
ENHANCEMENTS TO THE VOTING ALGORITHM

Sushi1 Jajodia and David Mutchler

Computer Science and Systems Branch
Code 5590

Naval Research Laboratory
Washington, DC 20375-5000

ABSTRACT

There are several consistency control algorithms for manag-
ing replicated files in the face of network partitioning due to
site or communication link failures. In this paper, we con-
sider the popular voting scheme along with three enhance-
ments: voting with a primary site, dynamic voting, and
dynamic voting with linearly ordered copiee. We develop a
stochastic model which compares the file availabilities
afforded by each of these schemes. We show that in this
model dynamic voting with linearly ordered copies provides
the greatest availability.

I. INTRODUCTION

There are several consistency control algorithms for
managing replicated data in the face of network partitioning
due to site or communication link failures 141. Voot-
ing[5,12,15] is the best known example of such a scheme. It
has several appealing aspects: its availability is reasonable;
its simple statement permits a clear correctness proof; and it
is simple to implement. Voting with a primary site is a sim-
ple extension of voting. More recently, researchers have
introduced two other enhancements to voting, called
dynamic voting [S] (see also [3]) and dynamic voting with
linearly ordered copies [7]. These enhancements share all the
advantages of the voting scheme; we show that they provide
greater availability as well.

Sections II and III give formal statements of the prob-
lem and the four algorithms listed above. Section IV pro-
vides a stochastic analysis of the availabilities of these algo-
rithms. The model we use assumes that, update requests
arrive much more frequently than sites fail or are repaired.
In the context of our model, we state theorems that compare
the availabilities of the four algorithms. Our main result is
that dynamic voting with linearly ordered copies provides
the greatest availability.

II. FORMAL SPECIFICATION OF PROBLEM

The distributed database (DDB) system consists of a
collection of independent computers, called nodes or sites,
connected via communication links. We assume that site
failures are clean, i.e., nodes stop executing without perform-
ing any incorrect actions and that node crashes are

permission to copy without fee all or part of this material is
granted protided &at the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
&le of the. publication and its date. appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee adbx SW-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

detectable by other nodes. We do not include Byzantine
failures (111 where sites may act in an arbitrary and mali-
cious manner. Site or communication failures may separate
the sites into more than one connected component of com-
municating sites. We call each connected component a parti-
tion.

There are several logical files in the DDB, and a physi-
cal copy of each logical file is stored at one or more sites.
Each site keeps a history of all updates which it performed
on a file. We assume that each site runs a eoneurrcncly con-
trol protocol which ensures that the execution of all transac-
tions within any partition is serializable [8,1]. While serial-
izability of transactions at each site is certainly desirable; it
is not sufficient to guarantee that the transactions running
in different sites will combine to yield a serialieable result;
and therefore, it is necessary to run a consistency control
protocol which correctly manages the replicated data in the
presence of failures. (An excellent survey of several of these
strategies is given in [4].) In a pessimistic consistency control
protocol, mutual consistency of a replicated file is main-
tained by making sure thaf all reads are fresh and that, files
are updated in at most one partition at any given time. We
will call such a partition the majority partition. Different
pessimistic protocols use different definitions of a majority
partition. When site or communication link recoveries cause
partitions to unite, the nodes form a new partition by com-
paring their histories and obtain, if necessary, all updates
that they have missed. If there does not exist a majority
partition, all sites in the system must wait until enough sites
and communication links are repaired so that there is once
again a majority partition in the system. Since this wait is
unavoidable [14], the challenge is to come up with a pes-
simistic consistency control algorithm which not only
preserves mutual consistency of various copies of a file, but
at the same time achieves high availability as well.

We can pictorially represent the history of network’s
failure and recovery by using the notion of a partition graph
[lo], defined as follows.

Definition 1. A partition graph for a file {is a directed
acyclic graph such that the nodes correspond to the parti-
tions and the edges correspond to either a fragmentation of
a partition into two or more subpartitions or a coalescence
of two or more partitions into a single partition.

Example 1. An example of a partition graph is shown
in Figure 1. The source nodk is labeled with the names of
sites ABCDE that have copies of the file f, indicating that
these sites are all connected and that copies of fare mutu-
ally consistent. The initial partition is fragmented into two
partitions ABC and DE. Later B becomes isolated from AC,
and subsequently A and C also become isolated. Ultimately,
A, D, and E resume comm&ication and form a single parti-
tion.

399

Figure 1. A partition graph for a file
tired redundantly at sites A, B, C, D, and E.

The partition graph in Figure 1 illustrates the different
availabilities of the algorithms we describe in the next three
sections. Voting permits only three partitions--ABCDE,
ABC, and ADsto process new updates to the replicated
file. Dynamic voting allows updates in partitions ABCDE,
ABC, and AC. Dynamic voting with linearly ordered copies
permits updates in one partition at each level of the parti-
tion graph, viz., in partitions ABCDE, ABC, AC, A, and
ADE.

IIL VOTING AND ITS ENHANCEMENTS

A. THE VOTING ALGORITHM

We present a brief overview of the voting algorithm as
follows. Each copy of i has associated with it a version
number which is equal to zero initially and is incremented by
one each time the copy is updated. A site can process an
update request provided it can communicate with at least
[n/2] other sites, where n is the number of sites. If so, it
must first ensure that those participating copies which are
not current are brought up-to-date. To this end, it com-
putes the maximum, say M, taken over version numbers of
all participating copies. The copy which has the version
number M is the current copy and is used to propagate miss-
ing updates to the other copies. Once this is done, the new
update is then performed.

In the voting protocol, more than half of the total
number of copies of a replicated file must be available in
order for an update to succeed. In the next three sections,
we present three generalizations of the voting scheme; each
sometimes permits a partition to perform updates even when
the partition does not contain more than half of the sites.

B. VOTING WITH A PRIMARY SITE

A partition containing exactly half the sites does not
constitute a majority partition under the voting algorithm;

400

if it did, two majority partitions could coexist, possibly
destroying the consistency of the replicated file. By choosing
one site as the primary site, two such partitions can be dis-
tinguished. The voting with a primary site algorithm is the
same as voting, except when a partition contains exactly
half of the sites. Under voting with a primary site, such a
partition constitutes a majority partition if it contains the
primary site. Since only one such partition can exist at any
particular time, consistency is maintained. Of course, voting
with a primary site applies (differs from ordinary voting)
only when the number of sites is even.

C. DYNAMIC VOTING

In this section, we provide a brief description of the
dynamic voting scheme as given in [6] (see also [3]). There
are many details missing, and the reader is referred to (61 for
a complete description.

We associate with each copy of the file / a version
number and an update sites cardinality, defined as follows.

DeAnition 1. The version number of a copy fi at a
site i is an integer VNi which counts the number of success-
ful updates to pi. We set VNi to zero initially and incre-
ment it by one each time an update to f; occurs.

DeAnition 2. The current version number of a repli-
cated file f is the maximum taken over the version numbers
of all copies of 6

Definition 3. A copy is said to be current if its ver-
sion number equals the current version number of the repli-
cated file.

DeAnition 4. A partition is said to be a majority par-
tition if it contains more than half of the current copies of
the replicated file f

DeAnition 6. Associated with each copy ji at a site i

is another integer called the update sites cardinality, denoted
by SCi, which always reflects the number of sites participat-
ing in the most recent update to li. We let SC{ = o
(number of sites) initially, and whenever an update is made
to fi, then SCi is set to the total number of copies which
were updated during this update.

Each site which has a copy of the file fmust maintain
the copy’s version number and update sites cardinality. A
site can perform an update iff it is a member of a majority
partition. This scheme can be best illustrated by an exam-
ple.

Example 2. Assume there are five sites A, B, C, D,
and E which have copies of the file & These sites are ini-
tially connected and form a single partition. Suppose the file
f has been updated nine times, so the initial state can be
represented as follows:

A B C D E
VN: 9 9 9 9 9
SC: 5 5 5 5 5

At this point suppose site A receives an update, and it
finds that it can communicate with sites B and C only.
Since A still belongs to a majority partition) it can process
the update. The state then changes to:

Rocee&ngs of the 13th VLDB Conference, Brighton 1987

ABCDE
VN: 10 10 IO 9 9
SC: 3 3 3 5 5

Suppose now that site A receives yet another update,
and it discovers that it can communicate with site C only.
The novelty here is that since sites A and C together contain
more than half of the current copies of the replicated file,
they form a majority partition even though there are only
two sites (out of five) in this partition. The database state
changes to:

ACBDE
VN: 11 11 I 10 I 9 9
SC: 2 2 3 5 5

D. DYNAMIC VOTING WITH LINEARLY
ORDERED COPIES

Although dynamic voting provides greater availability
than the voting algorithm, it is possible to make further
improvements. Below we propose a modification to,dynamic
voting which results in improved availability of replicated
files. We should note that this modification was offered orig-
inally by Jajodia in [7]. In addition to correcting some minor
errors which were present therein, our description below
simplifies his algorithm in a significant way making it more
practical. That is, the scheme in [7] implicitly assumed the
existence of a connection vector which instantaneously
recorded changes in the system configuration resulting from
site failures or network partitions (see also [3], page 89).
The cost of maintaining such a vector is significant [2, sec-
tion 4.21, making schemes which rely on it less desirable. By
contrast, our proposal does not require any such complicated
message-based coordination mechanism.

Throughout this section, we assume that there is a file
f which is stored redundantly at n sites in the distributed
system. Initially, these sites are all connected and all copies
are mutually consistent. We assign a priori a linear order-
ing, denoted by >, to all sites that have copies of the file J
Our algorithm uses this linear order to “break ties” between
the partitions. We have chosen the terminology “linearly
ordered copies” instead of “linearly ordered sites” since the
linear ordering of sites applies only to the replicated file.
The database may contain additional files which are stored
redundantly at different sets of sites, and a different linear
ordering of sites in each set may be selected for each repli-
cated file. Since our protocol does not depend on the number
of files which are replicated or on whether a different order-
ing of sites is chosen for each file,t we shall continue to
assume for ease of exposition that f is the only replicated
file.

We will increase availability in our algorithm by hav-
ing more majority partitions than are possible in dynamic
voting. We will do so by altering the definition of a major-
ity partition in Definition 4 as follows:

Definition 4’. A partition P is said to be a majority
partition if either of the following two conditions holds:

4 The partition P contains more than half of the current
copies of the replicated file fi

b) The partition P contains exactly one half of the
current copies of the file f and moreover, contains a
site S such that i) the physical copy of S is current
and ii) S > S’ where S’ is any other site containing a
current copy of c

The following theorem, whose proof is immediate, pro-
vides the basis for the correctness of dynamic voting with
linearly ordered copies.

Theorem 1. There can be at most one partition at any
given time that satisfies either a) or b) in Definition 4’.

In dynamic voting (without a linear ordering of sites),
each site uses a single integer (the update sites cardinality)
to count the number of current copies. In order to make use
of the linear ordering of sites, dynamic voting with linearly
ordered copies requires that each site maintain, in addition
to a version number and a update sites cardinality for its
copy, a variable called distinguished site, defined as follows.

Definition 6. We associate with each copy ji at a site
Si a variable called distinguished site, denoted by DSi, which
identifies the site which is greater (in the linear ordering)
than all other sites that participated in the last update to
ji. Thus, the distinguished site entry DSi for the file COPY ji
at the site Si is determined as follows: if Si . . . S, denote the
sites that participated in the most recent update to copy ji,
andifS~>S~forallk(l<k<m,kfj)thenDSi=Sj.

As before a site can make an update iff it belongs to a
majority partition. Suppose a site S wishes to determine if
it belongs to a majority partition. It must execute the fol-
lowing steps. Let P below denote the sites in the partition
containing S.

Is-Majority:

1) The site S obtains the version numbers VNi, update
sites cardinalities SCi, and distinguished site values
DSi for all sites Si in partition P.

2) The site S calculates the value M = max{ VNi : SC E P)
and the set Z = {Sj E P : VNj = M}. Thus, M
denotes the largest version number which is in P, and
the set Z consists of those sites in P which have the
version number M. S then takes the update sites car-

. dinality of any site in the set I. Denote this by N.

3) If card(Z)tt > N/2, then S belongs to a majority parti-
tion.

4) If card(Z) = N/2 and if DSi E Z where DSi is the dis-
tinguished site value of any site in the set I, then also
is S a member of a majority partition.

5) Otherwise, S does not belong to a majority partition.

Now, suppose a site S receives an update request. It
must first determine if it belongs to a majority partition; if
so, it can process the update; otherwise it must reject the
update. Specifically, S executes these steps:

t Our work generalizes to the setting where transactions may update
two or more files. Any such transaction T will require B majority for every
file in its read and write set. tt Notation: For B set X, card(X) denotes its cardins1it.v

Proceedings of the 13th VLDB Conference, Brighton 1987 401

Dc+Update:

1) S first determines if it belongs to a majority partition,
by using the Is-Majority procedure.

II) If so, it can proceed with the update. Any update
must be made to all sites in the set I. The version
numbers and the update sites cardinalities at every site
in Z must be modified as follows: Every site in Z has
the new version number M + 1 and the new update
sites cardinality equals card(Z). Moreover, if card(Z) is
even, then the value of DSi at every site in Z is reset
also: the new distinguished site value is set to S’ where
S’ in Z is such that S’ > S” for every S” in I, 5”’ # S’.
We should note then whenever an update succeeds at a
group of sites, they all must commit the update
together with the new version number, update sites
cardinality, and distinguished site entry. (Thus, an
update operation at a site is atomic in that either all
four operations are performed in entirety or they are
not performed at all.)

Example 8. To show how this algorithm results in
greater availability, we consider once again the scenario of
the previous example. We now assume that all sites are
linearly ordered as follows: A > B > C > D > E. When the
file /has been updated nine times, the database state will be
represented as follows where the symbol ‘-’ means that we do
not care about the actual value of this variable:

A B C D E
VN: 9 9 9 9 9
SC: 5 5 5 5 5
Ds: _ _ _ _ _

At this point, the site A receives an update and finds
that it can communicate with sites B and C only. The
update is processed leading to:

A B C D E
VN: 10 10 10 9 9
SC: 3 3 3 5 5
D,‘$: _ _ _ _ _

Next, the site A receives yet another update. This
time site A finds (in our scenario) that it can communicate
only with site C. Since sites A and C together form a major-
ity partition, they perform the update. Moreover, since
there are even number of sites in this partition, the value of
DSi is made equal to A. Thus, the database state changes
to:

A C B D E
VN: 11 11 10 9 9
SC: 2 2 3 5 5
DS: A A - - -

Suppose sites A and C perform four additional update
operations and subsequently become isolated from each
other. The system state changes to the following.

A C B D E
VN: 15 15 10 9 9
SC: 2 2 3 5 5
DS: A A - - -

The novelty of our approach is that at this point the
partition consisting of the single site A is a majority parti-
tion. Suppose that A updates j twice; later, D and E unite
with A and bring their copies up-todate. (Exactly how this
is done will be described shortly.) If, at this point, A were to
become isolated from sites D and E, partition DE will be a
majority partition and will be able to perform new updates
to j. And then, were C to unite with partition DE and
obtain missing updates, the partition CDE will also be able
to perform new updates to J Thus, C will be able to process
fin spite of the fact that it was never united with the site A.
By contrast, under dynamic voting, once partition AC splits
into two partitions A and C, no updates can occur anywhere
in the system unless sites A and C once again coalesce into a
single partition.

In our scheme, updates are always made to a current
copy; those copies which are not current must be made so
before they can be updated. For this purpose, sites from
time to time determine if their copies are current; if not,
they must take steps to obtain missing updates for their
copies. Specifically, a site S executes the following steps:

Make-Current:

4 S determines if it belongs to a majority partition. To
this end, S computes the value M and the set Z as in
step 2) of the G-Majority procedure.

b) If the site S belongs to a majority partition and the
version number of the copy at S is equal to M, then
the copy at S is current.

cl If the site S belongs to a majority partition and its
version number is less than M, it may obtain the miss-
ing updates from any site in the set I. The values VNi
and SCi of the copies at site S and at sites in Z are
changed as follows: each VNi is set to M + 1, and each
SCi equals card(Z) + 1. Moreover, if card(Z) + 1 is
even, then the value of DSi at every site in Z IJ {S} is
modified as well: DSi is set to S’ where S’ in Z lJ {S} is
such that S’ > S” for every S” in Z IJ {S}, S” # S’.
Note that we again view these operations as atomic:
either they are performed in their entirety or not at
all.

4 Otherwise, S cannot obtain the missing updates.

Theorem 2. Our consistency control protocol is correct.

Proof. (sketch) We shall show that there exists by our
algorithm at most one majority partition at any time. Thus,
the replicated file can be updated in at most one partition
which is enough to guarantee the mutual consistency of mul-
tiple copies.

Now the proof is via induction on the CVN, the
current version number of the replicated file j. First sup-
pose that CVN = 0. Then version numbers of all copies are
equal to zero, and their update sites cardinalities are each
equal to n. Thus any majority partition will require at least
[n/2] + 1 sites. Since there can be at most one such parti-
tion, our claim follows.

Next assume that our claim holds for CVN = k-l and
that CVN = k. Suppose that the kth update was made in a
partition called &. Let &i, . . . , Q, denote other partitions
in the system at the time of this update. By our induction
hypothesis, it follows that Q,, . . . , Q, are not majority
partitions.

402 hocee&ngs of the 13th VLDB Conference, Brighton 1987

Note that whenever the file is updated or a copy is
allowed to catch up, we increment the versions numbers of
participating copies by one. Thus, the version numbers of
current copies are always monotonically increasing, any par-
tition P formed entirely from the sites in QI, . . , Q, will
not be a majority partition. Thus, any majority partition P
will have to have more than half of the current copies from
Q. Since there can be at most one such partition at one
time, the claim follows. 0

We should note that whenever the Make-Current
procedure permits an old copy to catch up, we treat this
operation like an update in that we increment the version
numbers of the participating copies by one. In the earlier
version of this algorithm [7], the version numbers were kept
the same, only the other values were adjusted to reflect the
existence of the additional current copy. We have made this
change in the original algorithm based on the availability
results of our stochastic model; the current version results in
greater availability of the replicated files in most cases.

IV. AVALABILITIES OF VOTING
AND ITS ENHANCEMENTS

A. The stochastic model

This section will compare the availabilities provided by
the four algorithms described in this paper: ordinary voting,
voting with a primary site, dynamic voting, and dynamic
voting with linearly ordered copies. In general, a sequence of
failures, repairs, and update requests can occur in such a
way that one algorithm can accommodate a request when
another cannot, and vice versa. The real question is this:
which algorithm is more 13ely, in the long run, to be able to
handle any given update request? That is, which algorithm
has greater availability?

In this section we develop a stochastic model to make
precise what is meant by the phrase “more likely” in the
preceding paragraph. We state several theorems that com-
pare the availabilities of the algorithms under the assump-
tions of our model. The main result: of the four algo-
rithms, dynamic voting with linearly ordered copies
provides the greatest availability.

We now introduce the four assumptions we make to
model stochastically the update availabilities of the network
under these algorithms. The first four assumptions duplicate
assumptions that Pdris uses to analyze the availability of his
voting with witnesses scheme [9]. The fifth assumption, how-
ever, causes our model to deviate from his. Here are the
assumptions.

. The communication links between sites are infallible.
Only sites go up and down.

. The failures at the various sites form independent Pois-
son processes with failure rate A. For any given site
that is up (functioning), the probability it goes down
(fails) at or before the next t time units is 1 - eeXt.

. Similarly, the repairs at the various sites form indepen-
dent Poisson processes with repair rate p. As PPris
notes [9, page 6081, this assumption is less reasonable
than the previous one, but both are necessary if we
wish to model the network’s behavior by a Markov
process.

. Updates are instantaneous. We ignore communication
delays in the commit protocol.

. Updates are frequent: after any failure or repair, an
update always arrives at a functioning site and is pro-
cessed before the next failure or repair. An alternative
assumption that yields the same model is frequent poll-
ing: after any failure or repair, the functioning sites
communicate to determine the new status of the sys-
tem before the next failure or repair. In either form,
this assumption permits great reduction in the number
of states in the Markov process that describes the
network’s behavior.

We hasten to remark that the algorithms require none
of these assumptions to operate properly. The assumptions
are made only to provide a model whose analysis is tract-
able.

The literature contains two measures of availability.
The more standard is the limit as t goes to infinity of the
probability that a majority partition exists at time t, where
the definition of “majority” depends on the algorithm used.
We use this measure in this report, following (131 and [S]. An
alternative measure is the limit as t goes to infinity of the
probability that an update arriving at an arbitrary site at
time t will succeed. This alternative measure, which we
used in [6], requires not only that a majority partition exist,
but also that the update arrive at a functioning site. Each
formula in this paper requires only a trivial modification to
use the alternative measure. Most of the algorithm compari-
sons in this paper hold for either measure of availability.

B. Availabilities of ordintiy voting
and voting wifh a primary site

The mean time to failure of a functioning site is l/X.
The mean time to repair of a failed site is l/p. It follows
that for the Poisson process describing the behavior of the
sites, the probability any given site is up at any particular
time is

&, that is, y&
The well-known availability of the voting algorithm is

The voting algorithm with a primary site retains a majority
when exactly half of the sites are functioning, if the func-
tioning sites include the primary site. Thus the availability
of the voting algorithm with a primary site is exactly the
same as the availability of ordinary voting when there are
an odd number of sites, and contains the additional term

if n is even.

These same formulas could also be obtained by draw-
ing the state diagram for the birth-death process that
describes the number of failed sites and solving the resulting
balance equations. We use just such a procedure to analyze
the dynamic voting algorithms.

C. Availability of dynamic voting
with linearly ordered copies

The system begins with all n sites in the majority par-
tition. Eventually one site fails. Our fourth assumption

Proceedings of the 13th VLDB Conference, Brighton 1987

insures that before another failure occurs or the failed site is
repaired, an update arrives at a functioning site. The
majority partition finds that it now contains n-l of the n
sites with up-to-date copies of the file--still a majority. The
update sites cardinality is decremented to n-l at each of
the n-l functioning sites, to reflect the number of sites par-
ticipating in this update. If A is odd (so that n-l is even),
then the distinguished site entry at each of the functioning
sites is also adjusted. If a second failure then occurs, the
majority partition will soon thereafter discover that it con-
tains n-2 of the n-l sites with up-to-date copies of the
file-still a majority, so the update sites cardinality at the
n-2 functioning sites will be adjusted to reflect this new
majority partition.

The process continues, with the update sites cardinal-
ity at the participating sites always increasing or decreasing
by one, until there are only two sites in the majority parti-
tion. Call these sites A and B. The distinguished site entry
associated with both copies of the file will be whichever of A
and B is greater (in the given linear order), say, site A.
Now suppose a failure occurs. Suppose first that the func-
tioning site is greater (in the given linear order) than the
newly-failed site, that is, suppose that site B fails. The sin-
gle functioning site (site A) forms a new majority partition,
even though it would not have done so under dynamic voting
without linearly ordered copies. If the single functioning site
(site A) now fails, the system is unavailable-subsequent
updates are blocked. From this state, one of two events can
occur.

. Site A might be repaired. The single-site majority
partition is restored and the action of the network con-
tinues in the fashion described thus far.

. One or more of the n-l other failed sites might be
repaired. If sometime later site A is repaired and an
update arrives, site A again can accept updates. In
this case, however, the newly-formed majority partition
will also include the other sites that have meanwhile
been repaired.

We have just described the top two rows of the state
diagram shown in Figure 2. (This and all succeeding figures
appear at the end of the paper.) State (X,Y,Z) is the state
in which:

. The update sites cardinality of each current copy of
the file is Y.

. X of these Y sites are up.

. 2 of the n-Y other sites are up.

Arcs in the state diagram indicate the rate at which the sys-
tem moves from state to state.

The system begins in state (n ,n ,0) and moves back and
forth along the second row until it reaches state (2,2,0). We
described the situation in which the lesser of the twosite
majority partition is next to fail; the system moves to state
(l,l,O) and forms a one-site majority partition. The top row
of the diagram contains states in which the single member of
the one-site majority partition is down, while other sites are
repaired and fail again.

Now return to the situation when the majority parti-
tion contains exactly two functioning sites, that is, state
(2,2,0). This time, suppose that the greater (in the linear
ordering) of the two sites is the first to fail. The system
moves to state (1,2,0) on the third row of the diagram. This

row contains states in which the greater member of the two-
site majority partition is down and the lesser member is up,
while again other sites are repaired and fail. The action
along the fourth row is similar; there both members of the
two-site majority partition are down. Note that from the
fourth row, the system can move to the second row (if the
greater of the two-site majority is repaired) or to the third
row (if the lesser of the two-site majority is repaired).

An update request will be accepted if the network is in
any of the states on the second row of Figure 2. The proba-
bility the system is in one of the second-row states can be
found by setting flow-in equal to flow-out for each state and
solving the resulting balance equations.

D. Availability of dynamic voting

Dynamic voting can be analyzed by reasoning similar
to that in the previous subsection. Reference [6] contains the
state diagram for dynamic voting. This diagram is akin to
Figure 2, the diagram for dynamic voting with linearly
ordered copies. Again, the system can be solved by setting
flow-in equal to flow-out and solving the resulting balance
equations. Note that if there are no communication delays
and updates are frequent, our dynamic voting algorithm is
available for updates exactly when the Davcev-Burkhard
algorithm [3] is available. Hence the analysis of the availa-
bility of dynamic voting applies equally well to the Davcev-
Burkhard algorithm.

E. Analytic comparison of the availabilities

Throughout this subsection, we assume that the repair
rate ~1 is larger than the failure rate X. This assumption is
quite natural, and without it, the performance of some of the
algorithms would degrade as the number of sites increases.
We give results only for three or more sites since the algo-
rithms reduce to trivial or nonsense algorithms when there
are fewer sites.

Let Voting, Voting-Primary, Dynamic, and Dynamic-
Linear denote the availabilites of voting, voting with a pri-
mary site, dynamic voting, and dynamic voting with linearly
ordered copies, respectively. The following comparisons
between the algorithms are immediate.

. Voting-Primary = Voting when there are an odd
number of sites.

. Voting-Primary 2 Voting.

. Dynamic-Linear 2 Dynamic.

Figure 2 and the corresponding diagram for dynamic
voting yield balance equations. For fixed p, X, and n, these
balance equations are easily solved by your favorite numeri-
cal technique for systems of linear equations. Sample results
obtained this way are described in the next subsection.
However, it appears difficult to find a closed-form symbolic
solution to the 4n - 2 equations obtained from Figure 2 or
the 3n - 3 equations from the diagram for dynamic voting.
When n is small, MacSyma or the like can solve the systems
symbolically; the proofs of Theorems 3 and 4 use such a
technique. Theorem 5, which applies to arbitrarily large n,
has a more complicated proof. The details are available
from the authors.

Theorem 3. When there are exactly 3 sites:
Dynamic-Linear > Voting > Dynamic.

404 Proceedings of the 13th VLDB Conference, Brighton 1987

Theorem 4. When there are exactly 4 sites:
if p/X < 1.8 (approximately):

Dynamic-Linear > Voting-Primary > Dynamic > Voting;
but otherwise:

Dynamic-Linear > Dynamic > Voting-Primary > Voting.

Theorem 6. When there are 5 or more sites:
Dynamic > Voting-Primaryttt.

In sum, dynamic voting with linearly ordered copies has
greater availability than any of the other three algorithms.

F. Numerical comparison of the availabilities

Figure 3 shows availability graphed against the
number n of sites, when the repair rate p is twice the failure
rate X. The behavior shown is typical of other repair/failure
ratios as well. Note that dynamic voting with linearly
ordered copies is best and that dynamic voting is a close
second except when the number of sites is small. All four
algorithms converge to a completely available system as the
number of sites grows large. However, the two dynamic
algorithms converge much more rapidly than the two voting
algorithms. Also note that voting with a primary site
smooths out the nonmonotonicity of ordinary voting.

Figures 4, 5, and 6 show availability graphed against
the repair rate p, for ten, three, and four sites, respectively.
The behavior shown in Figure 4 (ten sites) is typical of the
behavior for five or more sites. In all the figures, dynamic
voting with linearly ordered copies is best. The curve for
dynamic voting lies below the curve for voting in Figure 5
(three sites), but above it in Figure 4 (ten sites). The curve-
crossing shown in Figure 6 occurs only when there are
exactly four sites. Of special note is that in Figure 4, each
dynamic algorithm has high availability even when the
repair rate is near the failure rate; the same is not true of
voting or voting with a primary site.

V. FUTURE RESEARCH

Hybrids of the four algorithms discussed in this paper
are possible. For example, there is a mechanism that per-
mits a switch from dynamic voting to ordinary voting when
the size of the majority partition falls below a threshold.
We are investigating the availability of such hybrids. We
are also developing more elaborate models in which to com-
pute availability, in particular, models without the assump-
tion of frequent updates.

Each of the four algorithms easily generalizes to the
setting where different weights are assigned to sites. It
would be interesting to know how to assign optimal weights
given the particular repair and failure rates for the sites.

ttt The claim that dynamic voting has greater availability than voting
when there are five sites appears at odds with our results in 161, where we
claimed the opposite if /L is near X. In 1131, however, we used a different
measure of availability-we required not only that a majority partition ex-
ist, but also that the update request arrive at a functioning site. The com-
parisons for three, four and five sites are sensitive to the measure used.
However, dynamic voting with linearly ordered copies is still the best of the
four algorithms under the alternative measure, except if there are three
sites.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

P. A. Bernstein and N. Goodman, “Concurrency con-
trol in distributed database systems,” ACM Computing
Surveys 13(2) pp. 185-221 (1981).

W. A. Burkhard, B. E. Martin, and J.-F. Paris, “The
Gemini replicated file system test-bed,” Proc. IEEE 3rd
Int’l. Conf. on Data Engineering, pp. 441-448 (1987).

D. Davcev and W. Burkhard, “Consistency and
recovery control for replicated files,” Proc. 10th ACM
Symp. on Operating Systems Principles, pp. 87-96
(1985).

S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Con-
sistency in partitioned networks,” ACM Computing
Surveys 17(3) pp. 341-370 (1985).

D. K. Gifford, “Weighted voting for replicated data,”
Proc. 7th Symp. on Operating System Principles, pp.
150-162 (1979).

S. Jajodia and D. Mutchler, “Dynamic voting,” Proc.
ACM SIGMOD Int?. Conf. on Management of Data,
pp. 227-238 (1987).

S. Jajodia, “Managing replicated files in partitioned
distributed database systems,” Proc. IEEE 3rd Int’l.
Con/. on Data Engineering, pp. 412-418 (1987).

W. H. Kohler, “A survey of techniques for synchroniza-
tion and recovery in decentralized computer systems,”
ACM Computing Surveys 13(2) pp. 149-183 (1981).

J.-F. Paris, “Voting with witnesses: A consistency
scheme for replicated files,” Proc. IEEE Int’l. Conf. on
Distributed Computing, pp. 606-612 (1986).

D. S. Parker, Jr., G. J. Popek, G. Rudisin, A. Stough-
ton, B. J. Walker, E. Walton, J. M. Chow, D. Edwards,
S. Kiser, and C. Kline, “Detection of mutual incon-
sistency in databases,” IEEE Trans. on Software
Engineering SE-9 (3) pp. 240-247 (1983).

M. Pease, R. Shostak, and L. Lamport, “Reaching
agreements in the presence of faults,” Journal of ACM
27(2) pp. 228-234 (1980).

J. Seguin, G. Sergeant, and P. Wilms, “A majority con-
sensus algorithm for the consistency of duplicated and
distributed information,” Proc. IEEE Int’l. Conf. on
Distributed Computing Systems, pp. 617-624 (1979).

P. G. Selinger, “Replicated data,” pp. 223-231 in Dis-
tributed Databases, ed. I. W. Draffen and F.
Poole,Cambridge University Press , Cambridge (1980).

D. Skeen and M. Stonebraker, “A formal model of
crash recovery in a distributed system,” IEEE Trans.
on Software Engineering SE-9 (3) pp. 219-228 (1983).

R. H. Thomas, “‘A solution to the concurrency control
problem for multiple copy databases,” Proc. IEEE
Compcbn, pp. 56-62 (Spring, 1978).

Proceedines of the 13th VLDB Conference, Brighton 198
------- Y

405

Figure 2. State diagram for dynamic voting with linearly ordered copies.

0.8

0.5 ! . , , 1 - I . I - I - , - I - I - 1
2 4 8 8 10 12 14 18 18 20

Number of sites
Figure 3. Repair rate is twice failure rate.

1.01

0.9 -

h 0.8-
.%
3 p 0.7 -

.$j 0.8-

2 0.5-

0.4 -

0.3, . , . , - I - I - 1
0 1 2 3 4 5

Ratio of repair rate to failure rate

Figure 5. Availability when there are 3 sites.

406

Ratio of repair rate to failure rate
Figure 4. Availability when there are 10 sites.

1.0 -

0.9 -

h 0.8-

:g 0.7-
Q

.=
P

0.8

4 0.5 -

0.4 -
*

4 Voting-Primary 4 Voting-Primary

0 1 2 3 4 5

Ratio of repair rate to failure rate

Figure 6. Availability when there are 4 sites.

Proceedings of the 13th VLDB Conference, Brighton 1987

