D.l.Howells, N.J.Fiddian, W.A.Gray

Department of Computing Mathematics,
University College Cardiff, Cardiff, Wales.

Acknowledgement: This work has been undertaken while the first author has
been supported by an S.E R.C. postgraduate studentship.

From the experience gained in writing the PROTEUS translators, we

concluded that it should be possible 1o automate the process of query

;ﬂl“ﬁmmwmm“h‘;fw gml;ylfumlyof

ational query languages. theory has tested by creating a

AbStraCt meta-translation system, implemented in PROLOG, which accepts
specifications of any relational query language as a new input and

output langusge for the system, respectively, and from these
specifications derives translators between the new language and every

With the expanding use of database management systems and the
-rapid rate of change in computer technology, particularly the advent
of more powerful workstations, together with standard local and wide
area networks, there is an increasing need for the ability to access
data distributed across different databases. This can mean that users
need 10 leam sevenal different query languages in order to be able to
manipulate their data uusfacwnly if it is held in several distinct
databases. Recent work in heterogeneous distributed databases [1,2]
has shown that it is possible to translate automatically queries posed
in the query language of one database system into the query language
of another databasc system. At Cardiff we have collaborated with
researchers at other UK. universities in the development of the
PROTEUS (2] hetcrogeneous distributed database system. This work
involved developing a number of separate translators, by traditional
method: which translate querics between different’ source query

guages by means of a common intermediate query language
(called NQL [2,3] in PROTEUS).

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

other relational query language already known to the system. The
source-to-source translation between query languages is carried out
via a common intermediste tree representation, which is able to
represent any possible query from any relational query language. This
paper outlines the dulgn and operation of this translation system,
assesses its worth and briefly discusses some of its potential
spplications.

1 Introduction

The increasing power of micro/mini computers has meant that a
greater number of dispersed database user sites can afford local
computers which have sufficient power and storage to meet many of
their local requirements without recourse to a central mainframe
installation. Parallel developments in computer networks have laid a
sound foundation for the reliable transfer of information between
computers: either locally, over local area networks, or remotely, over
wide area networks. These advances have provnied a firm platform
for the development of ‘distributed’ databases and encouraged
rescarch into ways of establishing them. At present the distribution of
data may occur in four basic types of model: homogeneous or
heterogeneous variants of distributed or federated databases.

In heterogeneous systems [4] there is a need to translate queries
in one database’s native query language into other query
uages. It is clear from the growing popuhmy of relational
sysiems, particularly on microcomputers, that any future
heterogeneous system there will be a potential mix of constituent
micro, mini and mainframe computers running a variety of relational
systems. Such a composite system will have several different groups
of users, each group bungnf:'m‘dnr with and preferring 1o use a
different quay hngmge. preferences can conveniently be
accomodated developing source-to-source relational query
languagemhm

228

Relational databases built on micro computers often expand o the
point where they can no longer efficiently exist in their entirety on
such a machine. At this point the database can be transferred in lofo
1o a relational system on a larger, more rful computer, thereby
losing the advantages of local user control. Altlematively, to minimise
this drawback, the most frequently used data may be retained locally
and just the residue be exponed. In cither case the change should
ideally be as transparent as possible to the user. However, the larger
machine, crucially, may not have available the particular database
system used on the micro computer. A suitable relational query
language inter-translator can be used to make good this deficiency.

A large organisation may have established a database under an
existing relational system, but want 10 access the data through a new
relational system. Here again, an appropriate translator can be used to
give transparent access to the data.

Thus it can be seen that query language translators are in increasing
demand. As an example, the recent PROTEUS research project (2] to
develop a heterogeneous distributed database system mvolved the
production of some dozen translators by a number of research groups,
mcludin_ﬁ'wmlvu. working in parallel over a period of two to three
years. The translators concerned were developed separately by
traditional methods to translate between different source query
languages via a common, intermediate, intemal Network Query
Language (NQL {2,3]). Successful as this collaborative effort was, it
was clear that a substantially more productive way of developing
such translators needed 10 be found for the future. Fortunately the
PROTEUS project itself provided valuable pointers 1o the way
forward : from our experi of the translators produced we
concluded that it should be possible to automate the production
process, at least for the family of relational query languages. Thus the
idea of a meta-translation system for this was conceived. The
following sections consider in turn the architecture, operation, value
and application of the resultant system that we have created,
beginning with a discussion of productive methods and means of
translator construction which have influenced our choice of software
technology for the meta-translation system.

2 Productive Methods
and Means of Translator
Construction

A translation system consists of three interconnected main parts: a
*scanner’ which does lexical analysis, a parser which does syntax
analysis and a code-generator to perform semantic and synthetic
actions. The approaches traditionally used to write translation
sysiems are:

(i) 10 write a hand-coded 'scanner’ and “parser’ in a suitable high
level language. This is not difficult - for example, the parser can
nomally be produced in a straightforward way by modelling its
suucmndixealymtbegnmmrofﬂ:embieahnguageconcemed-
but it is nevertheless a relatively lengthy and time-consuming
exercise, typically measured in man-months.

(ii) to use a scanner generator (e.g. LEX [5]) and an associated parser
generator (e.g. YACC [6]) program to produce the scanner and parser
translator components automatically. The time to carry out this
exercise can be measured typically in man-weeks.

It should be noted that in each of the above cases the parser per se has
to be a with program fi s writien in a high level
language (c.g. C [7] in the case of YACC) defining the translator
action that is to be taken upon recognition of each ic construct.
This is a non-trivial dev task which involves programming
expertise and takes an appreciable amount of time in its own right.
This time is included in the above estimates.

Construction of translators by method (ii) involves substantially less
coding effort and therefore takes a much shorter time than by method
@i). It is also far easier to modify a translator using the second
approach. This approach is therefore the best and the favoured
traditional method from the programmer productivity point of view.

As a result of conversations with PM.D.Gray [8] about his
production of a simulator [9) writen in PROLOG [10] for the
ASTRID database system {11), we decided to investigate the use of
PROLOG for the development of relational query language
translators (this application of Prolog has also been advocated by
other rescarchers; see for example the book "A Prolog Database
System” by D. Li). Although new, this approach is essentially
equivalent to an integrated form of method (ii). In an initial
investigation of PROLOG in this role [12] we developed a translator
between DBASEII [13) and QUEL [14]. This was a relatively rapid
process with the iranslator being encoded in a matter of man-days.
This demonstrated that PROLOG is appreciably higher level in its
tl&on for source-to-source translator generation than the common

-YACC combination and we feel that it is currently one of the
most appropriate vehicles for this purpose. On the basis of our
experience with this translator we could see that PROLOG would be
a most productive and flexible language in which to implement the
design of our proposed meta- translation system. This has indeed
proved to be the case, as the following sections demonstrate.

3 The Architecture and
Operation of the Meta-
Translation System

3.1 Overview of the System

The system, illustrated in main Figure 3.1 and supporting Figure 3.2,
has at its heant the meta-translator module (see Fxl’é):re 3.1). %'hu has
access to a database schema and a number of translation schemes
applicable between relational query languages and a common internal
relational algebra tree representation (cf. Figure 3.2). The meta-
translator is linked 10 only one input query language and one output
query language translation scheme at a time. E.g. If RQLi --> Tree
and Tree --> RQLj are the current input and output query language
translation schemes, respectively, an RQLi 1o RQLj translation is
implied. Relational query language to intemal tree translation
schemes are specified via the system’s meta-language interface (2
complementary help module is also available to give information on
meta-language constructs). Intemal tree 1o relational query
language translation schemes are specified via an interactive forms-
based interface.

In operation, the sysiem has two distinct stages, as Figure 3.1
indicates. The first, optional, stage ifications of new
relational f}luery languages as either input (RQL --> Tree) or output

(Tree --> RQL) query languages or both, as required. The second
stage is application of a selected pair of input and output translation
schemes (e.g. RQLi -> Tree, Tree --> RQLj) to produce a

corresponding source-to-source translation between the two query
languages concemed (RQLi --> RQL;j).

3.2 Components of the System
3.2.1 The Internal Database Schema

This is a simple but adequate schema consisting of a PROLOG clause
for each relation within either the associated database schema of the
destination (i.e. output) query language or the global schema of the
system, as appropriate. A typical example is :-

schema(parts, [pnum},[pname+str,pnum+int pweight-+int]).

This shows the presence of the relation parts in the schema. This
relation has the key pnum and attributes pname, pnum and pweight of
respective types str(ing), int(eger) and int(eger).

Temporary relations are also held within the overall schema. A
typical example is :-

Proceedings of the 13th VLDB Conference, Brighton 1987

Tree --> RQLj
Translation
Scheme

RQLi --> Tree Destination

Translation Database

Scheme Schema
Translation

Meta-Language
RQL-to-Tree
Interface

Specification

i

Meta-Language
Specification
of RQLi

Ny

Meta-
Translator
Module

Forms-Based
Tree-to-RQL
Interface

i

Input Query in
Source Query
Language RQLi

Translation
Application

Forms-Based
Specification
of RQL;j

Output Query in
Source Query
Language RQLj

An Overview of the System

Figure 3.1

Proceedings of the 13th VLDB Conference, Brighton 1987

229

230

RQL1 --> Tree

RQL2 --> Tree

RQLn --> Tree

Tree --> RQL1

Tree --> RQL2
Common
Internal .
Relational Algebra
Tree .
Tree --> RQLn

Multiple Translation Schemes

Figure 3.2

Proceedings of the 13th VLDB Conference, Brighton 1987

temp_schema(res] Tree).

Here Tree stands for the intemal tree representation of the query
which generates the intermediate relation called resl (see next sub-
section for a detailed description of the intemal tree form).

mqmmbeduadedloworken}mfmupecnﬁcmfor
aptﬂnﬂatdesmaumdlubaunanmnedummhuonmcr
from a permancatly resident global schema.

3.2.2 The Internal Relational Algebra Tree

When iranslating between source query languages it is normal Lo use
common intermediate intemal query T“gua e (c.g. NQL in
PROTEUS [2.3]). In developing a meta- ation sysiem for
genenlised source-to-source translation between any pair of
relational query languages, we felt that an approach based on an
mlemwdule language was essential and chose a tree-structured
Eugebuedonuehlmalalgebnuee.Alyplcdenmplcofm
lﬂqumdnumrepmmuumushownmﬁgmtﬂ

) f is represented in a linear intemal intermediate language form
as ollom

proj(sel(rel(pans,[[pnum),[pname+str,pnum+int,pweight+int]]),

exp(gt(pnum, 5‘")3)E[[?::1} (pnlmimr.pnur:‘;:ﬁt),pwelghulnl]]).

This corresponds 10 a preorder traversal of the tree in which each tree
node has as its first argument an input relation and as its last
argument a schema-like specification of the relation resulting from
the application of the relational algebra function of the node. Thus
internal trees are totally sclf- contained and can be translated from
wuhomrd’mmtheumaeduhauﬂmmspeafwm an
output language translation scheme (see 3.2.4 below) there is no need
to reference the schema.

3.2.3 The Meta-Language for Specifying
Relational Query Language to Tree
Translations

To facilitate the translation of a relational query language to the
intemal tree form, a semantic meta-language was devel Input
language translation schemes are ied by entering the syntax of
the input langua ¢ in a PROLOG-compatible BNF form. This
is augmented uage constructs to specify the semantics
of lhedl_mguag?lk"l'!l? complete langua; :) ipgccf::c’:um :amwlu entered in
a specification necessary, exln uses 0
an input translation scheme can to the

mecdlcmonﬁleanduwdu uued.Alyplnlcxmfor

'GRES’s query language QUEL [1 [m]

line(R2) —> [rewieve) , resrel®R) . ['() , projlist®) , [')1,

in_lisi(S),
BTG,
MLk o USRS NT)
ML mk cnn_slp.node(N {1.PL{),inc,inc.N2) ,
i gt T

abalish(inp
PR umrmptdsa])))},

Here, for expositional clarity,
clause invocations are |

lnthemmntic actions section extra

the prefix EC, meta- language
construct applications by ML and PROLOG clause invocations by
PR.Inp_rellmdgu_npmh mﬂyEroducellmofﬂlemmu
(Rels) of mhmasuudmlheQULqmty'lhmmpused.
along with the join and selection expressions (S), to mk_join_node,
which the corresponding relational algebra tree NI
Mk_proj_extn_grp_node takes as its arguments N1, the projection list
Pl (which may include extension and grouping expressions) and the
aurnibutes that are being grouped by (in this case []). It produces from
these the corresponding relational algebra tree N2 consisting of &
collection of projection, extension and group nodes. The two inc
arguments siate thn the extension and grouping expressions must be
included as projection altributes in the projection node of this tree.
Mk, mlukunnuargummu:uee&)mdamuhrdmonmme
(R).lflhemuhmlmonmmeubhnkthenlheueeunaedun

Proceedings of the 13th VLDB Conference, Brighton 1987

result tree clause. Otherwise the named intermediate result relation is
stored in the temporary schema.

Only one tree is produced. This may consist of a number of subtrees
that are intermediste relations (which have been stored in the

temporary schema).

l\:lnnhm the system mvbemmqnm about the semantic meta-
guage constructs can typing in a construct name.
An explanation of the function of the ciled construct, the input its
expects and the output it produces is then provided.

3.24 The Forms-Based Interface for
Specifying Tree to Relational Query
Language Translations

Asche;:nlefotmhlin;fgnwﬂ?humlmfo&n loaxehlign';l
quesy language is ollowing a set of prompts whi
enumerate all possi singletehuoml nodes that can appear
mnuec.‘l'heumuubdnf node cxists in the output query
uage in question. If it does, the system calls an editor 30 that the’
equw mluummlhea?ksg\mylngugeembe ied. A
typical example for the IN hnguage Q is the
followmgrelawulalgd)nldedmnode
sel(rel(Rname, [HATr]).exp(Sexp),[HsiTs]) into New_nlname

which has the equivalent QUEL specification :-

wme(Rmn.\e).

write(*.all)"),

nl, write('where

gen_sel_out _momdw(Rnﬂne.Sexp.SeXﬂ).
write_list(Sexp2).

In the tree form template, upper case words are variable names. The
corresponding output is speaﬁed by wrile statements (outputting
text, or the values associated with variables) interspersed with
newhms(nl).lfvaluausoaﬂcdmlhvamhluamnolmdwconw
format for output a number of ref functions may be called.
For example, in the above output specification fotQUEL.lhechuse
_sel_out_monadic, given the relation operand of the sclection
unction and the associsted selection expression from the tree,
generales a comresponding output form selection list with each
annbuleprecededbythemhnonmmeknmmd" The selection
e, o Ceg "ﬁ(‘m“"m“"*'“ﬁ;:
cq um,

Gen sel_ou momdncumwallymhleuhum
formnndmphcuoperwmmmbymndudsymbols e.g.a
eq. If this is not exacly what is required, the construct
3en_sel_an_pmad|c manomdseusenoemeuhunwvespeuﬁc

relation names, separators and expression operator symbols.

Manyldnmddnabuequryhng es allow users to perform
more than one relational algebra - in a single statement. A
common of this is the use of projection and selection
together. So.nfletanthemfomanononxm;lenoduhubm
entered, the invites the user 1o enter information about

sysiem
cnmpauenodu.hsemmduphuﬂybymeummpmder
sequence, iz :-
proj sel

Thesynemrespondsubelom.byphunglheusetmmedxlorwnmn
:xb?elunpluc.thunmefotmegwmmposncnode,nthewpof
screen ¢

proj(sel(rel(Rname,HATr]).exp(Sexp),(HsTs]), aurs(Paurs) [HpTp})
into New_relname

The user is then able to specify the equivalent output query language
statement in the way shown previously.

Composite nodes of arbitrary complexity may be entered in the same
manner, for example :-

231

232

proj : attrs(pname,pnum), [[pnum],[pnum+int,pname+str]]

y

sel : exp(gt(pnum,5)), [[pnum],[pname+str,pnum+int,pweight+int]]

h 4

rel : parts, [[pnum],[pname+str,pnum+int,pweight+int]]

A Relational Algebra Tree

Select pname pnum
From parts
Where pnum > 5

The Equivalent SQL Query

schema(parts, [pnum], [pname+str, pnum+int, pweight+int})

The Associated Target Schema

Figure 3.3

Proceedings of the 13th VLDB Conference, Brighton 1987

proj sel thjoin sel rel sel rel
is a useful combination of operations which can be specified as a

composite entity in translation schemes for many output query
languages.

3.3 Using the System for Translations

The meta-translator is table-driven, so initially the user is prompied to
indicate the tables needed for the particular translation required. The
following information is requested and entered :-

(i) Input query language name.

(ii) Name of the file containing the input source query.

(iit) Output query language name.

(iv) Destination database name.

(v) Name of file to receive the intemal tree

source query (not essential, but uscful for debugging purposes).
(vi) Name of file to receive the output source query.

The following tables are then read in by the system (c.f. Figure 3.1) :-

(i) Input query language to tree translation scheme.

(it) Destination database schema.

(iit) Tree to output query language translation scheme.

The current query is then translated and the current tables are kept

midunwithinlhesymeavitmmm.Mmqwiamee
for translation in the same way, different translations can

selected or the system can be exited.
The user interface has been designed in this way primarily for
presentation purposes. Obviously, manual entry of the input query

language name, e1c. could be obviated. Also, fixed translators could
be built using pre-selected input and output translation schemes.

of the

In the process of translation, an input query may generate a tree that
cannot be represented completely in the query language (ie.
the input query language has some operator(s) not supported by the

language). In this case the meta- translator tranisiates as much
of the tree as possible to the output query language and the remaining
part of the tree is either translated 10 a default query language (whose
database system can complete the remaining part of the query) or, if
duimd.wlheoﬁghdhpnqueryhngutg‘e‘.‘gtbehwasehis
foreseen that, in a distributed or federated se context, as much
oflhe%mcumdu itle would be carried out at the output
language site. input language site would receive the
resulting intermediate relations and the residual part of the original
query (in its own language) and complete the processing of the query
against the remmed intermediate data.

4 Evaluation of the Meta-
Translation System

4.1 System Performance

Input and output translator pairs for DBASEI, QUEL, a line-
onented QBE and SQL have successfully using the
system. These represent all the available types of relational query
language, namely relational algebra, tuple-based relational calculus,
domain-based relational calculus and relational algebra-calculus
hybrids, respectively. The translators were very straightforward to
prod-ce, taking a short time and linle effort. All were successfully
tested on a camprehensive set of 34 sample queries.

4.1.1 Performance Measurements

To develop a translator from a relational query language to the
intemal tree form 100k no more than a few days (at most a week). The

Proceedings of the 13th VLDB Conference, Brighton 1987

g)emciﬁcuim input required varied between 50 and 120 PROLOG
ses.

To develop a translator from the intemal tree form to a relational
query language, specified via the forms-based interface, took a very
short time indeed. This was typically less than a day. The wree to
DBASEII translator took just over an hour 1o produce { including
seven composite nodes)!

The translators produced were efficient. A
100k approximately five seconds 1o be translated between any pair of
source query languages using am. interpretive version of Prolog
(Edinburgh New Implementation of Prolog (NIP) on 2 VAX 8200).

ical complex query

4.2 Advantages of Using the System

The system is designed 1o be used a with a working
knowledge of relational algebra, m.mmmqutyhnguges
for which translators are required and a minimal amount of
PROLOG. There is very lile difference in the required level of
expertise between such a person and a person who would write
translators in a traditional manner. The advantages of using the
system are summarised as follows :-

(1) Translators can be easily and quickly developed (see typical
uctivity fi muab;:{

) Relatively little input is needed to specify translators.

(3) The translation schemes produced are very manageable and easily
maintainable. This is due to the conciseness of these schemes, their
S The. sy produces mpace” and. tineseficicnt tamlao
4 system space . time-efficient r3.
Translation schemes are compact and typical queries are translated in
ast;e¥seconds. ™

(5) Translation input is parsed in a top-down manner. This is a more
readily understandable than bottom-up methods, such as

that used by YACC. fact greatly facilitates the process of
debugging translators during their ent.
(6) It is easy to leam 1o use the system. relational query language

10 tree semantic meta-language has only 17 simple constructs and

often only a subset of these is needed. The tree to relational query

language forms-based interface is extremely easy to use and is

quickly leamt. .

efficient translations since the tree is
a fashion as possible and composite nodes within

recognised. These composite nodes can be of arbitrary

Consequently, if a query language is translated directly into the same
language, the resulting queries will be at least as efficient as their
original equivalents. Many database systems only oplimise
subqueries, not entire queries. The meta-translator produces a single
tree to an entire query. This tree may be made up of the
mbtmsinoredinlhelmpmrywlum)mnmmbqum
So, for example, if a naive user of a query language believed that he
could not project and select in one query, he might formulate his
q;eryastwowbqwics,d\efmlwxjedmdﬂwmdtopmjea.

e meta-transiator would produce a single tree comsisting of a
mjeamdaubunode.muuwﬂdumbeno‘gniudua
compasite entity and an output query be gencrated which combines
tbe.twoopenmhixptmcipleulmdstomposilenoduof
arbitrary complexity.

5 Applications of the
Meta-Translation System

In this section we briefly survey some of the applications we foresee
or have already prototyped for this translation system. It can be used
in heterogencous distributed and federated database systems as a tool
for translating querics between different relational query languages;
1o produce front-ends for existing relational dsabase sysiems 1o
enable users wanting the facilities of non-native relational query
languages to access those systems; as a tool to optimise queries in any

233

234

relational database system; and as a teaching tool for helping a person
familiar with one relational query language 1o leamn another.

51 A Query Translation Tool in
Heterogeneous Distributed and Federated
Databases

The system, as a tool, can provide translators between
l;ldguze:l ina mendfﬁmt and eoa-effeal\ae. mmerqm
it 2 will make heterogeneous database systems
more ﬂeuw:i:m with new query hnguagu \nynll be
made significantly simpler. Using the system we have already
developed translators for all of the major types of relational query
language. These were devel: in a short time and tested thoroughly
on a large sample set of quenes covering all types of relational query
operation, considered both individually and in combination.

5.2 Front-Ending an Existing Database
System

pl leam lan, whea
em) to save users 0 a new query language
]obumdhvelomunewdmb.n managed by an

amiliar system, or 10 ease the i of a new, more
powerful database system into an existing database context.

5.3 Query Optimisation Applications

The system could also be useful as an aid to optimising queries by
recognition of composite nodes - sce 4.2 (7) above. This requirement
could ocour in a centralised, distributed or federated database
environment. In distributed or federsted environments the system
couldbchnkedlonglobd and transaction manager
so that the intemal tree ma; into subqueries for each
destination site before umshuonm:oxbenlevmquery
language for each site takes place.

54 To Teach a New Query Language
(Learning by Example) .

The system could be used in teaching a new language 10 a user
Mhmmhmnhmm.ihe‘mcwld

type in a query in the language he knows about, and the equivalent
query ;ouﬂd bewdw;wl in the l:lnguage beon;hg leamt. This process
could be repeated for a series of queries of increasing complexity
until the new language is mastered. plexi

6 References

[1} Smith, JM. & al, 'Muliibase - integrating heterogeneous
distributed database systems’, Proc. AFIPS Conference, 50, pp.

© 487-499, 1981.

[2} Stocker, PM. et al, "PROTEUS: A Heterogeneous Digtributed
Dmbuehopu In: *Databases - Role and Stucture’, pp. 125-151,

Cambridge, 1984.

(3) Fiddian NJ et al, 'Firt PROTEUS queries successfully

transmitted’, University pmn;.6.pp. 177-182, 1984.

[4]Cen. S. and Pelageni, P. ted Databases, Principles and

ﬁm , McGraw Hill, 1984.

{ .Lesk.M.B. *LEX - A Lexical Analyser Generator’, Computing

!cham'l‘ l”e;.lkeponNo.” Bell Laboratories, Murray Hill,

ew Jersey,

[6) Jdlmm. SC., 'YACC - Yet Another Compiler Compiler’,
H.’n.mn - Teehmlwc;l Report No. 32, Bcllhbomones

ew Jersey,
MB.Wdencth.M.‘TheC ramming

Lln%h , Prentice Hall, 1978. Frog

[8] Gray, PMD. (Dep-mnentof Co:zum Science, University of

Aberdeen

), Private communication, 19
ter Science, University of

[9) Gray, PM.D. (Department of
Aberdeen), Program Communication, 19!
[10] Qlocksin, W.F. and Mellish, C.S., "Programming in Prolog’,

T oy oD, “he ASTRID System for A Codasyl
Y, or Access lo

Databases*, IU Bulletm 4, pp. 70-76, 1982,

[12) Hmvd.ls. D.L, Fiddian, NJ. and Gny, W.A., 'A Com of
whnologm or Translating Between tional

Query L-ngm;u W;r Ihe Third Intemational

Workshop on Suatistical and ic Database Management,

Luxem , pp. 179-183, July 1986..

[13}) dBA.SﬂI User Mmunl, Ashton-Tate, 1984,

{14] Stoncbraker, M., Wong, E. and Kreps, P., 'The Design and
of INGRES ACM Transactions on Databas

Implementation
S QA&A%?Q&.'SEQUBLZ.AU nfedArpnuch
n
tion, Manipulation, and Control’,

RcuxdlndDevclopmem.ZO pp- 560-575, 1976.

Proceedings of the 13th VLDB Conference, Brighton 1987

