P., et al.: A DBMS Prototype to Support
Extended NF*-Relations: An Integrated View on
Flat Tables and Hierarchies, in: Proc. ACM
SIGMOD Conf., Washington, D.C., 1986, pp. 356-
367.
several papers in: Proc. of the Engineering
Design Applications at the Data Base Week,
1983.
Deppisch, U., Paul, H.-B., Schek, H. J.: A
Storage System for Complex Objects, in: Proc.
Int. Workshop on Object Oriented Database
Systems, Pacific Grove, 1986, pp. 183-195.
Effelsberg, W., Harder, T.: Principles of
Database Buffer Management, in: ACM TODS,
Vol. 9, No. 4,1984, pp. 560-595.
Freytag, J.C.: A Rule-Based View of Query
Optimization, IBM Almaden Research Center,
San Jose, CA, Sept. 29,1986.
Harder, T., Hiibel, C., Langenfeld, S., Mitschang,
B.: KUNICAD - A Database System Supported
Geometrical Modeling Tool for CAD Applications
(in German), in: lnformatik Forschung und
Entwicklung, Vol. 2, No. 1,1987, pp. l-l 8.
Harder, T., Hiibel, C., Mitschang, B.: Use of
Inherent Parallelism in Database Operations, in:
Proc. Conf. on Algorithms and Hardware for
Parallel Processing CONPAR 86, Springer
Lecture Notes in Computer Sciences, Aachen,
1986, pp. 385-392.

HHMM87 Harder, T., Htibel, C., Meyer-Wegener, K.,
M&hang, B.: Coupling Engineering
Workstations to a Database Server, SFB 124,
Research Report No. 24/87, Univ. of
Kaiserslautern, 1987 (submitted for publication).

HL82 Haskin, R.L., Lorie, R.A.: On Extending the
Functions of a Relational Database System, in:
Proc. ACM SIGMOD Conf.. Orlando, Florida,
1982.

HR85 Harder, T., Reuter, A.: Architecture of Database
Systems for Non-Standard Applications (in
German), in: Proc. of the GI Conf. on ‘Database

442

KLMP84

Ki82

LK84

LMP86

MC77

Mi87

ML83

MO81

Ne87

PA86

Systems for Office, Engineering and Science
Environments’, 1985, pp. 253-286.
Kim, W., Lorie, R., McNabb, D., Plouffe, W.:
Nested Transactions for Engineering Design
Databases, in: Proc. 10th VLDB Conf.,
Singapore, 1984, pp. 355-362
Kim, W.: An Optimizing and SOL-like Nested
Query, in: ACM TODS, Vol. 7, No. 3, 1982, pp.
443-469.
Lorie, R., Kim, W., et al.: Supporting Complex
Objects in a Relational System for Engineering
Databases, IBM Research Laboratory, San
Jose, CA, 1984.
Lindsay, B., McPherson, J., Pirahesh, H.: A
Data Management Extension Architecture, IBM
Almaden Research Center, San Jose, CA, 1986.
McGee, W.C.: The Information Management
System IMSNS, in: IBM Systems Journal, Vol.
16, No.2,1977, pp. 84-168.
M&hang, 8.: MAD - a Data Model for the Kernel
of a Non-Standard Database System (in
German), in: Proc. of the GI Conf. on ‘Database
Systems for Office, Engineering and Science
Environments’, 1987, pp. 180-l 95.
Meier, A., Lorie, R.: A Surrogate Concept for
Engineering Databases, in: Proc. 9th VLDB
Conf., Florent, 1983, pp. 30-32.
Moss, J. E. B.: Nested Transactions: An
Approach to Reliable Computing, M.I.T. Report
MIT-LCS-TR-260, M.I.T., Laboratory of Computer
Science, 1981.
Nehmer, J., et al.: Key Concepts of the INCAS
Multicomputer Project, accepted for IEEE
Transactions on Software Engineering, 1987.
Pistor, P., Anderson, F.: Designing a
Generalized NF* Data Model with a SQL-Type
Language Interface, Proc. 12th VLDB Conf.,
Kyoto, 1986.

PSSWD87 Paul, H.-B., Schek, H.J., Scholl, M.H., Weikum,
G., Deppisch, U.: Architecture and
Implementation of the Darmstadt Database
Kernel System, accepted for SIGMOD87.

RKB85 Roth, M.A., Korth, H.F., Batory, D.S.: SQUNF: A
Query Language for -,l NF Relational Databases,
DeptmCompSciences, Univ. of Texas at
Austin, TR-85-19,1985.

Si87 Sikeler, A.: Access and Storage System of
PRIMA (in German), SFB 124, Research Report,
Univ. of Kaiserslautern, in preparation.

SR86 Stonebraker, M., Rowe, L.A.: The Design of
POSTGRES, in: Proc. ACM SIGMOD Conf.,
Washington, D.C., 1986, pp. 340355.

SS86 Schek, H.J., Scholl, M.H.: The Relational Model
with Relation-Valued Attributes, in: Information
Systems, Vol. 2, No. 2,1986, pp. 137-l 47.

X3H286 SQL Addendum-2, Document
ISO/TC97/SC21/WG3 N143, ANSI X3 H2-86-61,
1986.

Pr~eedings of the 13th VLDB Conference, Brighton 1987

