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Abstract

This paper presents a general methodology to decompose
the processing of relational queries into functional units.
Each unit consumes a constant CPU usage, which
depends on the DBMS and system configuration, but not
on the database or the query. We describe how to
measure the unit CPU consumgtion, as well as how to
use it to predict and interpret query time. Two DBMSs
were tested to validate and calibrate the model. Its
applications on DBMS design, database design, query
performance and DBMS comparison are discussed.

1. Introduction

This paper presents a general methodology to analyze
the CPU consumption of relational queries on the
functional operation level (e.g., input, output,
comparison). It attempts to address the following
fundamental problem:

Given a query for certain database on certain

database system, how much CPU time will each

processing step consume?
This problem is a basic issue in many database research
and practice arenas, including DBMS design, database
and query design, DBMS comparison, system tuning and
work scheduling.

Some effort has been made to attack this problem to
various extents. For two-variable queries, [YAO 79]
describes a general model consisting of processing steps
such as indexing, record access, sorting, joining,
projection, etc. Unfortunately, this model has not been
validated. [HAWT 79] studied the percentage of CPU
time that Ingres (university version, [STON 76]) spent in
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each of its five processes. But the technique only applies
to the level of process. In [STON 83), the UNIX®
"profile" package was utilized to get a procedure-level
breakdown. However, profiling requires access to the
source code, and the CPU distribution is by subroutine,
instead of by functionality'. [MACK 86] presents a
validated CPU cost model for the local query processing
of R* [LOHM 85] (it also applies to System R [CHAM
81]). But the model is tightly geared to the internal
structure of R and R*,

Our objective is to develop a CPU time model for
query processing, that isolates functionally independent
operations from one another. It can help us understand
the underlying timing distribution, the relative weights,
the influencing factors, and other dynamics of query
processing. To be useful, the model should be as generic
as possible with respect to various DBMSs, and can be
calibrated readily with common user privilege, e.g.,
access to the source code should not be prerequisite.

This paper describes a model that decomposes query
processing into elementary operations. It is assumed that
each elementary operation consumes a fixed amount of
CPU time (called coefficient), which is a parameter of the
DBMS and system configuration, but independent of the
database and the query. We show how to measure the
CPU consumption coefficients, We tested the model on
two DBMSs: Ingres and Informix. The tests confirm our
assumption on the stability of coefficients. The
calibrated model can be used to predicts queries’ CPU
time. Some applications based on this methodology are
discussed.

® UNIX is a Trademark of Bell Laboratories

1. For example, if a program consists of three subroutines A, B and C,
where both A and B call C. Profiling can provide the CPU usage
and the number of calis of each subroutine. But it is hard to break
down C's CPU consumpiion into the shares of A and B.
Partitioning subroutines by functionality is very complicated, if not
impossible, especially for big sofiware packages. Profiling is almost
useless in DBMS comparison, since each DBMS has its own
subroutine structure.
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This paper considers only simple selection queries, as
defined in Section 2.1. This subset of queries covers a
set of elementary operations which constitute the basis of
more complicated query processing. It is these basic
operations we’d like to focus first. General queries will
be addressed in a subsequent paper currently being
drafted. Their processing involves query oplimization
issues, which we’d like to defer to the second stage.

The paper is organized as follows. Section 2 presents
the model. Section 3 describes how to calibrate it
Section 4 addresses how to use the calibrated model to
predict the CPU time of a query. Section 5 discusses the
model's potential applications. Section 6 concludes this
paper.

2. A Model of Elementary Operation
2.1 Simple Selection Queries

A simple selection query is a query satisfying the
following conditions:
1. The query involves only one relation;
2. Its qualification consists of one or zero non-
indexed selection condition;
3. The query does not build new relation(s) or
eliminate duplicate output tuples.

Some examples in QUEL are:
retrieve (emp.name, emp.dept) where emp.sal>50,000
retrieve (project.name, project.budget)

This paper will focus on simple selection queries,
since they cover a set of "basic” elementary operations
that are of critical importance to general query
processing. The processing of simple selection queries is
straightforward. For general queries that contain
indexing, multiple selections, joins and relation build-up,
the issue of query optimization and some complicated
processing are involved. They will be addressed in
another paper.

22 A Model of Elementary Operation

The most efficient processing strategy for a simple
selection query should be:

1. Sequentially retrieve each page of the queried
relation;

2. If a selection condition is involved, for each tuple,
get the appropriate attribute and compare its value
to the given constant;

3. For each qualifying tuple, get the attributes in the
target list and output them.

To capture the above processing, we propose the
following elementary operations:
1. Get a page (get-page)
2. Get a tuple (get-tuple)
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3. Compare an attribute of a certain data type; for
example,
a. Compare a 2-byte integer (cmp-i2)
b. Compare a 4-byte integer (cmp-i4)
¢. Compare a 4-byte floating point (cmp-f4)
d. Compare a 1-byte character string (cmp-cl)
e. Compare a character in a string (cmp-char)
4. Output a tuple (out-tuple)
5. Output an attribute of a certain data type; for
example,
a. Qutput a 2-byte integer (out-i2)
b. Output a 4-byte integer (out-i4)
c. Output a 4-byte floating point (out-f4)
d. Output a 1-byte character string (out-cl)
e. Output a character in a string (out-char)

We assume that for a given database system
configuration, each elementary operation consumes a
fixed amount of CPU time, which is independent of the
database and query. This fixed CPU consumption is
called the coefficient of that operation. A query can be
coded into a vector of operation counts, called query
vector. The total CPU consumption of a query is the
sum of the operation counts in the query vector, each
weighted by the corresponding coefficient.

23 Dlscusélons on the Model

The above model was built up empirically. Some of
its features are discussed below.

2.3.1 Data Access

For data access, two factors, i.c., page count and
tuple count, are explicitly spelled out in the model.
Another factor, get an attribute, is captured implicitly in
attribute comparison and attribute output?,

2.3.2 Get-Page

Get-page is a complex operation. It is rather simple
if the operating system buffering is bypassed (i.e., raw
disk). However, when operating system buffering is
involved (as in most UNIX DBMSs that employ UNIX
file system), disk access involves two steps:

1. reading data from disk to system buffer;

2. copying data from system buffer to user space.
If the page to be accessed exists already in system buffer,
Step 1 will be skipped. Moreover, a DBMS may
manage its own buffer pool (e.g., Ingres [STON 81]).
This makes the scenario more complicated.

2. When an attribute is accessed more than once, get an altribute may
be involved 1) for each access or 2) only once. The latter case will
fail this implicit approach, especially when the coefficient for get an
altribute is significant. We did not observe this effect in our test.
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We choose to define get-page uniformly as the "full
fetch” from disk to user space®. The buffering effect, if
exists, could be estimated and discounted from the count
of ger-page, as illustrated in Section 4.

2.3.3 Numerical Comparison Condition

For numerical attribute comparison, the CPU usage is
assumed to depend only on data type; but not affected by
the identity of relational operator (e.g., be it "<", "=" or
">="), nor by the constant value to be compared with®.
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2.3.4 Character String Comparison and Output

For comparing character strings, the complexity is
assumed to be linear in the number of bytes actually
compared (which may be less than the string length),
captured by clementary operations cmp-char. For
outputting strings, the complexity is assumed (o be linear
in the number of output bytes, captured by elementary
operations out-char. Test queries that confirm this
conjecture are described in Sections 3.2.4 and 3.2.5.

2.3.5 Other Aspects

This model focuses on data processing. Other DBMS
activities, e.g., query input, query parsing and query
optimization, appear to consume negligible CPU in our
measurements. To avoid the issue of concurrency
control at this stage, DBMSs were set to lock at the
database level, and all tests were run without other
database users. There is a stable overhead in initializing
DBMS.

In a multi-user environment, CPU usage may be
impacted by total system load (due to job switching,
timing granularity, etc). At this stage, this impact is not
explicitly expressed in the model, but will be reflected in
the coefficient measurement result.

3. Granularity other than page may be allowed in different stages of
disk access. For instance, data can be copied from system buffer to
user space by byte instead of a whole page. This approach may be
beneficial if only limited bytes (e.g., a tuple) in a page have 1o be
accessed. This byte-driven complexity will appear in operations
such as get an attribute , instead of get-page. We did not observe
significant byte-driven complexity for data access. It indicates the
DBMSs we tested choose to move data by page, presumably due to
the high overhead of each buffer access (see Section 5.1.1 and
[STON 81}).

4. The constant is assumed 10 be a legitimate value for the attribute.
Otherwise, a smart query optimizer may be able to detect and skip
the comparison completely, as we found in Ingres.
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3. Measurement of Coefficients

This section describes how to measure the
coefficients of the above elementary operations. Section
3.1 addresses the general principles. Section 3.2 presents
a design of test database and queries, illustrated with
Ingres and the query language QUEL. There are many
designs. These designs apply generally to relational
DBMSs, but may need slight adjustment from one
DBMS 1o another’.

Section 3.3 reports our measurement for Ingres and
Informix on a VAX 11/785 running BSD 4.3 UNIX
operating system.

3.1 General Princlples

The principle of coefficient measurement for
clementary operation is to design a series of queries that
isolate the impact of an operation, and amplify this
impact to a measurable extent. All other influencing
factors must be carefully controlled®.

For measuring CPU time, timing tools provided by
the operating system are more appropriate than those in
DBMSs, since

1. the outcomes of different timing tools from
different DBMSs may not be comparable.

2. many DBMSs, e.g., Informix, do not provide
timing tools.

Since total system load affects CPU usage, it should
be specified as a parameter of measurement, and then
well controlled throughout the test. When CPU time
shows fluctuation, queries should be run repeatedly to
average out background noise. To minimize the impact
of system load and noise, test queries should be designed
to minimize constant overhead’, but maximize the target
processing that varies from query to query. The
difference of query time in a series should be
significantly larger than the background noise.

3.2 A Test Database and Query Set

This section describes a design of test database and
queries, illustrated with Ingres and QUEL.

S. For example, since Ingres and Informix use different methods to
allocate tuples into pages, the definition of relations ¢ to &5 in
Section 3.2.2 should be changed slightly as applying to Informix,
such that the five relations still occupy the same number of pages.

6. For example, buffering may cause the discrepancy of the number of
get-page, as discussed in Section 23.2. To avoid this adverse
effect, querics that address small relations (compared to the size of
system buffer) should be interleaved properly to ensure each page is
freshly fetched from disk.

7. For example, query series for input (gef-page, get-tuple) avoid
generating output.

349



32.1 Get-Page

The coefficient for get-page can be measured with the
following relations:

Attributes
Name (Data Type®)

pl  |s(cl).i(i4),v(cl)
p2  |s(cl),i(id),v(c33)
p3  |s(cl),i(i4),v(c73)
p4  [s(cl),i(i4),v(c121)
p5 |s(cl),i(i4),v(c153)

Tuple |No. of |No. of
Width | Tuples|Pages’

6 bytes|64,000] 256
38 bytes|64,000| 1280
78 bytes|64,000( 2561

126 bytes|64,000| 4268
158 bytes|64,000| 5335

Relation

Attribute i is populated with integers between 0 and 9.
No index is built.

The test query series is as follows:
q.get-page.l: retrieve (pl.i) where pl.i>10
g.get-page.2: retrieve (p2.i) where p2.i>10
q.get-page.3: retrieve (p3.i) where p3.i>10
q.get-page.4: retrieve (p4.i) where p4.i>10
q.get-page.S: retrieve (pS.i) where p5.i>10

These five queries require the same number of tuple
fetching (#get-tuple=64,000), the same number of
attribute comparison (#cmp-i4=64,000), and generate no
output. Their only difference resides in how many pages
each query needs to retrieve. (since the length of
attribute v varies) We found the measured CPU
consumption can be linearly correlated to the page count;
the slope is taken as the coefficient for get-page.

322 Get-Tuple

One way to measure the coefficient of get-tuple is
through the following five relations:

. Attributes Tuple |No. of [No. of
Relation 1. me (Data Type)| Width |Tuples| Pages
1 [schi(d)v(cl) | 6 byies[80,000] 320
2 |seDi@)v(c3) | 8 bytes|64,000| 320
B [sc1)i(d)v(c13) | 18 bytes|32,000| 321
4 |sc1)i(id)v(c33) | 38 bytes|16,000| 321
5 |s(c1),i(id),v(c150) |155 bytes| 3,832 321

Notice that the tuple width and tuple counts are
adjusted such that each relation occupies identical
number of pages. Attribute { is populated with integers
between 0 and 9. No index is built.

8. Denoted by one character for type ("c” for string, "i" for integer, "f"
for floating), and the number of bytes.

9. In Ingres, each page has 2K bytes.
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The test query series is as follows:
q.get-tuple.1: retrieve (t1.i) where t1.i>10
q.get-tuple.2: retrieve (12.i) where €2.i>10
q.get-tuple.3: retrieve (13.i) where 13.i>10
q.get-tuple.d: retrieve (14.i) where t4.i>10
q.get-tuple.5: retrieve (15.i) where 15.i>10

These five queries fetch the same number of pages
(#get-page~320) and generate no output. For each query,
the number of tuples to get (#get-tuple) is the number of
tuples in the queried relation, as listed above, and so is
the number of i4 comparison (#cmp-i4). We found the
measured CPU time is linear in the tuple count. By
subtracting the coefficient of cmp-i4 (as measured in
Section 3.2.3) from the slope, we can get the coefficient
of get-tuple.

3.2.3 Auribute Comparison

The following relation can be used to measure the
CPU usage for comparing an attribute:

Relation Attributes No. of
Name (Data Type) | Tuples
i2(i2),i4(i4) f4(f4)

m | ciel)out(cl) 16,000

Each numerical attribute is populated with values evenly
distributed between O and 9. Attribute ¢l is populated
with strings between "0" and "9".

The test queries for comparing a numerical or 1-
character attribute are:
q.dummy: retrieve (m.out)
q.cmp-i2: retrieve (m.out) where m.i2<10
q.cmp-i4: retrieve (m.out) where m.id<10
q.cmp-f4: retrieve (m.out) where m.f4<10
q.cmp-cl: retrieve (m.out) where m.cl<"a"

Each query scans through the whole relation and
outputs attribute out for each tuple. Atribute comparison
is the only difference that the comparing queries perform
in addition to query q.dummy. Subtracting the CPU
usage of query q.dummy from that of each comparing
query, then dividing the difference by the tuple count of
relation m, the result is the coefficient of comparing an
attribute of the corresponding data type.

3.2.4 Character Comparison

For character strings of various length, the following
relation and queries can be used to check the relationship
between comparison time and string length.
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Relation Attributes No. of
Name (Data Type) Tuples
cl(c1),c8(c8),c16(c16)

¢ | 32(c32).064(c64)0ucl) | 1000

For each attribute, all the bytes are set to "0", except the
last byte, which is set to between "0" and "9". This
forces each comparison in the following queries go to the
last byte of the attribute.
q.cmp-c01: retrieve (c.out) where c.cl<"a"
q.cmp-c08: retrieve (c.out) where ¢.c8<"0000000a"
q.cmp-c16: retrieve (c.out) where c.c16<
"000000000000000a"
q.cmp-c32: retrieve (c.out) where c.c32<
"00000000000000000000000000000002"
g.cmp-c64: retrieve (c.out) where c.c64<
"000000000000000000000000000000000
000000000000000000000000000000a"
Each of the above queries involves the same input and
no output, but their character comparison counts vary
with attribute length. We observed a linear relationship
between the CPU time and the string byte count. The
slope, after being normalized by tuple count, is the time
required for comparing an additional character, i.c., the
coefficient of cmp-char.

325 Output Attribute

The measurement of the coefficients for output an

attribute can use relation m and the following queries:

q.dummy: retrieve (m.out)

q.out-i2; retrieve (m.out,m.i2)

q.out-i4: retrieve (m.out,m.i4)

q.out-f4; retrieve (m.out,m.f4)

g.outcl: retrieve (m.out,m.cl)
The strategy is analogous to that of attribute comparison.

In parallel to the linearity of character string
comparison, we found that the CPU usage for outputting
a character string is proportional to its output length.
The queries used are as follows:

q.outc01: retrieve (c.cl)

q.outc08: retrieve (c.c8)

q.outc16: retrieve (c.c16)

q.outc32: retrieve (c.c32)

q.out-c64: retrieve (c.c64)
The coefficient of out-char can be computed similarly to
that of cmp-char.

DBMS’ output formatting policy varies substantially.
For example, Ingres has default output format for each
data type, which users can override. In Informix, the
output format varies on data type and the length of
attribute name. When output width exceeds roughly 80
characters, Informix switches from tabular output to a
vertical representation consisting of one name-value pair
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for each attribute, whose complexity is quite different
from that of tabular output. Those factors have to be
carefully controlled to ensure the format used coincides
with the format targeted.

We found that for each data type, the CPU usage for
output shows a linear dependency on the byte count of
output format, and the slope is equal to the coefficient of
out-char. This implies outputting an attribute involves
some type-dependent conversion, plus some type-
independent outputting. The latter is proportional to the
number of characters, with a coefficient common to all
data types.

3.2.6 Ow-Tuple

To measure the coefficient of out-tuple, the following

queries can be used:

q.out-tuple.00: retrieve (m.i4) where m.i4<0

q.out-tuple.01: retrieve (m.i4) where m.i4<1

g.out-tuple.02: retrieve (m.i4) where m.i4<2

q.out-tuple.04: retrieve (m.i4) where m.id<4

g.out-tuple.08: retrieve (m.i4) where m.i4<8

q.out-tuple.10: retrieve (m.i4) where m.i4<10
Each query involves identical input and comparison.
However, since the attribute i4 is evenly distributed
between 0 and 9, the number of output tuples increases
in the sequence 0, 1600, 3200, 6400, 12800 and 16000.
Linearly regressing the CPU time of the queries against
the sequence for output tuple count, the slope should be
the sum of ow-tuple and out-i4, from which the
coefficient of out-tuple can be derived easily.

3.3 Coefficient Measurement and Consistency

Table 1 lists the coefficients we measured for two
DBMSs: Ingres 4.0 and Informix 2.00, on VAX 11/785
running BSD 4.3 UNIX operating system. The
measurement was run in a  semi-single-user
environment'®,

We used the UNIX time command [UURM 86] to
measure the elapsed time and CPU time. All queries'!
were run 10 times. The resultant CPU usage was
averaged.

To test the stability of the coefficients, we conducted
the following cross checking:

10. It was actually multi-user environment during off-peak time, with
few other users competing for CPU, and no other database users.
All test queries can achieve a CPU utilization of 95%. As
utilization rate dropped to as low as 40%, CPU time could vary 10-
15%. The data reported in this paper reflect a screened result with
CPU utilization above 80%, which shows stable consistency.

11. Each query is encapsulated in a UNIX shell program that initializes
the DBMS.
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1. For each regression, conducting the goodness of fit
test. It indicates the linear regression line fit the
data adequately.

2. Repeating the 10-run measurement. Each
operation was measured at least five times.

3. Varying query design. For example, for get-page,
get-tuple and out-tuple, attributes other than i were
used to generate parallel query series for test.

4. Varying database design, including relation
definition and size.

5. Checking the coefficients that are mutually related.
For example, if the model is valid, the following
relationships should hold:

cmp-cl + (8-1) * cmp-char = cmp-c8
out-cl + (8-1) * out-char = out-c8

Throughout the above checking, the observed
discrepancy is within 10%, which confirms our
assumption about the consistency of coefficient. 10

. Table 1. The Coefficients of Elementary Operations
for Ingres 4.0 and Informix 2.00
(on VAX 11/785 running BSD 4.3 UNIX operating system)

Elementary | Coefficient (lusec) Notes
Operation | Ingres |Informix
get-page | 5122.2| 3056.6)\Page size: 2KB for Ingres,
1KB for Informix
(norm.) | 2561.1| 3056.6|Normalized to 1KB page
get-tuple 2442 8050
cmp-i2 123.0{f 7493
cmp-i4 118.1| 4784
cmp-f4 1150| 8659
cmp-cl 2528] 4613
"‘cmp-c8 383.0{ 4621
cmp-char 17.5 03
out-tuple 550.0} 22199
Out Bytes Vert. Coef'?
out-i2 820.7| 625.1] 6 653.3
out-i4 12774 7237} 11 674.2
out-f4 996.4| 9727 9 890.2
out-cl 230.7] 1868} 1 294.1
out<c8 903.8] 3904 8 3953
out-char 95.9 245 14.1
overhead | 6.0sec| 1.9sec|for initializing DBMS

12. Coefficients for Informix vertical output format (Section 3.2.5);
Each output includes 1 byte for data and 3 bytes for attribute name,
except out-c8, whose data length is 8 byte. #ow-char has 10 be
adjusted for the real length of data and auribute name.
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4. Estimating CPU Usage of Querles

The model of elementary operation assumes the CPU
consumption of a query is the summation of the counts
of elementary operations it performs, each multiplied by
the coefficient of that operation. Once the coefficients
are measured, we can predict a query’s CPU usage from
its operation count vector (i.e., query vector).

Coding a simple selection query into query vector is
straightforward. However, the following operations need
special attention:

Get-page: If no buffering or data sharing is involved, the
operation count for get-page should be the number of -
pages in the queried relation. However, as mentioned
in Section 2.3.2, if pages can be fetched from a buffer,
the get-page count has to be adjusted accordingly.

Example 1. For query q.s5n (described below), Informix
has to retrieve 3910 pages (Table 4). If 10% of them
are retrieved from the buffer, then 0.6 msec (CPU time
for reading a 1K page from disk to main memory, see
Section 5.1) can be saved from the 3.1 msec
(Informix’ coefficient of get-page) procedure for each
of those pages. Hence the actual count for get-page
should be

3910 % 90% + 3910 * 10% * (1 - 25) = 3832

Cmp-char: The number of characters actually compared
for a string has to be estimated by the distribution of
data.

Output auribute: As mentioned in Section 3.2.5, the
format of attribute output varies on many factors. If
the format chosen by the query differs from that used
in coefficient measurement, either the coefficients, or
the count of out-char, should be adjusted accordingly.

Example 2. For query q.s5w (described below) which
takes Ingres default output format, Ingres outputs the
30 i2 attributes with 6 bytes, the only i4 attribute with
13 bytes, and each of the 87 character string attributes
with a minimum width 6 bytes. Each string attribute
contributes 1 to the count of out-cI. The remaining
bytes (5 per attribute), plus the 2 extra bytes that the
i4 field outputs, can be put in the count of out-char as

Hout~char = (6 - 1) * 87+ (13 -11) * 1 =437
If the 6-byte threshold of string output is
overridden, simply by specifying a parameter, most of
the out-char operations (accounting for 40% of CPU
time) in queries ¢.s5w, ¢.s6w and ¢.s7w can be saved.

We checked the correctness of query time prediction
extensively. The relative error is generally less than
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Table 2. The Calculated and Observed CPU Usage of Queries on Ingres

DBMS Ingres
Query qsin| g.s2n | q.s3n | q.s4n || q.sli | q.82i | qs3i | q.s4i | gslw | q.s2w | q.s3w | q.sdw
q #get-page 13 1001] 1001| 1001| 1001 1001] 1001 1001 1001{ 1001| 1001 1001 1001
#get-ple 10000| 10000 10000| 10000]| 10000] 10000 10000| 10000)| 10000] 10000] 10000| 10000
V[ #cmp-i2 (per get-tuple) 1 1 1 0 1 1 1 0 1 1 1 0
‘c" #out-tuple 100] 1000] 10000| 10000 100| 1000| 10000| 10000 100 1000| 10000 10000
¢ | #out-cl (per out-tuple) 1 1 1 1 0 0 0 0 3 3 3 3
o |#out-char (per out-tuple)|| 51 51 51 51 0 0 0 o 153] 153] 153] 153
r | #out-i2 (per out-tuple) 2 2 2 2 4 4 4 4 13 13 13 13
get-page 5131 5.13| 5137 S5.a3| S5.13] 513 513 .3 5.13) 5137 513 513
" get-tuple 2441 2441 244 2441l 244] 2441 244} 24411 2441 244] 2441 244
; cmp-i2 123| 123| 123 o 123] 123 123 of 123] 123 123 0
m out-tuple 0.06] 0.55; 5.50| 550 0.06) 0.55 5.50 550 0.06] 0.55 5.50 5.50
e out-cl 0.02; 023 231 231 0 0 0 Off 007 069 692{ 692
out-char 049| 4.89| 48.88| 48.88 0 0 0 0|l 147| 14.67| 146.65| 146.65
N out-i2 0.16| 1.64] 1641| 1641) 0.33} 3.28| 32.83] 32.83 1.07| 10.67| 106.69| 106.69
s subtotal 9.531 16.11| 81.90! 80.67|] 9.18{ 12.63| 47.13] 45.90| 11.46| 35.38| 274.56| 273.33
:_ initial. overhead 6.00| 6.00f 6.00] 6.00{ 6.00; 6.00 6.00 6.00{| 6.00f 6.001 6.00 6.00
U calculated time 15.53] 22.11| 87.90| 86.67|| 15.18| 18.63| 53.13] 5190| 17.46| 41.38] 280.56] 279.33
observed time 14.30] 21.15} 87.69} 86.43| 13.86y 17.51| S53.16{ 5395j 1622| 40.79| 27549 281.28
absolute error 1.23] 096 021 024 132| 1.12| -0.03( -205) 124| 0.59| 507 -195
relative error 8.60%| 4.54%| 0.24%| 0.28%}| 9.54%| 6.41%| -0.06%| -3.80%|| 7.63% | 1.44%| 1.84%| -0.69%
Table 3. The Calculated and Observed CPU Usage of Queries on Informix'®
DBMS Informix
Query gsln | qs2n | qs3n | gs4n || g.sli | q.s2i | q.s3i | qs4i || qsiw | q.s2w | q.s3w | q.s4w
q #get-page 1° 1831 1831] 1831} 1831 1831 1831] 1831} 1831 1831] 1831] 1831 1831
#get-wple 10000| 10000{ 10000] 10000]| 10000{ 10000{ 10000] 10000 10000] 10000] 10000] 10000
V| #cmp-i2 (per get-tuple) 1 1 1 0 1 1 1 0 1 1 1 0
g #out-tuple 100] 1000| 10000] 10000 100[ 1000| 10000] 10000 100] 1000[ 10000| 10000
¢ | #out-cl (per out-tuple) 1 1 1 1 0 0 0 0 3 3 3 3
o |#out-char (per out-tuple) 51 51 51 51 0 0 0 0 250 250 250 250
r | #out-i2 (per out-tuple) 2 2 2 2 4 4 4 4 13 13 13 13
get-page 560 560| 5.60f 560 5.60| 560| 5.60 5.60 560 5.60| 560 560
14 get-tuple 8.05 80s| 8.05( 805/ 8.05/ 805 805 8.05{ 8.05 8.05| 8.05| 805
: cmp-i2 749{ 749 749 0l 7491 749 749 0 749 7.49 7.49 0
m out-tuple 0.22| 2.22| 2220] 2220 022 222{ 2220f 2220 022 222| 2220] 2220
e out-cl 0.02{ 0.21] 208/ 2.08 0 0 0 Oof 009 088 882 882
out-char 0.13] 1.25{ 1251 12.51 0 0 0 o 035 3.50| 35.00; 35.00
N out-i2 0.137 1.25| 12.50| 12.50| 025! 2.50| 25.00| 25.00] 0385 8.48| 84.80| 84.80
ol subtotal 21.63| 26.07| 70.43] 6294 21.61| 25.86] 68.34| 60.85]f 22.65| 36.22| 171.96| 164.47
€ initial. overhead 1.87 1.87 1.87] 187 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87
f} calculated time 23501 2794] 72.30| 64.81| 23.48| 27.73| 70.21| 62.72| 24.52] 38.09| 173.83| 166.34
observed time 21.31| 25.86] 67.84| 5995 21.39| 25.66| 64.77) 54.60| 25.77 39.12 177.88] 168.70
absolute error 2.19| 208] 4.46| 486l 209 207 544 8.12|| -1.25{ -1.03| -4.05| -2.36
relative error 10.29%| 8.04%| 6.57%| 8.10%] 9.78%| 8.07%| 8.40%| 14.87%| 4.86%] -2.63%] -2.28%| -1.40%
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Table 4. The Calculated and Observed CPU Usage of Queries on Ingres and Informix!5

DBMS Ingres Informix

Query q.s5n | q.s6n | q.s7n || q.s5w | q.s6w | q.s7w || q.s5n| q.s6n | q.s7n || q.sSw | g.s6w | q.sTw
#get-page 13 1869 1869| 1869 1869] 1869 1869|| 3910 3910| 3910 3910| 3910 3910
q #iget-tuple 22338 22338| 22338| 22338 22338| 22338(/22338| 22338 22338| 22338| 22338| 22338
#cmp-i2 (per get-tuple) 1 1 0 1 1 0 1 1 0 1 1 0
V[ #cmp-i4 (per get-tuple) 0 0 1 0 0 1 0 0 1 0 0 1
z #out-tuple 1383 9464| 22335|| 1383 9464| 22335 1383 9464 22335| 1383] 9464| 22335
¢ | #out-c1 (per out-tuple) 8 8 8 87 87 87 8 8 8 87 87 87
o |#out-char (per out-tuple) 40 40 40 437 437 437 40 40 40 500 500 500
r | #out-i2 (per out-tuple) 3 3 3 30 30 30 3 3 3 30 30 30
#out-i4 (per out-tuple) 0 0 0 1 11 0 0 0 1 1 1
get-page 9.57 9.57| 9.57]| 9.57| 9.57 9.57|| 11.95| 1195| 1195 11.95| 11.95] 11.95
get-tuple 545| 54S5| 54S|| 545 545 5451 17.98| 1798] 1798) 17.98; 1798 17.98
14 cmp-i2 275 275 of 275| 275 0 16.74} 16.74 0| 16.74] 16.74
; cmp-i4 0 0] 264 0 0 2.64 0 0| 10.69 0 0l 10.69
m out-tuple 0.76] 521| 1228 0.76| 5.21 12.28| 3.07] 21.01| 49.58 3.07{ 21.01| 49.58
e out-cl 2550 17471 4122 27.76| 189.95| 448.28| 2.30{ 15.73| 37.13|| 35.39| 242.15{ 571.48
out-char 5.30f 36.29{ 85.63|| 57.93| 396.41| 935.53| 136 929 21.92f 9.68! 66.25| 156.35
N out-i2 341 2330| 5499\ 34.05| 233.01( 54991| 2.59| 17.75] 41.88| 27.06| 185.20] 437.07
s out-i4 0 0 0f 177| 12.09| 2853 0 0 0f 093] 638; 1506
z subtotal 29.80| 100.03| 211.79|| 140.04| 854.45| 1992.21| 55.99( 11045| 191.13) 122.80| 567.66| 1270.16
U initial. overhead 6.00; 6.00] 6.00ff 6.00] 6.00 6.00 1.87| 1.87 1.87 1.87 1.87 1.87
calculated time 35.80| 106.03| 217.79(| 146.04| 860.45] 1998.21| 57.86] 112.32| 193.00| 124.67| 569.53| 1272.03
observed time 34.30( 104.00{ 214.00| 141.00| 838.00| 1894.00| 52.70| 97.60| 166.50| 128.00| 594.00|{ 1314.00
absolute error 1.50 2.03] 3.79|| 5.04] 2245| 104.21ff 5.16{ 14.72| 26.50{ -3.33| -2447| 4197
relative error 436%| 1.96%| 1.77%| 3.58%| 2.68%| 5.50%(9.79%(15.08%| 15.92%| -2.60% | 4.12%| -3.19%

13. Each Ingres page is 2KB, whereas Informix page is 1KB. These are the page sizes used for measuring the coefficients of get-

page, see Table 1.

14. These are the total CPU time (in seconds) taken by each clementary operation (calculated by multiplying the coefficient with
the count of operation) or specified catagory.

15. Informix’ query serics w uses vertical format for output (see Section 3.2.5).
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15%. Tables 2, 3 and 4 show some results, based on the
following relations (with no indices) and queries'®.

Relation | Tuple Width | No. of wples | Total Size

tenKtupl | 182 bytes 10,000 1.8MB

attributes: 13 i2 fields, e.g., uniqul uniqu2 two four
3 c52 fields, e.g., stringul

customer | 160Bytes | 22338 | 5.6MB

attributes: 30 i2 fields, e.g., cid,count,size
1 i4 field, i.e., usage .
76 cl fields, e.g., the rest fields in ¢.s5n
2 2 fields, 6 c3 fields, 3 c4 fields

Queries'”:
Range of t is tenKtupl

q.s1w: retrieve (t.all) where t.uniqu2<101
q.s2w: retrieve (t.all) where t.uniqu2<1001
q.s3w: retrieve (t.all) where t.uniqu2<10001
q.s4w: retrieve (t.all)

q.sln: retrieve (t.uniqul,tuniqu2,t.stringul)
where t.uniqu2<101

q.52n: retrieve (t.uniqul,tuniqu2,t.stringul)
where t.uniqu2<1001

q.s3n: retrieve (t.uniqul,t.uniqu2,t.stringul)
where t.uniqu2<10001

q.s4n: retrieve (t.uniqul,t.uniqu2,t.stringul)

g.sli: retrieve (t.uniqul,t.uniqu2,t.two,t.four)
where t.uniqu2<101

q.s2i: retrieve (t.uniqul,tuniqu2,t.two,t.four)
where t.uniqu2<1001

q.s3i: retrieve (t.uniqul,tuniqu2,t.two,t.four)
where t.uniqu2<10001

q.s4i: retrieve (t.uniqul,t.uniqu2,t.two,t.four)

Range of ¢ is customer
q.sSw: retrieve (c.all) where c.count=1
q.s6w: retrieve (c.all) where c.size<4

q.s7w: retrieve (c.all) where c.usage<=100

q.s5n: retrieve (c.cid,c.count,c.size,c.index1,c.index2,
c.index3,c.index4 c.levell c.level2,c.level3 c.leveld)

16. Relation fenKtupl and relevant queries are based on Wisconsin
Benchmark {BITT 83), with some minor modifications. Relation
customer is from a real-life database.

17. The w suffix in query names means wide oulput, n for narrow, and
i for integer. The system buffer was flushed before each query ran.
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where c.count=1
q.s6n: retrieve (c.cid,c.countc.size,c.index1,c.index2,
c.index3,c.index4,c.levell c.level2 c level3,c.leveld)
where c.size<4
q.s7n: retrieve (c.cid,c.count.c.size,c.index1,c.index2,
c.index3,c.index4 c.levell c.level2,c.level3,c.leveld)
where c.usage<=100

Notice that in Informix, query series w takes the
vertical output format, hence its timing may not be
directly comparable to that of Ingres. Even for queries
that do use the same output format, the underlying
mechanism may be quite different for the two DBMSs.
For example, for queries ¢.s5n, q.s6n and q.s7n, both
Ingres and Informix output 6 bytes for each of the 8 cl
fields. But for Ingres, it is due to Ingres’ default 6-byte
threshold in outputting string field; whereas in Informix,
it is because each field has a 6-byte name. Manipulating
output format can generate drastic performance change in
output-intensive queries, as shown in Example 2.

5. Applications

Elementary operation analysis uncovers the
microscopic dynamics of query processing. The
coefficients of elementary operations measure how fast
each processing step is. The breakdown of query time
indicates the relative significance of different functions.
The capability of predicting query time based on query
specification allows users to forecast how long a query
would take without running it. In this section we briefly
discuss some applications of this technique.

5.1 DBMS Design

The model of elementary operation is useful in
analyzing the strengths and weaknesses of DBMS design.
The following are some observations about Ingres and
Informix, based on Table 1 and some C program tests'®.

5.1.1 Page Retrieval

Both Ingres and Informix need 2.5 to 3 msec to
retrieve a 1K page. As a comparison, it takes 0.6 msec
for a C program to call read (a UNIX system call
[UPRM 86]), read takes another 0.6 msec to fetch a page
of 1KB from disk to system buffer, and another 0.4 msec
to move 1KB from system buffer to user space; it is 1.6
msec in total.

18. Run on VAX 11/785 (1.4 MIPS) with BSD 4.3 UNIX operating
system.
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5.12 Character String Comparison

Ingres and Informix appear to reflect quite different
designs. Informix’ CPU consumption is relatively high,
whereas almost insensitive to string length (up to 64
bytes). Ingres’ overhead is lower, but grows at a rate of
17.5 psec per character'®. The breakeven point for the
two DBMSs resides at roughly 13 characters. The
tradeoff of the two designs should be judged by usage
frequency analysis.

As a comparison to the above rates, two C programs
were tested: program CMP-BYTE explicitly compares
strings byte by byte [KERN 78], it takes 6 psec of CPU
time per character; program CMP-STR calls the C library
subroutine stremp ([UPRM 86]) that uses the long
comparison instruction, it needs 2.5 psec per character.

5.1.3 Character Output

Ingres’ character output rate (96 psec per byte) is
very slow. This drags down all the attribute output
coefficients. Informix takes 25 psec to output a
character.

Both rates include:

— buffering for piping;

— piping data from backend process to frontend process
(Ingres sends messages in the unit of 1024 byites
[STON 83));

— outputting data.

We also tested some C programs that perform similar
functions. It takes 1.4 msec CPU time to send (write and
read) a 1-byte message through pipe, whereas 2.5 msec
to send a 1024-bytc message (averaged 2.5 usec per
byte). Outputting data in the unit of 1024 bytes takes
2.3 usec per byte. :

5.14 Summary on DBMS Design

In the above we checked some DBMS processing
rates and the rates of C programs that perform similar
functions. It appears those DBMSs still have room for
enhancement.

§2 Database and Query Design

Elementary operation analysis provides users with
query time prediction, the breakdown of time spent by
individual operations, and how it varies as database
and/or query changes. These capabilities can be used to
measure the performance impact of a design decision.

19. Ingres actually provides different functionality: it skips blanks in
comparison, e.g., strings "AB”, "A B" and "A B " would all
maich. Thus this rate contains extra processing.

356

Some examples are given below.
5.2.1 Database Design

Table 1 enables users to judge whether to set an
attribute as 2-byte integer, 4-byte integer, or character
string. The impact can be estimated for various
processing aspects, €.g., input, comparison, output, then
weighed with their relative importance, along with other
factors such as storage cost.

For logical and physical database design, elementary
operation analysis is useful too. We'll discuss the issue
in the paper that addresses complex queries.

5.2.2 Query Design

For query and application design, users can
investigate the driving factors behind the query
performance and write more efficient queries. For
example, Tables 2 to 4 illustrate for the DBMSs that we
tested, how sensitive the query time is to the selectivity
(e.g., query series ¢.sI vs. .52 vs. ¢.53), to the output
attribute(s) (e.g., query series a vs. i vs. w), and even to
the output format (as explained in Section 4).

5.3 DBMS Comparison

The discussion in the above sections has already
involved the issue of DBMS comparison. This section
will summarize it and compare this analytical method
with benchmarking.

Elementary operation analysis reveals the relative rate
of each generic operation. It also can be used to estimate
the CPU time for a given benchmark. We do not think it
can replace benchmarking completely since the analysis
of complex queries is not trivial, as we'll show in
another paper. However, the analysis is valuable for
benchmark design and result analysis. It can address
problems such as:

1. How to characterize an application?

In addition to the crude category of CPU or /O
intensive, elementary operation analysis provides
finer classification based on data processing.

2. How to design a query set that properly
benchmarks an application? What are the key
factors to control?

3. If a target application involves big databases and/or
time-consuming queries, how to "mimic” it with
cheaper installation and still get correct
comparison?

4. How to interpret the benchmark result?

The discussion in Sections 5.1 and 5.2 has already
covered these problems. It is interesting to notice that
elementary operation analysis can help benchmark design
to focus on the difference of the DBMSs tested. For
example, from Table 1 we find that Ingres is 2-3 times
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faster than Informix in getting tuple, outputting tuple and
numerical comparison, whereas Informix is 3 times faster
than Inoras in Antnatting sharantar  Thia a hanahmarl
ulail Iy ul uutputuus viidiavinvia . 14Uud a UvINILaln
designed for these two DBMSs has to pay special

attantinn  tn
AUV WU WivOow }uwmnls oW

properly modeled as in the target application. Different
combinations of processing steps can lead to contrary
comparisons, such as in query pair ¢.s3n vs. ¢.s3i, or
query pair ¢.s3n vs. q.sin. For each pair, Informix
outperforms Ingres on the first query whereas Ingres
outperforms on the second. This also illustrates how
important it is to properly interpret benchmark results.

thaca neraccing ctane and ancura thau ara
QI vidWuv ul\-l’ i

For mimicking application, since elementary
operation analysis resolves a query into a query vector,
big database/queries can be simulated by small ones with
prorated query vectors.

In summary, elementary operation analysis provides
decomposition by processing function, guidelines for
designing customerized benchmarks, and capability of
result interpretation. These are exactly what the
conventional benchmarking methodology lacks for. Our
analysis indicates it can be quite misleading to apply
generalized benchmarks (e.g., [BITT 83, BOGD 83]) to
all applications and environments. For the DBMSs that
we tested, the following basic design assumptions of
[BITT 83] are not true?;

1. Relative performance of DBMSs is the same for
integer comparison and string comparison;

2. it is adequate to test selectivity factor with 1% and
10% [BORA 84].

6. Conclusion

This paper describes an empirical model for
decomposing relational query processing into individual
functional components, called elementary operations.
The processing of a query can be decoded into a vector
of the counts of elementary operations, where each
operation takes a fixed amount of CPU time, dependent
on DBMS configuration only. This method lends itself
to query time prediction and interpretation, as well as
microscopic study of query processing mechanism.
These capabilities can be wused to enhance our
understanding in many theoretical and practical database
fields.

Discussing simple selection queries only, this paper is
aimed primarily at elementary operations for input,

20. Another major drawback of [BITT 83] is its focusing on retrieve
into, whose complexity is drastically different from data outputting,
as we'll discuss in another paper.
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comparison and output. Complicated query processing
plans are built with these basic operations. For example,

indavad galantinn amnlave innnt fand samnamionn)
LIUVACU IVINALUIULL Glllplu’ b ] lllpul |anu Wlllpal AV

operations to get through the directory structure; each

nace nf a cart.maraa inin cnncicte af innnt ramnaricon
PAass Ui g SOI-IMCTET JUML CONLISWS Ui dipus, CUINPRIILGUL

and output (or temporary file building). Those queries
will be addressed in a subsequent paper.
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