
Extending Logging for Database Snapshot Refresh

110 K&&r and Oddvar Ri.mes

RUNI’I’ - ‘The Computing Research Centre at
the University of Trondheim, N-7034 l’rondhcim-NTH, Norway

Abstract
A database snapshot mechanism rcprcsents a cost ef-
fectivc substitute for replicated data in a distributed
database. The contents of a database snapshot can be
periodically refreshed to reflect the current state of the
database. In a distributed database system it is sign&
icant to reduce the cost of snapshot refresh. This can
be obtained by a differential refresh strategy in which
modifications to the base tables involved are detected.

The paper proposes two methods based on using a
separate table for logging the modifications made to a
base table; a sequential and a condensed logging ap-
proach. The methods have been compared for various
update frequency and composition. The sequential log
performs well for single snapshots if the modification
set is small relative to the base table size, or if the
snapshot is restrictive. In the case of large modification
sets and replicated snapshots, the condensed logging
method is to be preferred.

Introduction
Data replication is often introduced in distributed da-
tabases to improve performance and availability. By
storing copies of data at sites where the data is fre-
quently used, the need for costly, rcmotc access is de-
creased and the probability of having a copy available
is increased. In practice, the expected improvement in
performance is hard to achieve due to the added cost
of maintaining the replicated data.

PedsSiOn I0 copy without fee all or part of lhis
malerid is granted provided Ihal lhe copies are not made
or distributed for direct commercial advantage, the

VLDB copyright notice and the. title of the publication

and its date appear, and notice is given that copying is

by permission of tie Very Large Data Base Endowment.
To copy otierwisc. or to republish, requires a fee and/or
special permission from the Endowmem.

Proceedings of the 13th VLDB Conference, Brighton 1987

Database snapshots, introduced in [ADIB 801, repre-
sent a cost effective substitute for replicated data in
distributed databases. A database snapshot can be de-
fined as a read-only replica of a selected portion of the
database. Snapshots thus relax the requirement of be-
ing up-to-date. Instead, snapshots are refreshed i.e.
made up-to-date only at specific points in time by some
user-invoked or determined action. In a relational da-
tabase system, a snapshot may in general be defined as
a restricted join over a set of tables, similar to a general
very.

Since a snapshot can be viewed as a system maintained
table, refresh can easily be achieved by rebuilding the
snapshot table from scratch at each refresh request.
We call this a full refresh strategy. IIowever, if few or
no modifications are made to the base tables involved
in the snapshot definition since the last refresh, much
of the refresh processing wiIl be redundant compared
with the previous refreshes. In a distributed database,
we may end up sending virtually the same snapshot as
already stored remotely.

A differential refresh strategy is therefore based on de-
tecting modifications made to each of the base tables
involved in the snapshot. Then, by combining these
modifications, refresh messages are computed and sent
to the snapshot. In this paper, we propose two meth-
ods based on using a separate table to log modifications
to the base tables; a sequential and a condensed logging
approach. The differential snapshot refresh mechanism
as proposed is designed to fulfill the following require-
mcnts:

1) The mechanism supports restrictive as welI as full-
copy snapshots. 2) The mechanism supports replicated
as well as one-copy snapshots. 3) The mechanism
supports independent snapshots on one table.

We will concentrate our discussion on snapshots based
on a single table (i.e. no joins in the definition). We
first describe the two logging methods designed to fulfill
the first requirement. We then discuss how the logging
approaches can be extended to support replicated as
well as independent snapshots. We conclude with a
cost analysis for each method under various update

389

frequency and composition. III the analysis, the proc-
essing cost is considered as well as the message dclivcry
cost.

The work presented here was done along with the de-
velopment of the distributed relational database system
MIMER* [MIME 851. Among the characteristics of
MIMER* is the enforcement of a primary key, opti-
mistic concurrency control for transaction handling,
and portability between dissimilar computer systems.
We therefore discuss the various methods in light of
this system.

Related Work
Most work on snapshots has been done within the
framework of the R* distributed database management
systems project at IBM Research in San Jose [LOIIM
84.

The distributed DBMS INGRES/STAR [MCCO 861
supports something similar called deferred updates in
which the local copy of the replicated data may be up-
dated directly. The modifications are then added to an
intention list and propagated to other sites holding
copies of the same data. The updates are finally taken
care of by transactions at the replica site. Deferred
updates thus relax the requirement of mutuaI replica
consistency. We will return to the deferred updates
method later on since a table bciig a read-only repiica,
updated deferred, corresponds to a snapshot.

Also, some work on refresh processing applicable to
snapshots has been performed in connection with the
related issue materiaJized views or view instantiation
(BLAK 861 . Here, a regular database view is
instantiated in the form of a table, rather than as a de-
ftition which is evaluated each time it is referenced in
a query. Maintenance of such instantiated views is
suggested to be performed in a differential manner.
The paper presents a method by which one can deduce
the modifications necessary to the view table from the
modifications to the tables referenced in the view. In
contrast to our paper, it does not discuss how the base
table modifications are determined.

In fact, most papers have treated the subject at the
conceptual level. The only paper describing a specific
implementation is [LIND 86) . This paper presents an
algorithm which as its main objective has the minimi-
zation of the number of messages sent when refreshing
a snapshot. The algorithm is based on annotating the
base table with two columns, a previous tuple address
and a timestamp. Unlike the methods proposed in our
paper, the algorithm does not include the processing
cost of refresh.

Finally, our work is applicable to differential mainte-
nance of complex objects [HASK 82) stored in rela-

tional CAD/CAM databases [FRQS 861 . In such
environments, complex objects are retrieved for proc-
essing from a central database (check out). Instead of
writing the entire changed object back in to the central
store, a condensed differential log is maintained and
later merged with the original tables, which have re-
mained locked in the meantime.

Performance Objectives of
Differential Refresh Strategies
Differential refresh strategies are based on detecting
base table modifications. When considering snapshot
definitions not involving joins, qualiIication of the
snapshot is restricted to single tuple expressions. Mod-
ifications to a snapshot thus become a subset of the
modifications to its base table.

The identification of this subset can be more or less
accurate. Some methods are unable to determine if a
tuple did satisfy a particular snapshot restriction prior
to deletion. However, extraneous identiIication of de-
letions or updates (not present in the snapshot prior to
refresh) can easily be discarded by the snapshot refresh
processing at the snapshot site.

When calculating the overall performance impact of a
snapshot there are several factors to consider. First,
there is the possible overhead connected to the
“normal” modification activity on the base table (i.e.
the identification of inserts, updates and deletes). Then
there is the cost of refresh processing at the site of the
base table. FinaIIy there is the cost of communicating
the refresh messages to the snapshot site and the refresh
processing done there. The latter two are largely pro-
portional to the number of messages sent from the base
table site.

Previous work on snapshots has focused on the min-
imization of refresh messages sent when refreshing a
snapshot. However, as suggested in [SELI 791 and
confiied in [MACK 861, one can not neglect the cost
of local processing in distributed queries. Earlier work
has also suggested that the cost of maintaining a snap-
shot should falI on the snapshot refresher. while this
is an appropriate strategy in many cases, there are situ-
ations in which this would lead to unacceptably high
costs overall. As we shall see, this is especially impor-
tant when we consider multiple snapshots defined on a
table.

Sequential Logging
Already the early papers on snapshots [ADIB 801 sug-
gested that the database log was used to detect base
table modifications. The database log keeps a* record
of alI modifications to the database since the last

390 Proceedings of the 13th VLDB Conference, Brighton 1987

back-up. Extracting the modifications belonging to one
table will thus be. time consuming.

A slightly different variant is used in INGRBS/STAR
to support deferred updates of replicas [MCCO 861.
Deferred updates make use of a separate log for all of
the base tables (in addition to the normal log). Any
modification to a base table is written sequentially to
this log together with the name of the table. The rep-
licas are updated (or refreshed) on demand or period-
ically by a demon process. Naturally, normal
processing becomes more expensive since each tuple
modification is written twice.

The sequential change log approach we describe is
similar to the solution of INGRES/STAR. However,
we assume that each base table has its own change log
organized as a sequential table. In this way, the log
needs only to be kept to the next snapshot refresh time.
The refresh is basically done by sending all qualifying
modifications to the snapshot site and redoing them on
the snapshot. After refresh, the log is erased.

Value
Resort 1 Country 1 Price Level Comment

I Florence
I

Italy
Tenerife Spain I

Figure 1. Holiday Resorts Base Table: The com-
ment column is added to the base table for
clarity only.

The sequential logging approach does impose some
overhead on the normal processing of a base table.
When a tuple is inserted, updated or dclctcd, a log entry
is written to the log reflecting the modification to the
base table. The modification as such may either be
logged as an entry containing the before and after im-
ages of the tuple changed, or the after image only.
Figure 2 gives an example of a sequential change log
with after images only. The example shows the changes
made to a base table describing holiday resorts.
Figure 1 displays the base table itself. In the case of
insert and update, the value of the new tuple is added
to the log. In the case of delete, the primary key of the
tuple is added to the log. Each log entry is provided
with a label identifying the type of modification.

Modif. Value
Type Resort Country Price Level

UPD Cannes France
INS Crete Greece f
DEL Beirut Lebanon
UPD Crete Greece 4

Figure 2. Sequential Logging: AIter images only.

As the sequential log records all modifications made to
the base table since the last refresh, snapshot refresh
can be carried out quite cheaply in terms of processing
costs. The sequential log is scanned, and for each log
entry, a modification message is sent to the snapshot
site iIf the log entry qualifies.

As it is, only log entries of type insert can be checked
with the snapshot definition to see if the new tuple
qualities for the snapshot. This verification can not be
carried out for the update and delete log entries as their
before tuple images (and thus their presence in the
snapshot table) are unknown. As a consequence, all
updates and deletions must be signalled to the snap-
shot. The refresh process at the snapshot site must
therefore be prepared to handle modifications to tuples
not present in the snapshot table. Extraneous updates
and deletes do however not result in an incorrect refresh
of the snapshot, they merely cause an unnecessary
overhead.

Given a snapshot St with snapshot restriction
PriceLevel < 7, then the refresh messages sent to the
snapshot wilI be ail the log entries of the sequential log
in Figure 2. As can be seen from the figure, the change
of price level from 7 to 8 for Cannes is encounted in the
refresh messages even though the tuple is not qualified
for the snapshot before or after the update.

As pointed out in [LIND 861, the inaccuracy in select-
ing the relevant modifications potentially increases as
the snapshot qualification becomes more restrictive.
The situation may be remedied by saving the old value
of each tuple prior to its modification. In the case of
delete, the full tuple (as opposed to the primary key
only) is written to the log. In the case of update, the
before image is added to the log immediately followed
by the new tuple value. Figure 3 displays the revised
sequential log.

Proceedings of the 13th VLDB Conference, Brighton 1987 391

Value

Figure 3. Sequential Logging: Both before and abler
images recorded.

The snapshot refresh process at the base table site may
now discard all log entries not qualifying the snapshot
restriction as follows:

Inserts not satisfying the restriction are not sent.

Updates in which the before and the after image of the
updated tuple do not satisfy the restriction are not sent.
All other updates will be sent as insert, update or delete
message depending on which out of the before and after
image that qualify. If both qualify, then the update is
sent as an update message holding the new value. If the
before image on& qualifies, a delete message holding
the primary key is sent. If the after image on/y qualities,
then an insert message holding the new tuple value is
sent.

Deletes not satisfying the restriction are not sent.
Those that qualify are sent as delete messages holding
the primary key.

Condensed Logging
The number of messages in the sequential logging
strategy can be reduced if the log is sorted tuple-wise
while preserving the order of modiftcations per tuple.
By doing this, the change history of each tuple (re-
presented by a sequence of modifications) can be con-
dcnscd into one resulting modification (an update
followed by an update followed by a delete results in a
delete etc.). Since only the resulting modification is
needed in order to refresh the snapshot, only this is
sent.

Instead of sorting the log at the refresh time, the tuple
order may be preserved during normal processing of the
base table. We then arrive at the condensed log ap-
proach. The condensed log is organized as an index
(e.g. B-tree), ordered on some unique tuple identifier
(e.g. primary key). Each entry of the index points to
(or contains) the at any time resulting modification to
a tuple since last refresh. The size of the modification
log is then kept down to a minimum and the interme-
diate write and read of the full log is eliminated. The
rules for adding a modification to a tuple are as given
in Figure 5.

Stored Entrv

Modif. NONE Insert UDdate Delete
Insert

Update
Delete

Insert - - Update
Update Insert Update -
Delete Remove Delete -

Figure 4 shows the refresh messages sent in the revised
approach. A sequential log recording both before and
after images requires more storage. However, the
number of refresh messages may be greatly reduced in
the case of restrictive snapshots.

Figure 5. Merge Rules for New Modifications

If no modification entry is found for the tuple, the
modification is saved as it is, i.e. this is the first mod-
ification done to the tuple after a snapshot refresh.

I S, : Restriction = PriceLevel < 7 1
Mudif.
Type Resort

t-t

INS Crete
DEL Beirut
UPD Crete

Value
Countrv I Price Level

Greece 3
Lebanon
Greece 4

Figure 4. Refresh Messages to Snapshot Table S 1

Still, in the revised approach, unqualified updates are
sent as each modification is considered separately. Se-
veral modifications to a single tuple result in just as
many entries in the log. A tuple being updated several
times and finally deleted may therefore cause just as
many update messages and one delete message. Ideally,
only a delete message is needed. liowever, this can not
be determined without scanning the entire log.

If an entry already exists for the tuple, an insert will be
stored as an update, since the existing entry must be a
delete entry for semantic reasons. An update is merged
with an update into an update entry, whereas it is
merged with an insert entry into an insert entry. A
delete modification is merged with an update entry into
a delete entry. Deleting an inserted tuple results in a
removal of the entire entry for that tuple.

To overcome the problem of incorporating all deleted
and updated tuples in the refresh messages sent, re-
gardless of their qualification, one can save the old
value of the tuple prior to its first modification after .a
refresh. The condensed log will thus be quite similar
to the sequential log containing before and after images.
There are however some dissimilarities. The condensed
log is sorted tuple-wise, and a modified tuple is repres-
ented by one log entry only. In the sequential log, the

392 Proceedings of the 13th VLDB Conference, Brighton 1987

update entry contains the tuple value before and after
the modification. In the condensed log, the before im-
age of the update entry is the value prior to the first
modification.

1 Modif. 1 Value

Figure 6. Condensed Logging: The table is ordered
on primary key. The two entries for Cannes
represents an update.

Figure 6 shows a condensed version of the previous
sequential log (cf. Figure 3). Only one entry is found
for Crete since the last update was merged into an in-
sert. The one update entry for Cannes shows the be-
fore and after image of the tuple. Notice that the log
entries are stored in the order of the primary key of the
base table tuples, and the modification type. The
modification type is significant for storing update
modifications. In the example given, symbolic names
have been used for the type. In an implementation,
codes will be used so that the before images of updates
wilI always precede the after images.

By adding the overhead of merging tuple modifications
to normal processing, the local refresh evaluation is
able to determine if a modified tuple was included in
the snapshot since only before images of tuples satisfy-
ing the definition criteria can be stored in the snapshot.
Unqualified deletes and updates can be discarded ap-
plying the rules as described for the revised sequential
approach. Unlike the sequential approach, extraneous
refresh messages will be avoided. For very restrictive
snapshots this may result in large savings percentage
wise. Returning to the example as shown in Figure 4,
the last refresh message will not be sent in the con-
densed log approach. Instead, the first refresh message
will reflect the later change of price level from 3 to 4.

Operational Aspects
The logging of the modiftcations as shown above can
be done in much the same way as the DBMS maintains
index tables. In this way one avoids altering the base
table definition which leads to recompilation (provided
precompilation is used in the DBMS) of all queries re-
ferring to that table, i.e. the mechanism does not affect
the query compiler or interpreter of the DBMS.

In MIMER*, a special wrife set log is kept for opti-
mistic concurrency control in addition to the normal
log. In the case where the user wants to read motied

tuples inside the modifying transactions, the write set
is consulted prior to the table for reading. In a proto-
type, we intend to implement the write set as a con-
densed log, since the problem of locating previously
written or modified tuples is similar to the problem of
locating modifications on a log. Write sets for tables
acting as base tables can thus be used for snapshot
change logging at little extra cost.

Independent and Replicated
Snapshots
The nature of snapshots, and the reason for using them,
imply that more than one snapshot is likely to be de-
fined on a base table when the mechanism itself is ap-
plicable. For instance, a company that has several
departments may wish to replicate identical copies of a
snapshot on the telephone directory to each depart-
mental computer. This is called a replicated snapshot.
Assume that each department is responsible for selling
a subset of the products for sale by the company.
Therefore, each department defines a snapshot, ex-
tracting the products sold by the department from the
product catalog table. We call such snapshots inde-
pendent.

The main difference between the two forms is that the
department probably wants all replicas of a replicated
snapshot refreshed concurrently. In contrast, independ-
ent snapshots will have their own. independent refresh
frequency (e.g. whenever a new product is sold by a
particular department).

For replicated snapshots the obvious question is: How
tolerant should the refresh of replicas be to site failures
- either prior to, or during the refresh processing?

If a site becomes unavailable for refresh, there are two
possibilities. The first is to abandon the refresh, waiting
until all involved sites are available. Unfortunately, this
will decrease the overall availability of “up-to-date” in-
formation in snapshots, as one site may prevent the
remaining sites from being updated.

Another possibility is to continue refreshing the re-
maining sites, if a looser notion of replica consistency
can be tolerated. In this case, what base table state
should the refresh reflect for the sites coming up again
later on? Again, there are two alternatives: Either, all
replicas should reflect the base table state at the time
of invoking the refresh operation, or each replica may
reflect the most up-to-date state of the base table.

As an example, consider some product change causing
updates to a product catalog. Given that all snapshot
replicas on the catalog - say S, ,S2 ,..., S, - are in the same
state. A new product - say P, - is added to the catalog.
At the following refresh of the replicated snapshot, the

Proceedings of the 13th VLDB Conference, Brighton 1987

site holding Si is unavailable. Despite that, the re-
maining replicas are refreshed.

stead of keeping it in the dictionary (so as to avoid the
search).

Following this, a new product 1’2 is added. When the
site holding snapshot Si becomes available, should it
immediately be refreshed, and if so, should both PI and
P, be added to the snapshot, or should only Pi be
added awaiting the next refresh for P2 to be added to
all replicas?

If the latter approach is chosen, information necessary
to regenerate the state at the time of refresh invocation
must be kept around for some time, marked appropri-
ately so new changes can be distinguished from old
ones.

Similar considerations must be taken for independent
snapshots. Whereas the problem of replicas is common
refresh invocation time/differing refresh times, inde-
pendent snapshots have dissimilar refresh invocation
times/differing refresh times.

In the following sections we will discuss how the log-
ging approaches can be extended to support both rep-
licated and independent snapshots.

Extended Sequential Logging
To support the independent snapshots, the sequential
log (cf. Figure 3) can no longer be discarded after a
refresh. The log entries will have to be kept untill UN
snapshots defined on the base table have been refreshed
correctly. In order to avoid full scan of the base table
for one particular snapshot refresh, a mechanism is
used to identify the last refresh time of each snapshot.

Each snapshot will be associated with a refresh mark
on the log, identifying the most current log entry re-
freshed for the actual snapshot. In the event of a new
refresh, only log entries since the refresh mark need to
be considered. Entries seen by all snapshots defined
on the table (below the lowest refresh mark of all
snapshots) can be discarded.

By associating a refresh mark with each snapshot, re-
flecting the time of its previous refresh, the algorithm
lends itself to support the independent snapshots. The
extension will also support replicated snapshots in the
case where it is sufficient to allow each replica to reflect
the state of the base table at the time of the refresh
rather than refresh invocation time. Each replica is
simply treated as an independent snapshot. Obviously,
a mark must be kept associated with each replica.

To support replicas reflecting the table state at refresh
invocation time, refresh of a previously unavailable rep-
lica must consider all entries from its refresh mark up
to the highest refresh mark of any of its sibling replicas.
This mark can be maintained in the log table itself, in-

As a conscqucnce of the extensions proposed above,
the log may become quite large if a snapshot site is
unavailable for long periods of time. The log reflects
the modifications pcrforrned since the oldest refresh of
a snapshot and up to the present. On the other hand,
very little overhead is added per replica or snapshot.
In addition, the method easily incorporates both types
of replica support.

Extended Condensed Logging
The extensions to the condensed logging method are
much along the lines of those proposed for the se-
quential method. Modifications for each tuple are re-
corded as previously described for this method, but
instead of discarding them at refresh time, they are as-
sociated with a timestamp reflecting the time of refresh.
Log entries holding the same timestamp thus corre-
sponds to modifications recorded between two refresh
marks on the sequential log. After refresh of one
snapshot, new modifications will be timestamped
NULL (and real timestamps are filled in at the next
refresh). New modifications will in other words be re-
corded independently of the older timestamped ver-
sions .

In this manner, the log wilI at any time consist of a se-
quence of regular modifications for each tuple. Each
modification reflects the changes made to the tuple be-
tween two refreshes.

Figure 7 shows a log table for this scheme. A
timestamp column has been added to the table, as can
be seen by the figure. The table has been refreshed
three times (at the time 2:00, 3:00 and 4:OO). Modifica-
tions are recorded for Crete twice (at time 3:00 and
4:OO). Notice that the tuples are stored in the order of
the primary key, the timestamp and the modification
type like for the condensed log described previously.

Associated with each snapshot is a timestamp of its last
refresh. The refresh of a particular snapshot may then
proceed as follows. For each tuple that has been
modified, its true modification is found by merging alI
of its log entries having a timestamp newer than the one
associated with the snapshot. In other words, log en-
tries having timestamp larger than the one associated
with the snapshot (given that the tuple is qualified by
the snapshot restriction), are selected for refresh proc-
essing. Naturally, modifications having a timestamp
older than the oldest timestamp of any snapshot de-
fmed on the table, can be discarded.

Clearly, the extended mechanism supports independent
snapshots, and like with sequential logging, the log has
sufficient information to support both requirements for

394 Proceedings of the 13th VLDB Conference, Brighton 1987

Time
Stamp

3:oo
NULL

2:oo
2:oo
4:oo
4:oo
TOO
400
4:oo

NULL

l- Modif.

Type

DEL
DEL
UPD

$I,

INS
UPD

INS

Resort

Beirut
Brighton
Cannes
Cannes
Cannes
Cannes
Crete
Crete
Crete

Mallorca

Value
Country

Lebanon
England
France
France
France
France
Greece
Greece
Greece
Spain

Price Level

Figure 7. Condensed Log Supporting Multiple Snapshots: The refresh process may have to merge several versions
of tuple modifications to obtain the resulting modification.

replicated snapshot. The timestamp associated with
each snapshot replica plays the same role as the refresh
mark in the sequential log.

The performance of the refresh of a particular snapshot
depends on how many refresh cycles that have to be
considered for each tuple (cf. Figure 7). This again
depends on the number of snapshots defined on the
table, and on how widely the refreshes are scattered.
The refresh performance can be improved somewhat
as can be seen from the example shown in Figure 8.

since not all tuples may have been modified in one re-
fresh cycle. This will add to the cost of refresh proc-
essing. However, if refreshes are performed as in the
example above, possibly S2 being refreshed more than
three times, and S1 being replicated, sign&ant savings
can be obtained for refreshing S 1.

Analysis of The Logging
Methods

Assume that the snapshots S, and Sz are defmed on the
base table. S1 was refreshed last time at l:OO, whereas
S2 was refreshed at 2:00, 3:00 and 400. Since these are
the only snapshots defmed on the table, none of the
snapshots on the table has a last refresh time of 2:00
or ZOO. This means that the three sets of entries
marked 200, 3:00 and 4:00 can be merged tuple-wise
into one set marked 4:O0. In our example, the Cannes
entries are merged to reflect the price level change from
7 to 9. The Crete entries are merged into a single insert
entry showing a price level of 5. This figure also serves
as an example of the general merging process used for
logging new modifications.

The cost of the two logging methods is analyzed in the
following. The analysis is carried out under various
update frequency and for various modification com-
positions. In the analysis, refresh processing cost is
considered as well as message delivery cost.

First we define a moditication set as being the mod&
cations made to a base table since last refresh. The
modification set consists of inserts, deletes and updates.
For a modification set of M modifications, p is the ratio
of inserts, 4 the ratio of deletes, and r the ratio of up-
dates. Naturally, the sum of p, q and r adds up to one.

In general, it is never necessary to have more log entries We assume that the M modifications are uniformly
per tuple than the number of snapshots defined on a distributed over the tuples of the base table. The base
table. The merging of entries must be done tuple-wise, table consists of N tuples prior to any modification.

stamp

4:oo
NULL

400
4:oo
4:oo

NULL

Modif.
Type
DEL
DEL
UI’D

INS
INS

Figure 8. Extended Condensed Logging:

Resort
Beirut

Brighton
Cannes
Cannes
Crete

Mallorca

Value
Country Price Level
Lebanon 6
England 8
France 7
France 9
Greece
Spain 5’

‘I’uples having a timestamp to which no snapshot time is associated are
_a . merged “upwards”, compressing me log.

Proceedings of the’l3th VLDB Conference, Brighton 1987 395

The following main classes of base table modifications
have been identified:

A static base table in which the base table is only up-
dated, i.e. p= 0, q= 0, r= 1.

An incremental base table in which the base table is
updated and new tuples may be inserted, i.e. p> 0,
q=O, r< 1.

A dynamic base table in which the base table is up-
dated, new tuples inserted and tuples deleted, i.e. p > 0,
q > 0, r < 1. We assume however that the number of
inserts outweighs the number of deletes, i.e. p > q.

In the case of a single snapshot, a sequential log will
contain M entries assuming that updates are stored as
one log entry. The number of log entries in a con-
densed log is determined by the number of tuples added
to the base table, minus the number of deletions of
newly inserted tuples (cf. the merge rules given in Fig-
ure 5), plus the number of tuples out of the original N
that have been updated or dcletcd since the last refresh
which is expressed as the difference between the N and
those not changed;

L = pM-q(pMl(2N + (p-q)M))M + N(I-u)

where u is the probability of not changing an original
entry given as:

Given the length of the sequential and condensed log,
we may set up expressions for the cost of refreshing
database snapshots. A snapshot is defined as a rc-
stricted subset of a base table with selectivity s. The
cost formulas are given for replicated snapshot re-
freshed simultaneously. The snapshots will therefore
have common modification set. The number of repli-
cas is m.

The cost for sequential logging is given by C’s, as an
expression of the cost of logging entries, the cost of re-
trieving qualified entries at refresh, plus the cost of
shipping the qualified entries and refreshing them cor-
rectly at the snapshot site;

CS~ = Mts,+ (Mlb)t*i-ms(l+r(l-s))M(t,+2t,J

in which tsL is the cost for adding entries to the se-
quential log, b is the average number of entries per disk
page, td is the cost of disk read or write, and t, is the
cost of shipping one message to the snapshot site.

The cost for condensed logging is expressed similar to
the one for sequential logging, given as CCL;

c,:, = MtCL + (L/b) td + ms(Lt, + min(L,Nlb)2td

in which tcL is the unit cost for adding entries to the
condensed log.

The cost of adding an entry to the sequential log, tsL,
is one read followed by a write to the log, i.e. tsL = 2t,.
In situations where the base table is updated frequently,
the cost can sometimes be reduced (by the effect of
having the last log page held in memory). As for con-
densed logging, the cost of adding an entry to the log
depend on the depth of the index tree. For a small log,
tCI, = 31, is a good estimate, whereas tCL = 4td is used for
a larger log. (The depth of index trees can be kept rel-
atively small in MIMER [MIME85]).

Although the normal processing cost is higher for the
condensed logging approach, the actual refresh cost is
reduced in comparison with the sequential logging ap-
proach. The amount of messages sent is reduced, and
thus the amount of remote refresh processing. The re-
mote refresh processing in itself is simpler in the con-
dcnsed logging approach due to the fact that the refresh
messages are sent in primary key order.

We have analyzed the logging methods for the classes
of base table modifications identified above. In the
analysis, we have assumed the message transfer cost to
be equal to disk I/O cost, i.e. t, = td. In other words,
we assume a wide area network and that the shipping
cost includes the cost of copying data to and from
communication buffers, etc., as well as transmission
time. Furthermore, we assume that b= 10.

’ ;, ’ ,; ’ ’ ’ ’ ’ ’
II II III

hiilicdio~ art Iin II I of bore Itbit rizr

Figure 9. Static Base Table: Cost trade off in l/O
units as % of base table size. The curves
are drawn for different number of replicas
and selectivity - S= 1.0 solid lines, S= 0.25
dashed lines. Positive values favour con-
densed logging.

396 Proceedings of the 13th VLDB Conference, Brighton 1987

' i ' ki ' 6i ' ;I ' ' 111
Ytdificlliol 14 lizc II I of bole hilt iin Ytdific~liol 14 iill II I of LPII 11111 lizi

Figure IO. Incremental Base Table (p=O.i, Figure 1 I. Dynamic Base Table (~~0.2, q=O.I,
t-=0.9): Cosl trade off in IjO units as % r = 0.7): Cost trade off in I/O units as %
of base table size. The curves are drawn of base table size. The curves are drawn
for different numhcr of replicas and sclec- for different number of replicas and selec-
tivity - S= 1.0 solid lines, s= 0.25 dashed tivity - S= I.0 solid lines. s= 0.25 dashed
lines. Positive values favour condcnscd lines. Positive values favour condensed
logging. logging.

The result from the analysis is displayed in Figure 9,
Figure 10, and Figure 11. Each figure displays the
trade off between disk and message I/O for condensed
and sequential logging. Each curve represents the cost
difference between sequential and condensed log, i.e.
Cs,,-CoL for different sized modification set given as a
percentage of the base table size.

As can be seen from the figures, the condcnscd log is
less costly for fully replicated snapshots when the
modification set exceeds 10 to 15 percent of the base
table size. For restrictive snapshots, the condensed log
is the least costly even for small modification sets as
long as base table updates outnumbers base table de-
letes and inserts, cf. Figure 11.

The sequential log performs well for one-copy snap-
shots if the modification set is small relative to the base
table size. The cost savings are significant for very re-
strictive one-copy snapshots (not shown on the fig-
ures). This is mainly due to less overhead during
normal processing.

The results as given in the figures do also apply for in-
dependent snapshots when viewed as a batch of m
snapshots refreshed over a common long refresh cycle.

In the analysis, a uniform distribution of the base table
modifications is assumed. In many situations only
some of the base table tuples are exposed to modilica-
tion. The condensed log will therefore become smaller
than in the case of a uniform distribution. The con-
densed logging approach may thus perform best even
for relatively small modification sets.

The analysis indicates that the condensed log performs
well for replicated snapshots despite the normal proc-
essing overhead. In the sequential log approach, the
normal processing overhead is kept. relatively low. It
would therefore be interesting to study a hybrid sol-
ution in which the logging is done sequentially and the
change history is kept sorted in a condensed log which
is maintained by the refresh process.

Conclusion
In this paper, we have discussed two methods to sup-
port differential or incremental updating of snapshots
based on using a separate table for logging modifica-
tions made to the base table.

If a snapshot is replicated to many sites, or if many in-
dependent snapshots are defined on a table, then the
condensed logging approach is to be preferred.

Since the two methods only support snapshots without
joins, a non-incremental method, usually called a full
refresh strategy, is used to complete the snapshot
mechanism. One can envisage a system supporting all
of the methods. The database administrator may then
choose to change the refresh mechanism from sequen-
tial to condensed logging when most of the modifica-
tions refers to only a few tuples. Even the system
optimizer may dynamically decide to change method,
e.g. if the table is empty, it may decide on using full
refresh.

Proceedings of the 13th VLDB Conference, Brighton 1987 397

Finally, both logging approaches can be used to sup-
port other facilities like instantiated views and deferred
update mechanisms in addition to snapshots.

Several different mechanisms supporting loosely con-
current replicated data are planned for implementation
in MIMIX+. WC will for that reason primarily sclcct
the log$ng methods, since they also provide a basis for
deferred updates and view instantiation. As the next
step, we will look at specific implementations of the
various methods in MIMER*.

Acknowledgement
The authors especially want to thank Dick Cooper for
the fruitful discussions on snapshots and data repli-
cation that lead to this paper, and to Per Hokstad for
the help with the statistics applied in cost analysis.

The authors would in addition thank IIeidi Berg-IIoff,
Hen& Dvergsdal and Svein-Olaf IIvasshovd for hclp-
ful criticism, comments and discussions on the subject
of this paper.

This research was supported by The Nordic Fund for
Technology and Industrial Development (Nordisk
Industrifond) under contract P661 DATA.

Bibliography
[ADIB SO]

[BLAK 861

M.E. Adiba and B.G. Lindsay, Database
Snapshots, Proc. of the 6th International
Conference on Very Large Databases,
Montreal, Canada (October 1980) pp.
86-91.

J.A. Blakely, P-A. Larson, and F.W.
Tompa, Ef/iciently Updating Materialized
Views, Proc. of ACM SIGMOD Intema-
tional Conference On Management of
Data, Washington DC (May 1986) pp.
61-71.

[FRPrS 861

[IIASK 821

[LIND 86)

Aa. Frmseth, 1‘. Lien and M. Szterhaug,
An Interface to an Information Handling
Tool, SINTEF Report STF14 A86007,
Trondheim, Norway (January 1986).

R.L. IIaskin and R.A. Loric, On Extend-
ing the Functions of a Relational Database
System, Proc. of ACM SItiMOD Inter-
national Conference on Management of
Data, Orlando, Florida (June 1982) pp.
207-212.

B.G. Lindsay et al., A Snapshot DiJk-en-
tial Refresh Algorithm, Proc. of ACM
SIGMOD International Conference on
Management of Data, Washington DC
(May 1986) pp. 53-60.

[LOIIM SS] G.M. L&man et aLQuery Processing in
R*, In Kim, Reiner, and Batory (editors),
Query Processing in Database Systems,
grm7ger Verlag (March 1985, Berlin) pp.

- .

[MACK 861 L.F. Mackert and G.M. I.&man, R* Op-

[MCCO 861

[MIME SS]

[SELI 791

timizer Validation and Performance Eval-
uation for Distributed Queries, Proc. of the
12th International Conference on Very
Large Databases, Kyoto, Japan (Septem-
ber 1986) pp. 149-159.

R. McCord and K Ong, Deferred Copy
Specification, Relational Technology Inc.
(May 20, 1986).

Database Management and Program
Interface MIMER/D& MIMER Infor-
mation Systems AB, (1985, Uppsala,
Sweden).

P.G. Selinger et al., Access Path Selection
in a Relational Database Management
System, Proc. of ACM SIGMOD Inter-
national Conference on Management of
Data, Boston, Massachusettes (May 1979)
pp.23-34.

398 proceedings of the 13th VLDB Conference, Brighton 1987

