
Measured Performance of Time Interval Concurrency Control Techniques* 

Jerre D. Noe and David B. Wagner 
Computer Science Department 

University of Washington, Seattle, WA 98195. 

*This work was supported in part by National Science Foundation grants DCR8004111 and DCR8420945. 

Abstract 

This paper reports on an implementation of Bayer’s Time Interval 
concurrency control method and compares it to the performance 
of a conventional timestamp method. The implementation was 
done on the Eden experimental local area network. Insofar as the 
authors are aware, this is the first actual implementation of the 
time interval technique. 

The time interval approach clearly is better than time stamp 
ing. It provides higher throughput, causes one-third as many 
distributed transaction aborts, and requires very little additional 
overhead compared to time stamps. 

Within the time interval method we further explored and com- 
pared the early and late serialization schemes described by Bayer 
and hi colleagues. Early and late serialialization with time in- 
tervals show comparable performance over a range of read/write 
ratios and multiprogr amming levels. In systems that write to disk 
at the end of all alterations, rather than writing incrementally, 
late serialization performs better than early serialization because 
checkpointing to disk can run in parallel with the concurrency 
control phase. 

1 Motivation For This Study 

There has been a great deal of interest in the performance of 
concurrency control algorithms in the literature in recent years [l, 
7,9,10,11,13,17,20]. Most of these studies were either simulation- 
based or analytical in nature, although some used a combination 
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of the two approaches. To the best of our knowledge, there have 
been no comparative implementations of distributed concurrency 
control methods. 

The comparison of actual implementations of concurrency control 
methods is desirable because modeling and simulation studies gen- 
erally do not include enough detail to exhibit the effects of finite 
processing limitations (CPU, disk, and network) on performance. 
(Three notable exceptions to this are the papers by Agrawal and 
Carey [l], Carey and Muhanna [7], and Sevcik [20].) Unless the 
system components are heavily underutilized, this factor should 
have a noticeable effect on performance whenever a large percent- 
age of the work done by transactions is wasted work, i.e. work 
which is spent on transaction attempts that ultimately abort. In 
fact, Agrawal and Carey [l] postulated that contradictory results 
obtained by different researchers comparing the same algorithms 
are caused by the inclusion of finite processing resources in the 
model by some and not by others. Their simulation study in- 
cluded these factors and bore out their hypothesis. 

The current study reports measurements on the first known imple- 
mentation of the Tie Interval method proposed by Bayer et. al. 
[3]. The implementation was carried out on the Eden local-area 
network, an object-oriented, experimental distributed system [2]. 

2 Description of the Research 

2.1 Choice of Protocols 

The Time Interval method was an outgrowth of the RAC proto- 
col [4], which took advantage of the “before” and “after” images 
used by transaction systems for recovery purposes. RAC was a 
lock-based protocol that allowed multiple readers, using the old 
image, even during preparation of the new image by another (sin- 
gle) writer. This meant, of course, that the updating transaction 
had to be serialized to follow the commitment of the read-only 
transactions. However, this allowed more concurrency due to the 
one-writer, multiple-reader compatibility. 

It turns out that, in order to guarantee the correctness of the RAC 
protocol, both the “before” and “after” images of an object may be 
needed by the system for some period of time, even aper the new 
image has been successfully committed’. Bayer points out that 

‘The miterk+ for image deletion are explained briefly in Section 3.2.2; for 
more detaila refer to [4]. 
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the protocol can be extended to multiple data versions simply by 
allowing a subsequent writer to use the previously committed “af- 
ter” image aa its “before” image; similarly, subsequent readers can 
access the newest committed version of the data that is consistent 
with serializability requirements. Our protocol implementations 
contain the necessary extensions to support multi-version data 
objects. 

The RAC protocol was initially formulated using expensive cycle- 
searching techniques, and was later modified to use much cheaper 
timestamps or time intervals, which were carried by the lock re- 
quests. (The latter two techniques will be summarized briefly in 
Section 2.2, below.) We chose the Time Interval method as the 
basis of our work, since it looked like it would provide a signif- 
icant improvement over ordinary time&amp-based methods and 
had not heretofore been implemented. Although this method had 
been simulated by Kiessling and Pfeiffer [13], we felt that their 
study suffered from the omission of system resource limitations 
discussed earlier. Also, they compared the use of time intervals 
combined with early serialization to conflict-graph cycle searching 
combined with late serialitation and hypothesized that the rela- 
tive performance difference between them was due to the cycle 
searching versus time intervals, rather than to early versus late 
serialization2. Primarily we wanted to either validate or refute 
the usefulness of time intervals, so we chose to compare a time in- 
terval based method to one which was completely identical except 
that it used simple timestamps. 

After comparing time intervals with timestamps, the time interval 
implementation was extended to enable comparison of the early 
and late serialization alternatives described by Kiessling and Pfeif- 
fer. Since late serialization is in some sense a more “optimistic” 
method than early serialization, by doing this comparison we were 
hoping to characterize the tradeoff between increased concurrency 
and wasted work. 

2.2 Fixed Timestamps versus Dynamic Time 
Intervals 

In a fixed timestamp method (hereafter referred to simply as TS) 
timestamps are chosen for transactions when they begin. When- 
ever a transaction makes a request that would create a conflict3 
between itself and another transaction, the timestamps of the two 
transactions are compared. If the order of the timestamps is the 
same as the serialization order required by the conflict, the request 
is allowed; otherwise the requesting transaction is aborted and 
restarted with a new timestamp. Thus, the transaction serializa- 
tion order is essentially fixed in advance, which has the potential 
to cause many unnecessary aborts. 

Using the Time Intervals method [3] (hereafter referred to as TI) 
each transaction has two timestamps. These timestamps can be 
thought of as the upper and lower bounds of an interual of time- 
stamp time in which the transaction must appear in the serializa- 
tion order. Time intervals are partially ordered, with the relations 
I‘<” and “>” applying only to intervals that are disjoint (note that 
non-disjoint intervals can always be truncated in such a way as 

‘Refer to Section 2.3 for a description of the early and late serialization 
techniques. 

3E.g. when a transaction requests write access to a data object wbicb 
is currently being read or written by another transaction. Such a situation 
indicates .s dependency in the execution order of the two transactions. Bayer’s 
use of the term conflict is unfortunate, because it suggests a situation in which 
one of the transactions must be aborted. This is sometimes, but not always, 
the case. The term aerialitotion dependency [5] seems more appropriate. 

to impose either ordering on them). Every transaction’s initial 
interval spans the entire allowable timestamp range, representing 
the fact that there is no restriction on its place in the serialization 
order until it encounters conflicts with other transactions. 

When a conflict is encountered, the time intervals of the trans- 
actions involved are compared. If the intervals are disjoint, then 
their relative ordering has already been established; in this situa- 
tion the algorithm is exactly the same aa for the tied timestamp 
case. On the other hand, if the intervals overlap, then they can 
certainly be truncated so as to effect the desired ordering, after 
which the request can be granted (possibly involving some block- 
ing by the requestor). In the limiting case, an interval may be 
shrunk down to a single point, which is then no different in its 
interpretation than a fixed timestamp. The important distinction 
is that there are no a priori dependencies between transactions, 
thus there should be fewer unnecessary aborts. The drawback to 
this method is that extra overhead is required to manage the time 
intervals, although it will be seen that our measurements show 
this extra overhead to be small. 

2.3 Early Serialization versus Late Serialization 

The original RAC protocol specified what has come to be known 
as late serialization, because reader-writer dependencies are not 
checked until the writer attempts to commit (in contrast to writer- 
writer dependencies, which are checked when a write lock is re- 
quested.) At commit time, a writer’s timestamp must be later 
than the timestamps of all conflicting readers (or, using time in- 
tervals, it must be possible to truncate some or all of the intervals 
to comply with this ordering) or else the writer aborts. 

The motivation for late serialization is that read requests are al- 
ways granted, and read-only transactions are always able to com- 
mit. It has as a side effect the possibility that a writer may con- 
tinue to execute even though another transaction with a later 
timestamp is reading the same version of the data that the writer 
is basing its modifications on. This wastes work, since one of the 
transactions must eventually abort, but if it occurs rarely the in- 
creased parallelism will predominate. Note that the latter reason 
is often cited in support of so-called optimistic concurrency control 
methods [8,14], but most performance studies of these methods are 
simulations that do not take into account the system resources uti- 
lized by the backed-up transactions. Since this is a study of an 
actual implementation of the protocols, if such effects are present 
they should be measurable. 

On the other hand, under early serialization, not only writer- 
writer but also reader-writer dependencies are checked at the time 
a read or write lock is requested. For example, if a transaction 
making a read request at a data object must follow an existing 
writer at that object, then in contrast to late serialization the 
would-be reader is forced to wait for the writer to finish. 

Using early serialization, a transaction has already met all seri- 
alization requirements by the time it reaches the end of its com- 
putation. Thus, in the absence of failures, a transaction which 
attempts to commit is guaranteed to be able to do so. (We do not 
consider failure atomicity in this study, although failures are con- 
sidered extensively in [15,16,18]). Early serialization lowers the 
probability that transaction aborts cause a great deal of wasted 
work, at the expense of occasionally aborting a transaction that 
would have eventually committed. Thus, early serialization is 
more “pessimistic” than late serialization. 
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3 Implementation Strategy 

All protocols were implemented on the Eden system [2], an ob- 
ject oriented, capability baaed, distributed operating system. The 
Eden kernel provides a location-independent remote procedure 
call mechanism for inter-object communication. The kernel is cur- 
rently implemented on a network of 13 Sun workstations running 
UNIX. Four of the workstations are disk servers, and the remain- 
ing nine share the disks over a lOMb/s ethernet. 

The protocol implementation consists of several Eden object types: 
the MultiVersion ByteStore (abbreviated MVB from now on), the 
Conflict Manager (CM), and the Transaction Manager (TM). 

3.1 The Multiversion ByteStore 

The Multiversion ByteStore implements an abstraction of a data 
object with a version history [19]. The MVB consists of a chain 
of immutable versions of the data it represents, linked together 
in order of their times of creation. New versions are created in a 
three-step process: first, a tentative copy of the (formerly) newest 
version is made; second, the modifications are done on the copy; 
and third, the new version is “frozen”. Once frozen, a version 
can never be overwritten; however, a tentative version can be 
destroyed any time before the freeze operation is done. This allows 
an aborted transaction to restore an object to its previous state, 
enabling transactions to appear atomic. 

3.2 The Conflict Manager 

The CM’s job is to monitor conflicts between transactions ss they 
occur. It implements the locking policy of Bayer’s RAC with time 
intervals [3]. The implementation for dynamic time intervals also 
works for fixed timestamps, simply by having each transaction 
manager set the upper and lower bound of its time interval to the 
current time4 whenever it begins a new transaction. Therefore, 
we will confine our discussion to the more general time interval 
case. 

3.2.1 Conflict Resolution 

Conflicts between two transactions with disjoint time intervals can 
be resolved immediately, since disjoint time intervals are ordered. 
When conflicting transactions have non-disjoint time intervals, the 
status Mu&Precede or Mu&Follow is returned to the requesting 
TM, along with information necessary for the TM to carry out 
the serialization. The requesting TM is responsible for shrinking 
its own interval, and, if necessary, for negotiating the shrinking 
of the conflicting TM’s interval. (Refer to Section 3.3.2 for more 
details.) Since time intervals can only be contracted, never ex- 
panded, once two intervals become ordered, they will remain in 
that order despite further adjustments. 

3.2.2 !Crausaction Deletion 

In accordance with [3], there are no timestamps stored in the 
data objects. This is a virtue for two reasons. First, it allows the 
concurrency control to be applied to arbitrary objects. Second, 

‘An elaborate, distributed timekeeping mechanism warn not needed for the 
purpose of these experiments, as all timen wen provided by the clock in the 
CM. 
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it cuts down on checkpointir$. If timestamps were stored in the 
data objects, the objects would need to checkpoint whenever a 
read with a later timestamp than any previous read was done. 

A consequence of this is that, even after a transaction T has com- 
mitted, the CM must retain a record of all locks obtained by 
T until there are no other transactions remaining in the system 
that T must follow. T’s write locks are changed to commit locks, 
and neither these commit locks nor any of T’s read locks may be 
deleted until the following two conditions have been met: 

1. For each object version on which T has a read lock, the 
commit lock resulting from the creation of that version must 
already have been deleted. 

2. For each object version on which T has a commit lock, all 
read locks on all previous versions of the object must already 
have been deleted. 

These conditions ensure that T has become a sink in the global 
dependency graph [4]s. 

Whenever the last lock record is removed from the oldest version of 
an object, that version can be destroyed, provided that it is not the 
only committed version of the object. Consequently, these criteria 
provide a discipline for purging old versions from the system. 

A transaction which is committed but still in the CM’s data struc- 
tures because one or both of the above conditions have not been 
met is called an inactiue transaction. In Bayer’s model, a TM 
is doing no useful work while its transaction is in the inactive 
state. We have avoided this waste of resources by relieving the 
TM of any further responsibility for the inactive transaction. This 
is accomplished by truncating the transaction’s time interval to a 
point-time&amp at the interval’s lower endpoint, thus “pushing 
the transaction into the past” as far as possible and eliminating 
the need for any subsequent negotiation. Thus, the TM can begin 
working on a new transaction as soon as it has committed the old 
one. 

3.3 The Transaction Manager 

The TM is responsible for making transactions appear to be atom- 
ic. It requests access to the various data objects from the CM, 
adjusting its time interval as directed by the CM (or in response 
to requests from other TMs). It handles the creation of new MVB 
versions, and, depending on the outcome of the transaction, the 
eventual freezing or deleting of the new versions. It also coordi- 
nates the distributed commit. 

When a TM finishes one transaction, it immediately begins work- 
ing on another, using a different unique identifier to avoid confu- 
sion. 

3.3.1 Transaction Atomicity 

In these tests we gathered data only for the cases in which no 
crashes occurred, but we did include the performance penalty 
paid by all transactions to provide atomicity: the TM implements 

5Chmgea to an Eden object are not made permane nt until the object 
chcckpointr itself to stable etorage. An atomic checkpoint primitive b pw 
vided by the Eden kernel. 

OWe have extended Bayer’s original correctness criteria to handle the pas- 
sibility of multiple committed versions of a data object being in existence at 
the same time. 
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a two-phase commit protocol [12]. When the TM successfully 
reaches the end of a transaction, it needs to checkpoint all MVBs 
that it has modified. Because checkpoint is a time-consuming 
operation, all checkpoints are done in parallel. 

3.3.2 Negotiation Strategy 

Since TMs cannot know what conflicts they will encounter in the 
future, they cannot adjust their time intervals in an optimal man- 
ner. The strategy used by the TMs is a greedy one: operating 
under the assumption that reducing communication overhead is 
best whenever possible, a requesting TM will never ask a conflict- 
ing TM to truncate its time interval unless the requesting TM 
is unable to effect the desired ordering by unilaterally truncat- 
ing its own interval. This is true even when unilateral truncation 
would result in the requestor’s time interval shrinking all the way 
down to a single point; no attempt is made to obtain a “fair com- 
promise” with the conflicting TM if the communication can be 
avoided. On the other hand, if negotiation is necessary, the algo- 
rithm used attempts to make the serialization “cut” between the 
two transactions as close to the current real time as possible. 

4 System Parameterization and Mea- 
surement 

4.1 Transaction Workload 

The transaction workload was similar to that used by Keissling 
and Pfeiffer [13]: 

The database contains a “hot-spot” of 100 data objects. Ac- 
cesses to non-hot-spot data do not encounter serialization 
conflicts?. 

Accesses are normally distributed, with 80% of the accesses 
going to hot-spot objects. 

Transaction size is uniformly distributed between 5 and 15 
data accesses. 

Resource access order is random, and locks are obtained 
incrementally rather than being preclaimed”. 

For each of the three protocols, we varied the percentage of data 
accesses that required writing (the “writeshare”) and the TM mul- 
tiprogramming level. 

4.2 Measures of Interest 

Each experiment consisted of running the system until 100 trans- 
actions were completed successfully. Therefore, in the discussion 

‘Keisding and Pfciffer premmbly used this appmacb to make their &III- 
l&ions run fader. In our cme, it obviates the need for having a huge number 
of separate MVB objects. Accesses by a TM to non-hot-spot data M mapped 
transparently to a specid object called a NULL MVB, the invocation of wbicb 
~~ulta in the same utilization of system resource ZM the invocation of a “red” 
MVB. There ie one NULL MVB dedicated to each TM, to avoid bottlenecks. 
Thus, in terma of the load placed on the system, it appeam M though the 
database containa an arbitrarily large number of data items. 

BDcadlocka w not a problem because the protocola only allow blocking 
of younger tlmuac tiom by older ones. 

that follows the number of successful transaction attempts is al- 
ways 100, but the number of aborted transaction attempts could 
be any number greater than or equal to zero (it could even be 
greater than 100). 

To make our results comparable to [13] we broke down the total 
amount of time spent processing each transaction into the follow- 
ing components: 

Useful work (data access and manipulation (non-checkpoint) 
and data checkpointing?). This is the amount of time that 
the transaction would take to execute in the absence of any 
concurrency control. 

Useful concurrency control overhead. This is the amount of 
time that a successful transaction attempt spends invoking 
the CM and negotiating with other TMs. 

Useful blocking. This is the period that a successful tram- 
action attempt must wait for earlier transactions to finish. 
The conditions for blocking depend upon the protocol being 
investigated. 

Wasted work, concurrency control overhead, and blocking 
are analogous to the useful components, except that they 
comprise the elements of failed transaction attempts. 

From these measured quantities we calculate system throughput. 
Throughput is defined as 

T= 
P max 

average transaction response time 

where P,, is the (fixed) multiprogramming level, i.e. the max- 
imum attainable parallelism. Transaction response time is the 
elapsed time used by a TM to successfully execute and commit a 
transaction, including any time consumed by aborted attempts on 
the same transaction. The units of T are transactions per second. 

5 Discussion of Results 

The principal results of this study are presented in Figures 1 
through 8. They compare the time interval technique (TI) with 
a conventional time stamp technique (TS) and, within time inter- 
vals, they compare late versus early serialization. In each of the 
graphs, smooth curves were obtained by quadratic interpolation 
of the data points. 

5.1 Comparison of Timestamps and Time In- 
tervals (Late Serialization) 

Using late serialization, we compared performance of the time in- 
terval and timestamp concurrency control protocols over a range 
of multiprogramming levels and proportions of read/write acces- 
ses. Throughput, blocking time, number of aborted transaction 
attempts, and the concurrency control overhead cost were exam- 
ined. 

gThe rationale for measuring Eden-specific quantities such (UI cbeckpoiit 
time is to enable us to “factor than out” of the resulta: we would like to be 
able to hypotbcsiee about the pert- cc of the protocola on systems with 
architecture3 that M sign&antly different than Eden’s. 
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5.1.1 Throughput of successful transactions due to the wasted system utiliiation on 
behalf of the transaction instances that ultimately abort. 

Figure 1 shows the throughput in transactions completed per sec- 
ond as a function of the number of concurrently operating TMs. 
Throughput curves are plotted for both the TI and TS methods. 
The effects of increasing the frequency of conflicts are also shown 
in the figure by plotting pairs of curves for write shares of lo%, 
40% and 70%. 

The Time Intervals technique is a clear winner; for each pair of 
curves TI provides higher throughput. Note that the advantage 
of TI is greatest at low write shares. TI is a more optimistic 
protocol, in the sense that a given transaction attempt can be 
expected to survive apparent conflicts that TS would have aborted 
immediately. For greater write shares, more of these transaction 
attempts abort anyway, but at a later point than TS would have 
allowed them to reach. Thii wastes work. But note that, over 
the range explored, the increase in throughput due to the greater 
level of concurrency achieved with TI more than offsets the loss 
due to wasted work. 

At the highest conflict rate, write share = 70%, throughput reach- 
es a maximum in the neighborhood of 5 to 6 concurrent transac- 
tions. Thii maximum could probably be shifted to a higher multi- 
programming level with faster processors, even though blocking 
time, as will be shown in the next section, is the main contribut- 
ing factor to decreasing throughput and blocking per se does not 
use processor time. However, faster processors would more quickly 
finish the transactions during their non-blocked periods, allowing 
transactions waiting for them to finish to unblock sooner as well. 

5.1.2 Blocking Time 

Figures 2 and 3 show blocking time for the TI and TS cases, for 
both the successful and aborted transaction attempts. For the 
high conflict 70% write cases, the more optimistic TI blocks for 
20 to 25% longer than does TS for both the aborted and suc- 
cessful transaction attempts. The TI system is more often wait- 
ing, because transactions don’t abort so soon. The fact that the 
throughput for TI is greater, as we saw in Figure 1, means that the 
gamble is paying off. Another interesting feature shows in figure 
3 for the 10% write case: in spite of the pessimism of TS, which 
causes it to abort transactions earlier, blocking time for those 
transaction attempts that eventually abort is much longer than 
for those that succeed. This indicates that with TS, in a low con- 
flict environment, a trantition that blocks more that some time 
lit - a tuning factor for a given system - should be aborted 
and restarted, since it will most likely abort anyway if allowed to 
continue executing. 

The greater significance of the blocking times in Figures 2 and 3 
appears when comparing them with the average total transaction 
response times, which do not appear in these two figures. (“Av- 
erage total transaction response time” means the time for 100 
successful transaction attempts, plus the time for the associated 
aborted attempts, all divided by 100). At the 10% write level, 
blocking time was only 2% to 5% of response time. At the 70% 
write level, blocking for succe88e8 took 24 to 31% of response time 
(for multiprogramming levels of 6 to 10) and for the aborts it took 
11% to 34% of response time. Blocking time for successes and 
aborts both affect throughput. Success-blocking contributes di- 
rectly to delay, whereas abort-blocking increases the time a trans- 
action manager spends on “doomed” transactions and thus de- 
creases effective parallelism. Thii effect is in addition to the delay 
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5.1.3 Number of Aborts 

The number of aborts WBB measured by running the system un- 
til 100 aucceasful transactions were completed and counting the 
number of transaction altempts that resulted in aborts, thus, in 
extreme cases the number of aborts could be greater than 100. 
Figure 4 compares the number of aborts for TI and TS for write 
shares of lo%, 40%, and 70%. TS caused between two and three 
times the number of aborts compared to TI. Separate measure- 
ments, not indicated in this figure, show that the amount of work 
wasted per aborted transaction attempt under ‘IS was equal to or 
greater than the work wasted using TI. The resulting increase in 
wasted work contributed to lower throughput both directly and 
indirectly, the latter by increasing the blocking time of other trans- 
actions which had to wait for the aborting onea. 

5.1.4 Overhead Cost of Time Intervals 

There is very little additional concurrency control overhead in us- 
ing time intervals compared to using timestamps as is shown in 
Figure 5. The overhead is the time spent in the conflict man- 
ager and, in the TI case, the additional time required for nege 
tiation among transaction managers to alter the time intervals. 
This overhead time is plotted as a percentage of the total average 
transaction response time. 

The results strongly suggest a discontinuity between multi-pro- 
gramming levels 1 and 2 (which seems quite reasonable), and for 
this reason these values were not included in the curve interpo- 
lations. Note that the actual overhead time in seconds increasea 
as the multi-programmin g level increases beyond 2, but not as 
quickly as blocking time, hence the overhead is a smaller percent- 
age of the total for higher levels of concurrency. 

5.2 Comparison of Early and Late Serialization 
Using Time Intervals 

Within the Tie Intervals method we further implemented and 
compared the early and late serialiiation schemes described by 
K&sling and Pfeiffer [13]. Early serialization (ES) allows a single 
writer and multiple readers with read/write and write/write syn- 
chronization being done at request time. Late serialiation (LS) 
does write/write synchronization at request time and read/write 
synchronization at commit time. It lies closer to optimistic con- 
currency control [14] except that it allows only one writer at a 
time. 

5.2.1 Throughput 

Figure 6 compares the throughput for ES and LS for two different 
values of write share. Particularly in the high conflict case (70% 
writes) LS providee greater throughput. However, in both cases 
LS throughput decrease-s much faster than ES throughput as the 
multiprogrammin g level increaaea. Thii is because, on the average, 
LS allows “doomed” transactions to run longer than ES does. The 
performance of the ES protocol is therefore affected much leas by 
increasing concurrency. 
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When the ES, 70% writeshare curve was first plotted, throughput 
showed a very large dip at multi-programming levels 7 and 8. Sub- 
sequent analysis of the raw data revealed three highly suspicious 
samples that also happened to deviate significantly from their re- 
spective means. In our judgement, these samples are the result of 
errors in the experimental testbed system. Since their inclusion 
in the sample means obscures any trend in the interpolated curve, 
we have excluded them from our calculations. However, we have 
marked their locations on the graph with question marks, so that 
the reader may draw his or her own conclusions. 

5.2.2 Throughput Without Overlapped Write to Disk 

The throughput figures of the previous section are somewhat bi- 
ased in favor of LS, because our implementatioh’was on a system 
that doea not allow incremental writing to disklo. Checkpoints 
are done on a complete rewrite basis after all changes to the data 
have been made. Thii corresponds to a system creating shadow 
copies for crash resistance during commit rather than creating 
them incrementally during the transaction. Since LS does much 
of its concurrency control work at the end of the transaction, 
checkpointing can be overlapped with the serialization checking. 
Of course, this concurrency will waste system resources (in the 
form of kernel activity and disk accesses used for checkpointing) if 
the outcome of the concurrency control phase results in an abort. 
However, it saves elapsed time in the case of a successful trans- 
action. A comparable savings cannot be made in the ES case 
because all of the concurrency control work is done before the end 
of the transaction. 

Although it was not poasible to conduct experiments in which the 
disk writing took place incrementally during the transaction, we 
did change the implementation of LS so that checkpointing did not 
begin until the completion of all serialization checking. This, at 
least, gave a comparison of ES and LS on the same basis although 
it did not give throughput figures aa high as would have been 
obtained if the incremental writing had really been possible. Fig- 
ure 7 adds to Figure 6 the throughput of LS with all checkpointing 
following the concurrency control phase. It appears that, within 
the limits of experimental error, the two protocols give similar per- 
formance at a writeshare of 70%, and that ES is now superior in 
the 40% writeshare case. One can see by comparing Figure 7 with 
Figure 6 that overlapped checkpoint causea a substantial increase 
in throughput compared to non-overlapped checkpoint. 

5.2.3 Wasted Work Due to Aborts 

ES, through its pessimistic approach to conflicts, causes as many 
as three times the number of aborts as LS. However the fact that 
these aborts are made relatively early in the transaction means 
that less work is wasted before the abort decision is made. The 
product of the number of aborts and the wasted work per abort 
is therefore of interest and this is shown in Figure 8. The prod- 
uct looks roughly comparable for the two methods at the 70% 
writeshare, although LS appears to waste more work at the 40% 
percent write share. However, the reader should again note that 
several samples from the the ES, 70% writeshare curve at higher 
multi-programming levels were dropped from the sample mean 
calculations. Nonetheless the main point is clear: the two sys- 
tems do not differ greatly in the amount of work wasted at high 
write shares. 

loA feature that has frequently ban recognized LYI a bad design decision; 
see, for example, [S]. 

6 Summary 

This first experimental implementation of Bayer’s Dynamic Time 
Interval method for concurrency control provided the opportunity 
to compare time interval serialization options with timestamps. 

Time intervals clearly perform better than timestamps, giving 
greater throughput, a smaller number of aborts and less wasted 
work due to aborts. This was accomplished with very little in- 
crease. in concurrency control overhead compared to time&amps. 
This advantage decreases when the workload contains a higher 
proportion of updates, since the more optimistic TI method loses 
more of its “gambles” and must finally abort transactions that 
were executing concurrently for a period longer than TS would 
have allowed. However, over the range explored in these experi- 
ments, the increase in concurrency with TI more than offset the 
wasted work, and throughput was increased. 

Blocking time is the principal cause of decreasing throughput as 
the multi-programming level increases and, of course, becomes 
worse for a high proportion of write requests. In particular, using 
TS in a low-conflict environment, a transaction that blocks longer 
than a certain threshold is most likely to abort, so it may pay 
to re-start the transaction after some time-out interval that is a 
tunable parameter of the system. 

Within the Tie Interval method, early and late serialization ap- 
pear comparable in throughput and wasted work. LS is better 
if the entire updated object must be written at the end of the 
transaction because this write to disk can overlap a substantial 
portion of the concurrency control time. This cannot be done 
with ES since its concurrency control must take place before the 
alterations. If this overlap advantage is removed from LS the two 
appear comparable. Thii work, in general, confirms the specula- 
tion in the paper by Kiessling and Pfeiffer [13] that ES and LS 
would give similar performance. 

The implementation was done on the Eden experimental local 
area network which proved to be a useful testbed to examine and 
compare these concurrency control methods. 
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