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Abstract

Constraint validation has been difficult to imple-
ment efficiently. The major reason for this difficulty lies
in the state-dependent nature of integrity constraints
and the requirement of both high-level specification and
cfficient runtime enforcement. In this paper, we pro-
pose a constraint reformulation approach to efficient
constraint validation. We also demonstrate how this
knowledge-based constraint reformulation can be natu-
rally accomplished in the general framework of problemn
reformulation with the technique of antecedent deriva-
tion. We formalize the reformulation of an integrity
constraint as a tree-scarch process where the search
space is the set of all semantic-equivalent alternatives of
the original constraint, We also develop control strate-
gies and meta-level rules for carrying out the search
efficiently. The major contribution of this work is a
new promising approach to efficient constraint valida-
tion and a general framework to accomplish it.

1. Introduction

Constraint validation, an essential feature of any
database systems, is the process of guaranteeing and
maintaining a set of semantic invariants across database
state transitions. This process has been very difficult
to implement efficiently[1.4]. The major reason for this
difficulty lics in the state-dependent nature of integrity
constraints and the requirement of both high-level spec-
ification and efficient runtime enforcement. Research on
constraint validation has coucentrated on deriving effi-
cient algorithms from the syntactic structure of cons-
traint specification[6,8,10,12,13,21}]. No knowledge of
the changing world and the actual implementation of
the database has been used to obtain such algorithms
because they are derived once for all possible situations.
These approaches neglect the fact that integrity const-
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raints closely relate to specific database states in the
sense that they have to be validated against specific
states. Hence only sub-optimal performance can be ex-
pected.

Bernstein, Blaustein, and Clarke gave an improved
scheme in {2] in which some very limited primitive infor-
mation (in forms of auxiliary aggregate data) is main-
tained in order to improve the performance of constraint
enforcement. However, they only considered a small
class of database integrity constraints involving arith-
metic comparison operators. Paige applied the finite
differencing technique to constraint validation in [14].
Although maintaining auxiliary information is very ef-
fective in reducing expensive recomputations to incre-
mental updates, blindly applying it without considering
the usage pattern of database sometimes leads to more
costly operations. Neither of these approaches provides
control over the usage of auxiliary information.

All approaches mentioned above take the integrity
constraint specification as it is given by the user. In
[16] we proposed a different approach to the cfficient
validation of integrity constraints, which seeks to ex-
ploit knowledge about the application domain and data-
base imiplementation to reformulate user-specified con-
straints into ones which are syntactically different but
scmantically equivalent in the sense that they enforce
the same condition given the application semantics, and
which are cheaper to implement given the existing data-
base configuration. Such a knowledge-based approach
provides great potential for efficient implementation be-
cause: logically equivalent constraint specifications can
have very different computational characteristics; by
exploring knowledge about application semantics and
database configurations, constraints are specialized to
the current run time environment with more optimiza-
tion opportunitics; and since the process of constraint
reformulation is antomated, it is casy to adapt to change
in application semantics and database organization.

The basic idca behind our approach is similar in
spirit to the one proposed by Hammer[5] and King[9]
for knowledge-based query optimization, in the sense
that we are also louking for optimization by semantic
transformation. However there are important differ-
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ences in both the nature of the problemn to be solved
and the effectiveness of the solution. First, query op-
timization is performed far more frequently than cons-
traint reformulation. King put severe restrictions on the
data model and the type of constraints allowed in or-
der to avuid the overhead of general deduction. In the
approach of Hammer, the search space is not charac-
terized, the cost modul of both query improvement and
scarch efficiency is intuitively described, and the control
mechanism is incomplete. It is unclear how effective the
control mechanisin is against scarch space explosion and
how semantic reasoning interacts with heuristic search.
Finally, Haminer only supports restricted forms of logi-
cally equivalent transforinations because his knowledge
reprsentation is not suitable for deductive use.

We demonstrate how knowledge-based constraint
reformulation can be accomplished in the general frame-
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antecedent derivation, which serves as a search space
generator of all alternative reformulations. We develop
a cost model as the criterion for selecting the most effi-
cient reformulation. Finally we propose a set of strate-
gies for carrying out the search for the best reformula-
tion efficiently. The whole reformulation process of a
constraint is formalized as a tree-scarch process where
the set of all valid reformulations of the original cons-
traint forms a tree.

We restrict our attention in this paper to the re-
formulation of single constraints with respect to a set
of knowledge in relational databases, although the tech-
niques presented provide basis for and can be extended
to the reformulation of a set of constraints. The in-
tegrity constraints are specified in first-order logic aug-
mented with set-theoretic operators and reduction (ag-
gregation) operators. Knowledge about the application
domain and database configuration is also represented
as logical assertions. The paper is organized as follows.
Section 2 gives a formal specification of the knowledge-
based constraint reformulation together with a classifi-
cation of the knowledge used. In Section 3 we briefly de-
scribe a deductive system called RAINBOW which serves
as the inference engine. We then present, in Section 4,
a cost function to measure the preference of reformula-
tions. Finally our search control strategy is presented
in Section 5, which consists of a set of task ordering and
pruning heuristics. We illustrate concepts by using the
example database and constraint below.

DATABASE SCHEMA
EMP(EName, EDept, Sal)
DEPT(DName, Bgt, Chairman, MaxSal)
PROJ(PName, PDept, PMgr)
ASSIGN(AEmp, AProj, Percent)
SKILL(SEmp, SName)
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CONSTRAINT
(Ve € EMP)(Va € ASSIGN)
(Vp € PROJ)(¥d € DEPT)
[EName(e) = AEmp(a)A
AProj(a) = PName(p)A
PDept(p) = DName(d)
= Sal(c) < Bgt(d)]

2. Knowledge-based Constraint Reformulation

A database is a collection of relations, each rela-
tion is a set of tuples. The structure of the database
is characterized by its schema, which specifics all the
relations, attributes, and domains on which the values
of attributes are defined. Relational databases do not
explicitly support the specification of inter-relation rela-
tionships. They are made possible by matching domains
of attributes in the relations involved in the relation-

shins. We :-)“ such attributes connectic attributes
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An integrity constraint is an abstraction of a validity
condition that data in the database must obey. The set
of integrity constraints together serve as the correctness
criteria for valid database states.

The knowledge-based reformulation of constraints
can be formally specified as: given a knowledge base K
of a set of assertions and a constraint P, we want to
find an assertion P’ such that (1) K together with P’
implies P, i.e., K A P’ = P; and (2) P' is both com-
putationally cheaper than P and semantically as weak
as possible. We call P' an antecedent of P (relative
to K'). With the assumption that all the assertions in
the knowledge base K are valid in the current data-
base state, checking a constraint P’ will be more cost-
effective than enforcing the original constraint P and at
the same time guarantee that the database invariant P
is properly maintained.

A wide range of knowledge can be explored in cons-
traint reformulation[22]. The knowledge falls into sev-
eral categories, from domain-specific application seman-
tics to specific implemnentation techniques used in the
database configuration.

e Application semantics, such as the cardinality of
relationships[3], other integrity constraints that
arc alrcady validated, and the current state of
the application.

e Database structures, such as the available logi-
cal structures supported by the database, virtual
and derived information, and existing bindings.

¢ Physical organization and access paths, such as
the materialized links and indexes, physical clus-
tering and locality.

e Database utilization through monitoring, such as
the update frequency of relations and usage fre-
quency of access paths,
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o Performance and cost information, such as the
relation and image sizes, blocking factors, and
the time to access a particular index.

o Algebraic properties of operations, such as the
existence of inverse of a function or mapping, and
estimated set size after set-foriner operation.

The process of constraint reformulation occurs at
*compile time”, in the sense that cfficient checking code
is generated from the reforinulated constraint to actu-
ally enforce it at run time. However, under two situa-
tions the reformulation process has to be retracted, that
is, the reformulation of P into P’ becomes invalid: (1)
when some knowledge in the knowlege base, which has
been used in the reformulation, has become invalid due
to a database state transition; (2) when an implication
is used in the reformulation such that P' = P, but af-
ter an intended state transition, P’ becomes false and
P rcwains true. In both cases the reformulation should
be redone instead of invalidating the state transition.
By carefully choosing the knowledge to be used we can
minirmize the cost of multiple reformulation. In Section
5 we develop control strategics on the use of temporal
or implication knowledge.

3. Antecedent Derivation

In this section we briefly describe a formal deduc-
tive system called RAINBOW developed at Kestrel In-
stitute[18,19]. RAINBOW is a system for deriving an-
tecedents. Given a goal G and assertion H it tries to
find a formula P, called a derived antecedent, such that
HAP = G. The deduction process has two stages.
In the first stage reduction rules are repeatedly applied
to goals reducing them to subgoals. A primitive rule
is applied whenever possible. The result of this reduc-
tion process is a goal tree in which (1) nodes represent
goals/subgoals, (2) arcs represent reduction rule appli-
cations, and (3) leaf nodes represent goals to which
primitive rules have been appliecd. The second stage
involves the bottom-up composition of antecedents for
subgoals into an antecedent for the parent goal.

If {z,,...,2,} are the free variables in G, then an
{z1,.... z;}-antecedent of G is a formula P whose free
variables {z;,...,2;} C {1,...,2,} such that

H = Vz,..Vz;|P = Vz;4,..V2,G|
P is a weakest {z,,..., z;}-antecedent if
H=> V:E].--Vﬂii[P = Vz;_n...‘v’znG]

is valid. Given a goal G with a set of free variables X,
RAINBOW looks for all possible formulas which are an
X'-antecedent of G where X' C X.
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There are 10 reduction rules, 3 primitive rules, and
two composition methods in the system. Only the por-
tion used in our examples is presented here. All for-
mulas in the rest of the paper are assumed to be im-
plicitly quantified and all free variables are treated as
constants. In presenting the reduction rules we use
the notation Gy H as an abbreviation of the formula
hy Aha A ... Ay = G where H = {h],hz,..., hk}. A
complete description may be found in [18].

R3. Reduction of Conjunctive Hypotheses. If the goal
is G; H U {B A C}, then gencrate subgoals G; H U { B}
and G; HU{C}. If these subgoals return antecedents A,
and A,, then return the disjunctive composition 4;V A,
as the antecedent of the goal.

R5. Application of an Equivalence Formula. If the goal
is G; H and A = G is a known theorem or an assertion
in H then generate subgoal 4; H.

R7. Forward Inference from an Asscrtion. If the goal is
G;H, A = Bor A= Bis aknown theorem or assertion
in H, and A is an assertion in H, then generate subgoal
G;H U {B}.

R8. Goal/Assertion Duality Rules. (a) If the goal has
the form ~A V B; H then generate subgoal B; H U {A}.
(b) If the goal is B; H and A € H then genetate subgoal
RY9. Substitution of Equal Terms. (a) If the goal has
the form G(r); H and r = s is an assertion in H or a
known theorem then generate subgoal G(s); H. (b) If
one asscrtion has the formn h(r) and r = s is another
assertion or a known theorem, then generate subgoal
G; H U h(s).

P1l. Primitive Rule. If the goal is G; H, we seek an
{z,..., %, }-antecedent, G and H' depend only on the
variables z),..., 2, where H' has the form AT., h;;, and
{hi;};=1,....m C H, then generate antecedent H' = G.

Figure 1 gives a set of knowledge and theorems
about our example database. Now suppose that we
want to derive an {e}-antecedent of our example cons-
traint. A goal tree representing a formal derivation of
the antecedent Sal(e) < Bgt(EMPIN(e)) is shown in
Figure 2. The arcs of the goal tree are annotated with
the natnes of the rules and known theorems or assertions
used. The leaves of the goal tree are annotated with the
primitive rules used. Figure 3 shows the derivation of a

{d}-antecedent: MazSal(d) < Bgt(d).

There are several interesting features of this ex-
ample that are worth mentioning. First the deductive
problem of antecedent derivation matches perfectly to
our constraint reformulation specification in Section 2.
The set of assertions plays the role of a knowledge base
and the goal is the constraint we want to reformulate.
RAINBOW provides us with a framework of systemati-
cally generating the space of antecedents. The correct-
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ness of the alternative constraints generated by RAIN-
BOW is straightforward from the correctness of reduc-
tion rules,

Assertions:
hl. MazSal(d) =
maz{Sal(e):e € HASEM P(d)}
h2. (DName(d;) = DName(d,)) = (d = d)
h3. EDept(e) = DName(EMPIN (e))
h4. (e € HASEMP(d)) =(EMPIN(e) =d)
h5. (EName(e) = AEmp(a)A
AProj(a) = PName(p)A
PDept(p) = DName(d)) =
(EDept(e) = DName(d))
h6. (EName(e) = s) = (e = IEName(s))
h7. (PName(p) = s) = (p = IPName(s))
h8. (DName(d) = s) = (d = IDName(s))
Theorems:
tl. (P=>Q)=(-PVQ)
t2. ((e€ S)AP= (F(e)<(C)) =
((maz{F(e):e€ SAP})<C)

Figure 1: Assertions and theorems
Derived Assertions:

di. EName(e) = AEmp(a)A

AProj(a) = PName(p)A

PDecpt(p) = DName(d)
d2. EDept(e) = DName(d)
d3. DName(EMPIN(e)) = DName(d)
d4. EMPIN(e)=d

Goal:

G1. (EName(e) = AEmp(a)A
AProj(a) = PName(p)A
PDept(p) = DName(d)) =

(Sal(e) < Bgt(d)); H
| R5+t1, R8(a)
G2. Sal(e) < Bgt(d); H U {d1}
1l R7+h5+d1

G3. Sal(e) < Bgt(d); HU {d1,d2}

| R9(b)+h3+d2

G4. Sal(e) < Bgt(d); H U {d1,...,d3}

| R7+h2+d3

G5. Sal(e) < Bgt(d); H U {d1,...,d4}
| R9(a)+d4

G6. Sal(e) < Bgt(EMPIN(e)); HU {d1,...,d4}
| P1

Figure 2: An {e}-antecedent of the goal

Secondly, the assertions in the example represent
typical knowledge about our database application. As-
sertion h2 expresses the key constraint of the DEPT
relation. Assertions h3 and h4 say that thereis a many-
to-one mapping called EMPIN from EMP to DEPT
connecting each employee to his department, and its in-
verse is a one-to-many mapping HASEMP. Assertions
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h6, 17, and h8 specify the three indexes on attributes
EName, PName, and DName. By associating cost in-
formation with these functional mappings we are able
to incorporate physical organization knowledge into our
deductive framework.

Both derivations use the assertion hb, which says
that (currently) employees only involve in projects in
their own departments. With this piece of information
our constraint gets greatly simnplified because we can
compare the employee’s salary directly with the bud-
get of his department, withont going through all of his
projects. The two reasons we mentioned before for re-
tracting reformulation arc both possible with the in-
troduction of h5 in our derivation. The database may
evolve into a state where it 1s no longer true that each
cinployee only works for his own department. It may
very well be the case that an employee is joining a multi-
department project. This makes h5 not valid and check-
ing P’ is not enough for ensuring the validity of P. Also
by using the reformulated constraint instead of the orig-
inal one, we are enforcing a stronger condition than nec-
essary, a condition that says each employee must earn
no more than the budget of his department -— even if
he is not involved in any project (in his department).
Given that it is usually the case that every employee
works for at least one project, it may still be beneficial
to enforce this stronger constraint.

Derived Assertions:

d5. e € HASEM P(d)

Goal:
G5. Sal(e) < Bgt(d); HuU {d1,...,d4}
1} R7+h4+d4
G7. Sal(e) < Bgt(d); HU {d1,...,d5}
| R8(b)+d5, t1
G8. (¢ € HASEMP(d)) = Sal(e) < Bgt(d);
HU{dl,...,d5)
| R5+t2
G9. maz{Sal(e):e € HASEMP(d)} < Bgt(d);
Hu{dl1,..,d5}
| R9(a)+h1
G10. MazSal(d) < Bgt(d); HU {d1,...,d5}
1Pl

Figure 3: A {d}-aniccedent of the goal

In the second derivation shown in Figure 3, the 6th
reduction step from G7 to G8 introduces the inverse
mapping HASEMP and a membership test, which is
more expensive to compute than the assertion before
this step. It turns out that this seemingly cxpensive
result can be transformed further into one with aggre-
gation function maz and derived attribute MazSal.
Hence it provides opportunities for great efficiency im-
provement, with advanced optimization techniques such
as finite differencing[14].
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Finally, although RAINBOW is able to generate all
possible valid reformulations of a given constraint, it
does not tell us which one is the best in terms of com-
putational efficiency. Nor does it tell us how to find such
a reformulation efficiently. In the next two sections, we
present a cost function, which serves as a criterion for
sclecting antecedents, and our strategies for search con-
trol. Both control knowledge and efficiency knowledge
are represented as rules which are stored in the knowl-
edge base, together with the domain-specific knowledge
used to derive antecedents. Such a representation of
meta-knowledge makes the system sclf-extensible and
offers great ease in adapting to new cenvironments and
incorporating new knowledge[7,20]. Sample rules can
be found in [15].

4. Cost Analysis and Measurement

In scarching through the space of possible cons-
traint reforimulations, a criterion is needed for choos-
ing the best solution (antecedent), predicting the best
scarch direction, and pruning unpromising branches. In
this section we investigate the factors on which such a
criterion depends and propose a method of measure-
ment that takes into account all the relevant informa-
tion. Basically we prefer one reformulation over another
according to its computational cost and semantic weak-
ness. We discuss them separately using the techniques
of symbolic and incremental analysis. The design goals
for such a cost function are to make the process fully
automatic, minimizing the need for the user to provide
performance information. The accuracy of the measure-
ment relies heavily on the accuracy of information pro-
vided by the user or through monitoring the database
in operation, and the correctness of assumptions made,
such as the independence of user-defined predicates.

Computational Cost

We define the computational cost of a constraint
to be the time to check its validity against a database
state. Four pieces of information are used as parameters
to our cost formula. We nced the estimated selectivities
of user-defined predicates, monitored sizes of relations
and attribute images, and monitored frequency infor-
mation about relation update operations — insertion
and dcletion frequencies of single tuples. These parame-
ters are initially specified via one of two means: (1) The
user may provide such information, or (2) the system
may assume default values for those that are missing.
Subscquently the system computes these parameters for
other predicates or relations that are defined in terms
of the initial sct of predicates and relations, and contin-
uously modifies them to reflect the state change. Such
activity is specified by sets of transformation rules[15).
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The cost of computing an integrity constraint has
two components: (1) the cost (¢;) of actually evaluating
the constraint weighted with the frequency that the do-
mains (relations) it constrains on change, and (2) the
cost {¢2) of computing and maintaining the auxiliary
structures nsed in the constraint, e.g., access paths and
derived information, weighted with the frequencies that
the domains those structures depend on change. The
general cost formula for computing the cost of cons-

traint P is:

c(P) = c;(P) + ¢c2(P), where
c1(P) = cevat{P) % 3o ¢ porr(p)(fins(2) + faei(2))
c2(P) = ZyESTR(P)(cmuin(y) + ¢y (def(y)))

In the above formula, DOM(P) is the set of re-
lations in terms of which the constraint P is specified,
STR(P) is the set of auxiliary structures used in P,
Jina(2) and fge(z) are the insertion and deletion fre-
quencies to relation 2, cepqr(P) is the cost of evaluat-
ing the expression P, ¢ynain(y) is the cost of maintain-
ing structure y, and de f(y) is the definition formula of
y. This formula achieves a good compromise between
performance of enforcing constraint and performance
of maintaining redundant information. There are two
groups of transformation rules[15]: (1) Rules for com-
puting the cost of evaluating arbitrary expressions, and
(2) Rules for estimating the cost of maintaining arbi-
trary materialized structures (e.g., views).

Semantic Weakness

As mentioned in Section 2, the reformulation pro-
cess has to be retracted when some knowledge used in
reformulating constraint P into P’ (1) has become in-
valid, or (2) is an implication instead of an equivalence,
and P’ is false, although the databasc after the state
transition is still valid in terms of the original cons-
traint . The assertion h5 in Figure 1 is such an ex-
ample. Both situations are because that we are us-
ing some facts which are semantically stronger than
necessary, some facts which only hold for a subset of
valid database states. We need some means to measure
the semantic weakness of cach piece of knowledge in
the knowledge base and determine, according to such a
measure, whether it is cost-effective to use a particular
one in our reformulation.

We take the semantic weakness of an assertion to
be the probability that it is true in a valid database
state. The larger this probability is, the weaker the as-
sertion is in scmantics. In reformulating a constraint,
we want to use a piece of knowledge which is as weak as
possible such that our reformulation has less chance of
having to be retracted. In establishing the knowledge
base, each assertion is attached with the probabilty that
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sure. For cach asscertion which is an immplication P = @,
its weakness measure is multiplicd by the probability
that @ = P is true as its actual mcasure. This is be-
caunseif we use P = £ in reformulation we are assuming
LVCGUIT 12 WU uov 4 — ‘.( A1 ALV LILULGLIUILE W Gl aaaullulls
that Q = P is also true. These initial probability mea-
sures are specified by the user at knowledge base build
time. Transformation rules are applied to compute the
semantic weakness of derived knowledge and partially

reformulated constraints.

Derived Assertions:
d6. EName(e) = AEmp(a)
d7. AProj(a) = PName(p)
d8. PDept(p) = DName(d)
d9. e = IEName(AEmp(a))
d10. p = IPName(AProj(a))
d11. d = IDName(PDept(p))

Goal:
G2. Sal(e) < Bgt(d); H U {d1}
1 R3+d1
G11. Sal(e) < Bgt(d); HU {d1,ds,...,d8}
! R7+h6+d6, R7+h7+d7, R7+h8+d8
G12. Sal(e) < Bgt(d); HU {d1,d6,...,d11}
1 R9+d9, R9+d11
G13. Sal(IEName(AEmp(a))) <
Bgt(IDName(PDept(p))); H U {d1,d6,...,d11}
] R9+d10
G14. Sal(IEName(AEmp(a))) <
Bgt(IDName(PDept(IPName(AProj(a)))));
H U {d1,ds,...,d11}
1Pl

Figure 4: An {a}-antecedent of the goal

Given an assertion P and its semantic weakness
measure w(P), the modified cost formula which takes
into account the semantic weakness of the assertion is
as follows:

¢'(P) = a x ¢(P)/w(P)

where a is a predetermined constant which balances the
compromise of semantic weakness against other cost
factors. For example, we may associate with the as-
sertion h5 in Figure 1 a semantic weakness measure
p x ¢ < 1 where (1) the probability of h5 remaining
true is p and (2) the probability of

(EDept(e) = DName(d)) =
(3p)(3a){PDept(p) = DName(d)A
EName(e) = AEmp(a)A
AProj(a) = PName(p)]

being true is g. w increases the cost of the reformula-
tions in Figures 2 and 3 and at certain point they are
no longer cheaper than some other reformulations which
do not use h5. Figure 4 shows such a derivation.
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The scarch space for reformulating a constraint is
the space of constraints which are reformulations of the
original constraint. The stepwise-reduction approach
associates a natural search tree with each constraint’s
scarch space. Most of the decisions made during the
search are based on the measurement of computational
cost and semantic weakness. This suggests the adop-
tion of the basic paradigm of heuristic search. The root
node of the tree is the initial constraint to be reformu-
lated. The arcs represent the application of reduction
rules. The branching points in the tree represent points
where more than one reduction rule is applicable. Inter-
mediate nodes are partial reforninlations and leaves are
alternative constraints to be enforced. Figure 5 shows a
partial search tree for our example constraint, where the
branches correspond to the three derivations in Figures
2,3, and 4.

Figure 5: Partial Search Tree

The basic search technique is a form of heuristic
scarch with the state of the search recorded in a task
agenda. A task is defined to be an application of a
rule to a goal. A reformulation node is chosen based
on a modified form of best-first search. The search at-
tention is always concentrated on the current node un-
less it is abandoned according to the pruning criteria.
Task-ordering rules are used to choose a task within the
current node to work on. Only those tasks which are
considered plausible are taken as candidates. A reduc-
tion rule is then applied to the current node to fulfill
the chosen task. The resulting new node is compared
to other possibilities in the tree by a form of branch and

Proceedings of the 13th VLDB Conference, Brighton 1987



bound.

Plausible Task Generation

A critical part of constraint reformulation is the de-
cision of what to do when more than one reduction rule
is applicable. Each rule usually represents the possibil-
ity of a different way of reformulating the constraint.
Two types of action arc possible at this point. All the
applicable rules can be applied, producing the set of
competing reformulations for comparison. Or, the rules
can be compared without actually applying them, and
those rules which are not meaningful for the purpose of
reducing the cost of constraint validation is removed.
Obviously the latter choice is more efficient. We use
plausibility rules as a first-level filter to climinate those
candidate rules which do not lead to potential reduction
in validation cost. Below we describe some of the rules
in more detail.

Structures introdnced should not be irrelevant to the

original constraint. One of the important characteris-
tics of constraint reformulation is the introduction of
auxiliary structures or information into the constraint,
which are maintained by the DBMS. This is accom-
plished through substitution of equal terms (R9) or for-
ward inferencing (R7). But blindly introducing new
structures may lead to more expensive constrainis. One
type of rules tries to avoid the introduction of irrelevant
structures or domains. For example, if we apply reduc-
tion rules R5, R8(a), and R3 to the example constraint
to get a derived assertion AProj{a) = PName(p), and
there is another assertion:

AProj(a) = PName(p) =
(AEmp(a) = PMgr(p) = Percent(a) > 50)

then we do not want to infer AEmp(a) = PMgr(p) =
Percent(a) > 50 because that it is not directly relevant
to our goal Sal(e) < Bgt(d).

Structures introduced should help in constraining the
range of the original constraint. A constraint is al-
ways defined on a set of domains. The cost of check-
ing the constraint is proportional to the product of the
sizes of these domains. If a piece of knowledge speci-
fies a restriction on these domains, combining it with
the constraint will reduce the evaluation cost. As an
example discouraged by such type of rules, suppose we
have an assertion EName(e) = SKILLOF(SEmp(s))
which says that there is a mapping SKILLOF from
each SKILL tuple to the EMP tuple that has that
skill. If we replace EName(e) in our example cons-
traint by SKILLOF(SEmp(s)), we are introducing a
new domain SKILL which is not one of the domains
of the original constraint.

General optimization. Most general-purpose, context-
independent optimization techniques can also be spec-
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ified as plausibility rules, such as finite differencing,
pushing unary operations through binary ones, etc.

Task Ordering Mechanisms

There may very well be more than one plausible
reduction task applicable to a reforinulation node. The
order in which decisions are considered would not be im-
portant if all comnbinatious of possibilitics were consid-
ered in full detail. However, the computation involved
in choosing a reformulation must be limited. Therefore
the ordering of tasks becomes relevant. The goal of task
ordering rules is to reach the best solution as soon as
possible. These rules try to compare the potential im-
pact of tasks on the cost of constraint and order them
accordingly.

Introduce stable structures first. The stability of struc-
tures are evaluated using the database monitoring infor-
mation about the accessing and updating frequencies of
domains on which the structures are defined. It also de-
pends on the specific techniques used in implementing
these structures. One ordering principle is to perform
the task which introduces stable structures. By requir-
ing the new structures to be stable, we are sure that the
reformnlation would have a low maintenance cost. The
way of determining the stability of structures is to com-
pare the cost of maintaining them. As an example of
this ordering principle, consider the scarch tree in Fig-
ure 5. The choice point at node G5 indicates that two
tasks arc applicable. One introduces the anxiliary struc-
turc EMPIN while another introduces HASEMP. If
HASEMP is implemented in a more expensive way
than EMPIN, then according to our ordering crite-
rion, G6 is prefered over G7.

Replacce expressions that are expensive. Another order-
ing principle is to choose the task that replaces a more
expensive expression. By replacing a more expensive
expression first, we expect to reduce the cost of cons-
traint faster. For examnple, at node G2 in Figure 5, two
tasks are applicable. One task generates d2 from hb
and d1 while another generates three assertions d6, d7,
and d8 from d1. Obviously h5 and d1 together are more
cxpensive to evaluate than d1. Using our principle, the
branch to node G3 is prefered.

Simplification ‘should be done before looking at other
choices. A reduction is said to be a simplification step
if it symplifies the syntax of the constraint. One of the
characteristics of constraint reformulation is that the
benefit of reformulation may not be obvious by a single
reformulation step. Some simplification steps are usu-
ally needed before there is a decrease in cost. By group-
ing one reformulation step with a sequence of simplifica-
tion steps, we are making “macro step” reformulations
which often help us find the right solution faster. Con-
sider again the search tree in Figure 5. If, at node G8.
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after HASEM P has been introduced, we stop because
the cost of the constraint at G8 is greater than the cost
of the constraint at node G6, we would not be able to
find a perhaps even cheaper constraint, G10.

Independent reductions should not be done repeatedly.
Reformulation is a chain of reductions from one cons-
traint to another. During this reduction process, there
may be many independent decisions. These indepen-
dent decisions should be made only once according to
the order of their potential impact on the cost of eval-
uating constraint. For example, in the derivation in
Figure 4, we did not show the ordering of derivations
of d6, d7, and d8 from G2 to G11. The ordering is
not important for reformulation purposes because they
arc independent of each other. RAINBOW automatically
avoids the repeat derivations of these independent de-
cisions in different orders.

Branch and Bound

The ordering of tasks still does not make scnse if
we have no means of determining when we have reached
a “best” solution. Without a criterion for stopping the
search, we again end up generating the whole search
space exhaustively. The traditional techinique of branch
and bound does not work very well with reformnulation
in general because it requires the estimation of the up-
per and lower bounds of the cost of a subtree without
actually generating the tree. Such cost bounds are very
hard to obtain due to the nature of reformulation. At
a particular node in the search tree, it is extremely dif-
ficult, if not impossible, to “guess” what is an alter-
native form into which the current constraint can be
reformulated, just by looking at the constraint itself.
Furthermore, the cost of the constraint is not uniformly
decrcasing during reformulation. Therefore it is of no
usc comparing the cost of nodes in the partially gener-
ated search tree.

Based on the above considerations, we have devel-
oped iwo strategies for branch pruning in the search
process. One pruning principle makes use of the fact
that a constraint specifies a relationship between ob-
jects in different domains, and according to our plau-
sibility rules no new domain is ever introduced. Hence
in the worst case the constraint is enforced exactly on
these domains with no auxiliary structures to take ad-
vantage of, which means that the constraint has to be
enforced by enumerating over all the domains involved.
Ou the other hand, the best we may get is to enforce
the constraint on a single smallest domain. At each
node in the search tree these upper and lower bounds
are computed by looking at the domains on which the
current constraint is specified. If we denote the up-
per and lower cost bounds of a node N by c,,q. and
Cmin Tespectively, a node N is pruned if there cxists
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another node N' such that ¢,,0.(N') < cpin(N). For
example, in Figure 5 ¢,,;,(G13) = size(PPROJ) while
Cmar(GO6) = size(EMP). H G6 is generated before
G13 and siz¢(EMP) < size(PRO.J) then G13 will be
pruned and G14 would not be generated.

Another method is to have the user provide some
criteria to stop the search. One such information would
be a cost bound, where a solution is satisfactory if it
costs less than the user’s bound. A node gets pruned
if its lower bound is larger than user’s bound. Another
criterion may be the set of domains that the user wants
the constraint to be specified. For example, the user
may tell the system that an {z,y}-antecedent is satis-
factory. As soon as such a constraint is reached, the
scarch stops.

6. Discussion

A prototype system is being implemented on top
of RAINBOW using a wide-spectrum programming lan-
guage REFINETM *_ There are currently about 90 rules
in the cost evaluator grouped according to functional-
ities and about 10 meta-rules in search controler. The
heuristic rules for controling forward inferencing turn
out to be hard to implement due to RAINBOW’s diffi-
culty in switching inference directions. We've tested
tlie system using our example database and constraint,
with a knowledge base of 20 assertions. RAINBOW is
able to generate all alternative constraints, and based
on given performance parameters the system correctly
chooses the reformulated constraint in Figure 2 as the
best solution. With the linited control facility we have,
the scarch is roughly 10 times faster. The search space
is non-trivial and deserves good search strategies. Al-
though the reformulation of constraints as we stated
here has a nice match to the general heuristic mecha-
nism, the heuristics are of a quite different nature and
rely heavily on the semantics of the application that the
database models.

The problem of choosing between alternative re-
formulations is quite important, since it affects the effi-
ciency of both the scarch process and the resulting cons-
traint. In our framework, this problem has been broken
into two components: (1) the logic component which
constructs the search space whose nodes are reformula-
tions of the original constraint, and (2) the control com-
ponent which explores this space, making choices based
on the cost of the alterhatives. The first function is pro-
vided by RAINBOW s deductive recasoning paradigm, the
second is provided by a combination of analytical and
heuristic paradigms. These paradigms are combined in
a uniform way to achieve the ultimate goal.

* A trademark of Reasoning Systems Inc.
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We argue that the enforcement of integrity con-
straints based on the knowledge about application do-
main and database configuration is the right approach
to the problem due to the nature of integrity constraint.
We also demonstrated the feasibility of such an ap-
proach by formalizing and developing a framework for
carrying out the reformulation cffectively.
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