Abstract

Constraint validation has been difficult to implement efficiently. The major reason for this difficulty lies in the state-dependent nature of integrity constraints and the requirement of both high-level specification and efficient runtime enforcement. In this paper, we propose a constraint reformulation approach to efficient constraint validation. We also demonstrate how this knowledge-based constraint reformulation can be naturally accomplished in the general framework of problem reformulation with the technique of antecedent derivation. We formalize the reformulation of an integrity constraint as a tree-search process where the search space is the set of all semantic-equivalent alternatives of the original constraint. We also develop control strategies and meta-level rules for carrying out the search efficiently. The major contribution of this work is a new promising approach to efficient constraint validation and a general framework to accomplish it.

1. Introduction

Constraint validation, an essential feature of any database systems, is the process of guaranteeing and maintaining a set of semantic invariants across database state transitions. This process has been very difficult to implement efficiently [1,4]. The major reason for this difficulty lies in the state-dependent nature of integrity constraints and the requirement of both high-level specification and efficient runtime enforcement. Research on constraint validation has concentrated on deriving efficient algorithms from the syntactic structure of constraint specification [6,8,10,12,13,21]. No knowledge of the changing world and the actual implementation of the database has been used to obtain such algorithms because they are derived once for all possible situations. These approaches neglect the fact that integrity constraints closely relate to specific database states in the sense that they have to be validated against specific states. Hence only sub-optimal performance can be expected.

Bernstein, Blaustein, and Clarke gave an improved scheme in [2] in which some very limited primitive information (in forms of auxiliary aggregate data) is maintained in order to improve the performance of constraint enforcement. However, they only considered a small class of database integrity constraints involving arithmetic comparison operators. Paige applied the finite differencing technique to constraint validation in [14]. Although maintaining auxiliary information is very effective in reducing expensive recomputations to incremental updates, blindly applying it without considering the usage pattern of database sometimes leads to more costly operations. Neither of these approaches provides control over the usage of auxiliary information.

All approaches mentioned above take the integrity constraint specification as it is given by the user. In [16] we proposed a different approach to the efficient validation of integrity constraints, which seeks to exploit knowledge about the application domain and database implementation to reformulate user-specified constraints into ones which are syntactically different but semantically equivalent in the sense that they enforce the same condition given the application semantics, and which are cheaper to implement given the existing database configuration. Such a knowledge-based approach provides great potential for efficient implementation because: logically equivalent constraint specifications can have very different computational characteristics; by exploring knowledge about application semantics and database configurations, constraints are specialized to the current run time environment with more optimization opportunities; and since the process of constraint reformulation is automated, it is easy to adapt to change in application semantics and database organization.

The basic idea behind our approach is similar in spirit to the one proposed by Hammer[5] and King[9] for knowledge-based query optimization, in the sense that we are also looking for optimization by semantic transformation. However there are important differ-
Knowledge-based Constraint Reformulation

A database is a collection of relations, each relation is a set of tuples. The structure of the database is characterized by its schema, which specifies all the relations, attributes, and domains on which the values of attributes are defined. Relational databases do not explicitly support the specification of inter-relation relationships. They are made possible by matching domains of attributes in the relations involved in the relationships. We call such attributes connection attributes. An integrity constraint is an abstraction of a validity condition that data in the database must obey. The set of integrity constraints together serve as the correctness criteria for valid database states.

The knowledge-based reformulation of constraints can be formally specified as: given a knowledge base \(K \) of a set of assertions and a constraint \(P \), we want to find an assertion \(P' \) such that (1) \(K \) together with \(P' \) implies \(P \), i.e., \(K \land P' \Rightarrow P \); and (2) \(P' \) is both computationally cheaper than \(P \) and semantically as weak as possible. We call \(P' \) an antecedent of \(P \) (relative to \(K \)). With the assumption that all the assertions in the knowledge base \(K \) are valid in the current database state, checking a constraint \(P' \) will be more cost-effective than enforcing the original constraint \(P \) and at the same time guarantee that the database invariant \(P \) is properly maintained.

A wide range of knowledge can be explored in constraint reformulation\[22\]. The knowledge falls into several categories, from domain-specific application semantics to specific implementation techniques used in the database configuration.

- Application semantics, such as the cardinality of relationships\[3\], other integrity constraints that are already validated, and the current state of the application.
- Database structures, such as the available logical structures supported by the database, virtual and derived information, and existing bindings.
- Physical organization and access paths, such as the materialized links and indexes, physical clustering and locality.
- Database utilization through monitoring, such as the update frequency of relations and usage frequency of access paths.
There are 10 reduction rules, 3 primitive rules, and two composition methods in the system. Only the portion used in our examples is presented here. All formulas in the rest of the paper are assumed to be implicitly quantified and all free variables are treated as constants. In presenting the reduction rules we use the notation $G; H$ as an abbreviation of the formula $h_1 \land h_2 \land \ldots \land h_k \Rightarrow G$ where $H = \{h_1, h_2, \ldots, h_k\}$. A complete description may be found in [18].

R3. Reduction of Conjunctive Hypotheses. If the goal is $G; H \cup \{B \land C\}$, then generate subgoals $G; H \cup \{B\}$ and $G; H \cup \{C\}$. If these subgoals return antecedents A_1 and A_2, then return the disjunctive composition $A_1 \lor A_2$ as the antecedent of the goal.

R5. Application of an Equivalence Formula. If the goal is $G; H$ and $A \equiv G$ is a known theorem or an assertion in H then generate subgoal $A; H$.

R7. Forward Inference from an Assertion. If the goal is $G; H$, $A \Rightarrow B$ or $A \equiv B$ is a known theorem or assertion in H, and A is an assertion in H, then generate subgoal $G; H \cup \{B\}$.

R8. Goal/Assertion Duality Rules. (a) If the goal has the form $\neg A \lor B; H$ then generate subgoal $B; H \cup \{A\}$. (b) If the goal is $B; H$ and $A \in H$ then generate subgoal $\neg A \lor B; H \cup \{A\}$.

R9. Substitution of Equal Terms. (a) If the goal has the form $G(r); H$ and $r = s$ is an assertion in H or a known theorem then generate subgoal $G(s); H$. (b) If one assertion has the form $h(r)$ and $r = s$ is another assertion or a known theorem, then generate subgoal $G; H \cup \{h(s)\}$.

P1. Primitive Rule. If the goal is $G; H$, we seek an $\{z_1, \ldots, z_n\}$-antecedent. G and H' depend only on the variables z_1, \ldots, z_n where H' has the form $\land_{i=1}^{m} h_i$, and $\{h_i\}_{i=1, \ldots, m} \subseteq H$, then generate antecedent $H' \Rightarrow G$.

Figure 1 gives a set of knowledge and theorems about our example database. Now suppose that we want to derive an $\{c\}$-antecedent of our example constraint. A goal tree representing a formal derivation of the antecedent $Sal(e) \leq Bgt(EMPIN(e))$ is shown in Figure 2. The arcs of the goal tree are annotated with the names of the rules and known theorems or assertions used. The leaves of the goal tree are annotated with the primitive rules used. Figure 3 shows the derivation of a $\{d\}$-antecedent: $MaxSal(d) < Bat(d)$.

There are several interesting features of this example that are worth mentioning. First the deductive problem of antecedent derivation matches perfectly to our constraint reformulation specification in Section 2. The set of assertions plays the role of a knowledge base and the goal is the constraint we want to reformulate. RAINBOW provides us with a framework of systematically generating the space of antecedents. The correct
ness of the alternative constraints generated by RAINBOW is straightforward from the correctness of reduction rules.

Assertions:

h1. \(\text{MaxSal}(d) = \max \{ \text{Sal}(e) : e \in \text{HASEMP}(d) \} \)

h2. \((\text{DName}(d_1) = \text{DName}(d_2)) \Rightarrow (d_1 = d_2) \)

h3. \((e \in \text{HASEMP}(d)) \Rightarrow (\text{EMPIN}(e) = d) \)

h4. \((\text{EName}(e) = \text{AEmp}(a) \land \text{Proj}(p) = \text{PName}(p) \land \text{Dept}(p) = \text{DName}(d)) \Rightarrow (\text{EDept}(e) = \text{DName}(d)) \)

h5. \((\text{PName}(p) = s) \equiv (p = \text{IPName}(s)) \)

h6. \((\text{DName}(d) = s) \equiv (d = \text{IDName}(s)) \)

h7. \((\text{EName}(e) = s) \equiv (e = \text{IEName}(s)) \)

h8. (\((\text{EName}(e) = s) \land (e = \text{IEName}(s)) \))

Theorems:

\((P \land Q) = (\neg P \lor Q) \)

\(((e \in S) \land P \Rightarrow (F(e) \leq C)) = ((\max(P(e) : e \in S \land P)) \leq C) \)

Figure 1: Assertions and theorems

Derived Assertions:

\(d_5. e \in \text{HASEMP}(d) \)

Goal:

G1. \((\text{EName}(e) = \text{AEmp}(a) \land \text{Proj}(a) = \text{PName}(p) \land \text{Dept}(p) = \text{DName}(d)) \Rightarrow (\text{Sal}(e) \leq \text{Bgt}(d)) \Rightarrow H \)

\(\downarrow R7 + b4 + d4 \)

G2. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1\} \)

\(\downarrow R7 + h5 + d1 \)

G3. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1, d2\} \)

\(\downarrow R9(b) + h3 + d2 \)

G4. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1, ..., d3\} \)

\(\downarrow R7 + h2 + d3 \)

G5. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1, ..., d4\} \)

\(\downarrow R9(a) + d4 \)

G6. \(\text{Sal}(e) \leq \text{Bgt}(\text{EMPIN}(e)) \lor \{d1, ..., d4\} \)

\(\downarrow P1 \)

Figure 2: An \(\{d\}-\text{antecedent of the goal} \)

Secondly, the assertions in the example represent typical knowledge about our database application. Assertion h2 expresses the key constraint of the DEPT relation. Assertions h3 and h4 say that there is a many-to-one mapping called EMPIN from EMP to DEPT connecting each employee to his department, and its inverse is a one-to-many mapping HASEMP. Assertions h6, h7, and h8 specify the three indexes on attributes EName, PName, and DName. By associating cost information with these functional mappings we are able to incorporate physical organization knowledge into our deductive framework.

Both derivations use the assertion h5, which says that (currently) employees only involve in projects in their own departments. With this piece of information our constraint gets greatly simplified because we can compare the employee's salary directly with the budget of his department, without going through all of his projects. The two reasons we mentioned before for retracting reformulation are both possible with the introduction of h5 in our derivation. The database may evolve into a state where it is no longer true that each employee only works for his own department. It may very well be the case that an employee is joining a multi-department project. This makes h5 not valid and checking \(P' \) is not enough for ensuring the validity of P. Also by using the reformulated constraint instead of the original one, we are enforcing a stronger condition than necessary, a condition that says each employee must earn no more than the budget of his department --- even if he is not involved in any project (in his department). Given that it is usually the case that every employee works for at least one project, it may still be beneficial to enforce this stronger constraint.

Derived Assertions:

\(d_5. e \in \text{HASEMP}(d) \)

Goal:

G5. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1, ..., d4\} \)

\(\downarrow R7 + b4 + d4 \)

G7. \(\text{Sal}(e) \leq \text{Bgt}(d) \lor \{d1, ..., d5\} \)

\(\downarrow R8(b) + d5, t1 \)

G8. \((e \in \text{HASEMP}(d)) \Rightarrow (\text{Sal}(e) \leq \text{Bgt}(d)) \lor \{d1, ..., d5\} \)

\(\downarrow R7 + h4 + d4 \)

G9. \(\max\{\text{Sal}(e) : e \in \text{HASEMP}(d)\} \leq \text{Bgt}(d) \lor \{d1, ..., d5\} \)

\(\downarrow R9(a) + h1 \)

G10. \(\text{MaxSal}(d) \leq \text{Bgt}(d) \lor \{d1, ..., d5\} \)

\(\downarrow P1 \)

Figure 3: A \(\{d\}-\text{antecedent of the goal} \)

In the second derivation shown in Figure 3, the 6th reduction step from G7 to G8 introduces the inverse mapping HASEMP and a membership test, which is more expensive to compute than the assertion before this step. It turns out that this seemingly expensive result can be transformed further into one with aggregation function \(\max \) and derived attribute MaxSal. Hence it provides opportunities for great efficiency improvement, with advanced optimization techniques such as finite differencing[14].

Proceedings of the 13th VLDB Conference, Brighton 1987
Finally, although RAINBOW is able to generate all possible valid reformulations of a given constraint, it does not tell us which one is the best in terms of computational efficiency. Nor does it tell us how to find such a reformulation efficiently. In the next two sections, we present a cost function, which serves as a criterion for selecting antecedents, and our strategies for search control. Both control knowledge and efficiency knowledge are represented as rules which are stored in the knowledge base, together with the domain-specific knowledge used to derive antecedents. Such a representation of meta-knowledge makes the system self-extensible and offers great ease in adapting to new environments and incorporating new knowledge [7, 20]. Sample rules can be found in [15].

4. Cost Analysis and Measurement

In searching through the space of possible constraint reformulations, a criterion is needed for choosing the best solution (antecedent), predicting the best search direction, and pruning unpromising branches. In this section we investigate the factors on which such a criterion depends and propose a method of measurement that takes into account all the relevant information. Basically we prefer one reformulation over another according to its computational cost and semantic weakness. We discuss them separately using the techniques of symbolic and incremental analysis. The design goals for such a cost function are to make the process fully automatic, minimizing the need for the user to provide performance information. The accuracy of the measurement relies heavily on the accuracy of information provided by the user or through monitoring the database in operation, and the correctness of assumptions made, such as the independence of user-defined predicates.

Computational Cost

We define the computational cost of a constraint to be the time to check its validity against a database state. Four pieces of information are used as parameters to our cost formula. We need the estimated selectivities of user-defined predicates, monitored sizes of relations and attribute images, and monitored frequency information about relation update operations — insertion and deletion frequencies of single tuples. These parameters are initially specified via one of two means: (1) The user may provide such information, or (2) the system may assume default values for those that are missing. Subsequently the system computes these parameters for other predicates or relations that are defined in terms of the initial set of predicates and relations, and continuously modifies them to reflect the state change. Such activity is specified by sets of transformation rules [15].

The cost of computing an integrity constraint has two components: (1) the cost (c_1) of actually evaluating the constraint weighted with the frequency that the domains (relations) it constrains on change, and (2) the cost (c_2) of computing and maintaining the auxiliary structures used in the constraint, e.g., access paths and derived information, weighted with the frequencies that the domains those structures depend on change. The general cost formula for computing the cost of constraint P is:

$$c(P) = c_1(P) + c_2(P),$$

where

$$c_1(P) = c_{eval}(P) \times \sum_{x \in DOM(P)} (f_{ins}(x) + f_{del}(z)),$$

$$c_2(P) = \sum_{y \in STR(P)} (c_{main}(y) + c_1(def(y))).$$

In the above formula, $DOM(P)$ is the set of relations in terms of which the constraint P is specified, $STR(P)$ is the set of auxiliary structures used in P, $f_{ins}(x)$ and $f_{del}(z)$ are the insertion and deletion frequencies to relation x, $c_{eval}(P)$ is the cost of evaluating the expression P, $c_{main}(y)$ is the cost of maintaining structure y, and $def(y)$ is the definition formula of y. This formula achieves a good compromise between performance of enforcing constraint and performance of maintaining redundant information. There are two groups of transformation rules [15]: (1) Rules for computing the cost of evaluating arbitrary expressions, and (2) Rules for estimating the cost of maintaining arbitrary materialized structures (e.g., views).

Semantic Weakness

As mentioned in Section 2, the reformulation process has to be retracted when some knowledge used in reformulating constraint P into P' (1) has become invalid, or (2) is an implication instead of an equivalence, and P' is false, although the database after the state transition is still valid in terms of the original constraint P. The assertion is in Figure 1 is such an example. Both situations are because that we are using some facts which are semantically stronger than necessary, some facts which only hold for a subset of valid database states. We need some means to measure the semantic weakness of each piece of knowledge in the knowledge base and determine, according to such a measure, whether it is cost-effective to use a particular one in our reformulation.

We take the semantic weakness of an assertion to be the probability that it is true in a valid database state. The larger this probability is, the weaker the assertion is in semantics. In reformulating a constraint, we want to use a piece of knowledge which is as weak as possible such that our reformulation has less chance of having to be retracted. In establishing the knowledge base, each assertion is attached with the probability that
it will remain true as its initial semantic weakness measure. For each assertion which is an implication \(P \Rightarrow Q \), its weakness measure is multiplied by the probability that \(Q \Rightarrow P \) is true as its actual measure. This is because if we use \(P \Rightarrow Q \) in reformulation we are assuming that \(Q \Rightarrow P \) is also true. These initial probability measures are specified by the user at knowledge base build time. Transformation rules are applied to compute the semantic weakness of derived knowledge and partially reformulated constraints.

Derived Assertions:
- \(d_6. EName(e) = AEmp(a) \)
- \(d_7. AProj(a) = PName(p) \)
- \(d_8. PDept(p) = DName(d) \)
- \(d_9. e = IENarne(AEmp(a)) \)
- \(d_{10}. p = IPNarrre(AProj(a)) \)
- \(d_{11}. d = IDName(PDept(p)) \)

Goal:
- \(G_2. Sal(e) \leq Bgt(d); H \cup \{d_1\} \)
 \(\Downarrow R_3+d_1 \)
- \(G_{11}. Sal(e) \leq Bgt(d); H \cup \{d_1, d_6, \ldots, d_8\} \)
 \(\Downarrow R_7+h_6+d_6, R_7+h_7+d_7, R_7+h_8+d_8 \)
- \(G_{12.} Sal(e) \leq Bgt(d); H \cup \{d_1, d_6, \ldots, d_{11}\} \)
 \(\Downarrow R_9+d_9, R_9+d_{11} \)
- \(G_{13.} Sal(IENarne(AEmp(a))) \leq Bgt(IDName(PDept(p))); H \cup \{d_1, d_6, \ldots, d_{11}\} \)
 \(\Downarrow R_9+d_{10} \)
- \(G_{14.} Sal(IENarne(AEmp(a))) \leq Bgt(IDName(PDept(IPName(AProj(a))))); H \cup \{d_1, d_6, \ldots, d_{11}\} \)
 \(\Downarrow P_1 \)

Figure 4: An \(\{a\} \)-antecedent of the goal

Given an assertion \(P \) and its semantic weakness measure \(w(P) \), the modified cost formula which takes into account the semantic weakness of the assertion is as follows:

\[
c'(P) = a \times c(P)/w(P)
\]

where \(a \) is a predetermined constant which balances the compromise of semantic weakness against other cost factors. For example, we may associate with the assertion \(h_5 \) in Figure 1 a semantic weakness measure \(p \times q < 1 \) where (1) the probability of \(h_5 \) remaining true is \(p \) and (2) the probability of

\[(EDept(e) = DName(d)) \Rightarrow (\exists p)(\exists a)(PDept(p) = DName(d) \wedge EName(e) = AEmp(a) \wedge AProj(a) = PName(p))\]

being true is \(q \). \(w \) increases the cost of the reformulations in Figures 2 and 3 and at certain point they are no longer cheaper than some other reformulations which do not use \(h_5 \). Figure 4 shows such a derivation.

5. Search Control

The search space for reformulating a constraint is the space of constraints which are reformulations of the original constraint. The stepwise-reduction approach associates a natural search tree with each constraint's search space. Most of the decisions made during the search are based on the measurement of computational cost and semantic weakness. This suggests the adoption of the basic paradigm of heuristic search. The root node of the tree is the initial constraint to be reformulated. The arcs represent the application of reduction rules. The branching points in the tree represent points where more than one reduction rule is applicable. Intermediate nodes are partial reformulations and leaves are alternative constraints to be enforced. Figure 5 shows a partial search tree for our example constraint, where the branches correspond to the three derivations in Figures 2, 3, and 4.
Plausible Task Generation

A critical part of constraint reformulation is the decision of what to do when more than one reduction rule is applicable. Each rule usually represents the possibility of a different way of reformulating the constraint. Two types of action are possible at this point. All the applicable rules can be applied, producing the set of competing reformulations for comparison. Or, the rules can be compared without actually applying them, and those rules which are not meaningful for the purpose of reducing the cost of constraint validation is removed. Obviously the latter choice is more efficient. We use plausibility rules as a first-level filter to eliminate those candidate rules which do not lead to potential reduction in validation cost. Below we describe some of the rules in more detail.

Structures introduced should not be irrelevant to the original constraint. One of the important characteristics of constraint reformulation is the introduction of auxiliary structures or information into the constraint, which are maintained by the DBMS. This is accomplished through substitution of equal terms (R9) or forward inferencing (R7). But blindly introducing new structures may lead to more expensive constraints. One type of rules tries to avoid the introduction of irrelevant structures or domains. For example, if we apply reduction rules R5, R8(a), and R3 to the example constraint to get a derived assertion $AProj(a) = PName(p)$, and there is another assertion:

$$AProj(a) = PName(p) \Rightarrow (AEmp(a) = PMgr(p) \Rightarrow Percent(a) \geq 50)$$

then we do not want to infer $AEmp(a) = PMgr(p) \Rightarrow Percent(a) > 50$ because that it is not directly relevant to our goal $Sal(e) \leq Bgt(d)$.

Structures introduced should help in constraining the range of the original constraint. A constraint is always defined on a set of domains. The cost of checking the constraint is proportional to the product of the sizes of these domains. If a piece of knowledge specifies a restriction on these domains, combining it with the constraint will reduce the evaluation cost. As an example discouraged by such type of rules, suppose we have an assertion $EName(e) = SKILLOF(SEmp(s))$ which says that there is a mapping $SKILLOF$ from each $SKILL$ tuple to the EMP tuple that has that skill. If we replace $EName(e)$ in our example constraint by $SKILLOF(SEmp(s))$, we are introducing a new domain $SKILL$ which is not one of the domains of the original constraint.

General optimization. Most general-purpose, context-independent optimization techniques can also be specified as plausibility rules, such as finite differencing, pushing unary operations through binary ones, etc.

Task Ordering Mechanisms

There may very well be more than one plausible reduction task applicable to a reformulation node. The order in which decisions are considered would not be important if all combinations of possibilities were considered in full detail. However, the computation involved in choosing a reformulation must be limited. Therefore the ordering of tasks becomes relevant. The goal of task ordering rules is to reach the best solution as soon as possible. These rules try to compare the potential impact of tasks on the cost of constraint and order them accordingly.

Introduce stable structures first. The stability of structures are evaluated using the database monitoring information about the accessing and updating frequencies of domains on which the structures are defined. It also depends on the specific techniques used in implementing these structures. One ordering principle is to perform the task which introduces stable structures. By requiring the new structures to be stable, we are sure that the reformulation would have a low maintenance cost. The way of determining the stability of structures is to compare the cost of maintaining them. As an example of this ordering principle, consider the search tree in Figure 5. The example at node G5 indicates that two tasks are applicable. One introduces the auxiliary structure $EMPIN$ while another introduces $HASEMP$. If $HASEMP$ is implemented in a more expensive way than $EMPIN$, then according to our ordering criterion, G5 is preferred over G7.

Replace expressions that are expensive. Another ordering principle is to choose the task that replaces a more expensive expression. By replacing a more expensive expression first, we expect to reduce the cost of constraint faster. For example, at node G2 in Figure 5, two tasks are applicable. One task generates $d2$ from $h5$ and $d1$ while another generates three assertions $d6$, $d7$, and $d8$ from $d1$. Obviously $h5$ and $d1$ together are more expensive to evaluate than $d1$. Using our principle, the branch to node G3 is preferred.

Simplification should be done before looking at other choices. A reduction is said to be a simplification step if it simplifies the syntax of the constraint. One of the characteristics of constraint reformulation is that the benefit of reformulation may not be obvious by a single reformulation step. Some simplification steps are usually needed before there is a decrease in cost. By grouping one reformulation step with a sequence of simplification steps, we are making “macro step” reformulations which often help us find the right solution faster. Consider again the search tree in Figure 5. If, at node G8,
after \textit{HASEMP} has been introduced, we stop because the cost of the constraint at G8 is greater than the cost of the constraint at node G6, we would not be able to find a perhaps even cheaper constraint, G10.

\textbf{Independent reductions should not be done repeatedly.}

Reformulation is a chain of reductions from one constraint to another. During this reduction process, there may be many independent decisions. These independent decisions should be made only once according to the order of their potential impact on the cost of evaluating constraint. For example, in the derivation in Figure 4, we did not show the ordering of derivations of d6, d7, and d8 from G2 to G11. The ordering is not important for reformulation purposes because they are independent of each other. \textsc{Rainbow} automatically avoids the repeat derivations of these independent decisions in different orders.

\textbf{Branch and Bound}

The ordering of tasks still does not make sense if we have no means of determining when we have reached a "best" solution. Without a criterion for stopping the search, we again end up generating the whole search space exhaustively. The traditional technique of branch and bound does not work very well with reformulation in general because it requires the estimation of the upper and lower bounds of the cost of a subtree without actually generating the tree. Such cost bounds are very hard to obtain due to the nature of reformulation. At a particular node in the search tree, it is extremely difficult, if not impossible, to "guess" what is an alternative form into which the current constraint can be reformulated, just by looking at the constraint itself. Furthermore, the cost of the constraint is not uniformly decreasing during reformulation. Therefore it is of no use comparing the cost of nodes in the partially generated search tree.

Based on the above considerations, we have developed two strategies for branch pruning in the search process. One pruning principle makes use of the fact that a constraint specifies a relationship between objects in different domains, and according to our plausibility rules no new domain is ever introduced. Hence in the worst case the constraint is enforced exactly on these domains with no auxiliary structures to take advantage of, which means that the constraint has to be enforced by enumerating over all the domains involved. On the other hand, the best we may get is to enforce the constraint on a single smallest domain. At each node in the search tree these upper and lower bounds are computed by looking at the domains on which the current constraint is specified. If we denote the upper and lower cost bounds of a node \(N \) by \(c_{\text{max}} \) and \(c_{\text{min}} \) respectively, a node \(N \) is pruned if there exists another node \(N' \) such that \(c_{\text{max}}(N') < c_{\text{min}}(N) \). For example, in Figure 5 \(c_{\text{min}}(G13) = \text{size}(\text{PROJ}) \) while \(c_{\text{max}}(G6) = \text{size}(\text{EMP}) \). If G6 is generated before G13 and \(\text{size}(\text{EMP}) < \text{size}(\text{PROJ}) \) then G13 will be pruned and G14 would not be generated.

Another method is to have the user provide some criteria to stop the search. One such information would be a cost bound, where a solution is satisfactory if it costs less than the user's bound. A node gets pruned if its lower bound is larger than user's bound. Another criterion may be the set of domains that the user wants the constraint to be specified. For example, the user may tell the system that an \(\{z, y\} \)-antecedent is satisfactory. As soon as such a constraint is reached, the search stops.

\section{Discussion}

A prototype system is being implemented on top of \textsc{Rainbow} using a wide-spectrum programming language \textsc{RefineTM}. There are currently about 90 rules in the cost evaluator grouped according to functionalities and about 10 meta-rules in search controller. The heuristic rules for controlling forward inferring turn out to be hard to implement due to \textsc{Rainbow}'s difficulty in switching inference directions. We've tested the system using our example database and constraint, with a knowledge base of 20 assertions. \textsc{Rainbow} is able to generate all alternative constraints, and based on given performance parameters the system correctly chooses the reformulated constraint in Figure 2 as the best solution. With the limited control facility we have, the search is roughly 10 times faster. The search space is non-trivial and deserves good search strategies. Although the reformulation of constraints as we stated here has a nice match to the general heuristic mechanism, the heuristics are of a quite different nature and rely heavily on the semantics of the application that the database models.

The problem of choosing between alternative reformulations is quite important, since it affects the efficiency of both the search process and the resulting constraint. In our framework, this problem has been broken into two components: (1) the logic component which constructs the search space whose nodes are reformulations of the original constraint, and (2) the control component which explores this space, making choices based on the cost of the alternatives. The first function is provided by \textsc{Rainbow}'s deductive reasoning paradigm, the second is provided by a combination of analytical and heuristic paradigms. These paradigms are combined in a uniform way to achieve the ultimate goal.

\footnote{A trademark of Reasoning Systems Inc.}

Proceedings of the 13th VLDB Conference, Brighton 1987
We argue that the enforcement of integrity constraints based on the knowledge about application domain and database configuration is the right approach to the problem due to the nature of integrity constraint. We also demonstrated the feasibility of such an approach by formalizing and developing a framework for carrying out the reformulation effectively.

Acknowledgement

We are grateful to Gio Wiederhold, Cordell Green, Tom Pressburger, and Janet Coursey for helpful discussions. This work was supported in part by DARPA contract N39-84-C-0211 for Knowledge Based Management Systems, and in part by the Rome Air Development Center (RADC) contract F30602-86-C-0026. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing the official policies, either expressed or implied of DARPA, RADC, or U.S. Government.

References