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AIisTRAcr 

We present an approach to processing logic queries in loosely 
coupled environments. We emphasize the importance of the loose 
coupling technique as a practkal solution to provide deductive ca- 
pabiities to existing DBMS+especially when an efficient access to 
a very large database is required in the. process of inferencing. We 
propose the Extended Disjunctive Normal Form (EDNF) as the 
basis of our approach. The EDNF is an extension of the disjunctive 
normal form of relational algebra expressions so as to include 
recursion. The EDNF is well suited for a loosely coupled environ- 
ment, where an existing DBMS and optimiition can be fully ex- 
ploited. It also serves as a clear, graphical characterixation of 
various recursions that can occur in logic queries. We first present 
the basic form of the EDNF and then use it as a building block to 
process a more general class of queries. We extend valid usage of 
Clark% negation-as-failure evaluation technique to incorporate ne- 
gation for most practical situations. We also propose new criteria 
for safety and termination in the presence of negation. To the extent 
of the authors’ knowledge, optimixation in loosely coupled environ- 
ments has not been seriously addressed in previous research. We 
believe our technique provides significant progress in this dhection. 

. 1.0 Inmdudm 

Recently, a number of studies [Ull85, Ban86, Ban86a, Vie86, 
Boc86. Kri86, Kif86, Kif86a. Loz85, Sac86, Agr87. Jag87a, Mac81, 
Van861 have concentrated on providing inferencing capabilities to 
traditional databases. These facilities are geared so that complex 
views, especially those involving recursion, can be supported. The 
view mechanisms in the present DBMSs support no derivation of 
information besides straightforward relational operations. The work 
to-date ln this area has focused on PROLOG as an inference lan- 
guage for DBMSs due to the “natural fit” between PROLOG and 
the relational data model. Allowing a language such as PROLOG 
as the query language provides the system with the power of Hom- 
clause logic &3 well as the inherent theorem-proving capability. 
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WeproposeinthispPpcranq~’ ’ ~‘mteclm@xmofpmviding 
thesecP~b~~tormexistingDB~inaboeljr~nrarmct, 
especially when an efficient access to a very large database (that 
cannotfitinmainmemory)is~~inthepnmssaf~e~~. 
Although the Ioose coupling idea has been introduced in the litera- 
ture, to the extent of the authors’ knowledge, optlmixation aspects 
have not been seriously addremed. 

1.1 Issues in Recursive Query Processing and 
Previous Research 

Inthissectionwehighlighttheissuestbnthevebeenaddnsaed 
in the previous research. An excellent survey of the work as of 
mid-1985 appears in [Ban86]. From an overall analysk of the pre- 
vious research, we conclude that a viable and efficient strategy for 
pxocessing recursive queries in a deductive database shoukl provide 
the followin characterist& 

l FeasIhllltyarul~ Itshouldhaveaguaranteedtermi- 
nation and produce a correctresult. 

l Coup& eff&uey: For databases having a large amount of 
data on secondary storage, it should provide an efficient access 
totbedata. 

0 seamhmg~: Itshouldha~theFRDproperty(Focus 
on Relewnt Doto) [Vie86, Nic86]. This property may be fur- 
ther divided into FRD-A and FRD-B properties as follows: 
. FRD-A: It should not process irrelevant tuples, which am 

not necesmy to formulate the results. 
0 FRD-B: It should not process the rekvant tuples repeat- 

edly (i.e., no duplication). 

To determine the feasibility of a given approach, the following 
issues must be carefully considered 
1. Cyelk Dam: Cycles in data cause certain evaluation algorithms 

to get ioto an infiuite loop. For example, suppose we have a 
relation FLIGHT that shows the origin and de&mtion cities 
of flights: the relation contains tuples <new yo* Chicago>, 
<chicago, dallas>, and &llas, new york>. Consider the 
rules: 

l7%ch(x.Y):- flight(XY) 
reach(X,Y):- reach(X,Z), flight(Z,y) 

If a query such as ?reach(X, new york) or ?reach(chicago. Y) 
islssuedagainsttherelarjonFLIGHT,In~spporches,tlle 
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evaluation algorithm gets into infinite recursion. For example, 
PROLGG has this problem, and so does Counting [Ban86a]. 
.The approach we propose is able to deal with cycles in data and 
poses no termination problem. In general, approaches classi- 
fii as “bottom up” [Ban863 are capable of dealing with cycles 
in data without any difficulty. 

Negatlou: A number of existing approaches totally disallow 
negation since it violates the definition of Horn-clause logic 
In Section 4 we extend Clark’s negation-a+failure evaluation 
technique [CLA78] to handle negation in most practical cases. 
Extension of negation as failure for general first-order logic 
databases is discussed in [~aq86]. More scrutiny on negation 
in conjunction with the closed-world assumption [Rei781 ap- 
peprs in [Nq86al. 

Safety: The safety issue deals with the sixe of the final or 
iotemmliate results of a query. A qwry is safe if the final n- 
sult is finite. We also define query execution to be safe if all the 
intermediate results are fioite. To guarantee safety of the 
query and query execution, we require rules to be “bottom-up 
evaluable” [Ban86]. To handle the case of negation properly, 
we extend the definition of bottom-up evaluability in Section 
4. 
N~ncrpsioll: A nxursive rule P :- Pl, P2,..., Pn is lineur 
ifthereexistsoneandonlyonePiinthebodyofthenrlethat 
is mutually recursive with P [Ba1186]. A rule is nonhem if 
there is more than one Pi that is mutually recursive with P. 
Further, a set of rules is linear/nonlinear if every/any rule in 
that set is linear/nonlinear. The approach we propose is able 
to handle both linear and nonlinear rules. 

A wide range of approaches to providing the DBMS with de- 
ductive capabilities have been Proposed 
[Cha85,Vie86,Boc86~Ban86,Kif86]. In one set of approaches, 
classifii as tight coupling, a DBMS is extended to incorporate rule 
management and inferencing, thereby integrating the database ca- 
pabilities with deductive capabilities. However, such approaches 
have not exploited the query optimization techniques existing in the 
DBMSs. 

The other set of approaches is classified as loose coupling. In the 
loose coupling philosophy, a DBMS is considered a complete, inde- 
pendent system. The communication with the DBMS is supposed 
to occur at the level of a database query language (in our case SQL). 
This approach has the following potential advantages: 

l It allows one to use a relational DBMS without having to re- 
design (and reimplement) it. 

l It allows the full power of relational query optimization to be 
exploited while retaining the option of performing additional 
optimlxatioo in the logic program itself. 

In loose coupling, however, care must be taken to achieve effi- 
cient database access. For example, in a technique that we term 
nuiw loose coupling, requests are made to the DBMS whenever the 
necessary data reside in the DBMS. However, this technique may 
cause excessive database access that could lead to tuple-by-tuple 
access to data in the worst case. Typically, interpretation (vs. com- 
pilation) is dominant in naive coupling. 
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I0 the type of loose coupling we propose (smurt loose coupling), 
compilation [UllSS, Hen84.1 is preferred to interpretation. Thus, a 
logic query is compiled into a small number of database queries 
(with possible iterative constructs) to run on the DBMS. Since 
queries are formulated at the granularity of entire relations or col- 
lections of them, any tuple-by-tuple transfer of data between the 
DBMS and the logic prog raouniog environment is strictly avoided. 
For example, suppose we have a rule a(X,Y) :- b(X,Z), c(Z,Y), 
where there are 1000 tuples each satisfying the predicates b and C. 

Consider a query ?a(X,Y). In naive loose coupling, with a Prolog- 
like depth-first search strategy, processing the query requires 1001 
calls to the DBMS. In smart loose coupling, on the othe hand, we 
need only one database query, which is the join of b and c. 

The technique used in PROSQL [Cha85] allows both naive and 
smart loose coupling. However, in this system, the user is repons~ble 
for the translation between the logic program and SQL queries. 
Jarke et al. [Jar841 discusse a loose coupling approach, but it is lhn- 
ited to a nonrecursive part of the Prolog program without negation. 
The system EDUCE/DEDGIN [Boc86,Nic86,Vie86] supports both 
tight and loose couplings. For the part of loose coupling, the system 
treats PROLOG as a host language for general application develop- 
ment and poses requests for data to INGRES DBMS whenever 
necessary (i.e., when the data reside in the DBMS) while procesoing 
with typical PROLOG interpreter. For the part of tight coupling, 
the deductive component called DEDGIN [Vie861 looks at the 
function-free Horn-clause subset of PROLOG assertions and cou- 
ples tightly to the same DBMS by directly calling the internal access 
oldods. 

We note that not much work has been done on coupling effi- 
ciency, except in [Kri86] and [Cer86]. Krishnamurthy and Zaniolo 
[Kri86] briefly discuss cost equations that can be used in loose COW 

pling. Ceri, Gottlob, and Wiederhold [Cer86] assumes that all the 
query processing is done in main memory with a memory-resident 
copy of data and proposes an algorithm to load the data from the 
DBMS to main memory intelligently. In this approach, however, the 
query processing and optimization capabilities of the DBMS are not 
utilized. We believe coupling efficiency is an important issue to be 
addressed. Our approach specifically deals with this 
problem-especially, in a loosely coupled environment. 

h!kmhingefficiency 

We have proposed two categories in the FRD property: FRD-A 
and FRD-B. Many papers address searching efficiency. For exam- 
ple, Sideways Capture Rules [Ull85], Magic Sets [Ban86al, Count- 
ing [Ban86a, Sac863, Filtering [Kif86,Kif86a], etc. dwell largely on 
the FRD-A property. The Semi-Naive evaluation technique 
[Ban851 addresses the FRD-B property in the case of linear rules 
However, the technique requhes the use of relational algebra ex- 
pressions to calculate differentials explicitly, and sometimes these 
expressions are too complicated to obtain A d$femtiul is an in- 
cremental result from each iteration during evaluation. Our ap- 
proach provides a simple efficient technique of achieving the FRD-B 
property by implicitly (i.e., without using a formula) calculating the 
differentials (See Section 3.2). This technique is applicable to any 
set of linear rules. We do not cover the FRD-A property in this pa- 
per, but we believe that it can be superimposed by adding an addi- 
tional rule modification phase. 

Another technique of achieving searching efficiency is based on 

extended relational algebra [Aho79,Agr87,Dev86]: pushing the se- 
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kction operator across the fixed point operator to tbe base relations 
as close as possible. ‘Ibis technique is a heuristic optimixation at the 
level of a relational algebra. 

1.2 Our Approach 

We consider tbe class of logic queries that are expressed in 
function-free Horn-clause Logic with extension to incorporate ne- 
gation. For the safety of query computatioo [Ban& Xri861, we 
further restrict the ruks to be “bottom-up evaluabk” [Bat&61 w&b 
a modified defb&io~ to accommodate negation (see Section 4). 

In a outsbell, our approach is to &compose a logic query com- 
posed from a set of ruks into units termed E.xm&d DiQuncttiK 
Norm11 Form (EDNF) components. The term EDNF is derived 
from disjunctive normal form (more about this later in Section 3) 
that can be applied to Bookan expressioos. In the context of rela- 
tional algebra, conjunctions refer to joins and disjunctions to unions. 
TheEDNFkanextensioothataliowsustodealwith~nin 
adds00 to rehtionai operations. 

We sbow tbat tbe EDNF is well suited for a loosely coupkd en- 
vironmntmddiscusshowitreducesthecantotheDBMS,which 
is a costly operation in such an environment. We show that a fogic 
query can be decompased and transformed into an equivalent forest 
of EDNF trees. We also present an algorithm to process the query 
using the EDNF trees. Using a fiid point formalism, we sbow tbat 
tbk transformation coupled with tire processing algorithm is sound 
io that it generates tbe correct result. We discuss intemsting mmifii 
catioos of the EDNF formalism inchtdiug graphical cbamcterixation 
of tbe compkxity of recur&o and corresponding efficient query 
pmcesshg algoritbots. Finally, we bandk negation in mast practical 
situatioos by extending valid usage of Clark’s negation as faihue. 
We propose new criteria for safety and tenuinatioo in tbe presence 
of negation. 

Currently, we are impkmeoting an inference engine based on 
the EDNF approach for an expert system shell, SQL Inference En- 
gine, usiog an ioterface hoguage derived from a version of 
!3YLLOG [Wa1831. The system utilixes data stored in tbe underlying 
DBMS: SQL/DS. 

Tbe rest of tbe paper is organixed as follows. In Section 2 we In coostruc~ the query graph, we enumerate ail variabks in- 
provide tbe motivation to our approach and define the notation. Jn volvedintbatrukandsbowappropriatebind@s. Bindinginfor- 
Sectioo 3 we present tbe concept of tbe EDNF and prove tbat tbe matioo is passed down from tbe query node by meam of unification, 
evaluation based on the EDNF is correct. In Sectioo 4 we extend NotethatthevariableLinrule2w4auairvdwlththevprinbkZin 
the EDNF to iocbtde negation and present the technique of proc- thegoalnodeb(f/X,f/Z). Intbegraphtheruknode(ANDnu&) 
essing logic queries by deco- them iato EDNF components. implies the coojunction of goals colllwctcd byincom@arcs;tbe 
We discuss advantages of the EDNF approach in Section 5 and goal oode (OR node) implies tbe disjunction of (bodies) of ruks 
summa&e our results io Section 6. connected by incoming anzs [Ull85]. 

bimdingstatusofthevariabksinaruleortheargumentsina~ 
The syohl ‘b’ omos that tbe corresponding variabk or argument 
is bound, i.e., instatltiated, whereas tbe symbol T means tbat it is 
free, i.e., uninstantiated. Thus, if a node r has k variabks, then are 
2’ oodes marked P where u is the adornment For exampk, fl 
showsaninstanaofrulerwiththefirstvPrhbkboundMdtk 
other two free. Nodes are sfmilarly meated for all possibk bindmgs 
of arguments of a predicate. To describe our scheme, we need to 
modify the de/goal graph slightly. We call the modified one the 
qlmygtujh. wbiktheruk/goalgrapbiacompwedforrhe~Cirr 
Btt of ruks, we cor~tmct a query graph for a specific giron qqp. In 
additio~tbequeryfixesapartk&rvalue(wecaBittbeb&&g 
due) for a bound argument In essence, by u&g tbe query graph, 
wetrimtberuk/goalgrapbbyntainiogonlytbaaanodesrek~ 
toaspecificquary. Themetbodofconnauingtbenodesbysrar 
nmPinstherrameasintheNk/goPIgnph,exceptthstwedidin- 
gukb diffenot bWing valuas. Note that generating rule/goal 
grapbstoaccountforaUpossibkvaiueswouldnotbeplPct3c9y 
feasible because tbe number of dktinct values is potentiaBy infiuhe. 
Toiihstratethequerygraph,conGdertbefoUowingruksz 

rl: a(X,Y):- b(X,Z), c(Z,Y) 
r2: b(X,Z):- e(X,L), f(L,Z) 

13: e(XL):- g(X,U b(KU 

Consider tbe query ?a(XS). It corresponds to the nude fl in 
the rule/goal graph with the specific binding value of 5 for the set- 
ood argument We label this node a9 a(f/x b(S)/Y). The tom- 
pkted query graph k shown in Figure 1. 

Figure 1. The query graph for tbe query ?a(X5). 

2.0 Motivation Behind Our Approach 

2.1 Badcgmmd 

We start with the rule/goal graph of UUman [Uh85] to describe 
tbe data structmu to represent a logic query. The r&/goal graph 
represents a set of rides by creating rule nodes-one for each ruk 
with a specifii adornment [Ban86al for tbe variabks and guuJ 
no&s-ooe for each predicate witb a spacific adommeot for the ar- 
guments. An cdonvnrnr is a string of b’s ami ‘fs indicating the 

NOW, kt us construct tbe query graph of a recumive query. 
Consider tbe ruks: 

rl: a(X,Y) :- c(XL), e&Y) 

1-2: aW,W) :- d(YV), g(V,Z), aG,w) 
Suppose the question ?a(X5) is asked. Tbeq tbe query graph is as 
inFigure 2. 
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5 T/X, b(SQ? 773 
W/X, f/ b(5)/Y) R(f/M, f X, b(5 /Y, f/Z 

c(f/X,ffle(f,L,b( )/Y) d(f,M,& g(f/ f/Z) a(fjZ%(s)/Y) 

Figure 2. Quey graph for the recursive query ?a(X,5). 

InFigure 2,wedrawanarcfroma()tod()becausethenode 
a(f/+, b(5)/* ) appears repetitively with the same binding informa- 
tion. Since we cannot unify the variabks/arguments in an existing 
node (i.e., one already constructed), we use mapping of variable 
names;inthiscaseXinnode a()kmappedtoZinnodeR(). 
When we later evaluate the query graph, we have to resole the 
mapping to establish the correct association of the mapped variable 
with those in other nodes. A mapping is resolved by replacing the 
variablenameinthenodeatthetailoftlaean:withthenameatthe 
head side of the arc. (Note that in [UllflS] mapping is implicit in the 
rule/goal graph, and the substantiation algorithms have to keep 
t&k of it.) For exampk, in Figure 2, a broken arc shows how the 
node a( ) looks like when the mapping has been resolved. Notice 
that the mapping does not necRaparily indicate presence of mcmsion 
(directed cycle) because mapping k also needed when an undirected 
cyck is formed An undirected cycle typically results when more 
thanonebranchofthegraphnferstothesamegoalwdewiththe 
same binding information. 

22 scope for Improveme& 

Associated with the rule/goal graph, there are substantiation 
algorithms that compute the relation for each node according to 
capture rules [UllSS]. A relation is associated with each node in the 
n&?/goal graph. This relation is a set of tupks that satisfy the con- 
straints implied for the node by the graph. From now on, we shall 
use a node in the graph and its relation as being synonymous. 

In the straightforward application of these substantiation algo- 
rithms, we have to create a temporary relation for each node in the 
query graph, since the query ls processe d by evaluating each node 
according to the structure dictated by the rule/goal graph Here, 
we observe some potential for improvement: 

Creating many temporary relations not only takes a potentially 
excessive amount of storage space but causes an adverse effect 
on performance in a loosely cpupkd environment. In partic- 
ular, a join between a temporary relation in memory and a 
DBMS relation could cause as many calls to the DBMS as the 
numbem of tupks in the temporary relation. Therefore, we 
need to mhimize the number of temporary relations created in 
evaluating a query. 
The snucture of the r&/goal graph is inherited from the 
user-written rules. Thus, the execution structme (such as the 
ordering of relations), and accordingly the performance, is 
heavily dependent on these ruks. This counters the principk 
of data independence. Our aim is to eliminate this limitation 
by “normalixing” the query to keep only semantic information 
that is tmessay to evaluate the query. 
The rule/goal graph approach does not take advantage of ex- 
isting DBMS optimization. 

ExPmplel:CollsidertherulesandthequeyinFigure 1. Inthis 
case, we need six temporary relations (one for each nonkaf rule or 
goal node). Besides, the “bask capture rule” in m8S] indicates 
that the joins must be evaluated in the order (((g Join h) Join f) Join 

c). However, we know that we can process this query with only one 
temporary relation (for the result) in main memory and that the 
DBMS optimization can choose any join ordering that provides the 
best performan~. The normalized query is (g Join h Join f Join c). 
It can be translated to a database query as follows: 

SELECT g. 1, c.2 
FROM g, h, f. c 
WHERE g.2=h.l AND h.21f.1 AND f.21c.1 AND c.295 

In the above query, projection lists and join conditions are shown 
using positional identifiers for attributes. 
End Example 10 

3.0 Tbe Extended Disjunctive Normal Form 

In this section we define the concept of an Extended Disjunctive 
Normal Form (EDNF) of a query graph. The Extended Disjunctive 
Normal Form is an extension of the disjunctive normal form of re- 
lational algebra expressions so as to include recursion. 

Thepurposeofourtechniqueistoprocessaqperyiosuchaway 
as to avoid the shortcomings of the straightforward evaluation of the 
r&/goal graph that are discussed in the last section. In Section 3.1 
wepresentthedefinitionoftheEDNFandwediscussthealgorithm 
to transform the query graph Into the EDNF representation In 
Section 3.2 we present an algorithm to generate the answer to the 
query using the EDNF. In Section 3.3, using a fixed point 
formalism, we prove that the answer obtained from the EDNF is 
indeedtheanswertotheoriginalquery. TheEDNFcanbecon- 
strutted only for those query graphs in which the query goal (de- 
fined in Section 3.1) is included in any directed cyck. The 
application of the EDNF to more general queries (i.e., when some 
cycles do not go through the query goal) is dkcussed in Section 4. 

3.1 Deftition of the EDNF 

For a given set of ruks, a query graph is constructed to represent 
aspecificqueryagaiustthisset Wecalltherootofsuchagraphthe 
query god. Thus, the relation corresponding to the query goal is the 
answer to the query. The EDNF representation of a query graph 
has the following characteristics: 

1. It is a set of two-level trees. 
2. The root of each such tree is the query goal. 

3. Each tree has one or more leaf nodes that am base relations 
(i.e., they are not temporary relations). A leaf node in the tree 
mustbeakafnodeinthequeygraph. 

4. Atreemayhaveoneormoreloopsontherootindicating 
recursion. We call such a tree a looped ttre. If a looped tree 
has a single loop, we call it a single-looped ~llee; otherwise, we 
callita mu/tiloopedtWe. ThesetofEDNFtreesiscalkdan 
EDNF Fonst. 

5. There is only one temporary relation, which is the root (query 
goal) of au the trees. 

TheEDNFnlinszm the number of temporary relations since 
it has only one temporary relation, which is essential for storing the 
result of the query. It also normal&s the quey into a two-kvel flat 
structme, eliminating the arbitrary structme imposed by user- 
written rules. Figure 3 shows the EDNF of the query graph in Fig- 
ure 1. 
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g(f/X,f/K) h(f/K,f/L) -%~;~c(f,z,b(5),Y) , 

Figure 3. gk&yNF for the nonrecursive query in 

Figure 4 shows the EDNF of the recursive query graph in 
Figure 2. 

y$$) a/,X,b$SVY& f 
c(f/ J/L) e(f b(5VY) d(f/M. /X) 

Figure 4. The EDNF of the recursive query in Figure 2. 

The loop on the root node in Figure 4 actually stands for the 
root node used as a leaf node in its own definition. The mapping in 
the loop represents that the variable name X is to be replaced with 
the variable name Z when resolved as defined in Section 2.1. Thus. 
the seamd tree (in the folded form) in Figure 4 can be alternately 
shown as in Figure 5. We call it the unfokkd form of the looped 
tme. In the unfolded form, the loops appear without mapping just 
to indicate the presence of recursion. If the tree has multiple loops, 
the mot appears as a leaf multiple times-once for each loop. 

i)aU/X,b(S)/Y)~ 

d(f/M,f/X) t&f/&) >/Z&(5)/Y) 

Figure 5. F‘hzTlded form of the looped tree in 

We present a description of an intuitive (top-down) procedure 
for converting the query graph into the corresponding EDNF. A 
formal description of the algorithm based on bottom-up construction 
is in [wha87]. 

1. The query graph is traversed by following one of the alternative 
branches at every OR node (a nonleaf goal node). For an 
ANDnode(aruknode),ifithasakafnodeasachild,the 
child is attached to the output tree as a leaf node. Otherwise, 
all branches coming up into that AND node are traversed 
When ail these AND branches reach leaf nodes, one EDNF 
tree has been constructed 

2. After the firat visit, whenever the query goal is visited again, 
we treat it as a leaf node. Since this indicates recursion, we 
markthetreeasaloopedtree. Atsomepointinthepath,if 
multiple cycles bffurcate from an AND node, it forms a multi- 
looped tree. On the other hand, if multiple cycles bifurcate 
from an OR node, we obtain multiple single-looped trees rather 
than one mukiIooped tree. This results in an interesting 
graphical characterization of linear or nonhnear rules. The 
presence of any m&looped tme in the EDNF indicates that the 
set of rules used in the query graph is nonlineui? if there are 
only nonlooped and stigk-Iooped wes, then the set of rules is 
hear. 

3. Whenever a leaf node is encountered, we record on the arc the 
mapping accumulated (using function composition) through 
the entire path from the root to the leaf unless it is the identity 
mapping. Details of manipulation of the mapping are described 
in [wha87]. 

For ease of understanding, the algorithm as described here 
produces looped trees in the folded form. To actually process the 
query, however, we need to transform the trees to the unfolded 
form. The algorithm in [Win1873 directly produces the looped trees 
in the unfolded form. 

Bxample 2: Figure 6 and Figure 7 show query graphs containing 
nonlinear and linear recursive rules, respectively, and their EDNFs. 
For simplicity, we represent nodes simply as OR and AND. Only 
the root and leaf nodes are shown with predicate names. 7% 

41 f0 80 

Query Graph A EDNF of Query Graph A 

Figure 6. 
iLhli?s 

mh and the BDNF involving 

Query Graph B BDNFofQueryGraphB 

Figure 7. A.%.~ 
rze!L 

Graph and the EDNF involving onfy 

Note that in Figure 6 the bifurcation of the two cycles occurs 
at an AND node (thus generating a double loop), whereas in 
Figure 7 it occurs at an OR node (thus generating singk loops). 
End Example 2 0 

IncoostructingtheEDNF,somecaremustbetalrennottolaPe 
any binding information propagating upnunls through the query 
graph. These bindings may come from the rule heads. Two w 
cases are shown below: 

case 1: aW,Y,O) :- . . . . . . . . . . . 
Cpse2: b(XW :- . . . . . . . . . . . 

Since in the EDNF, all the nonleaf nodes are eliminated, these 
bindings will be Lost. We solve this problem by modifying the above 
rules before conversion into EDNF as follows: 

Casel: a(X,Y,Z) :- . . . . . . . . . . . . (z-0) 
Cpse2: W&Y) :- . . . . . . . . . . . . (X-Y) 

Thus, basically we introduce new variables in tbe heads and 
move the binding information into the body of the rules. The 
transformation we use is consistent with the generul form of the 
clause in [Cla78].* 

I This is brought up again in the dhcussii of negation in Section 4. 
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3.2 Processing Queries Using the EDNF 

The EDNF is a data structure representing a query. We now 
present an algorithm to process a query using this data structure. 
Let us use the following notation: 

NT: the set of nonlooped trees in the EDNF 
LT: thesetofloopedt.reesintheEDNF 

The algorithm is described below: 

Algorithm PROCESS-QUERY (NT, LT, Result) 
1. Result:- + 
2.Foreachtreet c NT 

Result: = Result U EVAL(t) 
Elldf0r 

3. repeat until no change in result 
For each tree / P LT, 

Result:= Result U EVAL(/) 
Endfor 

Bnd PROCESS-QUERY 

l%e algorithm EVAL simply evaluates a nonrecursive query re- 
presented by a nonlooped tree. When evaluating a looped tree, it 
disregards the loops from the unfolded form of the looped tree (see 
Figure 5). A nonlooped tree is evaluated as a join of all tbe leaf 
wdesinthetreepropctingtheresultfortbeargumentsintheroot 
(query goal). Such a join request is submitted to the DBMS. loin 
conditions are derived from the matching variables in different 
nodes. If the leaf is an evaluable (arithmetic) predicate such as X 
>Y,tbenitistreatedasacondition. Ifallthevariablesinacondi- 
tion come from database relations, the condition is imbedded in the 
database query. If there is a safety dependency [Zan86] among 
variables in the evaluable predicates, these predicates are evaluated 
based on the order of the dependencies. A set of variables Y is 
safety dependent on a set of variables X (X + I’) if there is a finite 
number of Y values once values of X are fixed. 

Rxample3:InFigure SthereisasafetydependencyX+Y-cZ. 
Hence, the evaluation of the tree proceeds as follows. First, 
II,, oo(pJ,mnd@.2 - 5.1)) is processe dbyissuingaquerytothe 
DBMS.) Next, for each tuple in the result, we 
1. evaluate Y-2*X and bind Y, 
2. evaluate Z-Y+3 and bind Z, 
3. check the condition Z>W to select tuples from the result of 

join. 
NotethatbothZandWareboundbythetimetheconditionis 
checked. Otherwise, q(XY,Z) would not be “bottom-up 
evaluable..” 

z y+/+F<& I* z>w Pm-) s(LW 

Figure 8. A general nonlooped tree. 

End Example 3 0 

It is interesting to note that the algorithm EVAL is similar to the 
algorithm needed to process a domain~akulus query as in QBE 

J Here and throu$lout the paper, the symbol 00 l-qmsents the pmfii join qlcm- 
tar, and n the pmjection opmator. 

[Zlo77]. We can therefore take advantage of optimization tech- 
niques developed for this class of DBMS queries (e.g., see 
[wlla85]). 

A salient feature of the algorithm PROCESS-QUBRY is that 
nonlooped trees are evaluated and unioned “only once.” The itera- 
tive procedure is applied only to the looped trees. This makes a 
significant improvement over what is implicitly indicated in Tarski’s 
[Tar%] formalism. There, nonlooped trees would be unioned again 
and again at each iteration. We believe that some of the existing 
naive approaches do exhibit this drawback. A natural consequence 
of the EDNF approach is to isolate the portion of the query to be 
pmcessed iteratively to a minimal possible scope. 

Algorithm PROCESS-QUERY is the basic algorithm to proc- 
ess looped trees. We can construct alternative processing algorithms 
suitable for processing looped trees in different situations as in the 
following exampks. 

Example4: 

We describe an algorithm that can process the queries derived 
from linear rules efficiently. These queries contain only nonlooped 
and single-looped trees. This algorithm avoids duplicate processiag 
of relevant data, i.e., it satisfies the FRD-B property. Further, it 
does not require explicit calculation of differentials; instead, it ob- 
tains them implicitly. 

For the sake of simplicity, we describe the algorithm using a 
specific example shown in Figure 4 and Figure 5. First, algorithm 
PROCEss_QuERY described above evaluates the query as in 
Figure 9. 

1) u(j:- III,, oc(cp,cond(c.2 - e.1)) 

2) repeat (incrementing i) until Ui = Ui-1 

ui - 4-* U &J o”(ujBll d,g, cOnd(Ui-*.l * g.ZM.2 I g.1)) 

Figure 9. Iterative evaluation of the EDNF in Figure 4. 

Note that a straightforward application of this procedure in- 
volves some redundant computation. The result of Step 2 at iter- 
ation i - 1, qel , is processed (i.e., joined with d and e) at iteration 
i to produce u,. However, this process@ is duplicated at iterations 
i + k, where k - 1,2.3, etc., because u,t is a subset of all uie’s. 

Algorithm ONE-PASS described below completely avoids tbis 
mhmdancy. In this exampk we consider a situation in which the 
result (relation a) is constructed in main memory, and relations c , 
e,d,andgareintbeDBMS. 

Algorithm ONE-PASS 

1) compute(c(X&&(L,S)& 
check-unigue-and-addnewtupk(u(X,5))) 

2) compute(u(Z,5)&~(X~& 
cbeck-unique-and-addnewtupk-at-the-bottom(u(X.5))) 

In algorithm ONE-PASS, the predicate compute finds all variabk 
bindings that satisfy the goal passed as the argument. Step 1 proc- 
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eases the nonlooped tree and constructs the initial value of relation 
(I (i.e., q,), and Step 2 processes the looped tree. Step 1 and Step 2 
correspond to Step 1 and Step 2 in Figure 9, respectively. For 
convenience, we described the algorithm in a Prolog-like fashion. 
In actuality, however, the algorithm generates calls to the DBMS in 
asbigqwriesaspossibktoaccessthedataintheDBMs. Inthis 
example the following database queries will be composed: 
rIl#g c&e, cond(c.2 - cl)) and 
II, o(dg, cond(d.2 - g.lAg.2 - 2)) , where 2 is a specific value of 
2 bound by a tupk of u. The algorithm is further illustrated in Fig- 
ure 10. (I 

I-I, oc(ff&cond(d.2 - g.lAg.2 = I)) 

es the transitive closure [Ioa86, Yug7] can be applied to the EDNF 
with little modification. 
End Example 5 0 

Siiarity between transitive closure and linear ruks has been 
demonstrated in [lag871 for the case of a single recursive rule (with 
a nomecursive exit rule). Our scheme shows the same observation 
can be made for a sel of linear ruks. We simply treat a set of non- 
looped trees effectively as one nonlooped tree. ‘Ibe kaf of the tmw 
tree is the union (ie., disjunction) of the sets of kaves from the 
orignial trees. Similarly, we treat a set of single-looped trees as one 
single-looped tree whose kaf is the union of the sets of kaves from 
the original single-looped trees. Thus, the function for which the 
transitive closme is defined is the union of the joins of relatiortr 
rather than a single relation. Our scheme also provides interesting 
insights into nonlinear effects. Although nonlinear ruks cannot be 
precisely represented as a transitive closure, any nonlinear effect ia 
cleanly Isolated in the form of multiiooped trees. 

3.3 Least Fwed Point F- of the 
EDNF 

Figure 10. The ONE-PASS algorithm that avoids duplicate 
processing of relevant data 

Step 2 of algorithm ONE-PASS does not contain explicit iter- 
ation. Instead, it makes a “singIe pass” through relation (I, whik 
adding new tupks from partial results to the bottom of a at the same 
time. New tupks added are checked for uniqueness before iu- 
sertion. (Note that set union in Figure 9 should also check for 
uniqueness. This applies to any iterative evaluation techniques.) 
When no more new tupks are added, the computation stops. 

In effect, the algorithm adds (or+, - a,) as a result of processing . . . . (0, - 4-J (Le., pumg (a, - 47,-J with I), where i is a specific 
iteration in Figure 9. That is, it obtains a differential at iteration 
i + 1 by processing only the differential obtained at iteration i. 
Thus, it avoids duplicate processing of tuples in u,-~ when producing 
co;+1 - u,). Note that the algonithm does not require an explicit re- 
lational algebra expression to calculate the differential. A related 
work bused on diifemntials has been presented in [Cai87] in the 
context of programmins languages. 

TIE one-pass technique is possible for two reasons: 
1. Only one relation (u in this case) is evaluated as the test&: the 

EDNF representation has this property since it requires only 
one temporary relation that corresponds to the query goal. 

2. Only single-looped trees are considered: only linear sets of 
rules provide this property. 

End Exampk 4 0 

-5: 

Although the class of queries that can be represented in the 
EDNF is far larger than that of the simple transitive closme, their 
EDNF representations resemble each other. A transitive closure 
~atsintheEDNFasonenonloopedtreeandonesingk-looped 
tme, each having one kaf. Hence, any efficient techniques to proc- 

Our goal in this section is to use the fixed point formalism to 
show that our proposed transformation of the query graph into the 
EDNF obtains the same result as that of the original query. 
llmxem 1: Algorithm PROCESS-QUERY produces the correct 
result to the query. 

To prove Theorem 1, we need to introduce several theorem and 
kmmas regarding fixed points Detaikd proofs of these theommp 
and kmmas appear in [wha873. 

-Iheorem 2 [Tar&i]: 
Given: 
A poser (.S, $0) is a partially ordered set with respect to a binary m- 
lation5. Shasauniqueminimumekmento. Also,themcannot 
he an infinite sequence of strictly ascending elements of S. We call 
this condition the Ascending Chain Condition (ACC). $S + S is a 
monotone increasing function with respect to 5. A fixed point off 
isdefinedasanekmentxofthedomainoffsuchthatf(x)-x. 
Tbe leust fixedpoint off, (Mm) , is the smallest fixed point with 
nspect to 5. 
Then: 
UP(/) I p(o) for some finite k, i.e., the LFP can be computed as 
the- value x at the termination of the following program: 

x: - 0; 
whilef(x) > x 

x: - f(x); 
cad, 

Theorem 2 can be extended in a straightfotward manner to a system 
of equations. Thus, we define the fixed point of a vector of func- 
tions F with the equation: 

x - F(X), 111 
where x is a vector of fixed point variables Cu,, X, . . . , &>. 
Equivalently, we have 

Xi-fi(X,, . . . 0-e ,XJ,i - 1 ton 121 
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Lemma 1: Inheritance of AsceLlding Chain Condition 

Gjven posets (Si, $oJ, i-1.2, . . . . n, each with the ACC. Then, 
s- (X&9 I, < ol,q, ... >)isalsoaposetwiththeACC. Thebi- 
nary%ation 2 is defined as: 

<x,.x,, ... ,X>I<r,,r,,.... Y.>iff&&~foralli. 

Lemma 2: Inheritance of Monotonic&y 
-Let (&s * SJ be monotone increasing; i.e., if X 5 y, then 

&f> SAr) . Then, 
F:S+SpP(X ,,..., X,)=<f,(X, ,..., X,) ,..., f.(X, ,..., X,)> 
is also monotone increasing. 

‘lleorem 3: Given S in Lemma 1 and F in Lemma 2, LFP(F) can 
be computed as follows: 

x: - a; 
while F(x) > x 

x: - F(x); 
end, 

Theorem 4 mall]: Given :S in Lemma 1 and P in Lemma 2, LFP( 
i?) can be computed as follows: 

<x,,x,,...,x,>:-<~,q, . ..t o,>; 
while3 c {l, . . . 94 3 txi <f;(x*,x2P ... PxJ) 

xi: - f;(x,, 4, . . * 9 &I 

end; 

131 

Theorem 4 [Xil73] basically says that LFP(F) can be computed 
by iterating on individual equations. We shall refer to one step of 
this iteration with any one equation as an elementmy execrrrion . In 
addition, Theorem 4 allows us to choose any order of performing the 
elementary executions without affecting the least fixed point. 

To prove Theorem 1 we proceed as follows. We subsequently 
illustrate the proof with an example. 
1. First, we model the query graph as a system of equations as in 

Eqs. [2]. One equation is created for each node in the graph 
We call it the query graph system of equations (QGSE). Simi- 
larly, we model the EDNF forest as a system of equations, but 
in a slightly modified form to introduce an explicit OR node. 
We caU it the modified EDNF system of equations 
(MEDNFSE). 

2. Next, we defii a macro execution of the system of equations 
QGSE as the set of all elementary executions that are per- 
formed according to the “partial order” defined by the query 
graph in its unfolded form with the cycles broken. Note that, 
from Theorem 4, we have the freedom of choosing any order 
of elementary executions without affecting the result Simi- 
larly, we define a macro execution for the modified EDNF. 
From the algorithm constructing the EDNF forest, we conclude 
that one iteration of the macro execution on the QGSE and one 
on the MEDNFSE produce the same result for the query goal 
(i.e., the root node), since the result of the latter is the 
disjunctive normal form of the result of the former. Therefore, 
both iterative macro executions converge to the same least 
fixed point. 

3. Finally, we show that the iterative macro execution terminates. 
Siuce the relational algebra expressions include only selection, 
projection, cartesian product or joh and union, they are 

monotone increasing functions [Aho79]. (We disallow set dif- 
ference by excluding negation involved in a cycle as discussed 
in Section 4.1.) Since the “values” for the relations are limited 
by the Cartesian product of all values in the base relations and 
those derived by evaluable predicates subject to safety condi- 
tions (as in Example 3), the ascending chain condition (ACC) 
is satisfied with respect to set inclusion. Thus, the iteration 
must terminate. 

Example 6: Consider the following rules: 

rl: q(X,Y) :- a(X,Z), b(Z,Y) 
t-2: q(X,Y) :- c(X,Z), d(Z,Y) 
r3: d(Z,Y) :- e(Z,Y) 
r4: d(Z,Y) :- f(Z,L), q&Y) 

The query graph for ?q(X,Y) and the corresponding EDNF for- 
est are shown in Figure 11 and Figure 12, respectively. 

i4 &I) rl X,Y Z) 
q(x7y)f=-N (x y z) 

W&Z) , 
ccxi<( 2$%&z y L) 

f 

9 

et Y) f(&) ’ 

Figure 11. Query graph for ?q(X,Y). 

a(Xr& Y) (X !#“‘$Z,Y) c(X$“?$)! , c, , 

Figure 12. The EDNF forest of the query in Figure 11. 

First, we modify the EDNF forest to introduce an explicit OR 
as in Figure 13 below. 

px< jE>T a(X,Z) b(Z,Y) COW e(Z,Y) 4X, 1 f( J-1 

Figure 13. A modification of the EDNF forest in 
Figure 12. 

If we apply the bottom-up capture rule and the substantiation 
algorithm [VU853 to the modified graph in Figure 13, it is easy to 
show that the result remains the same as the result of 
PROCESS QUERY for the EDNF in Figure 12. Basically, in 
Figure 13,the two disjuncts namely, r5 and 16, are repeatedly un- 
ioned with the query goal q (which is an inefficient technique), while 
in the EDNF they are unioned only once. Now, we shall prove that 
thequerygraphinFigure 11 andthemodifiedEDNFinFigure 13 
are equivalent in that they produce the same result. 

Using relational algebra the query graph above can be repres- 
ented by the following system of equations. Without Loss of gener- 
ality, we choose one total order of the equations that satisfies the 
partial order defined by the query graph. 
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r3-e 
r4 - n1.43 dLwWf.2 - q.1)) 

d = U (~3, rIIJr4) 
1-2 - lIlhz m(c,d, cond(c.2 - d.1)) 
rl = II1,42 =(u,b, cond(a.2 = b.1)) 
4 - u (Qrl. q,m 

[QGSEI 

4.0 EDNF as a Building Block for More Com- 
plex Quexies 

4.1 Incorporatiug Negation in Horn-clause 
LosiC 

The modified EDNF in Figure 13 can be represented as follows: 

r5 - 11,,4,2 =(a,b,cond(o.2 - b.1)) 
r6 - lIlr2 w(c,e, cond(c.2 - e.1)) 
~7 - ll~,h~,~ =(cf,q,cond(c.2 - f.lAf.2 = q.1)) 
4 - u (qy.5 q,yfi qg 

[~~EDNFSE] 

We now define a macro execution for the QGSE as the set of 
all elementary executions in the QGSE that are performed according 
to the partial order defined by the query graph in its unfolded form 
with the cycle broken. Similarly, we can define a macro execution 
for the MEDNFSE. 

As a result of a macro execution on QGSE, we obtain 

%I*, = e 
%2 - &,4,2 dfffn-1. mnd(f.2 - qn-1.1)) 

4.3 - u v-%,l~ q2%,2) 

l-2 n.4 * n1.43 a(dnd,39 WWC-2 * d,J*l)) 

r&,5 - Ill,43 oe(a,b, cond(a.2 - b.1)) 

% - ‘hr.6 - u (n1,2r1n,5~ n1,2%,4) 

[QGSEI 

Here, the first subscript stands for the iteration number of the macro 
execution, and the second the iteration number of the elementary 
execution within a macro execution. By substituting rlmJ and I$?,,, 

qn - U U-b.4 44). n1.4 -(c&$) 

- U (“1.4 =(dOr n~,~ =(c, U (e, “I,~ -(f. q,,J)N 

- u (nl.4 mhb), n1.4 =kd, HI.6 +f, e-1)) 

N-4 

where q. is the value at the n-th iteration. For simplicity, we dropped 
the join conditions in the above equations. Siiarly, the macro ex- 
ecution on MEDNFSE produces 

‘ln = u t&,4 -(dd, &,4 ““(W). HI.6 =(cf, q&) [MEDNF-n] 

Equations QG-n and MEDNF-n show that the results of 
macro-executions on the QGSE and the MEDNFSE are identical. 
In general, the resulting values of q from the QGSE and from the 
MEDNFSE must be identical since, by definition, the latter is only 
the disjunctive form of the former. Let us note that this property is 
obtained by virtue of the definition of the macro execution as a 
“partially ordered” set of elementary executions “as per the query 
graph.” A set of elementary executions with an arbitrary order 
would not have this property. 

This completes our demonstration of (proof of) equivalence be- 
tween the query graph and its EDNF representation. 
End Example. 6 0 

The negation-as-failure evaluation technique [Cla78] extends 
the linear resolution proof technique by treating a negated literal as 
a lemma This lemma is evaluated by a “failure proof.” That is, -p 
is inferred if any possible proof of p fails. It has been shown in 
[Cia78] that the negation-as-failure evaluation technique is a valid 
inference rule in a completed aktubase. Intuitively, a completed da- 
tabase is constructed by adding the “only if” counterpart of the rules 
in the general form. In the geneml form, rules have no binding in the 
head (i.e., the ruk head has only independent free variables); the 
bindii are all moved to the rule body (i.e., the right hand side). 
Also, all rules having unifiable rule heads are combined into one rule 
bytreatingthebodiesoftheindividualntlesardisjunctsinthebody 
ofthenewrtde. 

Clark concludes that negation iis failure is valid in the completed 
databaseifthenrlesarelimitedtothosehavingnovariablesthat 
appear only in negated lfterais. In other words, negated fiterals must 
be ground before being evaluated. For example, negation as failure 
is invalid in the following rule: 

(1) non-math-major(Student) :- student(Student), 
core-math4ourse(Course), 4akes(Student, Course, Semester) 

Note that the variable Semester does not appear in any positive li- 
*NliDtlENkbOdy. 

in practice, however, we have an intuitive interpretation of the 
rules that do contain free variables in negated fiterak. We use such 
rules mainly when we want to express “nlational projection” for a 
negated literal. fn this section, we reconcife the use of these rules 
with a valid construct in Clark’s negation as failure.. Also, we discuss 
below safety issues and bottom-up evaluabibty when negation is in- 
volved. 

Consider rule (1). Intuitively, we intetpret it as saying that a 
student is not a math major if s/he never took some core math 
course. Equivalently, we compose a projection of relation “takes” 
on the first and second attributes and use it in negation. In other 
words Semester is a don’t-care variable. In pure logic, however, the 
rule does not mean what we want intuitively because the variable 
Semester can take any value in the domain to make ~takes(Student, 
Course, Semester) true. For example, suppose John took all the core 
math courses: including Calculus in Spring 86. Thus, John is a math 
major. However, since takes(John, Calculus, Fall 86) is false, rule 
(1) deduces that John is not a math major. 

For comparison, let us consider another set of rules: 

(2) non-math-major(Student) :- student(Student), 
core-math-course( Course), 7 takes’( StudentQume) 

(3) takes’(Stud, Cour) :- takes(Stud, Cour, Semester) 
Clearly, these rules provide the same intuitive meaning as that of 
ruk (1). Nevertheless, in this case, Clark’s negation as failure, as a 
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valid inference rule, refkcts our intuition correctly. ln the completed 
database, ruk (3) is transformed to the equivalent general form as 
In ruk (419 

(4) takes’(W) :- Zhmester, Stud, Cow ((S-Stud), (C-Cour), 
takes( Stud, Cour, Semester)) 

Subsequently, the compkrion low adds the “only if” part, yielding 
ruk (5) : 

(5) takes’(S,C) -: a&?mester, stud, corn ((s-stud), (C-Cour), 
takes(Stud, Car, Semester)) 

Rules (2) and (5) together yield ruk (a), which correctly represents 
our intuition. 

a(X.Y,Z) :- b(X,Y), Y-2, 
variables X and Y are secure because they appear in b(X.Y) and 2 
is secure because it is safety dependent (as defiid in Section 3.2) 
on a secure variable Y. However, in the ruk 

d(X) :- c(X,L), y e(L,Y), Y-Z, 
Z is not secure because neither Z nor Y appears in any positive li- 
teral that is not an evahtable predicate. 

Finally, the bottom up evaluabhlity is defined as in [Ban86], but 
using the new definitions of the term “secure”. 

Ddhitbn 3: A rule is bottom-up edwbk if 

1. it is range restricted, and 
2. every variable in the body is secure. 

(6) non-math-major(Student) :- student(Student), 
COR-mathcourse( - Wmesm, Sfwi, Cour((Student 
-Stud), (Comae-Cour), takes (StwL Cow Semester)) 

lhfhdhm 4: A query is bottom-up ewlwabk if 

1. ruks used to construct the query graph are bottom-up 
evakabk, and 

InourmethodwemodifyanyruleinfheformofNk(l)toa 
set of ruks in the form of ruks (2) and(3). so that the variabks in 
a negated literal not appearing in any positive fiteral correspond to 
the attributes that am not projected; thus, conforming to our intui- 
tion. ThismodfficationfsessentiaUythesameapthrowfnginan 
existential quantifkr for each variabk in the negated literal not ap- 
pearing in any positive literaf-kading to a form of ruk (6). The 
f~inrule(6)cpnnowbeproassedusingtheEDNFapproach. 
Let us note that the modification is exactly the same as what PRO- 
LCKi impficitiy does in the presence of a negated literal comaining 
free variabks. In this section, we formal&d this implicit modifii- 
tion by reconciling with a valid construct In Clark’s negation as fait- 
we. Asimikrtechniqueisusedin[Ull87]. Here,theruksinthe 
form of ruk (1) are disallowed; instead, the users are required to 
writendesintheformofruks(2)and(3). 

Introducing negation causes many probkms regarding safety as 
well. Con&k Nk (7): 

2. negation is not part of a cyck in the query graph 

To process a query, we assume that the query is bottom-up 
evahtabk accotding to this new definition. In Definition 4, we re- 
quire negation is not included in a cyck. If negation is involved in 
a cycle, fixed points cannot be evaluated by an iterative procedmu 
because the relational algebra expressions (functions for which the 
fixed point is defined) are not guaranteed to be monotone increas- 
inp. 

4.2 FurtJm Enhancement of the EDNF Ap- 
prollch 

EDNF is a building block for more compkx queries. In this 
section, we discuss the processing of more general queries that can- 
not be represented as a simple EDNF forest. There are two reasons 
why a simpk EDNF is not sufficient. 

Casel: lhetearecycksthatdonotpassthroughtbequery 
goal We call this case nested recursion. 

Case 2: Negation of a nonkaf node (i.e., the node is not asso- 
ciated with a base relation). 

(7) a(X,Y,Z) :- b(XY), qc(Y.Z) 
Notice that the query ?a(X,Y,Z) will produce a potentiahy infinite 
relation even though the relations for b and c are finite. In priacipk, 
Z can assume aIm&t any value in the (potentiaBy infinite) domain 
to make d(Y,Z) true. Furthermore, it is not common to have 
practicallymeaningfulruksfnthisform. Thus,weNkoutthi9ca9e 
by defining the safety criteria as follows: 

C~~P=~~~~*WCVW~ 

14. To explain Case 1, consider the query graph of Figure 

Deliddoo 1: A rtde is runge mnieted [Ban861 if every vatiabk in the 
head appears somewhere in the body. 

For a ruk to be bottom-up evaluabk, every varkbk in the body 
must be “secure” [Ban86], i.e., it carmot assume infinite number of 
values. We modify the conditions for sect&y of a variable as fol- 
lows: 

DefMiou2:Avariabkinthebodyofarukiszcunrif 
1. it appears in a positive literal that is not an evahtabk predicate, 

or 
2. it is safety dependent [Zan86] (see Section 3.2) on a set of se- 

cure variabks. 

Figure 14. A query graph involvfng nested recmxiort 

Due to nested recursion, we cannot represent the query graph in 
Figure 14 as one EDNF forest. fn this case. we construct the query 
graph treating p as if it were the query goal. Then, we have the 
EDNF as in Figure 15. 

For exampk in the ruk, 
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Figure 15. EDNF of Figure 14 using p as the root. 

We cdl m, the root of the EDNF forest. The subscript F identifies 
such a root. Then, mating pr as a base relation, the EDNF for q is 
constructed as Figure 16. 

Figure 16. lheEDNFforqcontainingprasaleaf. 

Then, the evaluation of the query ?q(Y,a) proceeds as follows : 
1. Fully evaluate pp using the EDNF in Figure 15. 
2. Evaluate qr using the EDNF in Figure 16 treating pp as a base 

relation. 

In general, for a query involving an arbitrary number of 
recursions placed on different nodes of the query graph, we con- 
struct the EDNF graphs as follows : 
1. Identify cycles that are interconnected (shongly connecred 

component [Mor86]). 
2. Identify a set of (goal) nodes such that each cycle contains at 

kast one node in the set. We define such a set as a COW (or 
fmifmck set [Gar793) of the strongly connected component 

3. Construct an EDNF forest for each node in the cover set with 
thatnodeastherootoftheEDNF. FortheEDNFofapar- 
ticukr node, the other nodes in the cover set are treated as base 
relations. 

4. Construct the EDNF of the query goal (if not already in the 
cover set) treating ail the nodes in the cover set as base re- 
lations. 

Note that, for complicated query graphs with intercomrected 
cycks, the choice of the cover set itself is complex. The cover set 
with minimum cardinahty is called a minimal COW set. Gur strategy 
for generai recursive query processing is then to choose a minimai 
cover set for each strongly cormacted component Each node in the 
cover set is assigned as the root of a separate EDNF forest. Then, 
the resulting forest of trees, where leaf nodes themselves may be 
EDNF forests, is pmcessed by obeying an EDNF forest depend 
gmph, which establishes the partial order of execution of the EDNF 
forests. For example, the forest dependency graph for EDNF for- 
estsinFigure 14isshowninFigure 17. 

Figure 17. Forest dependency graph for the query in 
Figure 14. 

Figure 17 says that EDNF forest m, should be evaluated before 
e, . We have developed heuristics for identifying cover sets and are 
currently investigating alternative solutions to the minimization of 
cover sets. 

Note that an important characteristic of our approach is that we 
evaluate only the 0Gnimal number of nodes (Le. the cover set) that 
are absolutely necessary for processing the query. In contrast in 

other methods [Mor86], oil the nodes in the original query graph 
must be evaluated. 

If the cover set contains more than one k, execution of the 
strongly connected component involves the execution of each 
EDNF forest in that component in turn until a fii point is reached 
Detaikd aigorlthms for the corWru&on of the dependency graph 
of EDNF forests and their proassinglnthegeneralcwee~but 
they an2 beyond the scope of this paper. 

IfthequeryhasnegocionoaalePfmdeinthequerygmph,m 
EDNFstructumcanbecompo&fortbaqueryasinsaction3. If 
it has negation on a nonleaf node, then we a3mtnuxabpaf8te 
EDNFwiththenegatednodeastherooL TheEDNFoftbeorigirA 
queryisthencoostructed~the~EDNFsrYitnen8 
l~afnode.Then,thct~~bniqueofdecomposipgaqucryintomuhiph 
EDNFforestswouldapply. Figure 18sbowsmexampkof~ 
query graph involving negation and its EDNFk This strategy ahams 
the same concept as stratifii [ApuM] or layering [Naq86al 
Stratifiition relaxes the hierarchical condition or@a@’ lnopa=l 
by Clark [ Cla781 by allowing retxdonmtimrdvingne~ 

Query graph 

Figure 18. Query graph involving negation and its EDNFS. 

cbdmwngtkNadaof&~ 

OneposibkdrawbackoftbeEDNFtransformationisthepo- 
tcntiai existence of too many disjunctc (trees in the EDNF) with 
overkxpping information among one another. We soivc this pdlem 
by not expanding important branches of the query graph d desig- 
natingthemasseparateEDNFforeats.ll~theEDNFoftbeori- 
glnd query is composed treat@ the bmnches (separate EDNF 
forests) -&3 reMoIls. Important bratMWs are tllo8e that may be 
duplicated in many trees when expaaded and that would be expen- 
sive to process. By using this technique we can pnvcnt probferation 
OftlWSitlthEDNFS. 

5.0 AdvantagesoftheEDNF~ 

The EDNF approach to process@ logic queries has the follow- 
ing advantages: 

1. Use of existing DBMS: 

Gurprimarythrustmtheapproachistoexpbitthefacihtiea 
within existing DBMSS as much as possibk. This mearu: 1) 
No modification to the DBMS is w 2) Faciliries pro- 
vided by the DBMS, such as autborizath, cntpioging, ECOV- 

ery, etc., may be utilized; 3) Entire quary optimization 
technique3 for relational databases with their advantages can 
be- 
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2. Performance: 

The EDNF approach enhances performance in various 
ways: 
l First, when compared with naive loose coupling, it obvi- 

OU@ duces the number of calls to the DBMS: it avoids 
issuing a large number of requests for a small amount of 
data by esaemially batching them in large database que- 
ries. 

. Second, the EDNF eliminates the arbitrary processing 
structum imposed by the user-written rules through nor- 
fualixation and keeps only the information essential to 
pmcess the query. This normalization provides the DBMS 
optimizer with more flexibility in fig the best access 
w [Kimal. 

0 ThlKLtbeEDNF minimizes the need to create temporary 
nlations by concentrating only on the desired results and 
avoiding to create unnecessary intermediate results. In 
contrast, many conventional methods try to evaluate all 
the betmediate results and store them in temporary re- 
lations. Evaluating all these intermediate results could be 
expensive z3 explained in Section 2. 

3. Better understandiu8 of recursive logic queries: 

The EDNF serves as a clear characterization of a large 
class of logic queries. We have shown that the queries can be 
represented in a smafl number of primitive constructs (i.e., the 
nonlooped tree, single-looped tree, and multilooped tree). 
Further, the EDNF provides a graphical classification of que- 
ries and makes it easy to viritulire the complexity of recursion. 
For example, any query composed from a linear system of rules 
produces an EDNF forest with only nonlooped and single- 
looped trees. On the other band, any query from a nonlinear 
system of rules produces at least one multilooped tree. Other 
types of recursions can be captured easily. For example, a 
conventional simple transitive closure appears as one Mm- 
looped tree and one single-looped tree each having one leaf. 
We also have shown in Section 3.2 that any query constructed 
from a linear set of rules can be viewed as a transitive closure 
of a complex function. 

4. Availability of alternative processing algorithms: 

Due to the characterization the EDNF provides, we can 
construct a variety of algorithms for different compositions of 
EDNF tries. For example, in addition to the basic algorithm 
for processing any EDNF, we have illustrated an efficient al- 
gorithm for processing an EDNF forest with single-looped and 
nonlooped trees (derived from linear rules). This algorithm 
avoids duplicate processing by implicitly calculating the differ- 
entials. Thus, it satisfies the FRD-B property. Unlike the ones 
previously repotted, this algorithm does not require explicit re- 
lational algebra expressions for the differentials. We are also 
contructmg algorithms for other specialized situations. lbe 
availability of these algorithms allows an high-level optimizer 
to choose the best one for a specific situation. 

6.0 Summary 

We have proposed an approach to processing logic queries based 
on the Extended Disjunctive Normal Form (EDNF). The main 

purpose of this approach is to support deduction with existing 
DBMSs in a loosely coupled manner. The class of queries consid- 
ered encompasses those in function-free Horn-clause logic extended 
for negation. For safe evaluation, however, we limit the scope to 
bottom-up evahtable rules per our new definition. 

We have presented the EDNF and its processing algorithm. We 
have formally proved the correctness by showing that the evaluation 
of the query based on the EDNF is identical to the results obtained 
by a conventional method using the rule/goal graph. 

In our opinion, virtually none of the current work on logic query 
optimization available in the literature deals with negation in a 
practical manner. We have proposed a technique of extending 
Clark’s tiegution us fuihire to include cases that are practically im- 
portant and incorporated it in our general query processing algo- 
rithm. We have also defined new criteria for safety and termination 
in the presence of negation. In particular, the definitions of security 
of the variables and bottom-evahtability of the rules have been m- 
vised for negation. 

As a future research, we left the superimposition of the FRD-A 
property on our approach as an open issue. We are evaluating ex- 
isting techniques, particularly magic sets and counting, for a possible 
incorporation into our framework 

Although many techniques have been proposed for logic query 
processing, not much has been reported for application to loosely 
coupled environments to exploit already existing DBMSs. We be- 
lieve that our technique provides significant progress in this direc- 
tion. 
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