
INDEX ACCESS WITH A FINITE BUFFER 

Giovanni Maria Sacco 
Dipartimento di Informatica 

Universid di Torino 
Torino, Italy 

ABSTRACT: 
A buffer is a main-memory area used to 

reduce access to disks. The buffer holds pages 
from secondary storage files. A process request- 
ing a page causes a fault if the page is not in the 
buffer: the requested page is read into the buffer. 
If no buffer space is available, a page in the 
buffer is replaced by the requested one. 

The solution of many relational queries 
(e.g. joins) require the repeated access of a rela- 
tion through a unique clustered index. The fault 
rate of such queries as a function of the avail- 
able buffer size is analyzed. A B-tree structure is 
assumed, but the results presented here carry 
over to most other hierarchical index structures. 

It is shown that the LRU replacement sua- 
tegy, commonly used with this type of access, is 
not the best strategy. Two alternative strategies, 
ILRU and OLRU, are proposed. ILRU is shown 
to be always better than LRU, especially for 
small buffer sizes and independently of the pro- 
bability of page references. OLRU is proved to 
be optimal under the assumption of a uniform 
distribution of page reference densities. The 
behaviour of LRU and OLRU under distributions 
that violate this assumption (such as Zipfian dis- 
tributions) is discussed. 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the 
VLDB copyright notice and the title of the publication 
and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. 
To copy otherwise, or to republish, requires a fee and/or 
special permission from the Endowment. 

1. INTRODUCTION 

Most database systems use a main-memory 
area as a cache buffer, to reduce accesses to 
disks. This area is subdivided into frames, and 
each frame can contain a page from a secondary 
storage file. A process requesting a page will 
cause a fault if the page is not in the buffer: the 
requested page is then read into an available 
buffer frame (demand paging). When no avail- 
able frames exist, a frame is made available by a 
replacement policy. Its contents are copied, if 
required, back to the disk. 

The problem of managing a buffer is 
analogous to the problem of managing the real 
memory in a virtual memory system, and, in 
fact, most of the replacement policies currently 
used for database systems are the same policies 
used for virtual memory. The most popular 
replacement policy is LRU (least recently used 
page), which replaces the page which has not 
been referenced for the longest time; other sua- 
tegies are discussed in lWPE84]. 

In buffered environments, the number of 
physical disk accesses is not a constant (as 
assumed by most previous analyses), but it is a 
function of the available buffer size. ln practice, 
previous analyses have modelled logical refer- 
ence strings. If buffering is used, the number of 
physical references (disk accesses) is generally 
significantly lower than the number of logical 
references. 

Performance models based on buffering 
are important to design and tune applications, 
and especially so when a query optimizer is used 
to discriminate among different evaluation stra- 
tegies: ignoring the effect of buffering can lead 
to seriously wrong choices [SACC86]. They are 
essential for predictive buffer management stra- 
tegies, such as the hot set model lSACC82, 
SACC83, SACC861 and the query locality set 
model [CHOUSS], which rely on buffering 

Proceedings of the 13th VLDB Conference, Brighton 1987 301 



models to predict the buffer size needed by a 
query before it is executed. These strategies are 
used to prevent thrashing in the buffer. 

The problem addressed in this paper is the 
modelling of the fault rate of a process repeat- 
edly accessing a relation through a clustered 
index. An index is called clustered when the 
data pages are physically ordered in the same 
order as the index entries. When this property 
does not hold, the in&x is called unclustered. 
Clustered indices are almost always used to clus- 
ter a relation over its primary key. For this rea- 
son, the present analysis assumes a unique 
clustered index (i.e. no duplication of index 
keys). A B+tree [BAYE72, COME791 index 
structure is assumed: however, the analysis can 
be easily extended to most other hierarchical 
in&x structures. 

Repeated access to an index (called 
reusul in [SACC86]) can arise in two 
cases: 

index 
basic 

(1) a join in which the indexed relation is inner: 
the relation is accessed through the index for 
each qualifying tuple in the outer relation; 

(2) several users randomly accessing the indexed 
relation: examples of this situation are bank 
teller and point-of-sale applications. 

The contributions of this paper are: 
(1) a modification of LRU replacement (ILRU) 
which improves the fault rate especially for 
small buffer sizes, under any distribution of page 
reference densities; 
(2) a strategy (OLRU) which is proved to be 
optimal under the assumption of a uniform refer- 
ence density for data pages. The effect of non- 
uniform distributions is discussed. 

This paper is organized as follows. In sec- 
tion 2 previous research is reviewed. In section 3 
optimality principles are discussed. Section 4 
shows the suboptimality of LRU, and introduces 
ILRU. Section 5 describes OLRU which is then 
proved to be optimal. OLRU and ILRU are com- 
pared in section 6; a discussion of non-uniform 
reference densities is given in section 7. 

2. PREVIOUS RESEARCH 

The fact that LRU replacement 
significantly reduces the number of faults for 
index reusal of B-tree structures has been known 
for some time [BAYE72, KNUT731. However, 
the effect of buffering has been ignored by most 
previous research, and the I/O cost of an index 

302 

access has been assumed to be equal to the 
number of levels in the index, including the data 
level. 

The first systematic model of buffered 
access is the hot set model [SACC82, SACC83, 
SACC86]. The hot set model is based on the 
empirical observation that the fault rate of a 
query as a function of the available buffer space 
is a stable curve, with a small number of discon- 
tinuities. The interval in which a discontinuity 
occurs is called an unstable interval. The left 
extremum of an unstable interval (i.e. the one 
corresponding to the smaller buffer size) is 
called a cold point, the right extremum is called 
a hot point. The fault rate inside an unstable 
interval is estimated by linear interpolation 
between the fault rate at the cold point, and the 
fault rate at the hot point. 

The optimal buffer size for a given query 
(called the query hot set size), is the largest hot 
point not exceeding the available buffer space. 
In the case in which the available buffer space 
falls within an unstable interval, the query hot 
set size is the available buffer space. This 
definition minimizes the number of faults of the 
query. 

Access to a unique clustered index was 
discussed in [SACC86]: estimation formulas 
linearly interpolate the behaviour of LRU from 
the buffer size at which the root of the index is 
guaranteed to be preserved in memory, to the 
point in which all the touched pages can be 
guaranteed to be kept in the buffer. This usually 
results in a gross overestimation of the fault rate 
of the query in the interpolated region. 

Although the hot set model was originally 
delined in terms of LRU replacement, it can be 
extended to most other replacement strategies, 
and even to the case in which each relation in 
the evaluation plan is independently managed 
[SACC861, as in the present paper. The latter 
case was studied in detail by Chou and Dewitt, 
in their query locality set model [CHOUSS]. 

3. PRINCIPLES OF OPTIMALITY FOR 
BUFFER MANAGEMENT 

Assume that a reference string S of length 
w referencing a set of pages @i} of cardinality 
P, and a buffer of b frames are given. When 
b 2 P, the buffer can contain all the pages to be 
referenced, so that no page needs replacement, 
and demand access is optimal. 

Proceedings of the 13th VLDB Conference, Brighton 1987 



When b < P, at least one page will need to 
be replaced. A general optimality principle for 
buffer management, called algorithm Bu, was 
found by Mattson et al. lMATT70] for virtual 
memory systems. Algorithm Bu replaces the 
page in the buffer with the maximum forward 
reference distance. That is, when a page must be 
replaced, the reference string is scanned from the 
current point to the end, and page pi in the 
buffer whose distance to the next reference is 
maximum is replaced (if pi is not referenced 
again, its forward distance is infinity). 

Algorithm Ba requires the detailed 
knowledge of the entire reference string, and 
consequently is not practically implementable. It 
represents a lower bound on the fault rate of a 
process. The independent reference model 
(IRM), proposed by Franaszek and Wagner 
lFRAN741, does not require such a detailed 
knowledge of the reference string: 

Let the reference string S rl, . . . ,ri, . . . , 
be a sequence of independent random variables 
with a given common stationary reference den- 
sity distribution @@i), . . . ,p(pp)} such that 
Pr[r,=pa = p&, for all j>l. The forward dis- 
tance to pi just after rj, d,@J, is therefore a EUI- 
dom variable with the stationary geometric dis- 
tribu tion 

Pr[dj@i)=k] = p@i) (l-&i))‘-‘, k1,2,... 

with mean values 1 / p(pi), i.e. the expected dis- 
tance between two consecutive references to pi 
(the interreference disrunce) is maximum in S. 

Given a buffer of b < P frames, the fol- 
lowing policy can be easily proved by induction 
to be optimal: 

(1) order the elements of @i} by decreasing 
reference densities p@J. Ties are arbi- 
trarily solved; 

(2) partition the ordered set @i} into two sub- 
sets: 
HI: (Pill5iltil) and LO: 
@;IblilP}. 

(3) allocate &l frames to the set HI, i.e. one 
frame for each page in HI; 

(4) allocate 1 frame to set LO; 

A reference to a page in HI causes no 
replacement; a reference to a page in LO causes 
the replacement of the page contained in the 
frame allocated to LO (no page reusal is possi- 
ble for any pi in LO). 

The independent reference model was ori- 
ginally formulated as a tool to obtain bounds on 
the deviations of replacement strategies from 
optimality in virtual memory systems, where 
reference densities are usually unknown. It will 
be shown in the following that, at least for 
hierarchical structures such as B+trees, the distri- 
bution of reference densities can be estimated 
under reasonable assumptions. Consequently, 
practically implementable strategies can be 
derived on this basis. 

The LRU policy is now interpreted in the 
present framework. LRU has no knowledge of 
reference densities, and tries to estimate them on 
the basis of past history. LRU orders pages by 
increasing distance from the last reference. The 
idea is that this order models the order among 
average interreference distances in the entire 
reference string. By capturing the pages with the 
lowest distance from the last reference, LRU 
tries to capture the pages with the lowest inter- 
reference distance, hence the pages with the 
highest reference density. 

4. INDEXED ACCESS 

4.1. Assumptions 
A unique clustered index is assumed. 

When the access to the indexed relation is per- 
formed within a join, the indexed relation is 
assumed to be inner. The outer relation is 
ignored in the following; in’ practice it will be 
characterized independently, and assigned an 
independent region of the buffer. This scenario 
also models the situation in which different users 
access the indexed relation. 

The quantity K (number of key values to 
be accessed in the indexed relation) is assumed 
to be known. This quantity is usually estimated 
by the query optimizer. Note that K = 1 equals 
to a selection operation on the indexed relation. 
Thus, selections can be seen as a &generate 
case of a join, and will not be explicitly con- 
sidered. 

The in&x is assumed to be stored as a 
hierarchical structure on L levels. Level 1 
corresponds to the root of the index; data records 
are all stored at level L. In order to locate a data 
record, a complete index tree traversal must be 
performed, from a page at the root level to a 
page at level L. 

Let Pi denote the number of pages at level 
i: it is assumed that Pi I Pi, for alI i < j. 

Proceedings of the 13th VLDB Conference, Brighton 1987 303 



Following a request for K data records, Ti pages 
out of Pi are accessed at each level i. Ti is 
estimated by Yao’s function lYA0771: 
TgzY(KJ’J. Approximations to Yao’s function 
can be found in [BERN81, WHAN83, IIBE851. 
P denotes in the following the total number of 
pages in the in&x (leaf level included), T 
denotes the total number of pages accessed. 

B+trees satisfy all the assumptions stated 
above, and the following discussion will focus 
on them. 

4.2. LRU access to B+trees 
The pattern of access is a traversal of the 

tree from the root level (lowes! level), consisting 
of a single page, down to the data level (highesf 
level): for each logical access to a data page, L 
logical page references are generated. 

Let p be the father page in the index of a 
set of sons s. In or&r to access a son Si in s, p 
must be accessed first the sum of the reference 
densities for s is equal to the reference density 
of p. This implies that the reference density of a 
son Si of p cannot exceed the reference density 
of p. Consequently it is always suboptimal to 
replace p, if any of its sons are still in the 
buffer. 

It turns out that LRU violates this pro- 
perty. Consider a reference to a data page. This 
causes L logical references to pages; at the end, 
the first L positions in LRU stack will be 
ordered by the inverse or&r of reference, with 
the data page being at the top, its father in the 
second position, and the root at the L-th position. 
Pages will be scheduled for replacement in this 
order: consequently when b < T, at least 1 
frame, and as many as L-l frames will be 
wasted In particular, the root is not kept in the 
buffer, unless b 2 L. 

This specific problem can be easily 
corrected by ILRU (“inverse” LRU), a modified 
LRU policy. When a page pij at level i is 
accessed it is not placed at the top of the LRU 
stack, but at the i-th position of the LRU stack: 
the root will be placed at position 1 (top of 
LRU), a data page at the L-th position. If the 
LRU stack has b c L elements, the currently 
referenced page at level i (i 1 b) is placed at 
level b. Pages to be replaced are always taken 
from the last element (b) of the LRU stack. 

ILRU simply reverses the order in which 
pages are scheduled for replacement, in such a 
way that sons are replaced before their fathers 

are. As a noteworthy consequence, a buffer 
b 2 2 is sufficient to keep the root in the buffer, 
thereby decreasing the total number of faults by 
K. 

ILRU is guaranteed to be always no worse 
than LRU, since no wasted frames occur. For 
higher levels of the tree, the advantages of ILRU 
over LRU tend to decrease. When b 2 T, the two 
policies are obviously equivalent. 

5. OPTIMAL REPLACEMENT 
Although ILRU gives an improvement 

over standard LRU replacement, it is not neces- 
sarily optimal under the independent reference 
model. Optimal buffer allocation under IRM is 
now discussed. A uniform reference density for 
leaf (i.e. data) pages is initially assumed. 

The current assumptions imply that the 
reference density for any page pii at level j is 
uniform, and it is equal to 

Phi) = & = 
J 

LY(.: p,) 
’ J 

The number of pages at level j is by definition 
no smaller than the number of pages at level i 
(i c j). For B+trees it is given by Pj = Fbl 
where F is the index fanout. By the definition of 
Yao’s function, 

Ti = Y(KJJ I Tr+l = Y(K,Pi+l) 

Consequently, the set (pij 1 1 I j I L, 1 5 i S Ti} 
of pages or&red by decreasing reference densi- 
ties is obtained by ordering all the touched pages 
by level (with pages within a level being arbi- 
trarily ordered). 

The optimal strategy (OLRU) follows. 
The addressing space is logically partitioned into 
L independent regions, each managed by a local 
LRU chain, in such a way that region j contains 
pages from the j-th level in the index. The size 
of region j is Ti pages. 

When b 2 T, all regions can be given a 
full allocation, and no replacement occurs. When 
b < T, they cannot. Buffer frames are allocated 
to a region i iff each region j (1 I j < i) has 
been allocated a number of frames equal to its 
size. If j < L, and the available buffer is b”Tj 
frames, j will be allocated no more than b’-1 
frames. Otherwise, q frames will be allocated 
to j. This means that, unless region L can be 
allocated at least one frame, one unallocated 
frame exists in the buffer. 

304 Proceedings of the 13th VLDB Conference, Brighton 1987 



Figure 1 - 
F=S 

Estimated faults per record access at different values of K. Index parameters: L=5, Ps=5oO, 

I 
I 25 58 75 100 125 15e 

buffer size 

Figure 2 - LRU vs. OLRU. Uniform reference density at leaf level. Access parameters: K=5000, L=3, 
P3=800, F= 100 

buffer size 

Proceedings of the 13th VLDB Conference, Brighton 1987 305 



In general, for a given buffer size the first 
regions will be allocated their size (these regions 
are called non-deficient), no more than one 
region will be allocated a number of frames 
smaller than its size (this region is called 
deficient). Some regions might not be allocated 
any frame. These regions are called cohalesced 
and they share the single free frame in the 
buffer: that is, all the cohalesced regions will be 
independently managed on the single unallocated 
frame. 

The following holds. Reusal of pages in 
non-deficient regions is total, reusal for deficient 
regions is partial, reusal for cohalesced regions 
is null. It is straightfonvard to show that, under 
the assumptions, this buffer allocation is indeed 
optimal, because frames will be allocated to 
pages according to their reference density. 

In the optimal strategy for the independent 
reference model, &scribed in section 3, buffer 
frames are assigned to specific pages. Under the 
current assumptions, the number of pages 
accessed at a given in&x level can be estimated, 
but the specific pages accessed are not known. 
OLRU therefore uses LRU replacement to 
manage pages. It is easy to show that the two 
strategies produce, under the current assump- 
tions, the same number of faults. 

LRU replacement for managing a level is 
not strictly necessary under the assumptions: a 
random replacement policy would perform 
equally well. LRU is chosen because, as dis- 
cussed before, it is an estimator of reference 
densities, and consequently tends to decrease the 
fault rate when densities for pages at a given 
level deviate from uniformity. LRU also dimin- 
ishes the effects of errors in the estimation of 
the number of accessed pages. 

The characterization of the fault curve is 
straightforward. The curve has L+l hot points 
and cold points: 

hp,, = cpo = 1, fuuffs(hpo) = KL 

hpi=cpi=iTj+ 1, lli<L 
H 

hpL = cpL = i q = T 
H 

fuultS(hpi) = i q + K(L-i), i > 0 
i=l 

Hot points occur in the presence of a local 
minimum, i.e. when a level becomes non- 
deficient. At hot point i, levels j (j<l) are non- 
deficient: consequently all touched pages Tj are 
in the buffer and no further accesses are 
required. All other levels j (j > i) are generally 
cohalesced (no reusal is possible). For hot point 
hpLl, only level L is cohalesced, and is there- 
fore deficient (with a single frame allocation): 
the probability of reusal is larger than 0, but it 
is, in practice, negligible. 

Between Cpi-1 and hpi the curve exhibits a 
discontinuity. Under the independent reference 
model, which assumes a maximum interreference 
distance given by the stationary geometric distri- 
bution, the fault curve is stable from Cpi-1 to 
hprl and the number of faults is equal to 
fUultS(cp;l). This estimate is a worst-case esti- 
mate, the best-case one being a fault curve 
stable between Cpi-t+l and hprl, with a number 
of faults equal tofaulfs(hp$ In general, the pro- 
bability of a page hit for region j may safely be 
assumed to be uniformly distributed: therefore 
the fault curve can be linearly interpolated 
between the cold point and the hot one. 

Note that when K I Ti, no reusal occurs at 
levels k 2 j, and by definition, Tk = Zj. Conse- 
quently, the fault curve is a constant for b>hpkI. 
Although hot points are defined (for convenience 
in the analysis) also for b>hpFl, it must be 
understood that the maximum hot point is, in 
this case, hpkl. In the limit case, K=l, the max- 
imum hot point is hpo. Figure 1 shows the fault 
rate in a specific case for different values of K. 

The number of faults at the hot points is 
independent of the reference density distribution. 
It is also independent of orders in the reference 
string. More skewed distributions (such as Zipf’s 
law [zIPF49]), or ordered reference strings tend 
to produce a best-case interpolation between a 
cold point and a hot point (as shown in figure 3). 

6. OLRU vs.LRU 
The improvement over an ILRU replace- 

ment strategy will be characterized under the 
current assumptions. This represents an underes- 
timate of the improvement over standard LRU 
replacement, because ILRU was shown to be 
never worse than LRU. ILRU tends to allocate 
frames vertically, i.e. depth-first by traversal 
stacks, rather than horizonmlly, i.e. breadth-first 
by levels.’ 

306 Proceedings of the 13th VLDB Conference, Brighton 1987 



In fact, when the reference density distri- 
bution for data pages is uniform and 6 2 L, the 
ILRU stack will tend to contain entire traversal 
stacks of length L-l (the root is locked in the 
buffer), up to the point in which Tz traversal 
stacks can be entirely contained in the buffer. 
From this point on, the first two levels are 
locked, and excess frames are used to contain 
entire L-2 traversal stacks, and so on. 

This characterization is a simplification of 
the real behaviour of ILRU because ILRU is 
sensitive to variations in the inter-reference dis- 
tance between pages at the same level. When 
the vertical law is disattended by ILRU, alloca- 
tion will suboptimally privilege higher levels of 
the tree. In fact, by construction, the distance in 
the ILRU stack between two pages at the same 
level i is no lower than L-i+l. If a page Ph,j in 
the buffer is rereferenced n times in sequence 
with different sons, the distance between ph,i and 
the other most recently used page at level i 
increases to n(L-i+l). This means that a page at 
level i can be replaced by a page at level j > i, 
which is suboptimal under the current assump- 
tions. 

6.1. Storage overhead 
The following analysis assumes, conserva- 

tively, that levels j, ll;i<i, have been optimally 
allocated, and considers the difference caused by 
a vertical allocation of the frames allocated by 
OLRU for the i-th level. Assume that reusal 
occurs at every level of the bee, and that the 
U~X is “bushy”, i.e. Tj = Pj = Fh’ for all levels i. 
The point at which level i is locked in memory 
occurs when 

hp’i = i Tj + Ti (L-i) 
i=l 

that is, Ti (L-i)-1 frames later than in OLRU. 
The fault rate at hp’i is slightly lower for ILRU 
because there is a probability of reusal for 
higher levels of the tree. If the fanout is fairly 
large (as it is usually for index pages) the two 
fault rates tend to the same value. Between hot 
points, the fault curve can be linearly interpo- 
lated although this tends to overestimate the 
actual behaviour. When the fanout F tends to 
infinity, the buffer overhead of ILRU with 
respect to OLRU tends to the limiting value 
(L-i), which decreases with increasing i’s, and is 
no lower than 100% when i CL. 

6.2. Fault rate overhead 

From the characterization above, it appears 
that ILRU can be significantly worse than 
OLRU, especially when the parameter K is such 
that no reusal is expected at the highest levels of 
the tree. In this case, keeping entire traversal 
stacks in the buffer is useless, since only the 
reusable prefix of the stack lowers the fault rate. 

The fault rate at hp, and hpL is obviously 
the same for the two strategies: consequently, 
their behaviour is identical for L=2. When L>2, 
the approximate overhead of ILRU with respect 
to OLRU is computed as follows, under the 
assumption of a large fanout F (usually verified 
in practice), and the assumption of K>>T. 
Assume that b=hpi for OLRU, i.e. levels 1 to i 
are non-deficient. Assume conservatively that 
with the same buffer size ILRU is able to lock 
levels 1 to i-l in the buffer. The vertical alloca- 
tion of the last Pi frames will be considered. 
Let t = Pi / (L-i+1 ) denote the number of traver- 
sal stacks which can be maintained. The over- 
head of ILRU with respect to OLRU is: 

Cpj + K(L-i-l) 
il 

When F is large, the ratio r / Pj tends to 0 for all 
j > i. The limit 

lipi = pII+ 
W--F’-‘) U-& 1 

z- 
w Fi-1 F1 + K(L-i) 

L-i+ 1 

is maximum when L-i is minimum. Since i < L, 
the maximum relative overhead occurs at hpLml 
and is approximately 50%. Being LRU no better 
than ILRU, the relative overhead of LRU 
exceeds this figure. 

In practice, most indices have no more 
than 5 levels. In this case the relative overhead 
is in the range 2550%. Figure 2 shows the 
behaviour of OLRU and LRU in a sample case. 

7. RELAXING THE ASSUMPTIONS 

It was shown that storage by levels is 
optimal under the assumption of a uniform dis- 
tribution of reference densities. Intuitively, the 
more the reference density distribution deviates 
from uniformity, the more a vertical allocation 
law becomes beneficial. 

Proceedings of the 13th VLDB Conference, Brighton 1987 307 



Let the pages accessed at level i be num- (3) horizontal allocation becomes increasingly 
bered by decreasing reference density, for all beneficial for lower (i.e. closer to the root) lev- 
levels i. According to the independent reference els of the tree, even when the randomic equali- 
model, optimality of storage by traversal stacks zation of the Zipfian distribution is ignored. 
arises when Thus, OLRU offers a good performance for the 

P@jj) I p@-IA), for all 1 I i < k (7.1) 
part of the index which-is most likely to be con- 
tained in the buffer. 

In this case, allocating storage to pj,i (i.e. hor- 
izontally) is worse than allocating storage to 
pklL (i.e. vertically). When equality holds, both 
allocation strategies are optimal. 

The Zipf s law distribution is commonly 
assumed to be the most skewed distribution 
encountered in practice: it will be assumed now 
as the reference density distribution for data 
records. In practice, a random assignment of 
records to pages can be assumed: this means that 
the reference distribution for data pages and 
lower levels of the tree progressively tends to 
uniformity, because of the equalizing effect of 
the random assignment. Such an equalization 
will be currently ignored, and it will be conser- 
vatively assumed in the following that the refer- 
ence density distribution is Zipfian for all the 
levels of the tree. 

The Zipfian reference probability for the 
j-th most accessed page at level i, p@ij), is 

P@j,i> = ’ 
L j II@-1) 

where H(n) is the n-th harmonic number, and F 
is the average fanout of the index. Disequality 
(7.1) can be written as: 

(i-1) H(p’) < j H(F’-‘) 

H(n) can be approximated by In n + y (where 
y = 0.577 is Euler’s constant). Consequently: 

i< (k-l)lnF+y ~ k-l 
(k-i) In F k-i 

This result implies that, under very skewed 
distributions: 

(1) a vertical law is beneficial only for very few 
traversal stacks. Consequently, a complete verti- 
cal allocation is optimal only under extreme 
deviations from uniformity, rarely if ever 
encountered in practice; 
(2) the number of traversal stacks to be main- 
tained is independent of the average fanout. 
Consequently, with the relatively high fanouts 
used in practice, the portion of the buffer to be 
vertically allocated is very small; 

Figure 3 shows the behaviour of OLRU 
and LRU in a sample case. The fault rate of the 
two strategies is very close, with OLRU being at 
its best with very small buffer sizes, and at its 
worst at hpLl as expected from the analysis. For 
be3 and b>lO, OLRU is beneficial (LRU over- 
head is 33% at b=2, and 17% at b=lS). The 
maximum OLRU overhead occurs at b=lO, and 
is 12%. 

8. CONCLUSIONS 

Two new buffer management strategies for 
the access to a unique clustered index were pro- 
posed. The first strategy, ILRU, was shown to 
provide an improvement over LRU under any 
reference density distribution. This improvement 
is relevant for relatively small buffer sizes. The 
second strategy, OLRU, is optimal, according to 
the independent reference model, when the refer- 
ence density distribution of data pages is uni- 
form. When compared to OLRU, ILRU shows a 
storage overhead larger than lOO%, and a fault 
overhead in the range 25% to 50%. Overheads 
for a standard LRU exceed these figures. 

The fault rate of OLRU at the analyzed 
hot points is independent of page reference dis- 
tributions. It is easy to show that, under the 
independent reference model, optimal policies 
for uniform distributions produce a higher (or no 
smaller) fault rate than optimal policies for any 
other distribution. Since OLRU is optimal under 
the uniform distribution assumption, it guaran- 
tees a lower bound on the maximum fault rate, 
and consequently a maximum lower bound on 
the system throughput. 

When reference distributions severely 
deviate from uniformity, ILRU tends to become 
more efficient than OLRU. Preliminary results 
indicate that in these cases the fault rate of the 
two strategies is very close. It can be argued, on 
the basis of the analysis reported in section 7, 
that a strategy which initially allocates buffer 
frames to a limited number of traversal stacks, 
and subsequently resorts to OLRU, might pro- 
vide a better overall performance under different 
reference distribution. 

308 Proceedings of the 13th VLDB Conference, Brighton 1987 



Both OLRU and ILRU can be used in connection 
with hot set or query locality set management. 

Research on other types of access, includ- 
ing sequential scans, access by sorted relations, 
non-unique indices, and unclustered indices, is 
currently under way. Preliminary results indicate 
that optimal strategies for sequential scans and 
ordered access can be derived under very general 
assumptions. For unclustered indices, LRU 
appears to be the best choice since the bottleneck 
is given by the access to data pages, and index 
access costs play a secondary role. 

1. REFERENCES 
[BAYE72] Bayer, R., McCreight, C., “Organiza- 
tion and maintenance of large ordered indexes”, 
Acta If., I, 3, 1972, 173-189 
[BERN811 Bernstein, P.A, et al., “Query process- 
ing in a system for distributed databases (SDD- 
l)“, ACM Trans. Database Syst., 6, 4, Dec. 1981, 
602-625 
[CHOUSS] Chou, H.T, Dewitt, D.J., “An evalua- 
tion of buffer management strategies for rela- 
tional database systems”, Proc. 11th Conf. on 
Very Large Data Bases, Stockholm, 1985 . 
[COME791 Comer, D., “The ubiquitous B-tree”, 
ACM Comp. SW-V., II, 2, 1979, 105-120 
[EFFE84] Effelsberg, W., Harder, T., “Principles 
of database buffer management”, ACM Trans. 
Database Syst., 9, 4, Dec. 1984, 560-595 
[FRAN741 Franaszek, P.A., Wagner, TJ, “Some 
distribution-free aspects of paging algorithm per- 
formance”, ACM Journ., 21, 1, Jan. 1974, 31-39 

[KNUT73] Knuth, D.E., “The art of computer 
programming - Volume 3: Sorting and search- 
ing”, Addison-Wesley, 1973 
[IJBE851 Ijbema, A., Blanken, H., “Estimating 
bucket accesses: a practical approach”, Proc. 2nd 
IEEE Con) on Data Engineering, 1985 
[MATT70] Mattson, R.L., et al., “Evaluation 
techniques for storage hierarchies”, IBM Syst. J. 
9, 2, 1970, 78-117 
[SACC82] Sacco, G.M., Schkolnick, M., “A tech- 
nique for managing the buffer pool in a relational 
system using the hot set model”, Proc. 8th Co@ 
on Very Large Data Bases’:, Mexico City, 1982 
[SACC83] Sacco, G.M., Schkolnick, M., 
“Thrashing reduction in demand accessing of a 
data base through an LRU paging buffer pool”, 
US patent 4.422.145, Dec. 1983 
[SACC86] Sacco, G.M., Schkolnick, M., “Buffer 
management in relational database systems”, 
ACM Trans. Database Syst., 11,4, Dec. 1986 
lWHAN83] Whang, K., et al., “Estimating block 
accesses in database organizations: a close noni- 
terative formula”, Comm. of the ACM 26, 11, 
Nov. 1983, 940-944 
[YAO77] Yao, S.B., “Approximating block 
accesses to database organizations”, Comm. of the 
ACM 20,, 1977,260-261 
[ZIPF49] Zipf, G.K., “Human behaviour and the 
principle of least effort: an introduction to 
human ecology”, Addison-Wesley, 1949 

Figure 3 - LRU vs. OLRU. Zipf’s reference density at data record level. Random assignment 
records to pages. Access parameters: K=5000, L=3, P3=800, Fi=lOO (1 I i <3), F3=2. ___- .---- 

of data 

buffer size 

Proceedings of the 13th VLDB Conference, Brighton 1987 309 


