
Translating and Optimizing SQL Queries Having Aggregates

Giinter von Biiltzingsloewen

Forschungszentrum Informatik an der Universitiit Karlsruhe
Haid-und-Neu-Str. 10-14, D-7500 Karlsruhe, West Germany

Abstract is at least ae powerful as SQL. Two well known relational query
languages that have a sound theoretical foundation are relational
algebra and relational calculus. As SQL is more closely related to
relational calculus, we define the semantics of SQL by translation
into calculus. However, relational calculus has to be extended in
order to deal with aggregate functions and null values. The op
timiation of SQL queries is thus reduced to the optimiaation of
relational calculus queries, which makes the following results also
applicable to other query languages based on relational calculus
(e.g. QUEL).

In this paper, we give a precise definition of the semantics of
SQL queries having aggregate functions, identify the problems
associated with the optimisation of such queries and give some
solutions. The semantics of SQL queries is defined by translating
them into expressions of an extended relational calculus (exten-
sions are necessary for a correct treatment of aggregate functions
and null values). The discussion of the optimization problems is
based on a new transformation of a relational calculus expres-
sion into relational algebra. By investigating the transformation
of aggregate functions we are able to identify two major prob-
lems: correct integration of the values of aggregate functions
applied to empty relations and unnecessary computation of un-
needed function values. To solve these problems we propose to
interpret an aggregate function applied to a calculus expression
with some free variables as a function on the attributes of these
variables that are referenced in the expression. Doing so, we are
able to develop several new processing strategies that should be
considered by an optimiser.

1 Introduction

The SQL query language has become the standard relational
manipulation language, as is reflected by ongoing standardisa-
tion activities [ANSI85]. An important feature of SQL are ag-
gregate functions like sum, average, minimum etc. However, the
processing of queries with aggregate functions is not well un-
derstood. A formal definition of the semantics of SQL queries
having aggregates is still lacking, as is a unified operator tree
model covering this class of queries [Kies 861. This paper is an
attempt to solve these problems.

In order to give a formal definition of the semantics of SQL
queries, we have to translate them into a formal language which

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Bndow-
ment To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

To develop an operator tree model for SQL and extended
relational calculus, an algebraic query representation has to be
found; the basic problem here is to identify a suitable set of al-
gebraic operators. A possible choice is relational algebra with
aggregate functions developed by [Klug82], with an extension to
cover null values. To rtudy the problem whether thii is a good
choice, we present a translation of relational calculus queries
into relational algebra. Investigating the translation of aggre-
gate functions, we are able to identify two major problems of
the representation in relational algebra: correct integration of
the values of aggregate functions applied to empty relations and
duplicated computation of certain function values.

To solve these problems we propose to interpret an aggregate
function applied to a calculus expression with some free variables
as a function F on the attributes of these variables that are ref-
erenced in the expression, and to include selection using such
a function into relational algebra. We develop a general pm
cessing strategy using this approach and present several special
instances of the general strategy that are intended to approxi-
mate the minimal representation of F (i.e. each function value
is represented only once for a ret of arguments).

The major contributions of our work are threefold: first, the
extension of relational algebra and relational calculus to cover
a significant subset of SQL. Second, the translations from SQL
into calculus and from calculus into algebra, showing that the
extended versions of relational algebra and relational calculus
have the same expressive power. Third, the development of a
new general processing strategy for aggregate functions, which
may form the foundation of an operator tree model for the class
of queries considered.

While this work was primarily motivated by [K&85] who
illustrated the semantic problems associated with efficient prc+
cessing of queries having aggregates, several other papers are
relevant to our discussion. [Kim82,CeGo85, Levi851 are con-
cerned with the transformation of an SQL query into some kind
of normal form which is more suitable for further optimiiation.
[Kim821 describes a translation from SQL into SQL, transform-

235

ing one complex query into several simpler ones. [Levi851 pro-
poses a translation from SQL into QUEL and [CeGo85] gives
a translation from SQL into relational algebra having aggregate
functions. All have in common that they treat only subsets of the
SQL query language. Subqueries may contain either no GROUP
BY - HAVING clause [Kim82,CeGo85] or no referential variables
[Levi851 (i.e. variables declared in an outer query block). The
SQL feature of null values and query evaluation using three-
valued logic is generally ignored. Furthermore, arithmetic oper-
ators and control of duplicate elimination are omitted.

While we agree that the last restriction is justified for techni-
cal simplification and does not constrain the applicability of the
transformations, we claim that to ignore three valued logic leads
to severe semantic problems. This is the case even if attributes
may have only nonull values, as the application of an aggregate
function like average, sum, min and max to an empty relation
gives null as a result [ANSI85]. Consequently we include the
treatment of null values and three-valued logic in our dicussion.
Furthermore we pose no restrictions on subqueries. However, for
technical simplification we also omit arithmetic operators and
control of duplicate elimination.

Besides their limitations, the above-mentioned approaches
cannot be used directly for two reasons: Fist, as has been
pointed out by [K&85], the transformations of [Kim82,LeVi85]
are incorrect in general: The application of the aggregate func-
tion count to an empty relation is not treated appropriately. Sec-
ond, [CeGo85] translates an SQL query directly into relational
algebra. Therefore the application of optimbation techniques
developed for relational calculus like [JaKo 831 is impossible and
the problems associated with the processing of aggregate func-
tions cannot be identified as easily.

In [Klug82] a precise definition of relational algebra and re-
lational calculus query languages having aggregate functions is
given and the expressive power of the two languages is proven
to be equivalent. However, the case that an aggregate function
may have null as a result is not considered and the proof of
equivalence is quite complex, making it difficult to discuss the
processing of aggregate functions.

Though not directly applicable, we can make use of some of
the techniques proposed earlier. The definition of extended relk
tional algebra and relational calculus given in section 2 is based
on [Klug82]. The translation of au SQL query into extended re-
lational calculus (section 3) makes use of the preprocessing step
of [CeGo85] and some of the techniques developed in [LeVi85],
which have to be extended to deal with three-valued logic. The
proof of equivalence of extended relational algebra and relational
calculus (section 4) is - as far as we know - new and considers
a more powerful class of languages than considered before. The :
processing techniques for aggregate functions developed in sec-
tion 5 contain as one special case the technique proposed by
IKim82].

2 Formal Definitions

Before giving definitions of relational algebra and relational 1
calculus expression we first define the relational model in the
usual way [Maie83,Klug82]. A relation scheme consists of a
name R and a degree deg(R)E N. Associated with R is the
set attrs(R)={l, . . . , deg(R)} of attribute names (i.e. attribute
names are assumed to be natural numbers). For reasons of sim-
plicity, the domain of each attribute is assumed to be the set
fi=NU{w} of natural numbers including the null value w. Tuplcs
and relations over a relation scheme are defined in the usual way.

A schema is a sequence <RI,. . ., RN> of relation schemes. An in-
stance I of schema <RI,. . ., RN> is a sequence <ri,. . .,r,v>, where
for each i=l ,. . .,N, r; is a relation over scheme R;. Throughout
this paper, one fixed schema <RI,. . .,RN> is assumed.

An aggregate function fcAgg is a function f: R + fi, where
R is the set of all relations. To translate SQL queries into re-
lational calculus we will need aggregate functions of the form
f = agg(Ai), where agg E {sum, tin, maz, aug, count}
and A; E N is an attribute name. For example, the function
sum(Ai) determines the sum of the values of attribute Ai when
applied to a relation. Aggregate functions f = agg(Ai) with
agg # count yield w as result, if the relation they are applied to
is empty or does not have an attribute with name A;. An aggre-
gate function with agg = count has 0 as result when applied to
an empty relation.

2.1 Relational Calculus

The definition of relational calculus given in this section is
based on [Klug82]. However, the following extensions are neces-
sary in order to be as expressive as the subset of SQL we consider,
i.e. in order to include the treatment of null values and predicate
evaluation using three-valued logic:

l First, the set 8 of comparison operators 0 has to be ex-
tended: 8 = {=, f, <, 5, >, 2, m}. The special compar-
ison operator z yields TRUE if the values compared are
identical in the usual sense or both w, and FALSE other-
wise. The other operators are evaluated to UNKNOWN
if at least one of the values compared equals w, TRUE if
the comparison is TRUE in the usual sense and FALSE
otherwise.

l Second, we need two new logical connectives T and I
which map the truth value UNKNOWN into TRUE and
FALSE respectively.

Calculus expressions are defined recursively using several clas-
ses of objects: variables, terms, formulas, range formulas and
alphas. Thereof only the closed alphas (alphas containing no
free variables) correspond to calculus expressions. The definition
starts with atomic alphas, i.e. relations defined in the schema.
Free variables, bound variables and closed objects are defined in
the usual way.

Variables: V={vi, va, vs, . . . } is the set of variables.

Terms: Terms correspond to elements of A. The set T of terms
is defined as follows. For any c &, c E T (constants).
If vi EV and A is an attribute name, then vi[A] ET (at-
tribute values). If fEAgg and cr EA, then f(a)ET (appli-
cation of an aggregate function to a relation).

Formulas: Formulas correspond to truth values. The set F of
formulas is defined as follows. If tl, t2 are terms and 0 E 0
is a comparison operator, then tit& EF. If +,$I and $2
are formulas, then l(/ EF, T$ EF, IJ, EF, $1 V $2 EF,
$1 A $2 EF. For any formula J, EF and range formula
ri(ui) EBF we have (Brc(ui))$ EF and (Vri(vi))J, EF.

Range formulas: Range formulas bind variables tp relations that
are described by closed alphas, i.e. alphas containing no
free variables. The set RF of range formulas is defined as
fOlloWs. If ail, . . . , oii are closed alphas and ui EV, then
ri(ui) EBF with ri = oiz V.. V air.

236 Proceedings of the 13th VLDB Conference, Brighton 1987

r Terms T: I

q,a) E IQ
4,P) = c

vi[A](Z,P) = B(ui)[Al
f(a)(Z, B) = f(4Zl a))

Formulas F:
+(I, a) E {~(TRuE), O(FALSE), ~(UNKNOWN))

tl& I,B) = tl(z,a)etz(z,a)

($1 v $2)(1, B) = m4+l(Zl Bh +a(Z, 81

($1 A $2W, /3) = mid+l(Z, B), +2(Z, PII

(-w, a) = 1 - w, B)

W)(Z, PI = l@l P)J

(T+)(Z, P) = I’@, 81

((%(ui))+)(Z, P) = m=40, m=m,u,~) (/ItI, BI~ilTl))
((Vri(Vi))+)(Z,8) = min{l,minm,(m) clr(~~BI~iPI)~
Range Formulas RF:

ri(ui)(Z,/3) E {l(TRUE),O(FALSE)}
ail V V CYik Vi I, @

= 1, ifp(Vi) E ai,(Z,/3) U...UC+(I,P)

0, otherwise
Alphas A:

4,P) E R
&(Z,/3) = ri

&x.j>(a)(Z,B) = {Wlou: TEa(Z,8) A
y = f{T’ E a(Z, a) : T’[X] G T[X]}}

((h,..., L) : n(u1) ,...,*m(4:O)(Z,B)

= {(h(Z,B’),..., L(Z, a’)) : w, a’) = 1 A

B’= B[Vl/Tl,... ,h/Tm] A ri(Vi)(Z,B') = 11
d

Table 1: Semantics of Calculus Objects

Alphas: Alphas correspond to relations. The set A of alphas is de-
fined as follows. If & is in the schema, then & EA (atomic
alphas). If tl,..., ,, t are terms not containing aggregate
functions, tl(V1), . . . r,(v,) are range formulas and (/, is a
formula, then

(t 1,. .., tn) : rl(v1) ,..., rm(v,) : (/, E A.

This definition is recursive, baaed on range formulas that
consist of atomic alphas.

If a is a closed alpha, feAgg and Xcattrs(a), then

d<x,f>(a) EA (aggregate formatIon).

In contrast to [Klug82], we do not allow aggregate functions
in the target list of an alpha. Instead calculus includes the al-
gebraic aggregate formation operator 4. The reason for these
modifications are that translation of an SQL query into calculus
as well as translation of a calculus expression into algebra become
easier. However, the expressive power remains the same.

The semantics of calculus objects is defined in table 1. Ob-
jects of relational calculus are interpreted with respect to a sche-
ma instance I and a mapping /3 (called a valuation) which asso-
ciates with each variable vi EV a tuple a(vi) = 2’. B[vi/T] is
defined to be the valuation, which yields T when applied to Vi
and equals a(v) when applied to another variable v.

The aggregate formation operator d<x,f> groups its input
relation on the attributes X (Z’[X] denotes the tuple consisting of
the X-values of 2’; I yields TRUE, if the tuples being compared
are identical). It applies the function f to each group and returns

the X-values and the associated function value for each group (o
denotes concatenation). It can be general&d such that several
functions are applied to each group (&x,(~~,.J~,,).

2.2 Relational Algebra

The definition of the set E of relational algebra expressions
over our fixed schema and the value e(1) of an expression on
an instance I of the schema is given in table 2. The following
notations are used in the definition: c denotes an element of fi.
e, cl and e2 denote relational algebra expressions. A and B are
attribute names, X and Y sets of attribute names of equal rise.

Relational Algebra Expressions: e(Z) E R
L&ml cz=c
Base Relation &(Z) = ri
Projection TX(e)(Z) = {T[X] : T E e(Z)}
Union (el U es)(Z) = ei(Z) Ue2(Z)
Diflerence (el \ e2)(Z) = cl(Z) \ e2(l)
Product (el x ez)(Z) = cl(Z) x e2U)

&atriction uAeB(e)(Z) = {T E e(Z) : T[A]BT[B] = 1)
Restriction’ uLes(e)(Z) = {T E e(Z) : T[A]BT[B] E (1, i}}
Aggregate kx,~ (e)(Z) = {WI 0 Y : T E e(l) A

formation W’ E 4’) : W4 = Vl~~
Intersection

lel n e2)(z) re;
(r) n e2(l)

Selection aAec(e)(Z) = {T E e(Z) : T[A]gc] = 1)
Selection’ u>o,(e)(Z) = {T E e(Z) : T[A]Bc E (1, $}}
Join (elW’B]eN) = oAe&l x 4(Z)

Table 2: Relational Algebra Expressions

In order to be at least as expressive as SQL, relational al-
gebra also has to be extended to include the h&dling of null
values. This is accomplished by introducing modified versions
u’ of restriction and selection, which retain tuples for which the
corresponding predicate yields UNKNOWN. Thii extension cor-
responds to the introduction of I and T as logical connectives
into relational calculus. In fact, instead of defining new operators
we could aa well introduce the logical connectives in the restric-
tion/ selection predicate. Selection, intersection and join are or
can be defined in terms of the other of the above operators.

3 Translating SQL Queries into Rela-
t ional Calculus

As we are primarily interested in the translation and opti-
misation of queries having aggregate functions, we consider only
a relevant subset of SQL, which is still more powerful than the
subsets covered in earlier papers [CeGo85,LeVi85,Kim82]. The
only restrictions are that attribute domains are restricted to the
set fi of natural numbers including w, terms are restricted to
contain no arithmetic operators and duplicates may not be re-
tained in the result of a query or subquery (yhich actually does
not restrict the formulation of subqnery predicates). The effect
of these restrictions is a technical simplification of the transla-
tion into calculus and algebra, the extension to complete SQL
being straightforward.

A grammar for the subset of SQL being considered is given
in the appendix. We can represent an arbitrary query of our
subset in a form according to this grammar if we allow two simple
preprocessing steps [CeGo85]:

Proceedings of the 13th VLDB Conference, Brighton 1987 237

Sub Query SQ Predicate Calculus Formula

SELECT f EXISTS SQ: TRUE
FROM n(vdr...,rn(vn)
WHERE P, t 0 SOME SQ: tf?f’(* : ri(vi), . . ., r,(v,) : Pw)

SELECT (1
4;($ f

EXISTS SQ: (3rl (VI), . . ., 3r,(v,))(lP,)
FROM ,...,r,(v,)
WHERE P, t6’SOMESQ: (3ri(vi),..., 3rn(vn))(lPw A th)

SELECT t. EXISTS SQ: (31 vl , . . . , () 3r,(vn)) (I(Pw A PA))
FROM
WHERE

;(vl),...,r,(v,)

vi:!&]
t B SOME SQ (3ri(vi), . . . , 3rn(vn)) (I(P, A PA) A tet:)

GROUP BY 1 t**-,Vir(AirI
HAVING Ph ao= (* : rl(v~),...,r,(v~) : Pw[Vi/4] A

vi1 [A;,] E vi, [Ail] A . A Vik[Ai,] 2 4,[&,])

P; = Ph(f/f’(oo), f E ph], t: = blf/f’(aO), f E t.1,

Table 3: ‘Ikanslation of Snbquery Predicates

SQL Query

SELECT fi,...,fl
,...,r,(vJ

SELECT h,..., t1 (# f)
,...,rJh)

SELECT tl,...,tj
FROM n (~1) ,...,rn(vn)
WHERE
GROUP BY $[A.] (1 ,***gvi,[Ai,]
HAVING Ph

Calculus Expression

(fi,. ..,f;)(* : n(w), . . .,m(v,) : Pw)

(ti ,..., ti) : rl(v1) ,..., rn(v,) : P,

(&...,ti) : a(v) : Pi

CI = (&(A,~ ,..., +),(f; ,..., jg>(* : rl(vl),...,rn(vn) : Pw 1);

(G,..., t;,ph) = (tl,***, t1, Ph)[fi/V[k + ;]9 Vij[AijI/V[jll;

(fir..., fm aggregate functions in tl, . . . , tl, Ph)

Table 4: Query ‘Ikanslation

SQL Query

SELECT sum(vl l]), vi 3
FROM WI)
WHERE P,
GROUP BY vi[3]
HAVING maz(v1 [4]) > 0

P, = -7 (v1[2] = SOME
SELECT
FROM zz’ll)
GROUP BY &I
HAVING min(v2[3]) > vl[3])

Calculus Expression

(VIZ], v[l]) : a(v) : v[3] > 0

Q = 4<s,(,um(1),maz(r))>(* : Rl(vl) : Pw)

P,,, = - (3Rs(vl)) (I min(t)(ao) > ~(31 A ~112) = maz(l)(ao))

a0 = (* : R&I;) : v: [3] > 431 A y[2] q v;[2])

Example 1: l’kanslation of SQL Queries

238 Proceedings of the 13th VLDB Conference, Brighton 1987

l Associate with each relation in a FROM clause a unique
variable and extend each attribute reference to contain the
variable it refers to.

l Transform each predicate into one of the three basic pred-
icates. For instance, an *in predicate* can be reduced
to a cquantif ied predicates.

To translate an SQL query into a calculus expression, the qn-
tactical differences between SQL and calculus (subquery predi-
cates, GROUP BY - HAVING clause and position of aggregate
functions) must be resolved. Thii is accomplished with two kinds
of translations, i.e. translation of subquery predicates and tram+
lation of the query (see Tables 3,4).

In SQL, aggregate functions are represented in the form j =
agg(ui[&]), where vi is bound to a relation ri in the FROM
clause of an SQL query or subquery (FROM ri(ur), . . . , r,,(u,)).
j is applied to the result of the evaluation of the FROM and
WHERE clauses of the query or subquery, which is a subset of
r = tl x ... x rn, or to partitions of this subset (in case the
query or subquery contains a GROUP BY clause). Hence j is
translated into j’ = ogg(Ai), where Ai names the attribute of r
that corresponds to the attribute Ai of ri (In tables 3,4 this is
indicated by j and j’).

The translation of eubquery predicates has the following prop
erty: The calculus formula yields the same truth value as the ,
original SQL predicate when applied to the same schema in-
stance I and the same valuation ,9 for the free variables of the
calculus formula resp. SQL predicate. In the translation, three
types of subqueries are distinguished:

l The first type yields exactly one value as the result of an
aggregate function. Hence the caxiatr predicate> is al-
ways TRUE and the <quantified predicate> is evalu-
ated by comparison with the result of the aggregate func-
tion.

l The second type is evaluated to a set S of values. The <ex-
irta predicate> is TRUE, if S is not empty, and FALSE
otherwise. The *quantified predicate> is TRUE, if the
comparison is TRUE for at least one value in S. It is
FALSE, if S is empty or if the comparison is FALSE for
every value in S, and UNKNOWN otherwise. The subtle
point in the translation of this eubquery type is that we
have to mahe sure that the comparison is evaluated only
for values in S, i.e. that values for which P, is evaluated
to UNKNOWN may not be ‘included. This is accomplished
by application of the special logical connective I to P,. In
example 1, if QO = 0 for some Tl E rl, P, is evaluated to
TRUE and T qualifies. If I would be omitted, P,,, would
be evaluated to UNKNOWN and T would not qualify.

l The third type is evaluated to a set of values, one value for
each group of tnples built when processing the GROUP BY
- HAVING clause (t, is either a grouping attribute or an
aggregate function). The special problem here is that we
have to mahe sure that each aggregate function contained
in t, or P, is applied to the correct gronp of tuples. This
is done by means of the alpha 00, which yields the group
corresponding to a listof values of the grouping attributes.
Any aggregate function j contained in the SELECT clause
or in the HAVING clause has to be applied to ae, i.e. j
has to be substituted by j’(ao) (In example 1, min(~[S])
is substituted by min(3)(ao)).

The calculus expression resulting in the translation of an SQL
query gives the same result as the query when applied to the
same schema instance I. As the structure of a calculus expree-
sion directly relects the structure of the original SQL query,
the translation given in Table 4 should be self-explanatory. The
alpha cz built in the translation of the third query type is the
result of evaluating FROM, WRERE and GROUP BY clause
of the SQL query to which the aggregate functioue contained in
the HAVING clause and the SELECT clause are applied. At-
tribute references and aggregate functions contained in the latter
constructs have to be substituted such that they reference the
corresponding attributes of o (In example 1, eum(vr[l]), ur[3] is
substituted by u[2], u]l]).

4 Equivalence of Extended Relational
Algebra and Relational Calculus

In order to show that our extended relational algebra and
relational calculus have the same expressive power, we have to
prove the following two propositions:

(1) For every algebraic expression e EE there is a closed alpha
Q EA with e(Z) = a(Z) for all schema instances 1.

(2) For every closed alpha a EA there is an algebraic expres-
sion e EE with a(Z) = e(Z) for all schema instances I.

Proposition (1) can be proven in the usual way (e.g. [Klug82]).
Hence we will prove proposition (2) only. It has been proven
before by [Klug82] for query evaluation using two-valued logic
without null values. His approach is to produce for all terms,
formulas and alphas an equivalent algebraic expression. How-
ever, his proof is unnecessarily complicated, as it is sufficient to
produce an equivalent algebraic expression for all closed alphas.

Our construction of the algebraic expression correrpondiig
to a closed alpha will be similar to Codd’s proof of equivalence
for queries not having aggregate functions [Codd72]. To solve
the special problems associated with the translation of aggn-
gate functions, we introduce an extended selection/restriction
operator u as intermediate representation:

Let J, EF be a calculus formula, e EE an algebraic expres-
sion and 7 a mapping which maps each term ui]A], ui free
in 4, to an attribute name in attm(e) and leaves constants
c unchanged. Then

$,&)(Z) := {T E e(l) : tl(Z,kr) E I&;, 1

with &(ui)[A] = T[r(t~[Al)]. The purpose of 7 is to bid
each free variable in J, to the corresponding attributes of e.
Hence the valuation & associates with each free variable
in J, the corresponding attributes of T.

We will 5rst construct for any closed alpha an algebraic ex-
pression using the extended selection operator. Afterwards we
show how an extended selection can be reduced to a regular al-
gebraic expression.

Construction of the eztcnded algebraic czpnssion:

(0) For a schema relation & the corresponding algebraic ex-
pression is simply &.

hoceedings of the 13th VLDB Conference, Brighton 1987 239

~7mab(4 = ~7.~wu~h6~(4

7,(T@)(e) = u:.@.(e)

w3rmbk) = ~attrde)~7~,~(e x er)

u&(vj&) = u~,~(3r~v~~(~3~(4

u7.tret2k) = u7w7(trjk)

u~,c3r(ujj+(4 = ~attrs(e)u~r,3(e x e,)
, u%tletlk) = %l,e7(t,,k)

tl, t2 are not of the form f(a); 7’ equals 7 except that terms of the form u[A]
are mapped on the corresponding attribute of e,

Table 5: ‘Lkanslation rules for the extended selection operator

Lemma 1: Let a = (tr,. . .,t,,) : rl(u:), . . . , rm(&) : cl, be an alpha. Then

u7,tOfb)(d(1) = ~~ttrs(e)“71t)eA,(ej)(l) and u&j(a)kW) = ~~ttrs(e)u~(t)eA,(ej)(Z)

with ej = 4.httr+),f >(e ‘4 U (e \ kr.te) (e a)) x f(e)
and (e a) = “(attrs(e),,l(tl),...,~~(t,))u~l,~(e x e,, x t. x e,,),

where 7’ equale 7 for the variables free in a and associates with $[A] the corresponding attribute
in e,, X X er, and A, names the attribute of ej that contains values of the aggregate function.

Proof: For T E e(r) let &- be the following valuation: &(Vi)[A] := T[7(vi[A])], for each free variable ui
in a. Note that with this definition

4,/h-) = ~(71(t1)....,71(tn))u~~,~({T} x er, x .. x er,)(Z)

and (e a)(Z) = ~(attr~(e),7’(t,),....71(t,))u?l.~(e x er, x . . . x er,N) = UTEe(l)@‘l x 4, P-r)

Now

v(Z) = Lttr+j,j>(e~ a)(Z) U (44 \ rattr+)(e. a)(l)) x Ml
= ~<ott+r(c).l>(UTEe(I){T} x a(Ah)) U (44 \ utr4UTEc I,(T) x 44 P-r))) x f(V

{To f(a(Z P-r)) : T E 44 A 41, &I # 0) U (44 \ {T E 44 : 4,P-r) # 0 1) x f(e)
f {Tof(a(Z:&)) : TE e(Z)}

Hence

,

~0ttr~(c)a,(t)ej(cj)(Z)
= ratrr(ep7(t)ej({TO f(a(Z, h)) : 2’ E e(Z)})
= P’ E 44 : Wt)l@fW, &)I = 1)
= u7,tejbjk)M 0

Calculus Query Relational Algebra Expression

(ulll]) i RI(Q) : VI(~) = f(a)

z = vzll] : R~(Y) : ~1[3l~v2[31

Relations: Rr(1,2,3), R41,2,3); 7(Vl [i]) = i, 7’ 01 i =iand7’mi =i+3

~(7(~~111))~,,~~121=j(~)(R1) = ql)u2=&)

ej = ~~~1,2.3~,j~~(1.2,3,~~(v,[11))~~~,~1[s~ev,1s~(R1 x R2)

U (RI \ R(1,2,s)u?l,v,131eVt1s1(Rl x R2)) x f(e)

= ~<(1,2,s).r>91,2,3,r)Oges(R1 x R2)

U (RI \ ~(w,s)~se6(Rl x Ra)) x f(e)

Example 2: Translation of a calculus query into algebra

240 Proceedings of the 13th VLDB Conference, Brighton 1987

(1)
(2)

(3)

For the following steps assume that for any closed alpha a
contained in the one currently translated a corresponding
algebraic expression e, has been constructed.

TO a range ri = a;, V . . V oib corresponds
e,, = e,,l U U e,+.

To a = ((tl,...,tn) : rl(ul), . . . , rm(vm) : $1 corm-
sponds

e a= ?r(7(t,),...,7(t,))u?.~(erl x x erJr
where 7 associates with each term v;[A] the corresponding
attribute of e,, x x e,,.

In order to translate an extended selection operation u7,e(e)
into a regular algebraic expression, we have to break down the
operation into parts, thereby reducing the complexity of the se-
lection predicate $. Most of the translation rules necessary to
achieve this reduction are quite simple. These rules are given in
table 5. (As (T) maps UNKNOWN to TRUE, a selection with
a predicate (T$) yields exactly the tuples where J, is evaluated
to TRUE or UNKNOWN. A similar rule holds for (I).)

Note that the translation of a negation (7) transforms u into
u’ and vice versa. This has been a source of inconsistency in
earlier approaches that did not include u’. For example, the
translation of an all subquery in [CeGo85] is performed by means
of a negation. Therefore it is incorrect, if the predicate in the
WHERE clause of the subquery contains an aggregate function
that may return the null value as a result.

The only nontrivial rule is concerned with the translation of
an extended selection where the selection predicate contains an
aggregate function (i.e. an expression 07,te,(al(e)). The idea
behind this rule is as follows: We construct an algebraic expres-
sion el representing {To f(o(Z,/?r)) : T E e(Z)}, i.e. to each
tuple T E e(Z) the corresponding function value is attached, and
obtain the result by applying selection and projection to “f ap
propriately.

Basically, cl is constructed by applying an aggregate for-
mation operator to an expression (e a) representing the union

U TEefl)W x a(Z,kr), i.e. each tuple T E e(Z) is concate-

nated with the tuples of a(Z,&). However, this represents only
{Toj(a(Z, &-)) : T E e(Z)Aa(Z, /IT) # B}, as for empty relations
a(Z, /?r) no tuple is contained in the union. Hence, ej will con-
tain a second part representing (Tof(0) : T E e(Z) A(z(Z, /3~) =
0). Formally the rule is presented in lemma 1. The translation
of a calculus query containing an aggregate function into algebra
is illustrated in example 2.

5 Processing Strategies for Aggregate
Functions

The purpose of this section is to develop a general strategy
for the processing of aggregate functions, i.e. of expressions of

the form u7,tej(p)(4(Z) (we adopt the notation used in lemma
1) and to present several special strategies following the general
approach. Two obvious processing strategies are the following:

l Nested Iteration: Determine a(Z, &) for each T E e(Z),
apply the aggregate function and test the selection predi-
cate.

. Algebraic Processing: Determine {To f(a(Z, &)) : T E
e(Z)} as in lemma 1 and apply selection and projection.

proceedings of the 13th VLDB Conference, Brighton 1987

Nested iteration is in general inefficient, as has been shown
by [Kim 821. Algebraic processing has the disadvantage that
computation of ef leads to duplication of work if] {f(a(Z, a)) :
T E e(Z)}] c] e(Z)], as then several function values are com-
puted more than once. Specially, to compute {To f(fl) : T E

, e(Z)Aa(Z, /3r) = 0) is wasted, as f is constant. It is however nec-
essary to compute this set if we want to stay inside relational al-
gebra. What we really would like to do in this case is to find some
kind of minimal representation of the aggregate function com-
bined with an efficient method to obtain the value corresponding
to a tuple T E e(Z). To state this problem more formally, we
define for an arbitrary but fixed expression u7,tej(a)(e)(Z) the

following function F, which computes f(a(Z,&)) for T E I@,
where k is the number of attributes of e(Z):

F : fi” -+ A, F(T) = f(a(Z, &)).

In the minima; representation of F each function value would
be represented exactly once. The basic idea is to approximate the
minimal representation by grouping tuples with identical func-
tion values together and representing the function value only
once for every group. Following this approach we can present the
following general processing strategy for aggregate functions:

General Processing Strategy:

(1)

(4

(3)

Define an equivalence relation I on a set

Rz{TEe(Z): a(Z,/Sr)#B}
such that

T ET’ + F(T) = F(T’)

The corresponding equivalence classes are

f’ = {T’ E R : T I T’}, T E R.

Represent A& = {~+‘(T):TER}

in the form of a relation mF with a set Ah of attributes

corresponding to p, and an attribute AF corresponding to

F(T).

Use rnj to compute c~~,~s~t~l(e)(Z) in one of the following
ways:

(3.1) Generally, we can compute F using mF and integrate
selection using the function F into relational algebra:

if T E rA&(mF)

otherwise

%,W(a)k)(z) = o,(t)eF(attr,(e))(e)(z).

That is, we compute the result by repeatedly looking
up the value of F in mp.

(3.2) If f(0) = UNKNOWN, i.e. if f #COUNT, we can
use mF directly to compute the desimd result, as all
necessary function values are represented in mp:

%.tej(o) te)fz) = ~ottrE(e)u7(t)eAru=~~=)=Ak (dz) xmF)

241

According to this general strategy, relational algebra has tcs
be extended to allow equivalence classes and selection using a
function, where the mechanism to identify a certain equivalence
clam depends upon the special equivalence relation chosen.

We are now able to define special processing strategies by
specifying the choices made in steps (1) and (2). In the remain-
der of this section, we will present several strategies with the
corresponding choices.

Strategy I: Miniial representation of F

In the minimal representation of F each function value is
represented exactly once:

(1) R = U’ E 4l) : +,Bt) # 01,
TIT’ - F(T) = F(T’).

(2) It is an open problem to determine the minimal representa-
tion rn~ corresponding to the equivalence relation defined
in (1). Therefore the following strategies intend to approx-
imate the minimal representation.

(Rx.) For the query of example 2 we have

R = ~(~,n,s)cws(& x R?)

T= T’ - f(qxpsea(P’) x Rz))
= f(rc~,om({T’} x Rz))

Stratcgg t: Optimised algebraic processing

We obtain an optimised version of the algebraic processing
strategy (lemma 1) if we represent only the values of F
corresponding to attributes of e that are referenced in Q:
yt free(u) = 7(u;, [Ai,], . . . , vi&[&,]) be those attributes
u,, , . . . , Vir are the free variables in o).

R = {T E e(Z) : a(Z,/%r) #0},
T = T’ +=+ T[free(a)] E T’[free(a)],
p is represented by T[free(a)].

mF = d<(l * kM>~(free(o),+(t,) ,...,,I ‘(b.))
U.r’,J,(C x %I x . . x G,)(Z)

7’ is defined as in lemma 1. The difference between ml
and eZ of lemma 1 is, that function values f(g) are not
represented and a projection of the attributes free(a) is
performed as early as possible.

For the query of example 2 we have

R = ~(1,2,3pee(& x &I
T E T’ w T[3] 5 T’[3]
ml = h,~>q~,qmdR1 x &I

If f(0) # UNKNOWN, we have

and ~~,v~p]=f(a)(Rl) = %~((l,z,s))(Rd

If r(e) = UNKNOWN, we can use ml directly:

u7,va12)+x)(R1) = ~(1,2,3)~2&%~4(Rl X ml).

Strategy 3: Conjunctive equality predicate

Ifthepredicate$inaistl, =~‘A~i~[Ai~]=ti~r\...h
v<~[A~,] = ti,, where Jl’,til, . . , , ti, do not contain any VU&

ables free in a, we can formulate the following strategy
(here 7’ associates with the variables vi,. . . , v& of a the
corresponding attributes of (e,, x . . . x e,,)):

242

(1) R = {TcNk: V441 E ~(7’(ti,).....7’(t,~))
u7~,tif(erl x . . . x kJ(l)l,

T e T’ w T[f’ree(a)] = T’[free(a)].

(2) mF = d<(l,kk).f>~~Vlt,l).....7'(t,,).7'(tl),...,~'(t-))

u,~.d+, x . - - x +J(Z)-

Note that R and mF are defined without using e. Con-
sequently mF can be determined independent of e. The
correctness of this strategy follows from the fact, that R >
{T E e(Z) : a(Z,fi) # 0) because a(Z,&) # @ only for
tuples T[free(a)] matched by some (ti,, . . ., ti,). For the
case f(g) = UNKNOWN, strategy 3 has been presented
by (Kim82).

(Rx.) If V equals ‘ =‘, we can compute the query of example 2
in the following way:

R = {T E Ns : T[3] E qs,(Rz)},
T n T’ - T[3] = T’]3],
mf = ~<w>7ys.l)(R2).

The integration of ml is accomplished as in strategy 2.

Strategy 4: Range predicate

(1)

(2)

(W

If the predicate J, in a is 1/, = 4’ A oo[Ao]& where 4’
does not contain any variables free in a, we can formulate
a strategy, where the equivalence classes are basically in-
tervaIls in N. The endpoints of the intervalls will be taken
from the set

CP = r,~(to)u,~,w(e,, x ... x e,,)(Z) U {-oo,oo}

= {Pi : 1 I i I] GP],ni < pi+l}-

R = e(Z),
Ts p * a(Z,h) = a(Z,&)

If 19 E {<, z}, thii means
T s T’ - T[v(uo[Ao])], ~[~(w[Ao])] E [gpi, pPi+l)
for some mi, gp;+i E GP. T can be represented by gpia

If B E {>, S}, thii means
T a T' - T[~(~[Ao])],~I~(~[AoI)I E (gPi,oPi+lI
for some pi, ni+i E GP. p can be represented by opi+i.

mj = ~<o~.f>“(op,7’(t,),...,7’(t1))07’.3’hOP8~(t~)
(er,(Z) x . . . x e,,(Z) x GP)

If ‘0’ equals ‘ <‘, we can compute the query of example 2
in the following way:

GP = ys,(Rz) u {--OO,QO),
R = N’,
T n T’ - T[3], F[3] E [g&s Wi+l), Pit gPi+l E GP,
mf = d<l,f>S(4, +4<S(R2 x GP).

To compute F(T), we have to determine the opi corre-
sponding to T[3] and look up the corresponding function
value in ml. This can be accomplished by sorting rnf on
gpi-values and performing a binary search.

Strategy 4 can be generalised to deal with arbitrary conjunc-
tions and disjunction of range predicates uij [&]6&, . In or&

to accomplish this, GP has to be defined as the cross product of
sets GPj, determined as above for each individual range predi-
cate.

Strategies 2-4 should be considered by an optimiser to pro-
cess queries having aggregates more efficiently. Whether one of
the strategies 3,4 is superior to strategy 2 depends on the rise

proceedings of the 13th VLDB Conference, Brighton 1987

of mF (the number of function values that are represented) and
on the complexity of the computation that is necessary to deter-
mine mp. The optimizer should contain corresponding decision
procedures.

6 Summary and Future Work

To recapitulate, we have extended relational algebra and re-
lational calculus to cover a significant subset of SQL. We gave a
translation from SQL into relational calculus, thus obtaining a
formal definition of the semantics of SQL. We presented a trans-
lation from relational calculus into relational algebra, which was
a good foundation to study the processing of aggregate functions.
Finally, we developed a new processing strategy for aggregate
functions.

Our results can be applied in the following areaz, thus forming
a foundation for more work in these directions:

l In [ANSI85], the semantics of an SQL query is defined by
nested iteration evaluation: A subquery is completely eval-
uated for each tuple of the outer query block. This has been
directly implemented in System R for example [Seli79].
However, the direct implementation of this feature is in
general inefficient [Kim 821. Therefore defining the seman-
tics of an SQL query by translation into relational algebra
and relational calculus opens up new optimization oppor-
tunities:

- The optimizer can investigate the whole query and is
no longer constrained to look at one subquery at a
time.

- The optimizer can use the broad body of knowledge
developed for the optimization of relational calculus
and relational algebra queries (see [JaKo85] for a sur-
vey and further literature).

l The representation of an SQL query in a formal language is
useful for proving the equivalence of two queries. This can
be applied to detect common subexpressions in one query
or in a set of different queries [Jarke85].

l The new transformation from extended relational calculus
into relational algebra has a simpler structure than previ-
ously known. Therefore an easy comparison of relational
algebra and relational calculus query optimization becomes
possible.

l The optimization strategies developed for aggregate func-
tions can be integrated into existing optimizers to process
queries with aggregates more efficiently.

. Utilizing relational calculus or relational algebra as internal
system language of a database management system makes
it easier to support a multiple language environment, which
is interesting for example in a distributed environment with
a backend database machine.

Our future work will focus on the development of an opti-
mizer for SQL queries in a database machine environment that
is based on the approach presented here.

References

[ANSI851 ANSC X3H2, (draft proposed) American National Standard
Database Language SQL. Washington, Feb. 1985
(CeGo85] S. Ceri, G. Gottlob: Tranrlating SQL into Relational Alga
bra: Optimization, Semantics and Equivalence of SQL Queries. IEEE
Trans. S.E., April 1985, pp. 324-345
[Codd72) E.F. Codd:’ Relational completeness of data base rablan-
guages. In Data Base System, R. Rustin, Rd., Prentice Hall, Engle-
wood Cliffs, NJ., 1972
[JaKo83] M. Jarke, J.Koch: Range Nesting: A Fast Method to Evlrl-
uate Quantified Queries. Proc. ACM SIGMOD 1983, San Jose, May
1983, pp. 198-208
[JaKo84] M. Jarke, J. Koch: Query Optimisation in Databara Syr-
terns. ACM Computing Surveys, June 1984, pp. 111-152
[Jarke85] M. Jarke: Common Subexpresrion Isolation in Multiple
Query Optimization. In Query Processing in Databaw Syrtemr, W.
Kim, D. Reiner, D. Batory, Eds. Springer, New York 1985, pp. 191-
205
[Kies85) W. Kiessling: On Semantic Raefa and Eficient Processing of
Correlation Queries with Aggregates. Proc. VLDB 1985, pp. 241-250
[Kim 821 W. Kim: On Optimizing an SQGlike Nested Query. ACM
TODS, Sept. 1982, pp. 443-469
[Klug 821 A. Klug: Equivalence of Relational Algebra and Relational
Calculus Query Languagea Having Aggregate Functions. Journal of
the ACM, Vol. 29, No.3, July 1982, pp. 699-717
[LsViSS] C. Le Viet: Translation and Compatibility of SQL and QUEL
Queries. Journ. Inf. Proc., Vol. 8, No. 1, 1985, pp. 1-15
[Maie83] D. Maier: The Theory of Relational Databases. Pitman,
London, 1983
[Seli79] P.G Selinger et. al.: Accers Path Selection in a Relational
Database System. Proc. ACM SIGMOD 1979, Boston, May 1979, pp
23-34

Grammar for the SQL Subset

< query> : := 8NUcT <select list>
FROM <range list>
WHEFE <predicate>

[GROUP BY <attribute list>
[HAVING <predicate> I I

<select list> ::= cterm> [. <term> . ..I
<range list> : : = <range f omula>

[, <range for8ula> . . .I
<range formula> : := <relation mm> (crariablo name>)
<attribute lirt> ::= cattr-zpec> [. <attr-zpoc> . ..I
<predicate> ::= [NOT] (<predicate>)

I <predicate> {ANDIOR) <predicate>
I ccompariron predicates
I cquantiiied predicate>
1 <exirtm predicate>

<comparison predicate> ::= <tell0 <cow op> <term>
<quantified predicate> ::= <term> ccomp op> SOME cquorp
<exists predicate> : := EXISTS <quay>
<term> ::= clitoral> I Cattr-spa0 I *aggr-fun>
cattr-zpec> : : = <variable name>. <attribute nu0
<qp-fun> : := {A~glMAXlMINl~lWUNT}(Cattr_zpoc>)

<relation name>. <variable nUe>. <lit&l>and<comp op>(8)
are defined as in relational calculus.

Proceedings of the 13th VLDB Conference, Brighton 1987 243

