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Abstract 
This paper presents the design of the storage 

system for the POSTGRES data base system under 
construction at Berkeley. It is novel in several 
ways. First, the storage manager supports tran- 
saction management but does so without using a 
conventional write ahead log (WAL). In fact, there 
is no code to run at recovery time, and conse- 
quently recovery from crashes is essentially 
instantaneous. Second, the storage manager 
allows a user to optionally keep the entire past 
history of data base objects by closely integrating 
an archival storage system to which historical 
records are spooled. Lastly, the storage manager 
is consciously constructed as a collection of asyn- 
chronous processes. Hence, a large mnolithic 
body of code is avoided and opportunities for 
parallelism can be exploited. The paper concludes 
with a analysis of the storage system which sug- 
gests that it is performance competitive with WAL 
systems in many situations. 

1. INTRODUCTION 
The POSTGRES storage manager is the collec- 

tion of modules that provide transaction manage- 
ment and access to data base objects. The design 
of these modules was guided by three goals which 
are discussed in turn below. The Arst goal was to 
provide transaction management without the 
necessity of writing a large amount of specialized 
crash recovery code. Such code is hard to debug, 
hard to write and must be error free. If it fails on 
an important client of the data manager, front 
page news is often the result because the client 

. cannot access his data base and his business will 
be adversely affected. To achieve this goal, 
POSTGRES has adopted a novel storage system in 
which no data is ever overwritten; rather all 
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updates are turned into insertions. 
The second goal of the storage manager is to 

accomodate the historical state of the data base 
on a write-once-read-many (WORM) optical diek (or 
other archival medium) in addition to the current 
state on an ordinary magnetic disk. Consequently, 
we have designed an asynchronous process, called 
the vacuum cleaner which moves archival records 
off magnetic disk and onto an archival storage syx- 
tern 

The third goal of the storage system is to take 
advantage of specialized hardware. In particular, 
we assume the existence of non-volatile main 
memory in some reasonable quantity. Such 
memory can be provide through error correction 
techniques and a battery-back-up scheme or from 
some other hardware mans. In addition, we 
expect to have a few low level machine instruc- 
tions available for specialized uses to be presently 
explained. We also assun~ that architectures with 
several processors will become increasingly popu- 
lar. In such an environment, there is an oppor 
tunity to apply multiple processors to running the 
DBMS where currently only one is utilized. This 
requires the POSTGRES DBMS to be changed from 
the monolithic single-flow-of-control architectures 
that are prevalent today to one where there are 
many asynchronous processes concurrently per- 
forming DBMS functions. Processors with this 
flavor include the Sequent Balance System 
[SEQU85], the FIREFLY, and SPUR [HILL&]. 

The remainder of this paper is organized as 
follows. In the next section we present the design 
of our magnetic disk storage system Then, in Sec- 
tion 3 we present the structure and concepts 
behind our archival system Section 4 continues 
with some thoughts on efficient indexes for 
archival storage. Lastly, Section 5 presents a per- 
formance comparison between our system and 
that of a conventional storage system with a 
write-ahead log (WAL) [GRAY78]. 

2. THE MAGNETIC DISKSYSTEM 

2.1. The Transaction Sptem 
Disk records are changed by data base tren- 

aactions, each of which is given a unique tranaae 
tion identifier (XID). ?CfDs are 40 bit unsigned 
integers that are sequentially assigned startii at 
1. At 100 transactions per second (TPS), 
POSTGRES has sufBcient XlDs for about 320 years 
of operation. In addition, the remaining 8 bits of a 
composite 48 bit interaction identiier (IID) is a 
command identtier (CID) for each command 
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wlthin a transaction. Consequently, a transaction 
is limited to executing at most 256 commands. 

In addition there is a transaction log which 
contains 2 bits per transaction indicating its 
status as: 

committed 
aborted 
in progress 

A transaction is started by advancing a counter 
containing the first unassigned XILI and using the 
current contents as a XIB. The coding of the log 
has a default value for a transaction as “in pro- 
gress” so no specific change to the log need be 
made at the start of a transaction. A transaction 
is committed by changing its status in the log 
from “in progress” to “committed” and placing 
the appropriate disk block of the log in stable 
storage. Moreover, any data pages that were 
changed on behalf of the transaction must also be 
placed in stable storage. These pages can either 
be forced to disk or moved to stable main memory 
if any is available. Siiarly, a transaction is 
aborted by changing its status from “in progress” 
to “aborted”. 

The tail of the log is that portion of the log 
from the oldest active transaction up to the 
present. The body of the log is the remainder of 
the log and transactions in this portion cannot be 
“in progress” so only 1 bit need be allocated. The 
body of the log occupies a POSTGRES relation for 
which a special access method has been built. 
This access method places the status of 65536 
transactions on each POSTGRES 8K disk block. At 
1 transaction per second, the body increases in 
size at a rate of 4 Mbytes per year. Consequently, 
for light applications, the log for the entire history 
of operation is not a large object and can At in a 
sizeable buffer pool. Under normal circumstances 
several megabytes of memory will be used for this 
purpose and the status of all historical transac- 
tions can be readily found without requiring a disk 
read. 

In heavier applications where the body of the 
log will not flt in main memory, POSTGRES applies 
an optional compression technique. Since most 
transactiom%commit, the body of the log contains 
almost all “commit” bits. Hence, POSTGRES has 
an optional bloom Alter [SEVR76] for the aborted 
transactions. This tactic compresses the buffer 
space needed for the log by about a factor of 10. 
Hence, the bloom Alter for heavy applications 
should be accomodatable in main memory. Again 
the run-time system need not read a disk block to 
ascertain the status of any transaction. The 
details of the bloom Alter design are presented in 
[STON66]. 

The tail of the log is a small data structure. If 
the oldest transaction started one day ago, then 
there are about 66,400 transactions in the tail for 
each 1 transaction per second processed. At 2 bits 
per entry, the tail requires 21,600 bytes per tran- 
saction per second. Hence, it is reasonable to put 
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the tail of the log in stable main memory since 
this wlll save the pages containing the tail of the 
log from being forced to disk many times in quick 
succession as transactions with similar transac- 
tion identiflers commit. 

2.2. Relation Storage 
When a relation is created, a Ale is allocated 

to hold the records of that relation. Such records 
have no prescribed maximum length, so the 
storage manager is prepared to process records 
which cross disk block boundaries. It does so by 
allocating continuation records and chaining them 
together with a linked list. Moreover, the order of 
writing of the disk blocks of extra long records 
must be carefully controlled. The details of this 
support for multiblock records are straightfor- 
ward, and we do not discuss them further in this 
paper. Initially, POSTGRES is using conventional 
Ales provided by the UNIX operating system how- 
ever, we may reassess this decision when the 
entire system is operational. If space in a file is 
exhausted, POSTGRES extends the Ale by some 
multiple of the 6K page size. 

If a user wishes the records in a relation to be 
approximately clustered on the value of a desig- 
nated field, he must declare his intention by indi- 
cating the appropriate fleld in the following corn 
mand 

cluster rel-name on {(Aeld-name using 
operator) 1 

POSTGRES will attempt to keep the records 
approximately in sort order on the Aeld name(s) 
indicated using the specified operator(s) to detie 
the linear ordering. This will allow clustering 
secondary indexes to be created as in [ASTR76]. 

Each disk record has a bit mask indicating 
which Aelds are non-null, and only these flelds are 
actually stored. In addition, because the magnetic 
disk storage system is fundamentally a versioning 
svstem each record contains an additional 6 
Aklds: 

OID 

lhin 

Tmin 

Chill 

2hIlEiX 

Tmax 

cmax 

PTR 

a system-assigned unique record 
identifier 
the transaction identifier of the 
interaction inserting the record 
the commit time of Xmin (the time at 
which the record became valid) 
the comman d identifler of the 
interaction inserting the record 
the transaction identifier of the 
interaction deleting the record 
the commit time of Xmax (the time at 
which the record stopped being valid) 
the comman d identifier of the 
interaction deleting the record 
a forward pointer 

When a record is inserted it is assigned a unique 
OID, and Xmin and Cmin are set to the identity of 
the current interaction. the remaining flve Aelds 
are left blank. When a record is updated, two 
operations take place. First, Xmax and Cmax are 
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set to the identity of the current interaction in 
the record being replaced to indicate that it is no 
longer valid. Second, a new record is inserted into 
the data base with the proposed replacement 
values for the data fields. Moreover, OID is set to 
the OID of the record being replaced, and Xmin 
and Cmin are set to the identity of the current 
interaction. When a record is deleted, Xmax and 
Cmax are set to the identity of the current 
interaction in the record to be deleted. 

When a record is updated, the new version 
usually differs from the old version in only a few 
flelds. In order to avoid the space cost of a com- 
plete new record, the following compression tech- 
nique has been adopted. The initial record is 
stored uncompressed and called the anchor point.. 
Then, the updated record is differenced against 
the anchor point and only the actual changes are 
stored. Moreover, PTR is altered on the anchor 
point to point to the updated record, which is 
called a delta record. Successive updates gen- 
erate a one-way linked list of delta records off an 
initial anchor point. Hopefully most delta record 
are on the same operating system page as the 
anchor point since they will typically be small 
objects. 

It is the expectation that POSTGRES would be 
used as a local data manager in a distributed data 
base system Such a distributed system would be 
expected to maintain multiple copies of all impor- 
tant POSTGRES objects. Recovery from hard 
crashes, i.e. one for which the disk cannot be read, 
would occur by switching to some other copy of 
the object. In a non-distributed system POSTGRES 
will allow a user to specify that he wishes a second 
copy of specific objects with the command: 

mirror rel-name 
Some operating systems (e.g. VMS [DEC86] and 
Tandem [BARTSl]) already support mirrored Ales, 
so special DBMS code will not be necessary in 
these environments. Hopefully, mirrored Ales will 
become a standard operating systems service in 
most environments in the future. 

2.3. Time Management 
The POSTGRES query language, POSTQUEL 

allows a user to request the salary of Mike using 
the following syntax. 

retrieve (EMP.salary) where 
EMPname = “Mike” 

To support access to historical tuples, the query 
language is extended as follows: 

retrieve (EMP.salary) using EMP[T] 
where EMP.name = “Mike” 

The scope of this command is the EMP relation as 
of a specific time, T, and Mike’s salary will be 
found as of that time. A variety of formats for T 
will be allowed, and a conversion routine will be 
called to convert times to the 32 bit unsigned 
integers used internally. POSTGRES constructs a 
query plan to And qualifying records in the normal 

fashion. However, each accessed tuple must be 
additionally checked for validity at the time 
desired in the user’s query. In general, a record is 
valid at time T if the following is true: 

Tmin < T and Xmin is a committed 
transaction and either: 

Xmax is not a committed transaction or 
2Gnax is null or 
Tmax>T 

In fact, to allow a user to read uncommitted 
records that were written by a difTerent command 
within his transaction, the actual test for validity 
is the following more complex condition. 

Xmin = my-transaction and Cmin != 
my-command and T = “now” 

TminO<r T and Xmin is a committed 
transaction and either: 

(Xmax is not a committed transaction and 
Xnax != my-transaction) or 
(Xmax = my-transaction and Cmax = 
my-command) or 
Xmax is null or 
Tmax>Tor 

If T is not specified, then T = “now” is the default 
value, and a record is valid at time, “now” if 

Xmin = my- transaction and Cmin ! = 
my-command 

Xmir% a committed transaction and either 
(Xmax is not a committed transaction and 
Xmax != my-transaction) or 
(xmax = my-transaction and Cmax = 
my-command) or 
Xmaxisnull 

More generally, Mike’s salary history over a 
range of times can be retrieved by: 

retrieve (EMP.Tmin, EMP.Tmax, EMP.salary) 
using EMP[Tl,T2] where EMP.name = “Mike” 

This co mmand will find all salaries for Mike along 
with their starting and ending times as long as the 
salary is valid at some point in the interval, [Tl, 
T2]. In general, a record is valid in the interval 
[Tl,T2] if: 

2Cmin = my-transaction and Cmin != 
my-command and T2 >= “now” 

Tmin? T2 and Xmin is a committed 
transaction and either: 

(2Gnax is not a committed transaction and 
Xnax != my-transaction) or 
(xmax= my-transaction and Cmax = 
my-command) or 
Xmax is null or 
Tmax > Tl 

Either Tl or T2 can be omitted and the defaults 
are respectively Tl =OandT2=+inflnity 

Special programs (such as debuggers) may 
want to be able to access uncommitted records. 
To facilitate such access, we define a second 
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specification for each relation, for example: 
retrieve (EMP.salary) using all-EAJP[T] where 
EMPname = “Mike” 

An EMP record is in all-EMP at time T if 
Tmin<Tand(Tmax>TorTmax=null) 

Intuitively, all-EMP[T] is the set of all tuples com- 
mitted, aborted or in-progress at time T. 

Each accessed magnetic disk record must 
have ‘one of the above tests performed. Although 
each test is potentially CPU and I/O intensive, we 
arq not overly concerned with CPU resources 
because we do not expect the CPU to be a 
significant bottleneck in next generation systems. 
This point is discussed further in Section 5. More- 
over, the CPU portion of these tests can be easily 
committed to custom logic or microcode or even a 
co-processor if it becomes a bottleneck. 

There will be little or no I/O associated with 
accessing the status of an transaction, since we 
expect the transaction log or its associated bloom r 
filter) to be in main menxuy. We turn in the next 
subsection to avoiding I/.0 when evaluating the 
remainder of the above predicates. 

2.4. Con currency Control and Timestamp 
Management 

It would be natural to assign a timestamp to a 
transaction at the time it is started and then All 
in the timestamp field of each record as it is 
updated by the transaction. Unfortunately, this 
would require POSTGRES to process transactions 
logically in timestamp order to avoid anomalous 
behavior. This is equivalent to requiring 
POSTGRES to use a concurrency control scheme 
based on timestamp ordering (e.g. [BERNBO]. 
Since simulation results have shown the superior- 
ity of conventional locking [AGRA85], POSTGRES 
uses instead a standard two-phase locking policy 
which is implemented by a conventional main 
menrory lock table. 

Therefore, Tmin and Tmax must be set to the 
commit time of each transaction (which is the 
time at which updates logically take place) in 
order to avoid anomolous behavior. Since the corn 
mit time of a transaction is not known in advance, 
Tmin and Tmax cannot be assigned values at the 
time that a record is written. 

We use the following technique to All in these 
flelds asynchronously. POSTGRES contains a TIME 
relation in which the commit time of each tran- 
saction is stored. Since timestamps are 32 bit 
unsigned integers, byte positions 4*j through 4*j + 
3 are reserved for the commit time of transaction 
j. At the time a transaction commits, it reads the 
current clock time and stores it in the appropriate 
slot of TIME. The tail of the TIME relation can be 
stored in stable main memory to avoid the I/O 
that this update would otherwise entail. 

Moreover, each relation in a POSTGRES data 
base is tagged at the time it is created with one of 
the following three designations: 

no archive: This indicates that no historical 
access to relations is required. 

light archive: This indicates that an archive is 
desired but little access to it is expected. 

heavy archive: This indicates that heavy use will 
be made of the archive. 

For relations with “no archive” status, Tmin and 
Tmax are never filled in, since access to historical 
tuples is never required. For such relations, only 
POSTQUEL comman ds specified for T = “now” can 
be processed. The validity check for T = “now” 
requires access only to the POSTGRES LOG relation 
which should be contained in the buffer pool. 
Hence, the test consumes no I/O resources. 

If “light archive” is specified, then access to 
historical tuples is allowed. Whenever Tmin or 
Tmax must be compared to some specific value, 
the commit time of the appropriate transaction is 
retrieved from the TIME relation to make the corn 
parison. Access to historical records will be 
slowed in the “light archive” situation by this 
requirement to perform an I/O to the TIME rela- 
tion for each timestamp value required. This over- 
head will only be tolerable if archival records are 
accessed a very small number of times in their 
lifetime (about 2-3). 

In the “heavy archive” condition, the run 
time system must look up the commit time of a 
transaction as in the “light archive” case. How- 
ever, it then writes the value found into Tmin or 
Tmax, thereby turning the read of a historical 
record into a write. Any subsequent accesses to 
the record will then be validatable without the 
extra access to the TIME relation. Hence, the first 
access to an archive record will be costly in the 
“heavy archive” case, but subsequent ones will will 
incur no extra overhead. 

In addition, we expect to explore the utility of 
running another system demon in background to 
asynchronously All in timestamps for “heavy 
archive” relations. 

2.5. Record Access 
Records can be accessed by a sequential scan 

of a relation. In this case, pages of the appropri- 
ate file are read in a POSTGRES determined order. 
Each page contains a pointer to the next and the 
previous logical page; hence POSTGRES can scan a 
relation by following the forward linked list. The 
reverse pointers are required because POSTGRES 
can execute query plans either forward or back- 
ward. Additionally, on each page there is a line 
table as in [STON76] containing pointers to the 
starting byte of each anchor point record on that 
Page. 

Once an anchor point is located, the delta 
records linked to it can be constructed by follow- 
ing PTR and decompressing the data fields. 
Although decompression is a CPU intensive task, 
we feel that CPU resources will not be a bottleneck 
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in future computers as noted earlier. Also, 
compression and decompression of records is a 
task easily committed to microcode or a separate 
co-processor. 

An arbitrary number of secondary indexes can 
be constructed for any base relation. Each index is 
maintained by an access method. and provides 
keyed access on a field or a collection of fields. 
Each access method must provide all the pro- 
cedures for the POSTGRES defined abstraction for 
access methods. These include get-record-by-key, 
insert-record, delete-record, etc. The POSTGRES 
run time system will call the various routines of 
the appropriate access method when needed dur- 
ing query processing. 

Each access method supports efficient access 
for a collection of operators as noted in 
[STON86a]. For example, B-trees can provide fast 
access for any of the operators: 

[=, <=, <, >, >=i 
Since each access method may be required to work 
for various data types, the collection of operators 
that an access methods will use for a specific data 
type must be registered as an operator class. 
Consequently, the syntax for index creation is: 

index on rel-name is index-name 
({key-i with operator-class-if) 
using access-method-name and 
performance-parameters 

The performance-parameters specify the fill-factor 
to be used when loading the pages of the index, 
and the minimum and maximum number of pages 
to allocate. The following example specifies a B- 
tree index on a combined key consisting of an 
integer and a floating point number. 

index on EMP is EMP-INDEX (age with 
integer-ops, salary with float-ops) 
using B-tree and All-factor = .8 

The run-time system handles secondary 
indexes in a somewhat unusual way. When a 
record is inserted, an anchor point is constructed 
for the record along with index entries for each 
secondary index. Each index record contains a 
key(s) plus a pointer to an entry in the line table 
on the page where the indexed record resides. This 
line table entry in turn points to the byte-offset of 
the actual record. This single level of indirection 
allows anchor points to be moved on a data page 
without requiring maintenance of secondary 
indexes. 

When an existing record is updated, a delta 
record is constructed and chained onto the 
appropriate anchor record. If no indexed fleld has 
been modified, then no maintenance of secondary 
indexes is required. If an indexed field changed, 
then an entry is added to the appropriate index 
containing the new key(s) and a pointer to the 
anchor record. There are no pointers in secondary 
indexes directly to delta records. Consequently, a 
delta record can only be accessed by obtaining its 
corresponding anchor point and chaining forward. 
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The POSTGRES query optimizer constructs 
plans which may specify scanning portions of vari- 
ous secondary indexes. The run time code to sup- 
port this function is relatively conventional except 
for the fact that each secondary index entry 
points to an anchor point and a chain of delta 
records, all of which must be inspected. Valid 
records that actually match the key in the index 
are then returned to higher level software. 

Use of this technique guarantees that record 
updates only generate I/O activity in those secon- 
dary indexes whose keys change. Since updates to 
keyed fields are relatively uncommon, this ensures 
that few insertions must be performed in the 
secondary indexes. 

Some secondary indexes which are hierarchi- 
cal in nature require disk pages to be placed in 
stable storage in a particular order (e.g. from leaf 
to root for page splits in B+-trees). POSTGRES will 
provide a low level command 

order block- 1 block-2 
to support such required orderings. This corn 
mand is in addition to the required pin and unpin 
commands to the buffer manager. 

3. THEi ARcHlvALsYsrEM 

3.1. Vacuuming the Disk 
An asynchronous demon is responsible for 

sweeping records which are no longer valid to the 
archive. This demon, called the vacuum cleaner, 
is given instructions using the following command: 

vacuum rel-name after T 
Here T is a time relative to “now”. For example, 
the following vacuum comman d specifies vacuum- 
ing records over 30 days old: 

vacuum EMP after “30 days” 
The vacuum cleaner Ands candidate records for 
archiving which satisfy one of the following condi- 
tions: 

Xmax is non empty and is a committed 
transaction and “now” - Tmax >= T 
?Gnax is non empty and is an aborted 
transaction 
Xmin is non empty and is an aborted 
transaction 

In the second and third cases, the vacuum cleaner 
simply reclaims the space occupied by such 
records. In the first case, a record must be copied 
to the archive unless “no-archive” status is set for 
this relation. Additionally, if “heavy-archive” is 
specified, Tmin and Tmax must be Wed in by the 
vacuum cleaner during archiving if they have not 
already been given values during a previous 
access. Moreover, if an anchor point and several 
delta records can be swept together, the vacuum 
ing process will be more efficient. Hence, the 
vacuum cleaner wilI generally sweep a chain of 
several records to the archive at one time. 
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This sweeping must be done very carefully so 
that no data is irrecoverably lost. First we discuss 
the format of the archival medium then we turn 
to the sweeping algorithm and a discussion of its 
cost. 

3.2. TheArchivalYedium 
The archival storage system is compatible 

with WORM devices, but is not restricted to such 
systems. We are building a conventional extent- 
based Ale system on the archive, and each relation 
is allocated to a single Ale. Space is allocated in 
large extents and the next one is allocated when 
the current one is exhausted. The space alloca- 
tion map for the archive is kept in a magnetic disk 
relation. Hence, it is possible, albeit very costly, to 
sequentially scan the historical version of a rela- 
tion. 

Moreover, there are an arbitrary number of 
secondary indexes for each relation in the archive. 
Since historical accessing patterns may be 
different than accessing patterns for current data, 
we do not restrict the archive indexes to be the 
same as those for the magnetic disk data base. 
Hence, archive indexes must be explicitly created 
using the following extension of the indexing corn 
mand: 

index on farchivej rel-name is index-name 
(Ikey-i with operatol-class-ii) 
using access-method-name and 
performance-parameters 

Indexes for archive relations are normally stored 
on magnetic disk. However, since they may 
become very large, we will discuss mechanisms in 
the next section to support archive indexes that 
are partly on the archive medium 

The anchor point and a collection of delta 
records are concatenated and written to the 
archive as a single variable length record. Again 
secondary index records must be inserted for any 
indexes deflned for the archive relation. An index 
record is generated for the anchor point for each 
archive secondary index. Moreover, an index 
record must be constructed for each delta record 
in which a secondary key has been changed. 

Since the access paths to the portion of a 
relation on the archive may be different than the 
access paths to the portion on magnetic disk, the 
query optimizer must generate two plans for any 
query that requests historical data. Of course, 
these plans can be executed in parallel if multiple 
processors are available. In addition, we are 
studying the decomposition of each of these two 
query plans into additional parallel pieces. A 
report on this subject is in preparation [BHlDfY?]. 

3.3. TheVacuumProcess 
Vacuuming is done in three phases, namely: 

phase 1: write an archive record and its 
associated index records 

phase 2: write a new anchor point in the 
current data base 
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phase 3: reclaim the space occupied by the 
old anchor point and its delta 
records 

If a crash occurs while the vacuum cleaner is writ- 
ing the historical record in phase 1, then the data 
still exists in the magnetic disk data base and will 
be revacuumed again at some later time. If the 
historical record has been written but not the 
associated indexes, then the archive will have a 
record which is reachable only through a sequen- 
tial scan. If a crash occurs after some index 
records have been written, then it will be possible 
for the same record to be accessed in a magnetic 
disk relation and in an archive relation. In either 
case, the duplicate record will consume system 
resources; however, there are no other adverse 
consequences because POSTGRES is a relational 
system and removes duplicate records during pro- 
cessing. 

When the record is safely stored on the 
archive and indexed appropriately, the second 
phase of vacuuming can occur. This phase entails 
computing a new anchor point for the magnetic 
disk relation and adding new index records for it. 
This anchor point is found by starting at the old 
anchor point and calculating the value of the last 
delta that satisfies 

“now” -Tmax>=T 
by moving forward through the linked list. The 
appropriate values are inserted into the magnetic 
disk relation, and index records are inserted into 
all appropriate index. When this phase is corn 
plete, the new anchor point record is accessible 
directly from secondary indexes as well as by 
chaining forward from the old anchor point. 
Again, if there is a crash during this phase a 
record may be accessible twice in some future 
queries, resulting in additional overhead but no 
other consequences. 

The last phase of the vacuum process is to 
remove the original anchor point followed by all 
delta records and then to delete all index records 
that pointed to this deleted anchor point. If there 
is a crash during this phase, index records may 
exist that do not point to a correct data record. 
Since the run-time system must already check 
that data records are valid and have the key that 
the appropriate index record expects them to 
have, this situation can be checked using the same 
mechanism 

Whenever there is a failure, the vacuum 
cleaner is simply restarted after the failure is 
repaired. It will re-vacuum any record that was in 
progress at some later time. If the crash occurred 
during phase 3, the vacuum cleaner could be 
smart enough to realize that the record was 
already safely vacuumed. However, the cost of 
this checking is probably not worthwhile. Conse- 
quently, failures will result in a slow accumulation 
of extra records in the archive. We are depending 
on crashes to be infrequent enough that this is 
not a serious concern. 
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We now turn to the cost of the vacuum 
cleaner. 

3.4. Vacuuming Cost 
We examine two different vacuuming situa- 

tions. In the Arst case we assume that a record is 
inserted, updated K times and then deleted. The 
whole chain of records from insertion to deletion 
is vacuumed at once. In the second case, we 
assume that the vacuum is run after K updates, 
and a new anchor record must be inserted. In 
both cases, we assume that there are Z secondary 
indexes for both the archive and magnetic disk 
relation, that no key changes are made during 
these K updates, and that an anchor point and all 
its delta records reside on the same page. Table 1 
indicates the vacuum cost for each case. Notice 
that vacuuming consumes a constant cost. This 
rather surprising conclusion reflects the fact that 
a new anchor record can be inserted on the same 
page from which the old anchor point is being 
deleted without requiring the page to be forced to 
stable memory in between the operations. More- 
over, the new index records can be inserted on the 
same page from which the previous entries are 
deleted without an intervening I/O. Hence, the 
cost PER RECORD of the vacuum cleaner decreases 
as the length of the chain, K, increases. As long as 
an anchor point and several delta records are 
vacuumed together, the cost should be marginal. 

4. INDEXINGTHEARCHIVE 

4.1. Magnetic Disk Indexes 
The archive can be indexed by conventional 

magnetic disk indexes. For example, one could 
construct a salary index on the archive which 
would be helpful in answering queries of the form: 

retrieve (EMP.name) using EMP [,] where 
EMP.salary = 10000 

However, to provide fast access for queries which 
restrict the historical scope of interest, e.g: 

retrieve (EMPname) using EMP [ 1 /l/87,] 
where EMPsalary = 10000 

a standard salary index will not be of much use 
because the index will return all historical salaries 

whole chain K updates 

archive-writes 1+z 1+z 
disk-reads 1 1 
disk-writes 1+z 1+z 

I/O Counts for Vacuuming 
Table 1 

of the correct size whereas the query only 
requested a small subset. Consequently, in addi- 
tion to conventional indexes, we expect time- 
oriented indexes to be especially useful for archive 
relations. Hence, the two flelds, Tmin and Tmax, 
are stored in the archive as a single field, I, of type 
mt.ervaI. An R-tree access method [GUThi84] can 
be constructed to provide an index on this interval 
field. The operators for which an R-tree can pro- 
vide fast access include “overlaps” and 
“contained-in”. Hence, if these operators are writ- 
ten for the interval data type, an R-tree can be 
constructed for the EMP relation as follows: 

index on archive EMP is EMP-INDEX (I with 
interval-ops) 
using R-tree and fill-factor = .8 

This index can support fast access to the histori- 
cal state of the EMP relation at any point in time 
or during a particular period. 

To utilize such indexes, the POSTGRES query 
planner needs to be slightly modified. Note that 
POSTGRES need only run a query on an archive 
relation if the scope of the relation includes some 
historical records, Hence, the query for an 
archive relation must be of the form 

. ..using EIvIP[T] 
or 

. ..using EMP[Tl,T2] 
The planner converts the Arst construct into: 

. ..where T contained-in EMP.1 
and the second into: 

. ..where interval(Tl,T2) overlaps EMP.1 
Since all records in the archive are guaranteed to 
be valid, these two qualifications can replace all 
the low level code that checks for record validity 
on the magnetic disk described in Section 2.3. 
With this modification, the query optimizer can 
use the added qualiflcation to provide a fast 
access path through an interval index if one 
exists. 

Moreover, we expect combined indexes on the 
interval Aeld along with some data value to be very 
attractive, e.g: 

index on archive EMP is EMP-INDEX 
(I with interval-ops, salary with float-ops) 
using R-tree and fill-factor = .8 

Since an R-tree is a multidimensional index, the 
above index supports intervals which exist in a two 
dimensional space of time and salaries. A query 
such as: 

retrieve (EMPname) using EIvIP[Tl,T2] where 
EMP.salary = 10000 

will be turned into: 
;$rive (EMP.name) where EMPsalary = 

and interval(T 1 ,T2) overlaps 
EMP.1 

The two clauses of the qualification deAne another 
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interval in two dimensions and conventional R- 
tree processing of the interval can be performed 
to use both qualifications to advantage. 

Although data records will be added to the 
archive at the convenience of the vacuum cleaner, 
records will be generally inserted in ascending 
time order. Hence, the poor performance reported 
in [ROUS85] for R-trees should be averted by the 
nearly sorted order in which the records will be 
inserted. Performance tests to ascertain this 
speculation are planned. We now turn to a discus- 
sion of R-tree indexes that are partly on both 
magnetic and archival mediums. 

4.2. CornbinedYediaIndexes 
We begin with a small space calculation to 

illustrate the need for indexes that use both 
media. Suppose a relation exists with lo**6 tuples 
and each tuple is modified 30 times during the 
lifetime of the application. Suppose there are two 
secondary indexes for both the archive and the 
disk relation and updates never change the values 
of key fields. Moreover, suppose vacuuming occurs 
after the 5th delta record is written, so there are 
an average of 3 delta records for each anchor 
point. Assume that anchor points consume 200 
bytes, delta records consume 40 bytes, and index 
keys are 10 bytes long. 

With these assumptions, the sizes in bytes of 
each kind of object are indicated in Table 2. 
Clearly, lo++6 records will consume 200 mbytes 
while 3 x lo**6 delta records will require 120 
mbytes. Each index record is assumed to require 
a four byte pointer in addition to the 10 byte key; 
hence each of the two indexes will take up 14 
mbytes. There are 6 anchor point records on the 
archive for each of the lo++6 records each con- 
catenated with 4 delta records. Hence, archive 
records will be 360 bytes long, and require 2160 
mbytes. Lastly, there is an index record for each 
of the archive anchor points; hence the archive 
indexes are 6 times as large as the magnetic disk 
indexes. 

Two points are evident from Table 2. First, 
the archive can become rather large. Hence, one 
should vacuum infrequently to cut down on the 

object mbytes 

disk relation anchor points 200 
deltas 120 
secondary indexes 28 
archive 2160 
archive indexes 168 

Sizes of the Various Objects 
Table 2 

number of anchor points that occur in the 
archive. Moreover, it might be desirable to 
differentially code the anchor points to save space. 
The second point to notice is that the archive 
indexes consume a large amount of space on mag- 
netic disk. if the target relation had three indexes 
instead of two, the archive indexes would consume 
a greater amount of space than the magnetic disk 
relation. Hence, we explore in this section data 
structures that allow part of the index to migrate 
to the archive. Although we could alternatively 
consider index structures that are entirely on the 
archive, such as those proposed in [VITT65], we 
believe that combined media structures will sub- 
stantially outperform structures restricted to the 
archive. We plan performance comparisons to 
demonstrate the validity of this hypothesis. 

Consider an R-tree storage structure in which 
each pointer in a non-leaf node of the R-tree is 
distinguished to be either a magnetic disk page 
pointer or an archive page pointer. If pointers are 
32 bits, then we can use the high-order bit for this 
purpose thereby allowing the remaining 31 bits to 
specify 2**31 pages on magnetic disk or archive 
storage. If pages are 8K bytes, then the maximum 
size of an archive index is 2+*44 bytes (about 1.75 
x lo**13 bytes), clearly adequate for almost any 
application. Moreover, the leaf level pages of the 
R-tree contain key values and pointers to associ- 
ated data records. These data pointers can be 46 
bytes long, thereby allowing the data Ale 
corresponding to a single historical relation to be 
2*+46 bytes long (about 3.0 x lo++14 bytes), again 
adequate for most applications. 

We assume that the archive may be a write- 
once-read-many (WORM) device that allows pages 
to be initially written but then does not allow any 
overwrites of the page. With this assumption, 
records can only be dynamically added to pages 
that reside on magnetic disk. Table 3 suggests two 
sensible strategies for the placement of new 
records when they are not entirely contained 
inside some R-tree index region corresponding to a 
magnetic disk page. 

Moreover, we assume that any page that 
resides on the archive contains pointers that in 
turn point only to pages on the archive. This 
avoids having to contend with updating an archive 
page which contains a pointer to a magnetic disk 
page that splits. 

Pages in an R-tree can be moved from mag- 
netic disk to the archive as long as they contain 
only archive page pointers. Once a page moves to 
the archive, it becomes read only. A page can be 
moved from the archive to the magnetic disk if its 
parent page resides on magnetic disk. In this 
case, the archive page previously inhabited by this 
page becomes unusable. The utility of this reverse 
migration seems limited, so we will not consider it 
further. 

We turn now to several page movement poli- 
cies for migrating pages from magnetic disk to the 
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Pl allocate to the region which has to be 

P2 expanded the least 
allocate to the region whose maximum time 
has to be expanded the least 

Record Insertion Strategies 
Table 3 

archive and use the parameters indicated in Table 
4 in the discussion to follow. The simplist policy 
would be to construct a system demon to 
“vacuum” the index by moving the leaf page to the 
archive that has the smallest value for Tmax, the 
left-hand end of its interval. This vacuuming 
would occur whenever the R-tree structure 
reached a threshold near its maximum size of F 
disk pages. A second policy would be to choose a 
worthy page to archive based both on its value of 
Tmax and on percentage fullness of the page. In 
either case, insertions would be made into the R- 
tree index at the lower left-hand part of the index 
while the demon would be archiving pages in the 
lower right hand part of the index. Whenever an 
intermediate R-tree node had descendents all on 
the archive, it could in turn be archived by the 
demon. 

For example, if B is 6192 bytes, L is 50 bytes 
and there is a flve year archive of updates at a fre- 
quency, U of 1 update per second, then 1.4 x lo**6 
index blocks will be required resulting in a four 
level R-tree. F of these blocks will reside on mag- 
netic disk and the remainder will be on the 
archive. Any insertion or search will require at 
least 4 accesses to one or the other storage 
medium 

A third movement policy with somewhat 
different performance characteristics would be to 
perform “batch movement”. In this case one 
would build a magnetic disk R-tree until its size 
was F blocks. Then, one would copy the all pages 
of the R-tree except the root to the archive and 
allocate a special “top node” on magnetic disk for 
this root node. Then, one would proceed to All up 

F number of magnetic disk blocks usable for 
the index 

U update frequency of the relation being 
indexed 

L record size in the index being constructed 
B block size of magnetic disk pages 

Parameters Controlling Page Movement 
Table 4 

a second complete R-tree of F-i pages. While the 
second R-tree was being built, both this new R- 
tree and the one on the archive would be searched 
during any retrieval request. All inserts would, of 
course, be directed to the magnetic disk R-tree. 
When this second R-tree was full, it would be 
copied to the archive as before and its root node 
added to the existing top node. The combination 
might cause the top node to overflow, and a con- 
ventional R-tree split would be accomplished. 
Consequently, the top node would become a con- 
ventional R-tree of three nodes. The filling pro- 
cess would start again on a 3rd R-tree of F-3 
nodes. When this was full, it would be archived 
and its root added to the lower left hand page of 
the 3 node R-tree. 

Over time, there would continue to be two R- 
trees. The Arst would be completely on magnetic 
disk and periodically archived. As long as the 
height of this R-tree at the time it is archived is a 
constant, H, then the second R-tree of height, Hl. 
will have the bottom H-l levels on the archive. 
Moreover, insertions into the magnetic disk por- 
tion of this R-tree are always on the left-most 
page. Hence, the pages along the left-side of the 
tree are the only ones which will be modified; 
other pages can be archived if they point entirely 
to pages on the archive. Hence, some subcollec- 
tion of the pages on the top Hl-H+l levels remain 
on the magnetic disk. Insertions go always to the 
first R-tree while searches go to both R-trees. Of 
course, there are no deletions to be concerned 
with. 

Again if B is 6192 bytes, L is 50 bytes and F is 
6000 blocks, then H will be 3 and each insert will 
require 3 magnetic disk accesses. Moreover, at 1 
update per second, a five year archive will require 
a four level R-tree whose bottom two levels will be 
on the archive and a subcollection of the top 2 
levels of 100- 161 blocks will be on magnetic disk. 
Hence, searches will require descending two R- 
trees with a total depth of 7 levels and will be 
about 40 percent slower than either of the single 
R-tree structures proposed. On the other hand, 
the very common operation of insertions will be 
approximately 25 percent faster. 

5. PERFOFUANCE COMPARISON 
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5.1. Assumptions 
In order to compare our storage system with a 

conventional one based on write-ahead logging 
(WAL), we make the following assumptions: 

1) Portions of the buffer pool may reside in non- 
volatile main memory 

2) CPU instructions are not a critical resource, 
and thereby only I/O operations are counted. 

The second assumption requires some explanation. 
Current CPU technology is driving down the cost 
of a MIP at a rate of a factor of two every couple of 
years. Hence, current low-end workstations have 
a few MIPS of processing power. On the other 
hand, disk technology is getting denser and 
cheaper. However, disks are not getting faster at 
a signif’lcant rate. Hence, one can still only expect 
to read about 30 blocks per second off of a stan- 
dard disk drive. Current implementations of data 
base systems require several thousand instruc- 
tions to fetch a page from the disk followed by 
1000-3000 instructions per data record examined 
on that page. As a simple figure of merit, assume 
30000 instructions are required to process a disk 
block. Hence, a 1 MIP CPU will approximately bal- 
ance a single disk. Currently, workstations with 
3-5 MIPS are available but are unlikely to be 
configured with 3-5 disks. Moreover, future works- 
tations (such as SPUR and FIREFLY) will have lo- 
30 MIPS. Clearly, they will not have lo-30 disks 
unless disk systems shift to large numbers of SCSI 
oriented single platter disks and away from 
current SMD disks. 

update results in a single page write. Moreover, we 
assume that each POSTGRES delta record can be 
put on the same page as its anchor point. Next, 
we assume that transactions are a single record 
insertion, update, deletion or an aborted update. 
Moreover, we assume there are two secondary 
indexes on the relation affected and that updates 
fail to alter either kev fleld. Lastly. we assume 
that a write ahead log- will require 3 log records 
(begin transaction, the data modification, and end 
transaction), with a total length of 400 bytes. 
Moreover, secondary index operations are not 
logged and thereby the log records for 10 transac- 
tions will At on a conventional 4K log page. 

Put differently, a SUN 3/280 costs about 
35000 per MIP, while an SMD disk and controller 
costs about $12,000. Hence, the CPU cost to sup- 
port a disk is much smaller than the cost of the 
disk, and the major cost of data base hardware 
can be expected to be in the disk system As such, 
if an installation is found to be CPU bound, then 
additional CPU resources can be cheaply added 
until the system becomes balanced. 

We analyze three possible situations: 
large-%!: an ample amount of stable main 

memory is available 
small-SM: a modest amount of stable main 

memory is available 
no-SM: no stable main memory is 

available 
In the first case we assume that enough stable 
main memory is available for POSTGRES and a WAL 
system to use so that neither system is required to 
force disk pages to secondary storage at the time 
that they are updated. Hence, each system will 
execute a certain number of I/O operations that 
can be buffered in stable memory and written out 
to disk at some convenient time. We count the 
number of such non-forced I/O operations that 
each system will execute, assuming all writes cost 
the same amount. For both systems we assume 
that records do not cross page boundaries, so each 

In the second situation we assume that a 
modest amount of stable main memory is avail- 
able. We assume that the quantity is sufficient to 
hold only the tail of the POSTGRES log and the tail 
of the TIME relation. In a WAL system we assume 
that stable memory can buffer a conventional log 
turning each log write into one that need not be 
synchronously forced out to disk. This situation 
(small-SM) should be contrasted with the third 
case where no stable memory at all is available 
(no-SM). In this latter cases, some writes must be 
forced to disk by both types of storage systems. 

In the results to follow we ignore the cost that 
either kind of system would incur to mirror the 
data for high availability. Moreover, we are also 
ignoring the WAL cost associated with checkpoints. 
In addition, we assume that a WAL system never 
requires a disk read to access the appropriate un- 
do log record. We are also ignoring the cost of 
vacuuming the disk in the POSTGRES architecture. 

5.2. Performan ce Results 
Table 5 indicates the number of I/O opera- 

tions each of the four types of transactions must 
execute for the assumed large-SM configuration. 
Since there is ample stable main memory, neither 
system must force any data pages to disk and only 
non-forced I/OS must be done. An insert requires 
that a data record and two index records be writ- 
ten by either system Moreover, 1 /lOth of a log 
page will be fIlled by the conventional system so 
every 10 transactions there will be another log 
page which must be eventually written to disk. In 
POSTGRFS the insertions to the LOG relation and 
the TIME relation generate an I/O every 65536 and 
2048 transactions respectively, and we have 
ignored this small number in Table 5. Conse- 
quently, one requires 3 non-forced I/OS in 
POSTGRES and 3.1 in a conventional system The 
next two columns in Table 1 can be similarly corn 
puted. The last column summari ‘zes the I/OS for 
an aborted transaction. In POSTGRES the updated 
page need not be rewritten to disk. Hence, no I/OS 
are ‘strictly necessary; however, in all liklihood, 
this optimization will not be implemented. A WAL 
system will update the data and construct a log 
record. Then the log record must be read and the 
data page returned to its original value. Again, a 
very clever system could avoid writing the page 
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out to disk, since it is identical to the disk copy. 
Hence, for both systems we indicate both the 
optimized number of writes and the non-optimized 
number. Notice in Table 5 that POSTGRES is mar- 
ginally better than a WAL system except for 
deletes where it is dramatically better because it 
does not delete the 2 index records. We now turn 
to cases where POSTGRES is less attractive. 

Insert Update Delete Abort 

WALforce 
WALneforce 

0 0 0 0 
3.1 1.1 3.1 0.1 or 1.1 

POSTGRES-force 0 0 0 0 
FWTGRESnon-force 3 1 1 Oorl 

I/O Counts for the Primitive Operations 
large-SM Configuration 

Table 5 

Table 6 repeats the Iib counts for the small- 
SM configuration. The WAL conrlguration performs 
exactly as in Table 5 while the the POSTGRES data 
pages must now be forced to disk since insufficient 
stable main memory is assumed to hold them 
Notice that POSTGRES is still better in the total 
number of I/O operations; however the require- 
ment to do them synchronously will be a major 
disadvantage. 

Table 7 then indicates the I/O counts under 
the condition that NO stable main memory is 
available. Here the log record for a conventional 
WAL, systemmust be forced to disk at commit time. 
The other writes can remain in the buffer pool and 
be written at a later time. In POSTGRES the LOG 
bit must be forced out to disk along with the 
insert to the TIME relation. Moreover, the data 
pages must be forced as in Table 6. In this case 
POSTGRES is marginally poorer in the total 
number of operations; and again the synchronous 
nature of these updates will be a significant disad- 
vantage. 

Insert Update Delete Abart 

WALMCC 
WAL-no-force 

0 0 0 0 
3.1 1.1 3.1 0.1 or 1.1 

EWTGRESforce 3 1 1 Oorl 
FQSTGRESnon-force 0 0 0 0 

, 

I/O Counts for the Primitive Operations 
small-SM Configuration 

Table 6 
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lneert Update Delete Abort 

WAtdorce 1 1 1 1 
WALno-force 3 1 3 OOrl 

FQSTGRESforce &. 3 3 1 
FWTGR!B-non-force , i 0 0 0 Oorl 

I/O Counts for the Primitive Operations 
no-SM Configuration 

Table 7 

In summary, the POSTGRES solution is pre- 
ferred in the large-SM configuration since all 
operations require less I/OS. In Table 6 the total 
number of I/OS is less for POSTGRES; however, 
synchronous I/O is required. Table 7 shows a 
situation where POSTGRES is typicall 

I? 
more 

expensive. However, group commits DEYI64] 
could be used to effectively convert the results for 
either type of system into the ones in Table 6. 
Consequently, POSTGRES should be thought of as 
fairly competitive with current storage architec- 
tures. Moreover, it has a considerable advantage 
over WAL systems in that recovery time will be 
instantaneous while requiring a substantial 
amount of time in a WAL architecture. 

6. CONCLUSIONS 
This paper has described the storage manager 

that is being constructed for POSTGRRS. The main 
points guiding the design of the system were: 

1) instantaneous recovery from crashes 

2) ability to keep archival records on an archival 
medium 

3) housekeeping chores should be done asynchro- 
nously 

4) concurrency control based on conventional 
locking 

The first point should be contrasted with the stan- 
dard write-ahead log (WAL) storage managers in 
widespread use today. 

In engineering application one often requires 
the past history of the data base. Moreover, even 
in business applications this feature is sometimes 
needed, and the now famous TP1 benchmark 
assumes that the application will maintain an 
archive. It makes more sense for the data 
manager to do this task internally for applications 
that require the service. 

The third design point has been motivated by 
the desire to run multiple concurrent processes if 
there happen to be extra processors. Hence 
storage management functions can occur in 



parallel on multiple processors. Alternatively, 
some functions can be saved for idle time on a sin- 
gle processor. Lastly, it allows POSTGRES code to 
be a collection of asynchronous processes and not 
a single large monolithic body of code. 

The Anal design point reflects our intuitive 
belief, confirmed by simulations, that standard 
locking is the most desirable concurrency control 
strategy. Moreover, it should be noted that read- 
only transactions can be optionally coded to run 
as of some point in the recent past. Since histori- 
cal co mmands set no locks, then read-only tran- 
sactions will-never interfere with transactions per 
forming updates or be required to wait. Conse- 
quently, the level of contention in a POSTGRES 
data base may be a great deal lower than that 
found in conventional storage managers. 

The design of the POSTGRES storage manager 
has been sketched and a brief analysis of its 
expected performance relative to a Fnventional 
one has been performed. If the f-analysis is 
conflrmed in practice, then POSTGRES will give 
similar performance compared to other storage 
managers while providing the extra service of his- 
torical access to the data base. This should prove 
attractive in some environments. 

At the moment, the magnetic disk storage 
manager is operational, and work is proceeding on 
the vacuum cleaner and the layout of the archive. 
POSTGRES is designed to support extendible 
access methods, and we have implemented the B- 
tree code and will provide R-trees in the near 
future. Additional access methods can be con- 
structed by other parties to suit their special 
needs. When the remaining pieces of the storage 
manager are complete, we plan a performance 
“bakeoff” both against conventional storage 

as well as against other storage 
Ezz:i (such as [CARE86, COPE84]) with 
interesting properties. 
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