
Ti3EDESIGNOFTHEPOSTGRESSTORAGESYSTEX

Abstract
This paper presents the design of the storage

system for the POSTGRES data base system under
construction at Berkeley. It is novel in several
ways. First, the storage manager supports tran-
saction management but does so without using a
conventional write ahead log (WAL). In fact, there
is no code to run at recovery time, and conse-
quently recovery from crashes is essentially
instantaneous. Second, the storage manager
allows a user to optionally keep the entire past
history of data base objects by closely integrating
an archival storage system to which historical
records are spooled. Lastly, the storage manager
is consciously constructed as a collection of asyn-
chronous processes. Hence, a large mnolithic
body of code is avoided and opportunities for
parallelism can be exploited. The paper concludes
with a analysis of the storage system which sug-
gests that it is performance competitive with WAL
systems in many situations.

1. INTRODUCTION
The POSTGRES storage manager is the collec-

tion of modules that provide transaction manage-
ment and access to data base objects. The design
of these modules was guided by three goals which
are discussed in turn below. The Arst goal was to
provide transaction management without the
necessity of writing a large amount of specialized
crash recovery code. Such code is hard to debug,
hard to write and must be error free. If it fails on
an important client of the data manager, front
page news is often the result because the client

. cannot access his data base and his business will
be adversely affected. To achieve this goal,
POSTGRES has adopted a novel storage system in
which no data is ever overwritten; rather all

This research was sponsored by the Navy Electron-
ics Systems Comman d under contract N00039-34-G
0039.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spc
cisl permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

updates are turned into insertions.
The second goal of the storage manager is to

accomodate the historical state of the data base
on a write-once-read-many (WORM) optical diek (or
other archival medium) in addition to the current
state on an ordinary magnetic disk. Consequently,
we have designed an asynchronous process, called
the vacuum cleaner which moves archival records
off magnetic disk and onto an archival storage syx-
tern

The third goal of the storage system is to take
advantage of specialized hardware. In particular,
we assume the existence of non-volatile main
memory in some reasonable quantity. Such
memory can be provide through error correction
techniques and a battery-back-up scheme or from
some other hardware mans. In addition, we
expect to have a few low level machine instruc-
tions available for specialized uses to be presently
explained. We also assun~ that architectures with
several processors will become increasingly popu-
lar. In such an environment, there is an oppor
tunity to apply multiple processors to running the
DBMS where currently only one is utilized. This
requires the POSTGRES DBMS to be changed from
the monolithic single-flow-of-control architectures
that are prevalent today to one where there are
many asynchronous processes concurrently per-
forming DBMS functions. Processors with this
flavor include the Sequent Balance System
[SEQU85], the FIREFLY, and SPUR [HILL&].

The remainder of this paper is organized as
follows. In the next section we present the design
of our magnetic disk storage system Then, in Sec-
tion 3 we present the structure and concepts
behind our archival system Section 4 continues
with some thoughts on efficient indexes for
archival storage. Lastly, Section 5 presents a per-
formance comparison between our system and
that of a conventional storage system with a
write-ahead log (WAL) [GRAY78].

2. THE MAGNETIC DISKSYSTEM

2.1. The Transaction Sptem
Disk records are changed by data base tren-

aactions, each of which is given a unique tranaae
tion identifier (XID). ?CfDs are 40 bit unsigned
integers that are sequentially assigned startii at
1. At 100 transactions per second (TPS),
POSTGRES has sufBcient XlDs for about 320 years
of operation. In addition, the remaining 8 bits of a
composite 48 bit interaction identiier (IID) is a
command identtier (CID) for each command

,289

wlthin a transaction. Consequently, a transaction
is limited to executing at most 256 commands.

In addition there is a transaction log which
contains 2 bits per transaction indicating its
status as:

committed
aborted
in progress

A transaction is started by advancing a counter
containing the first unassigned XILI and using the
current contents as a XIB. The coding of the log
has a default value for a transaction as “in pro-
gress” so no specific change to the log need be
made at the start of a transaction. A transaction
is committed by changing its status in the log
from “in progress” to “committed” and placing
the appropriate disk block of the log in stable
storage. Moreover, any data pages that were
changed on behalf of the transaction must also be
placed in stable storage. These pages can either
be forced to disk or moved to stable main memory
if any is available. Siiarly, a transaction is
aborted by changing its status from “in progress”
to “aborted”.

The tail of the log is that portion of the log
from the oldest active transaction up to the
present. The body of the log is the remainder of
the log and transactions in this portion cannot be
“in progress” so only 1 bit need be allocated. The
body of the log occupies a POSTGRES relation for
which a special access method has been built.
This access method places the status of 65536
transactions on each POSTGRES 8K disk block. At
1 transaction per second, the body increases in
size at a rate of 4 Mbytes per year. Consequently,
for light applications, the log for the entire history
of operation is not a large object and can At in a
sizeable buffer pool. Under normal circumstances
several megabytes of memory will be used for this
purpose and the status of all historical transac-
tions can be readily found without requiring a disk
read.

In heavier applications where the body of the
log will not flt in main memory, POSTGRES applies
an optional compression technique. Since most
transactiom%commit, the body of the log contains
almost all “commit” bits. Hence, POSTGRES has
an optional bloom Alter [SEVR76] for the aborted
transactions. This tactic compresses the buffer
space needed for the log by about a factor of 10.
Hence, the bloom Alter for heavy applications
should be accomodatable in main memory. Again
the run-time system need not read a disk block to
ascertain the status of any transaction. The
details of the bloom Alter design are presented in
[STON66].

The tail of the log is a small data structure. If
the oldest transaction started one day ago, then
there are about 66,400 transactions in the tail for
each 1 transaction per second processed. At 2 bits
per entry, the tail requires 21,600 bytes per tran-
saction per second. Hence, it is reasonable to put

290

the tail of the log in stable main memory since
this wlll save the pages containing the tail of the
log from being forced to disk many times in quick
succession as transactions with similar transac-
tion identiflers commit.

2.2. Relation Storage
When a relation is created, a Ale is allocated

to hold the records of that relation. Such records
have no prescribed maximum length, so the
storage manager is prepared to process records
which cross disk block boundaries. It does so by
allocating continuation records and chaining them
together with a linked list. Moreover, the order of
writing of the disk blocks of extra long records
must be carefully controlled. The details of this
support for multiblock records are straightfor-
ward, and we do not discuss them further in this
paper. Initially, POSTGRES is using conventional
Ales provided by the UNIX operating system how-
ever, we may reassess this decision when the
entire system is operational. If space in a file is
exhausted, POSTGRES extends the Ale by some
multiple of the 6K page size.

If a user wishes the records in a relation to be
approximately clustered on the value of a desig-
nated field, he must declare his intention by indi-
cating the appropriate fleld in the following corn
mand

cluster rel-name on {(Aeld-name using
operator) 1

POSTGRES will attempt to keep the records
approximately in sort order on the Aeld name(s)
indicated using the specified operator(s) to detie
the linear ordering. This will allow clustering
secondary indexes to be created as in [ASTR76].

Each disk record has a bit mask indicating
which Aelds are non-null, and only these flelds are
actually stored. In addition, because the magnetic
disk storage system is fundamentally a versioning
svstem each record contains an additional 6
Aklds:

OID

lhin

Tmin

Chill

2hIlEiX

Tmax

cmax

PTR

a system-assigned unique record
identifier
the transaction identifier of the
interaction inserting the record
the commit time of Xmin (the time at
which the record became valid)
the comman d identifler of the
interaction inserting the record
the transaction identifier of the
interaction deleting the record
the commit time of Xmax (the time at
which the record stopped being valid)
the comman d identifier of the
interaction deleting the record
a forward pointer

When a record is inserted it is assigned a unique
OID, and Xmin and Cmin are set to the identity of
the current interaction. the remaining flve Aelds
are left blank. When a record is updated, two
operations take place. First, Xmax and Cmax are

Proceedings of the 13th VLDB Conference, Brighton 1987

set to the identity of the current interaction in
the record being replaced to indicate that it is no
longer valid. Second, a new record is inserted into
the data base with the proposed replacement
values for the data fields. Moreover, OID is set to
the OID of the record being replaced, and Xmin
and Cmin are set to the identity of the current
interaction. When a record is deleted, Xmax and
Cmax are set to the identity of the current
interaction in the record to be deleted.

When a record is updated, the new version
usually differs from the old version in only a few
flelds. In order to avoid the space cost of a com-
plete new record, the following compression tech-
nique has been adopted. The initial record is
stored uncompressed and called the anchor point..
Then, the updated record is differenced against
the anchor point and only the actual changes are
stored. Moreover, PTR is altered on the anchor
point to point to the updated record, which is
called a delta record. Successive updates gen-
erate a one-way linked list of delta records off an
initial anchor point. Hopefully most delta record
are on the same operating system page as the
anchor point since they will typically be small
objects.

It is the expectation that POSTGRES would be
used as a local data manager in a distributed data
base system Such a distributed system would be
expected to maintain multiple copies of all impor-
tant POSTGRES objects. Recovery from hard
crashes, i.e. one for which the disk cannot be read,
would occur by switching to some other copy of
the object. In a non-distributed system POSTGRES
will allow a user to specify that he wishes a second
copy of specific objects with the command:

mirror rel-name
Some operating systems (e.g. VMS [DEC86] and
Tandem [BARTSl]) already support mirrored Ales,
so special DBMS code will not be necessary in
these environments. Hopefully, mirrored Ales will
become a standard operating systems service in
most environments in the future.

2.3. Time Management
The POSTGRES query language, POSTQUEL

allows a user to request the salary of Mike using
the following syntax.

retrieve (EMP.salary) where
EMPname = “Mike”

To support access to historical tuples, the query
language is extended as follows:

retrieve (EMP.salary) using EMP[T]
where EMP.name = “Mike”

The scope of this command is the EMP relation as
of a specific time, T, and Mike’s salary will be
found as of that time. A variety of formats for T
will be allowed, and a conversion routine will be
called to convert times to the 32 bit unsigned
integers used internally. POSTGRES constructs a
query plan to And qualifying records in the normal

fashion. However, each accessed tuple must be
additionally checked for validity at the time
desired in the user’s query. In general, a record is
valid at time T if the following is true:

Tmin < T and Xmin is a committed
transaction and either:

Xmax is not a committed transaction or
2Gnax is null or
Tmax>T

In fact, to allow a user to read uncommitted
records that were written by a difTerent command
within his transaction, the actual test for validity
is the following more complex condition.

Xmin = my-transaction and Cmin !=
my-command and T = “now”

TminO<r T and Xmin is a committed
transaction and either:

(Xmax is not a committed transaction and
Xnax != my-transaction) or
(Xmax = my-transaction and Cmax =
my-command) or
Xmax is null or
Tmax>Tor

If T is not specified, then T = “now” is the default
value, and a record is valid at time, “now” if

Xmin = my- transaction and Cmin ! =
my-command

Xmir% a committed transaction and either
(Xmax is not a committed transaction and
Xmax != my-transaction) or
(xmax = my-transaction and Cmax =
my-command) or
Xmaxisnull

More generally, Mike’s salary history over a
range of times can be retrieved by:

retrieve (EMP.Tmin, EMP.Tmax, EMP.salary)
using EMP[Tl,T2] where EMP.name = “Mike”

This co mmand will find all salaries for Mike along
with their starting and ending times as long as the
salary is valid at some point in the interval, [Tl,
T2]. In general, a record is valid in the interval
[Tl,T2] if:

2Cmin = my-transaction and Cmin !=
my-command and T2 >= “now”

Tmin? T2 and Xmin is a committed
transaction and either:

(2Gnax is not a committed transaction and
Xnax != my-transaction) or
(xmax= my-transaction and Cmax =
my-command) or
Xmax is null or
Tmax > Tl

Either Tl or T2 can be omitted and the defaults
are respectively Tl =OandT2=+inflnity

Special programs (such as debuggers) may
want to be able to access uncommitted records.
To facilitate such access, we define a second

Proceedings of the 13th VLDB Conference, Brighton 1987 291

specification for each relation, for example:
retrieve (EMP.salary) using all-EAJP[T] where
EMPname = “Mike”

An EMP record is in all-EMP at time T if
Tmin<Tand(Tmax>TorTmax=null)

Intuitively, all-EMP[T] is the set of all tuples com-
mitted, aborted or in-progress at time T.

Each accessed magnetic disk record must
have ‘one of the above tests performed. Although
each test is potentially CPU and I/O intensive, we
arq not overly concerned with CPU resources
because we do not expect the CPU to be a
significant bottleneck in next generation systems.
This point is discussed further in Section 5. More-
over, the CPU portion of these tests can be easily
committed to custom logic or microcode or even a
co-processor if it becomes a bottleneck.

There will be little or no I/O associated with
accessing the status of an transaction, since we
expect the transaction log or its associated bloom r
filter) to be in main menxuy. We turn in the next
subsection to avoiding I/.0 when evaluating the
remainder of the above predicates.

2.4. Con currency Control and Timestamp
Management

It would be natural to assign a timestamp to a
transaction at the time it is started and then All
in the timestamp field of each record as it is
updated by the transaction. Unfortunately, this
would require POSTGRES to process transactions
logically in timestamp order to avoid anomalous
behavior. This is equivalent to requiring
POSTGRES to use a concurrency control scheme
based on timestamp ordering (e.g. [BERNBO].
Since simulation results have shown the superior-
ity of conventional locking [AGRA85], POSTGRES
uses instead a standard two-phase locking policy
which is implemented by a conventional main
menrory lock table.

Therefore, Tmin and Tmax must be set to the
commit time of each transaction (which is the
time at which updates logically take place) in
order to avoid anomolous behavior. Since the corn
mit time of a transaction is not known in advance,
Tmin and Tmax cannot be assigned values at the
time that a record is written.

We use the following technique to All in these
flelds asynchronously. POSTGRES contains a TIME
relation in which the commit time of each tran-
saction is stored. Since timestamps are 32 bit
unsigned integers, byte positions 4*j through 4*j +
3 are reserved for the commit time of transaction
j. At the time a transaction commits, it reads the
current clock time and stores it in the appropriate
slot of TIME. The tail of the TIME relation can be
stored in stable main memory to avoid the I/O
that this update would otherwise entail.

Moreover, each relation in a POSTGRES data
base is tagged at the time it is created with one of
the following three designations:

no archive: This indicates that no historical
access to relations is required.

light archive: This indicates that an archive is
desired but little access to it is expected.

heavy archive: This indicates that heavy use will
be made of the archive.

For relations with “no archive” status, Tmin and
Tmax are never filled in, since access to historical
tuples is never required. For such relations, only
POSTQUEL comman ds specified for T = “now” can
be processed. The validity check for T = “now”
requires access only to the POSTGRES LOG relation
which should be contained in the buffer pool.
Hence, the test consumes no I/O resources.

If “light archive” is specified, then access to
historical tuples is allowed. Whenever Tmin or
Tmax must be compared to some specific value,
the commit time of the appropriate transaction is
retrieved from the TIME relation to make the corn
parison. Access to historical records will be
slowed in the “light archive” situation by this
requirement to perform an I/O to the TIME rela-
tion for each timestamp value required. This over-
head will only be tolerable if archival records are
accessed a very small number of times in their
lifetime (about 2-3).

In the “heavy archive” condition, the run
time system must look up the commit time of a
transaction as in the “light archive” case. How-
ever, it then writes the value found into Tmin or
Tmax, thereby turning the read of a historical
record into a write. Any subsequent accesses to
the record will then be validatable without the
extra access to the TIME relation. Hence, the first
access to an archive record will be costly in the
“heavy archive” case, but subsequent ones will will
incur no extra overhead.

In addition, we expect to explore the utility of
running another system demon in background to
asynchronously All in timestamps for “heavy
archive” relations.

2.5. Record Access
Records can be accessed by a sequential scan

of a relation. In this case, pages of the appropri-
ate file are read in a POSTGRES determined order.
Each page contains a pointer to the next and the
previous logical page; hence POSTGRES can scan a
relation by following the forward linked list. The
reverse pointers are required because POSTGRES
can execute query plans either forward or back-
ward. Additionally, on each page there is a line
table as in [STON76] containing pointers to the
starting byte of each anchor point record on that
Page.

Once an anchor point is located, the delta
records linked to it can be constructed by follow-
ing PTR and decompressing the data fields.
Although decompression is a CPU intensive task,
we feel that CPU resources will not be a bottleneck

292 Proceedings of the 13th VLDB Conference, Brighton 1987

in future computers as noted earlier. Also,
compression and decompression of records is a
task easily committed to microcode or a separate
co-processor.

An arbitrary number of secondary indexes can
be constructed for any base relation. Each index is
maintained by an access method. and provides
keyed access on a field or a collection of fields.
Each access method must provide all the pro-
cedures for the POSTGRES defined abstraction for
access methods. These include get-record-by-key,
insert-record, delete-record, etc. The POSTGRES
run time system will call the various routines of
the appropriate access method when needed dur-
ing query processing.

Each access method supports efficient access
for a collection of operators as noted in
[STON86a]. For example, B-trees can provide fast
access for any of the operators:

[=, <=, <, >, >=i
Since each access method may be required to work
for various data types, the collection of operators
that an access methods will use for a specific data
type must be registered as an operator class.
Consequently, the syntax for index creation is:

index on rel-name is index-name
({key-i with operator-class-if)
using access-method-name and
performance-parameters

The performance-parameters specify the fill-factor
to be used when loading the pages of the index,
and the minimum and maximum number of pages
to allocate. The following example specifies a B-
tree index on a combined key consisting of an
integer and a floating point number.

index on EMP is EMP-INDEX (age with
integer-ops, salary with float-ops)
using B-tree and All-factor = .8

The run-time system handles secondary
indexes in a somewhat unusual way. When a
record is inserted, an anchor point is constructed
for the record along with index entries for each
secondary index. Each index record contains a
key(s) plus a pointer to an entry in the line table
on the page where the indexed record resides. This
line table entry in turn points to the byte-offset of
the actual record. This single level of indirection
allows anchor points to be moved on a data page
without requiring maintenance of secondary
indexes.

When an existing record is updated, a delta
record is constructed and chained onto the
appropriate anchor record. If no indexed fleld has
been modified, then no maintenance of secondary
indexes is required. If an indexed field changed,
then an entry is added to the appropriate index
containing the new key(s) and a pointer to the
anchor record. There are no pointers in secondary
indexes directly to delta records. Consequently, a
delta record can only be accessed by obtaining its
corresponding anchor point and chaining forward.

Proceedings of the 13th VLDB Conference, Brighton 1987

The POSTGRES query optimizer constructs
plans which may specify scanning portions of vari-
ous secondary indexes. The run time code to sup-
port this function is relatively conventional except
for the fact that each secondary index entry
points to an anchor point and a chain of delta
records, all of which must be inspected. Valid
records that actually match the key in the index
are then returned to higher level software.

Use of this technique guarantees that record
updates only generate I/O activity in those secon-
dary indexes whose keys change. Since updates to
keyed fields are relatively uncommon, this ensures
that few insertions must be performed in the
secondary indexes.

Some secondary indexes which are hierarchi-
cal in nature require disk pages to be placed in
stable storage in a particular order (e.g. from leaf
to root for page splits in B+-trees). POSTGRES will
provide a low level command

order block- 1 block-2
to support such required orderings. This corn
mand is in addition to the required pin and unpin
commands to the buffer manager.

3. THEi ARcHlvALsYsrEM

3.1. Vacuuming the Disk
An asynchronous demon is responsible for

sweeping records which are no longer valid to the
archive. This demon, called the vacuum cleaner,
is given instructions using the following command:

vacuum rel-name after T
Here T is a time relative to “now”. For example,
the following vacuum comman d specifies vacuum-
ing records over 30 days old:

vacuum EMP after “30 days”
The vacuum cleaner Ands candidate records for
archiving which satisfy one of the following condi-
tions:

Xmax is non empty and is a committed
transaction and “now” - Tmax >= T
?Gnax is non empty and is an aborted
transaction
Xmin is non empty and is an aborted
transaction

In the second and third cases, the vacuum cleaner
simply reclaims the space occupied by such
records. In the first case, a record must be copied
to the archive unless “no-archive” status is set for
this relation. Additionally, if “heavy-archive” is
specified, Tmin and Tmax must be Wed in by the
vacuum cleaner during archiving if they have not
already been given values during a previous
access. Moreover, if an anchor point and several
delta records can be swept together, the vacuum
ing process will be more efficient. Hence, the
vacuum cleaner wilI generally sweep a chain of
several records to the archive at one time.

293

This sweeping must be done very carefully so
that no data is irrecoverably lost. First we discuss
the format of the archival medium then we turn
to the sweeping algorithm and a discussion of its
cost.

3.2. TheArchivalYedium
The archival storage system is compatible

with WORM devices, but is not restricted to such
systems. We are building a conventional extent-
based Ale system on the archive, and each relation
is allocated to a single Ale. Space is allocated in
large extents and the next one is allocated when
the current one is exhausted. The space alloca-
tion map for the archive is kept in a magnetic disk
relation. Hence, it is possible, albeit very costly, to
sequentially scan the historical version of a rela-
tion.

Moreover, there are an arbitrary number of
secondary indexes for each relation in the archive.
Since historical accessing patterns may be
different than accessing patterns for current data,
we do not restrict the archive indexes to be the
same as those for the magnetic disk data base.
Hence, archive indexes must be explicitly created
using the following extension of the indexing corn
mand:

index on farchivej rel-name is index-name
(Ikey-i with operatol-class-ii)
using access-method-name and
performance-parameters

Indexes for archive relations are normally stored
on magnetic disk. However, since they may
become very large, we will discuss mechanisms in
the next section to support archive indexes that
are partly on the archive medium

The anchor point and a collection of delta
records are concatenated and written to the
archive as a single variable length record. Again
secondary index records must be inserted for any
indexes deflned for the archive relation. An index
record is generated for the anchor point for each
archive secondary index. Moreover, an index
record must be constructed for each delta record
in which a secondary key has been changed.

Since the access paths to the portion of a
relation on the archive may be different than the
access paths to the portion on magnetic disk, the
query optimizer must generate two plans for any
query that requests historical data. Of course,
these plans can be executed in parallel if multiple
processors are available. In addition, we are
studying the decomposition of each of these two
query plans into additional parallel pieces. A
report on this subject is in preparation [BHlDfY?].

3.3. TheVacuumProcess
Vacuuming is done in three phases, namely:

phase 1: write an archive record and its
associated index records

phase 2: write a new anchor point in the
current data base

294

phase 3: reclaim the space occupied by the
old anchor point and its delta
records

If a crash occurs while the vacuum cleaner is writ-
ing the historical record in phase 1, then the data
still exists in the magnetic disk data base and will
be revacuumed again at some later time. If the
historical record has been written but not the
associated indexes, then the archive will have a
record which is reachable only through a sequen-
tial scan. If a crash occurs after some index
records have been written, then it will be possible
for the same record to be accessed in a magnetic
disk relation and in an archive relation. In either
case, the duplicate record will consume system
resources; however, there are no other adverse
consequences because POSTGRES is a relational
system and removes duplicate records during pro-
cessing.

When the record is safely stored on the
archive and indexed appropriately, the second
phase of vacuuming can occur. This phase entails
computing a new anchor point for the magnetic
disk relation and adding new index records for it.
This anchor point is found by starting at the old
anchor point and calculating the value of the last
delta that satisfies

“now” -Tmax>=T
by moving forward through the linked list. The
appropriate values are inserted into the magnetic
disk relation, and index records are inserted into
all appropriate index. When this phase is corn
plete, the new anchor point record is accessible
directly from secondary indexes as well as by
chaining forward from the old anchor point.
Again, if there is a crash during this phase a
record may be accessible twice in some future
queries, resulting in additional overhead but no
other consequences.

The last phase of the vacuum process is to
remove the original anchor point followed by all
delta records and then to delete all index records
that pointed to this deleted anchor point. If there
is a crash during this phase, index records may
exist that do not point to a correct data record.
Since the run-time system must already check
that data records are valid and have the key that
the appropriate index record expects them to
have, this situation can be checked using the same
mechanism

Whenever there is a failure, the vacuum
cleaner is simply restarted after the failure is
repaired. It will re-vacuum any record that was in
progress at some later time. If the crash occurred
during phase 3, the vacuum cleaner could be
smart enough to realize that the record was
already safely vacuumed. However, the cost of
this checking is probably not worthwhile. Conse-
quently, failures will result in a slow accumulation
of extra records in the archive. We are depending
on crashes to be infrequent enough that this is
not a serious concern.

Proceedings of the -13th VLDB Conference, Brighton 1987

We now turn to the cost of the vacuum
cleaner.

3.4. Vacuuming Cost
We examine two different vacuuming situa-

tions. In the Arst case we assume that a record is
inserted, updated K times and then deleted. The
whole chain of records from insertion to deletion
is vacuumed at once. In the second case, we
assume that the vacuum is run after K updates,
and a new anchor record must be inserted. In
both cases, we assume that there are Z secondary
indexes for both the archive and magnetic disk
relation, that no key changes are made during
these K updates, and that an anchor point and all
its delta records reside on the same page. Table 1
indicates the vacuum cost for each case. Notice
that vacuuming consumes a constant cost. This
rather surprising conclusion reflects the fact that
a new anchor record can be inserted on the same
page from which the old anchor point is being
deleted without requiring the page to be forced to
stable memory in between the operations. More-
over, the new index records can be inserted on the
same page from which the previous entries are
deleted without an intervening I/O. Hence, the
cost PER RECORD of the vacuum cleaner decreases
as the length of the chain, K, increases. As long as
an anchor point and several delta records are
vacuumed together, the cost should be marginal.

4. INDEXINGTHEARCHIVE

4.1. Magnetic Disk Indexes
The archive can be indexed by conventional

magnetic disk indexes. For example, one could
construct a salary index on the archive which
would be helpful in answering queries of the form:

retrieve (EMP.name) using EMP [,] where
EMP.salary = 10000

However, to provide fast access for queries which
restrict the historical scope of interest, e.g:

retrieve (EMPname) using EMP [1 /l/87,]
where EMPsalary = 10000

a standard salary index will not be of much use
because the index will return all historical salaries

whole chain K updates

archive-writes 1+z 1+z
disk-reads 1 1
disk-writes 1+z 1+z

I/O Counts for Vacuuming
Table 1

of the correct size whereas the query only
requested a small subset. Consequently, in addi-
tion to conventional indexes, we expect time-
oriented indexes to be especially useful for archive
relations. Hence, the two flelds, Tmin and Tmax,
are stored in the archive as a single field, I, of type
mt.ervaI. An R-tree access method [GUThi84] can
be constructed to provide an index on this interval
field. The operators for which an R-tree can pro-
vide fast access include “overlaps” and
“contained-in”. Hence, if these operators are writ-
ten for the interval data type, an R-tree can be
constructed for the EMP relation as follows:

index on archive EMP is EMP-INDEX (I with
interval-ops)
using R-tree and fill-factor = .8

This index can support fast access to the histori-
cal state of the EMP relation at any point in time
or during a particular period.

To utilize such indexes, the POSTGRES query
planner needs to be slightly modified. Note that
POSTGRES need only run a query on an archive
relation if the scope of the relation includes some
historical records, Hence, the query for an
archive relation must be of the form

. ..using EIvIP[T]
or

. ..using EMP[Tl,T2]
The planner converts the Arst construct into:

. ..where T contained-in EMP.1
and the second into:

. ..where interval(Tl,T2) overlaps EMP.1
Since all records in the archive are guaranteed to
be valid, these two qualifications can replace all
the low level code that checks for record validity
on the magnetic disk described in Section 2.3.
With this modification, the query optimizer can
use the added qualiflcation to provide a fast
access path through an interval index if one
exists.

Moreover, we expect combined indexes on the
interval Aeld along with some data value to be very
attractive, e.g:

index on archive EMP is EMP-INDEX
(I with interval-ops, salary with float-ops)
using R-tree and fill-factor = .8

Since an R-tree is a multidimensional index, the
above index supports intervals which exist in a two
dimensional space of time and salaries. A query
such as:

retrieve (EMPname) using EIvIP[Tl,T2] where
EMP.salary = 10000

will be turned into:
;$rive (EMP.name) where EMPsalary =

and interval(T 1 ,T2) overlaps
EMP.1

The two clauses of the qualification deAne another

295 Proceedings of the 13th VLDB Conference, Brighton 1987

interval in two dimensions and conventional R-
tree processing of the interval can be performed
to use both qualifications to advantage.

Although data records will be added to the
archive at the convenience of the vacuum cleaner,
records will be generally inserted in ascending
time order. Hence, the poor performance reported
in [ROUS85] for R-trees should be averted by the
nearly sorted order in which the records will be
inserted. Performance tests to ascertain this
speculation are planned. We now turn to a discus-
sion of R-tree indexes that are partly on both
magnetic and archival mediums.

4.2. CornbinedYediaIndexes
We begin with a small space calculation to

illustrate the need for indexes that use both
media. Suppose a relation exists with lo**6 tuples
and each tuple is modified 30 times during the
lifetime of the application. Suppose there are two
secondary indexes for both the archive and the
disk relation and updates never change the values
of key fields. Moreover, suppose vacuuming occurs
after the 5th delta record is written, so there are
an average of 3 delta records for each anchor
point. Assume that anchor points consume 200
bytes, delta records consume 40 bytes, and index
keys are 10 bytes long.

With these assumptions, the sizes in bytes of
each kind of object are indicated in Table 2.
Clearly, lo++6 records will consume 200 mbytes
while 3 x lo**6 delta records will require 120
mbytes. Each index record is assumed to require
a four byte pointer in addition to the 10 byte key;
hence each of the two indexes will take up 14
mbytes. There are 6 anchor point records on the
archive for each of the lo++6 records each con-
catenated with 4 delta records. Hence, archive
records will be 360 bytes long, and require 2160
mbytes. Lastly, there is an index record for each
of the archive anchor points; hence the archive
indexes are 6 times as large as the magnetic disk
indexes.

Two points are evident from Table 2. First,
the archive can become rather large. Hence, one
should vacuum infrequently to cut down on the

object mbytes

disk relation anchor points 200
deltas 120
secondary indexes 28
archive 2160
archive indexes 168

Sizes of the Various Objects
Table 2

number of anchor points that occur in the
archive. Moreover, it might be desirable to
differentially code the anchor points to save space.
The second point to notice is that the archive
indexes consume a large amount of space on mag-
netic disk. if the target relation had three indexes
instead of two, the archive indexes would consume
a greater amount of space than the magnetic disk
relation. Hence, we explore in this section data
structures that allow part of the index to migrate
to the archive. Although we could alternatively
consider index structures that are entirely on the
archive, such as those proposed in [VITT65], we
believe that combined media structures will sub-
stantially outperform structures restricted to the
archive. We plan performance comparisons to
demonstrate the validity of this hypothesis.

Consider an R-tree storage structure in which
each pointer in a non-leaf node of the R-tree is
distinguished to be either a magnetic disk page
pointer or an archive page pointer. If pointers are
32 bits, then we can use the high-order bit for this
purpose thereby allowing the remaining 31 bits to
specify 2**31 pages on magnetic disk or archive
storage. If pages are 8K bytes, then the maximum
size of an archive index is 2+*44 bytes (about 1.75
x lo**13 bytes), clearly adequate for almost any
application. Moreover, the leaf level pages of the
R-tree contain key values and pointers to associ-
ated data records. These data pointers can be 46
bytes long, thereby allowing the data Ale
corresponding to a single historical relation to be
2*+46 bytes long (about 3.0 x lo++14 bytes), again
adequate for most applications.

We assume that the archive may be a write-
once-read-many (WORM) device that allows pages
to be initially written but then does not allow any
overwrites of the page. With this assumption,
records can only be dynamically added to pages
that reside on magnetic disk. Table 3 suggests two
sensible strategies for the placement of new
records when they are not entirely contained
inside some R-tree index region corresponding to a
magnetic disk page.

Moreover, we assume that any page that
resides on the archive contains pointers that in
turn point only to pages on the archive. This
avoids having to contend with updating an archive
page which contains a pointer to a magnetic disk
page that splits.

Pages in an R-tree can be moved from mag-
netic disk to the archive as long as they contain
only archive page pointers. Once a page moves to
the archive, it becomes read only. A page can be
moved from the archive to the magnetic disk if its
parent page resides on magnetic disk. In this
case, the archive page previously inhabited by this
page becomes unusable. The utility of this reverse
migration seems limited, so we will not consider it
further.

We turn now to several page movement poli-
cies for migrating pages from magnetic disk to the

296 Proceedings of the 13th VLDB Conference, Brighton 1987

Pl allocate to the region which has to be

P2 expanded the least
allocate to the region whose maximum time
has to be expanded the least

Record Insertion Strategies
Table 3

archive and use the parameters indicated in Table
4 in the discussion to follow. The simplist policy
would be to construct a system demon to
“vacuum” the index by moving the leaf page to the
archive that has the smallest value for Tmax, the
left-hand end of its interval. This vacuuming
would occur whenever the R-tree structure
reached a threshold near its maximum size of F
disk pages. A second policy would be to choose a
worthy page to archive based both on its value of
Tmax and on percentage fullness of the page. In
either case, insertions would be made into the R-
tree index at the lower left-hand part of the index
while the demon would be archiving pages in the
lower right hand part of the index. Whenever an
intermediate R-tree node had descendents all on
the archive, it could in turn be archived by the
demon.

For example, if B is 6192 bytes, L is 50 bytes
and there is a flve year archive of updates at a fre-
quency, U of 1 update per second, then 1.4 x lo**6
index blocks will be required resulting in a four
level R-tree. F of these blocks will reside on mag-
netic disk and the remainder will be on the
archive. Any insertion or search will require at
least 4 accesses to one or the other storage
medium

A third movement policy with somewhat
different performance characteristics would be to
perform “batch movement”. In this case one
would build a magnetic disk R-tree until its size
was F blocks. Then, one would copy the all pages
of the R-tree except the root to the archive and
allocate a special “top node” on magnetic disk for
this root node. Then, one would proceed to All up

F number of magnetic disk blocks usable for
the index

U update frequency of the relation being
indexed

L record size in the index being constructed
B block size of magnetic disk pages

Parameters Controlling Page Movement
Table 4

a second complete R-tree of F-i pages. While the
second R-tree was being built, both this new R-
tree and the one on the archive would be searched
during any retrieval request. All inserts would, of
course, be directed to the magnetic disk R-tree.
When this second R-tree was full, it would be
copied to the archive as before and its root node
added to the existing top node. The combination
might cause the top node to overflow, and a con-
ventional R-tree split would be accomplished.
Consequently, the top node would become a con-
ventional R-tree of three nodes. The filling pro-
cess would start again on a 3rd R-tree of F-3
nodes. When this was full, it would be archived
and its root added to the lower left hand page of
the 3 node R-tree.

Over time, there would continue to be two R-
trees. The Arst would be completely on magnetic
disk and periodically archived. As long as the
height of this R-tree at the time it is archived is a
constant, H, then the second R-tree of height, Hl.
will have the bottom H-l levels on the archive.
Moreover, insertions into the magnetic disk por-
tion of this R-tree are always on the left-most
page. Hence, the pages along the left-side of the
tree are the only ones which will be modified;
other pages can be archived if they point entirely
to pages on the archive. Hence, some subcollec-
tion of the pages on the top Hl-H+l levels remain
on the magnetic disk. Insertions go always to the
first R-tree while searches go to both R-trees. Of
course, there are no deletions to be concerned
with.

Again if B is 6192 bytes, L is 50 bytes and F is
6000 blocks, then H will be 3 and each insert will
require 3 magnetic disk accesses. Moreover, at 1
update per second, a five year archive will require
a four level R-tree whose bottom two levels will be
on the archive and a subcollection of the top 2
levels of 100- 161 blocks will be on magnetic disk.
Hence, searches will require descending two R-
trees with a total depth of 7 levels and will be
about 40 percent slower than either of the single
R-tree structures proposed. On the other hand,
the very common operation of insertions will be
approximately 25 percent faster.

5. PERFOFUANCE COMPARISON

proceedings of the 13th VLDB Conference, Brighton 1987 297

5.1. Assumptions
In order to compare our storage system with a

conventional one based on write-ahead logging
(WAL), we make the following assumptions:

1) Portions of the buffer pool may reside in non-
volatile main memory

2) CPU instructions are not a critical resource,
and thereby only I/O operations are counted.

The second assumption requires some explanation.
Current CPU technology is driving down the cost
of a MIP at a rate of a factor of two every couple of
years. Hence, current low-end workstations have
a few MIPS of processing power. On the other
hand, disk technology is getting denser and
cheaper. However, disks are not getting faster at
a signif’lcant rate. Hence, one can still only expect
to read about 30 blocks per second off of a stan-
dard disk drive. Current implementations of data
base systems require several thousand instruc-
tions to fetch a page from the disk followed by
1000-3000 instructions per data record examined
on that page. As a simple figure of merit, assume
30000 instructions are required to process a disk
block. Hence, a 1 MIP CPU will approximately bal-
ance a single disk. Currently, workstations with
3-5 MIPS are available but are unlikely to be
configured with 3-5 disks. Moreover, future works-
tations (such as SPUR and FIREFLY) will have lo-
30 MIPS. Clearly, they will not have lo-30 disks
unless disk systems shift to large numbers of SCSI
oriented single platter disks and away from
current SMD disks.

update results in a single page write. Moreover, we
assume that each POSTGRES delta record can be
put on the same page as its anchor point. Next,
we assume that transactions are a single record
insertion, update, deletion or an aborted update.
Moreover, we assume there are two secondary
indexes on the relation affected and that updates
fail to alter either kev fleld. Lastly. we assume
that a write ahead log- will require 3 log records
(begin transaction, the data modification, and end
transaction), with a total length of 400 bytes.
Moreover, secondary index operations are not
logged and thereby the log records for 10 transac-
tions will At on a conventional 4K log page.

Put differently, a SUN 3/280 costs about
35000 per MIP, while an SMD disk and controller
costs about $12,000. Hence, the CPU cost to sup-
port a disk is much smaller than the cost of the
disk, and the major cost of data base hardware
can be expected to be in the disk system As such,
if an installation is found to be CPU bound, then
additional CPU resources can be cheaply added
until the system becomes balanced.

We analyze three possible situations:
large-%!: an ample amount of stable main

memory is available
small-SM: a modest amount of stable main

memory is available
no-SM: no stable main memory is

available
In the first case we assume that enough stable
main memory is available for POSTGRES and a WAL
system to use so that neither system is required to
force disk pages to secondary storage at the time
that they are updated. Hence, each system will
execute a certain number of I/O operations that
can be buffered in stable memory and written out
to disk at some convenient time. We count the
number of such non-forced I/O operations that
each system will execute, assuming all writes cost
the same amount. For both systems we assume
that records do not cross page boundaries, so each

In the second situation we assume that a
modest amount of stable main memory is avail-
able. We assume that the quantity is sufficient to
hold only the tail of the POSTGRES log and the tail
of the TIME relation. In a WAL system we assume
that stable memory can buffer a conventional log
turning each log write into one that need not be
synchronously forced out to disk. This situation
(small-SM) should be contrasted with the third
case where no stable memory at all is available
(no-SM). In this latter cases, some writes must be
forced to disk by both types of storage systems.

In the results to follow we ignore the cost that
either kind of system would incur to mirror the
data for high availability. Moreover, we are also
ignoring the WAL cost associated with checkpoints.
In addition, we assume that a WAL system never
requires a disk read to access the appropriate un-
do log record. We are also ignoring the cost of
vacuuming the disk in the POSTGRES architecture.

5.2. Performan ce Results
Table 5 indicates the number of I/O opera-

tions each of the four types of transactions must
execute for the assumed large-SM configuration.
Since there is ample stable main memory, neither
system must force any data pages to disk and only
non-forced I/OS must be done. An insert requires
that a data record and two index records be writ-
ten by either system Moreover, 1 /lOth of a log
page will be fIlled by the conventional system so
every 10 transactions there will be another log
page which must be eventually written to disk. In
POSTGRFS the insertions to the LOG relation and
the TIME relation generate an I/O every 65536 and
2048 transactions respectively, and we have
ignored this small number in Table 5. Conse-
quently, one requires 3 non-forced I/OS in
POSTGRES and 3.1 in a conventional system The
next two columns in Table 1 can be similarly corn
puted. The last column summari ‘zes the I/OS for
an aborted transaction. In POSTGRES the updated
page need not be rewritten to disk. Hence, no I/OS
are ‘strictly necessary; however, in all liklihood,
this optimization will not be implemented. A WAL
system will update the data and construct a log
record. Then the log record must be read and the
data page returned to its original value. Again, a
very clever system could avoid writing the page

Proceedings of the 13th VLDB Conference, Brighton 1987

out to disk, since it is identical to the disk copy.
Hence, for both systems we indicate both the
optimized number of writes and the non-optimized
number. Notice in Table 5 that POSTGRES is mar-
ginally better than a WAL system except for
deletes where it is dramatically better because it
does not delete the 2 index records. We now turn
to cases where POSTGRES is less attractive.

Insert Update Delete Abort

WALforce
WALneforce

0 0 0 0
3.1 1.1 3.1 0.1 or 1.1

POSTGRES-force 0 0 0 0
FWTGRESnon-force 3 1 1 Oorl

I/O Counts for the Primitive Operations
large-SM Configuration

Table 5

Table 6 repeats the Iib counts for the small-
SM configuration. The WAL conrlguration performs
exactly as in Table 5 while the the POSTGRES data
pages must now be forced to disk since insufficient
stable main memory is assumed to hold them
Notice that POSTGRES is still better in the total
number of I/O operations; however the require-
ment to do them synchronously will be a major
disadvantage.

Table 7 then indicates the I/O counts under
the condition that NO stable main memory is
available. Here the log record for a conventional
WAL, systemmust be forced to disk at commit time.
The other writes can remain in the buffer pool and
be written at a later time. In POSTGRES the LOG
bit must be forced out to disk along with the
insert to the TIME relation. Moreover, the data
pages must be forced as in Table 6. In this case
POSTGRES is marginally poorer in the total
number of operations; and again the synchronous
nature of these updates will be a significant disad-
vantage.

Insert Update Delete Abart

WALMCC
WAL-no-force

0 0 0 0
3.1 1.1 3.1 0.1 or 1.1

EWTGRESforce 3 1 1 Oorl
FQSTGRESnon-force 0 0 0 0

,

I/O Counts for the Primitive Operations
small-SM Configuration

Table 6

Prctcedhgs of the 13th VLDB Conference, Brighton 1987 299

lneert Update Delete Abort

WAtdorce 1 1 1 1
WALno-force 3 1 3 OOrl

FQSTGRESforce &. 3 3 1
FWTGR!B-non-force , i 0 0 0 Oorl

I/O Counts for the Primitive Operations
no-SM Configuration

Table 7

In summary, the POSTGRES solution is pre-
ferred in the large-SM configuration since all
operations require less I/OS. In Table 6 the total
number of I/OS is less for POSTGRES; however,
synchronous I/O is required. Table 7 shows a
situation where POSTGRES is typicall

I?
more

expensive. However, group commits DEYI64]
could be used to effectively convert the results for
either type of system into the ones in Table 6.
Consequently, POSTGRES should be thought of as
fairly competitive with current storage architec-
tures. Moreover, it has a considerable advantage
over WAL systems in that recovery time will be
instantaneous while requiring a substantial
amount of time in a WAL architecture.

6. CONCLUSIONS
This paper has described the storage manager

that is being constructed for POSTGRRS. The main
points guiding the design of the system were:

1) instantaneous recovery from crashes

2) ability to keep archival records on an archival
medium

3) housekeeping chores should be done asynchro-
nously

4) concurrency control based on conventional
locking

The first point should be contrasted with the stan-
dard write-ahead log (WAL) storage managers in
widespread use today.

In engineering application one often requires
the past history of the data base. Moreover, even
in business applications this feature is sometimes
needed, and the now famous TP1 benchmark
assumes that the application will maintain an
archive. It makes more sense for the data
manager to do this task internally for applications
that require the service.

The third design point has been motivated by
the desire to run multiple concurrent processes if
there happen to be extra processors. Hence
storage management functions can occur in

parallel on multiple processors. Alternatively,
some functions can be saved for idle time on a sin-
gle processor. Lastly, it allows POSTGRES code to
be a collection of asynchronous processes and not
a single large monolithic body of code.

The Anal design point reflects our intuitive
belief, confirmed by simulations, that standard
locking is the most desirable concurrency control
strategy. Moreover, it should be noted that read-
only transactions can be optionally coded to run
as of some point in the recent past. Since histori-
cal co mmands set no locks, then read-only tran-
sactions will-never interfere with transactions per
forming updates or be required to wait. Conse-
quently, the level of contention in a POSTGRES
data base may be a great deal lower than that
found in conventional storage managers.

The design of the POSTGRES storage manager
has been sketched and a brief analysis of its
expected performance relative to a Fnventional
one has been performed. If the f-analysis is
conflrmed in practice, then POSTGRES will give
similar performance compared to other storage
managers while providing the extra service of his-
torical access to the data base. This should prove
attractive in some environments.

At the moment, the magnetic disk storage
manager is operational, and work is proceeding on
the vacuum cleaner and the layout of the archive.
POSTGRES is designed to support extendible
access methods, and we have implemented the B-
tree code and will provide R-trees in the near
future. Additional access methods can be con-
structed by other parties to suit their special
needs. When the remaining pieces of the storage
manager are complete, we plan a performance
“bakeoff” both against conventional storage

as well as against other storage
Ezz:i (such as [CARE86, COPE84]) with
interesting properties.

REFEXENCXS
[AGRA85] Agrawal. R. et. al., “Models for Studying

Concurrency Control Performance Alter
natives and Implications,” Proc. 1985
ACM-SIGMOD Conference on Management
of Data, Austin, TX., May 1985.

[ASTR76] Astrahan, M. et. al., “System R: A Rela-
tional Approach to Data,” ACM-TODS,
June 1976.

[BARTB~] Bartlett, J., “A Non-STOP Kernel,” Proc.
Eighth Symposium on Operating System
Principles,” Pacific Grove, Ca., Dec. 1981.

[BERNf3O]Bernstein, P. at. al., “Concurrency Con-
trol in a System for Distributed Data-
bases (SDD-I),” ACM-TODS, March 1980.

[BHID87] Bhide, A., “Query processing in Shared
Memory Multiprocessor Systems,” (in
preparation).

[CARE861 Carey, M. et. al., “Object and File Manage-
ment in the MODUS Database System,”

300

Proc. 1986 VLDB Conference, Kyoto,
Japan, August 1986.

[COPE841 Copeland, G. and D. Maier, “Making
Smalltalk a Database System” Proc.
1984 ACM-SIGMOD Conference
Management of Data, Boston, Mass. Jug
1984.

[DECBB]

[DEIWI64]

Digital Equipment Corp., “VAX/VMS V4.0
Reference Manual,” Digital Equipment
Corp., Maynard, Mass., June 1986.
Dewitt, D. et. al., “Implementation Tech-
niques for Main Memory Database Sys-
tems,” Proc. 1984 ACM-SIGMOD Confer-
ence on Management of Data, Boston,
Mass., June 1984.

[GRAY781 Gray, J., “Notes on Data Base Operating
Systems,” IBM Research, San Jose, Ca.,
RJ1879, June 1978.

[GUTM84]Gutman, A., “R-trees: A Dynamic Index
sF8&ure for Spatial Searching,” Proc.

ACM-SIGMOD Conference on
Management of Data, Boston, Mass. June
1984.

[HILL%] I$jRM., et al. “Design Decisiot;l ;;
Computer Magazine,

no.1 1: November 1986.
. ,

[ROUS85] Roussoupoulis, N. and Leifker, D., “Direct
Spatial Search on Pictorial Databases
Using Packed R-trees,” Proc. 1985 ACM-
SIGMOD Conference on Management of
Data, Austin, TX., May 1985.

[SEQU85] Sequent Computer Co., “The SEQUENT
Balance Reference Manual,” Sequent
Computers, Portland, Ore., 1985.

[SEXR76] Severence, D., and Lohman, G.,
“Dif’ferential Files: Their Application to
the Maintenance of large Databases,”
ACM-TODS, June 1976.

[STON76] Stonebraker, M., et. al. “The Design and
Implementation of INGRES,” ACM-TODS,
September 1976.

[STON86] Stonebraker, M. and Rowe, L., “The
Design of POSTGRES,” Proc. 1986ACM-
SIGMOD Conference on Management of
Data, Washington, D.C., May 1986.

CSToNa6a]Stonebraker M “Inclusion of New Types
in Relational Dita Base Systems,” Proc.
Second International Conference on Data
Base Engineering, Los Angeles, Ca., Feb.
1986.

[VI’ITaS] Vitter, J., “An Efficient I/O Interface for
Optical Disks,” ACM-TODS, June 1985.

Proceedings of the 13th VLDB Conference, Brighton 1987

