Decaling with Temporal Schema Anomalics in History Databases

N.G. Martin, S.B. Navathe and R. Ahmed

Database Center
Univ. of Florida, Gainesville, FL 32611

Abstract
Current databases do not process temporal information
Databases containing historical information (history
databases) have been proposed to provide more temporal
capability by appending new data to relations instead of
destructively updating them.

Because history databases do not discard data, they
cannot discard outdated database schemas. Thus, in any
proposal for a practical history database system, some method
must be provided for accessing data from outdated, yet
historically valid, database schemas. This paper investigates
the problems resulting from restructuring a history database. It
then explores different techniques for maintaining multiple
schemas. Finally, it presents Schema Temporal Logic (STL) as a
means of retrieving data from multiple -historically valid
database schemas using temporal logic.

well.

1. Introduction

Current databases provide their users with only a
snapshot of the universe of discourse. A snapshot is provided
because current databases update destructively, replacing old
information with new information. Though logs and rollback
mechanisms used in transaction processing provide a primitive
concept of time, they do not allow the user access to previous
data. Destructive updates improve efficiency. Recent
improvements in data storage and processing have, however, led
researchers to reconsider the possibility of non-destructive
updating to provide support for history queries.

History databases 'provide support for temporal
processing through updates. [1,2,3,4,5,6]
Updates to history databases are achieved by appending new
information marked with the time during which that information
is valid.

non-destructive

By allowing manipulation of time stamps, history
databases allow users complex temporal processing. These time
stamps give the users access to current information and
historical information. Updates for the future can be
specified by marking data with time stamps which will become
valid at a time following the current time.

Non-destructive updating introduces new problems in

a truly evolving database. If the database schema is allowed to

Proceedings of the 13th VLDB Conference, Brighton 1987

change, how should one update the schema non-destructively?
This is an open question. If we assume that a history of the
schemas is maintained in a manner similar to the history of the
data itself, it may place an additional burden on the users in
that the users must now retrieve from one or more schemas
applicable to their time frame before formulating a query.
Moreover, if the query spans schemas, it leads to some even more
difficult mapping problems.

Traditional techniques for restructuring databases do
not solve these problems. Such restructuring is similar to
destructive updating in that the old database schema is
discarded. Destructive redesign is possible in static databases
because the information stored is current. If
information is needed, it can be 'collected.
destructive redesign

more
A policy of
is problematic for history databases.
Because historical data is maintained, new information about old
items may not be available. Furthermore, the amount of data
may be quite large making a transfer impractical.

The approach proposed here involves non-destructive
updating of database schemas coupled with a translation
mechanism based on temporal logic which provides the user with
a coherent virtual schema built on top of the multiple underlying
schemas. This method avoids the problems of simple non-
destructive changes to the database schema by providing an
automatic translation procedure. It avoids the problems of

destructive schema change by maintaining old database schemas..

Table §: Example Databasc

EMPLOYEE AIRPORT
EmpNo Sal Position Ts Te Place #Hangars
25 20K Mechanic 10 35 Atlanta §
47 32K Inspect. 23 58S L.A. 2
134 35K Mechanic 45 Now Boston 6
25 35K Inspect. 35 Now N.Y. 1
MAINTENANCE

SerNo Part Place Ts Te

91 Wheel Atlanta 10 20

105 Door N.Y. 35 47

105 Door L.A. 5§ 62

142 Wing Boston 60 72

177

2. Examples of Temporal Schema Anomalies
To clarify the issues involved in restructuring history

databases let us examine a simple example. This example

database contains information pertaining to airplane
maintenance. The initial database schema consists of three
relations: MAINTENANCE which contains information about

the repairs of particular airplanes; EMPLOYEE which contains
and
AIRPORT which contains information about the locations at
which these repairs take place. This example database is
presented in the Temporal Relational Model (TRM) (1], but the
issues examined are applicable to other history database models.

information about the employees involved in the repairs;

2.1. An Overview of the Temporal Relational Model (TRM)

TRM [1] supports a variation of attribute time-
stamping within the framework of classical relstional database
theory to capture the independent behavior of time-varying
relations (TVR). TRM is designed to deal with sychronous
behavior among attributes in an effective and efficient way.

In this model, every time-varying relation schema has
two mandatory time-stamp attributes (TSA's): Time-Start (Ts)
and Time-End (Te). These time stamp attributes correspond to
the lower and upper bounds of the time interval.

Ts = time from which tuple is effective

Te = time to which tuple is effective.
In s TVR, an attribute value is associated with the time-stamps
Ts and Te, if it is continuously valid in the interval [Ts,Te]. The
domain of the time-stamps Ts and Te are the integers together
with a the variable "Now" which is always equivalent to the
current time.
TRM allows both time-varying and non time-varying

In TRM, logical time forms an integral part of the
time-varying relations, in order to better represent changes in
the real world. Logical time refers to the instant of time when
an event actually occurred in the real world, allowing successful
represention of both proactive and retroactive updates in TRM.
Registration time or user-defined time can be incorporated in
the model, if needed, for any particular application by defining
them as additional time-stamp attributes. Incorporation of
double time-stamping in TRM results in a scheme which is both
algorithmically and semantically simple.

relations.

2.2. Problems with Adding Attributes
Reorganizations which increase the number of

attributes in a relation cause serious problems. Because data
can no longer be collected for tuples which describe a previous
state of the database, the additional information required by the
new attributes cannot be collected. Thus it may be impossible
to enter historical data into a reorganised schema.
Suppose a new attribute is to be added to a history

In particular, suppose it is decided to keep the
EmpNo of the inspector requesting a repair and the EmpNo of
the mechanic effecting that repair in the MAINTENANCE
relation. The database administrator has the following options.

database.

178

(1) Modify the schema of the MAINTENANCE relation
into a new schema called. Under this option all the previous
data from MAINTENANCE will be transferred over to the new
schema. Null values will appear under newly added attributes; if
any attributes are deleted, that information will be lost.

(2) Keep the old relation MAINTENANCE with its
schema, along with a new relation, MAINTENANCE(2], with its
schema, but do not transfer old data into the new schema, thus
avoiding the problems in (1). As we shall see, the approach
proposed in this paper is a variation of (2) in which a mapping is
provided between the old and new schemas.

2.2. Problems with Adding Time Stamps

Because changing a non time-varying relation into a
time-varying relation can be accomplished by adding the
attributes Ts and Te, adding temporal information to a non
time-varying relation is similar to adding an attribute to a time
varying relation. Retrieving information from relations which
have been expanded by adding temporal information, however, is
difficult. The system must be able to retrieve information from
outdated relations which contain no time stamps. This is
difficult because, though the information contained in the
outdated relation is historical, there are no time stamps
explicitly encoding this fact. Because the earlier relation is non
time-varying, the items in that relation are always current.
Because a new, time-varying relation has been added, the items
in the new relation are current between time start and time end.
Thus there is conflict between the data in the new relation and
the data in the old relation which, since it is always current, is°
current at the same time as the data in the new relation.

2.3. Problems with Adding Relations

Though adding new time-varying relations to a
database does not increase the number of attributes in a
These
problems arise due to the existence of foreign keys in the
relation.

relation, such additions may still cause problems.

When these foreign keys refer to other time-varying
relations conflicts may arise.

Adding a new time-varying relation to a database is
troublesome when that new relation refers explicitly to other
For example suppose a new relation stating
the assignments of the employees is to be added. This new
relation is to be represented by the time-varying relation
ASSIGNED as in Table 2. Now the relation could be interpreted
as saying that some employees working for the company (such as
EmpNo 47) were sssigned to no particular airport before the
introduction of this relation.

existing relations.

The meaning of the relation is
unclear because its existence does not extend through the entire
life of the database.

Table 2 : ASSIGNED

Empno Airport Ts Te
134 N.Y. 100 Now
25 LA 100 Now

Proceedings of the 13th VLDB Conference, Brighton 1987

In the above discussion we concentrated on the
"insertion anomalies” for history database--borrowing the term
Codd originally used in {7]. We could similarly discuss deletion
anomalies which would refer to the side effects of deleting
attributes, deleting time stamps or deleting entire entities or
relationships. Also, the problems of updating or changing the
definition of attributes, entities and relationships, or of making
the time varying relations non-time varying, and vice versa, can
be thought of as "update anomalies.” Our discussion in the rest
of the paper addresses developing an approach to deal with these
anomalies.

3. Approaches Dealing with Temporal Schema Anomalies

Any approach to dealing with the problem of accessing
historical data from history databases with dynamically
changing schemas must provide two things. First, it must
provide a coherent view of the data. That is, it must be able to
represent old data and new data with equal facility. Second,
it must provide a comprehensible view of the data. That is, it
must not require the use of a schema which may be beyond the
capability of the user to understand.

3.1. The Traditional Approach to Schema Reorganization

Reorganizing history databases is essentially being able
to update history database schemas. This update problem is
solved in non-history databases through destructive updating.
There is only one current schema and updates to this schema
entail simply replacing it with a new schema. As shown above,
however, destructive schema updating is inadequate for history
databases. i

Snodgrass and Ahn [2,3] suggest an extension to the
traditional approach which in part corrects this deficiency. They
propose providing a "rollback” mechanism which allows the user
to specify the database state against which a query is to be
evaluated. A rollback database records a sequence of database
states indexed by transaction time, the time at which the
information was entered. By selecting a particular temporal
index, a standard relational query can be made against the
resulting static database. Because database schemas are in
effect for a particular time frame, queries against the static
database which result from the effect of the included temporal
index are possible. Valid time stamps, as opposed to the
temporal index provided by transaction time stamps, record the
temporal information associated with a particular record. By
including valid time stamps in a rollback database, the result of
a query against a particular transaction time will give a full
history database. Thus the combination of transaction time and
valid time provides a means of dealing with old and new data
uniformly.

The difficulty with this approach is its comprehensibility.

Users must be familiar with all database schemas in effect for the
scope of their queries. For example the simple query "List
the serial number of the planes repaired at Atlanta" requires the

Proceedings of the 13th VLDB Conference, Brighton 1987

user to explicitly access both MAINTENANCE and
MAINTENANCE[2] and get a union of the information
retrieved. Such a query, though possible, could be quite
cumbersome. Writing queries will become more difficult as the
database schema is restructured because queries must be written
to embrace all schemas ever in effect. Our proposed approach
reduces the burden on the user by providing a mapping to the
appropriate schema for a given user query.

3.2. The Logic Approach

All relational databases are founded on first order
logic. Recently, however, there has been a resurgence of interest
in the logical foundations of databases [8]. Two views of
databases as first order logic theories have been developed: the
model theoretic and the proof theoretic. The model theoretic
view of databases sees the data as a structure against which the
logical formulae representing the integrity constraints and
queries are evaluated. The proof theoretic view sees the data as
ground atomic formulae, the integrity constraints as axioms in a
first order theory, and queries as statements to be proved
against this theory [9). One advantage claimed for such logical
views of databases is that they provide support for more real
world knowledge including the specification of temporal
information. Can such support be extended to the problem of
maintaining multiple historically important schemas? We feel
that it can. ‘

3.2.1. First Order Temporal Logic

Several first order theories of time have been
proposed, a few of these are the situational calculus [10] and the
temporal logics of Allen {11] and Hayes {12]. More recently,
Kowalski [13] proposes a first order temporal language called the
event calculus to deal with the problem of updates in deductive
databases. McDermott [14] follows a strategy similar to the one
proposed here in the development of his first order logic
temporal language. He starts with a modal temporal language
and proposes a first order language to express the intention of a
modal temporal language. He, however, is interested in & general
purpose temporal language; a language applicable in all temporal
situations. We propose a special purpose temporal language
tailored to the requirements of schema updates.

8.2.2 Modal Temporal Logic

Temporal modal logic grew out of modal logic.
Propositions in modal logic can be thought of as pertaining to
different worlds and relations between these propositions can be
thought of as defining the relationships between these worlds. In
different worlds the same proposition may be both true and
false. Complete and sound inference strategies for modal logics
generate new sentences about a modal structure from a theory
which describes that modal structure. [15] Temporal logics are
modal logics in which the worlds are generated by the passage of
time. Some recent work has concentrated on the use of modal

179

temporal logic as a language for reasoning about the execution of
sequences of programs, especially concurrent programs [16,17).

Taking the model theoretic view of databases, modal
logics seem admirably suited to the problem of reasoning across
schemas. Each schema is represented by a first order theory
which is modeled by the data it contains. A language which is
to express the relationships between schemas must therefore be
Modal
logics were designed precisely for this situation. Each theory or
schema represents a world and therefore the modal propositions
represent relations between theories or schemas.

We have developed a model temporal logic, called
Schema Temporal Logic (STL), to deal with temporal schema
anomalies. It is based on a temporal logic developed by Manna
and Wolper [16] and is, in turn, a variant of one appearing in
[18). The details of this approach are provided in the next
section.

able to express relationships between logical theories.

4. Details of Schema Temporal Logic

To translate queries made against the current state of
the database schema to comparable queries against previous
states of the database schema, the temporal logic need only
translate queries against a current database into queries against
a previous database. Other types of temporal statements are not
required in this problem domain. For example, one need not
deal with alternative possible past database schemas because
they contain no data. In this particular domain the sequence of
database schemas forms a total order terminated by the present
and the origin. Schema Temporal Logic (STL) is an attempt to
design a temporal logic which fits these narrow requirements.

4.1. Temporal Operators
Informally, this temporal modal logic is a logic oriented

to reasoning about sequences. It is the classical propositional
calculus extended by three temporal operators. These temporal
operators are, Prev, All, and Some. Intuitively these operators
generate true statements in the followink cases:

Prev { iff in the previous world { is true

All fiff in all previous worlds f is true

Some f iff in some previous world f is true.

4.2 Schemas as Modal Logic Worlds

In STL, the states are the schemas which have been
generated by changes to the history database. If the history
database is viewed as a model theoretic deductive database, it
represents a first order theory which reasons about the data
contained in the database (the universe of discourse). This
universe of discourse, because it is temporal, is a half open
interval on a total order generated by the passage of time. The
origin of this half open interval is the earliest time in the
database.

The schemas included in a history database consist of a
set of closed intervals on the total order. The origins and
terminations of these intervals correspond to the creation and

180

reorganization times of these schemas. The termination of the
Because the
schemas represent totally ordered closed intervals, STL need

last interval is arbitrarily chosen as infinity.

only reason about a discrete situation. Each of these intervals,
thus the
choice of a temporal modal logic for reasoning about this system.

If the
deductive database, the queries are proved by retrieving data

however, represents a theory about the database;
database is viewed as & model theoretic
from the database schema. Such queries can fail incorrectly in a
situation which contains more than one schema if the data is
present in the database, but is not present in the schema
queried. To insure that dats is retrieved correctly from all

schemas, the query must be translated from its initial form into
a form appropriate to the schema containing the data.

4.3. Associating Schema Temporal Logic Formulae with Schemas

In STL, each schema is associated with a set of STL
formulae which model the current collection of database
schemas. The previous schemas correspond to the worlds in the
modal structure about which STL reasons. Queries generated by
an STL theory of the current schema are interpreted in the
context of the STL theories of the previous schema. The ground
clauses indicate the relations contsined in the schema; the
sentences indicate the relations contained in other schemas.

Queries are made against the set of STL formulae. The
relations mentioned in the query are first matched against the
ground atomic formulse. If all relations can be found, the query
is answered immediately. If some ground atomic formula cannot
be found, STL translates a query into one against the previous
schema using the sentences. If such a sentence cannot be found,
the query fails and STL 'rupondl that the query cannot be
answered and the names of the relations which cannot be found
are returned. This process is repeated for the queries against the
previous schemas until the query is answered or no further
translation is possible.

4.4. Inference Strategy

STL retrieves relations from previous schemas through
a natural deduction principle. The rule used here is that if A
must be found, and A -> B, then B must be found. For
example, suppose the query requires relation A. If A is a ground
clause, the query is answered against the current schema. If, on
the other hand, A is not found among the ground clauses, STL
searches for a sentences of the form A -> B. If such a sentence
is found, the query is translated so that it is a query against B
rather than against A. If no such sentence can be found,
the query fails and STL responds that B cannot be found.

§. Example of an STL Solution to Temporal Schema Anomalies
To see how STL deals with the history database
schema update problem let us examine the example history
database. We will show the database represented in table 1 after
two different reorganisations and the modal formlae associated
with each schema in the reorganized databases.

Proceedings of the 13th VLDB Conference, Brighton 1987

.

.1 Exampie Daiabase afier First Reorganization.

Suppose the database in table 1 has been reorganized
100 to produce the database in table 3. Three

at time t =

reorganisations have taken place.
MAINTENANCE; & new relation,

be included in the new schema.

"100" at the time of reorganisation.

and actual values stored.
schema (Table 4).

Associated with the new database schemas are a sets of

modal formulae. These formulae tell how the information in
this schema relates to the previous schemas. The set of modal
formulae associated with this database is as shown in table §.
The modal formula associated with the previous schema is shown
in table BA; the formulae associated with the current schema are
shown in table §B.

Table 3: DB Immediately Aflter Reorganization

A. Relation According to the Previous Schema

MAINTENANCE

SerNo Part Place Ts Te
91 Wheel Atlanta 10 20
108 Door N.Y. 35 47
105 Door L.A. 55 62
142 Wing Boston 60 72

B. Relations According to the Current Schema

EMPLOYEE AIRPORT

EmpNo Sal Position Ts Te Place #Hangars

25 20K Mechanic 10 35 Atlanta 5

1471 32K Inspect. 23 55 L.A. 2

134 35K Mechanic 45 Now Boston 6

25 35K Inspect. 36 Now N.Y. I
MAINTENANCE

SerNo Part Place Inspect. Mechanic Ts Te
AIRPLANE ASSIGNED

SerNo Type Ts Te EmpNo Place Ts Te
Procesdinae af tha 12th UT D Oacfrcsmne Deialiaa 10077
SIVRSCUIRES O uiC a5ut Vi.wp LONISTENncE, Brignion ivo/

Two new attribute has been
added to MAINTENANCE producing a new relation also called
AIRPLANE, has been
introduced; and & new relationship, ASSIGNED, has been added.
The new database schema (Table 3B} holds current information;
the previous schema (Table 3A) holds the old data which cannot
For example, the data in
EMPLOYEE gets carried over to the next schema, whereas data
from the old MAINTENANCE relation does not. All of the time
stamps in the old schema which read "Now” are changed to
In general, to "close" a
database schema all "Now's” in the old schema will be computed
New data is inserted in the current

Table 4: DB Some Time After Reorganization

A. Relation According to the Previous Schema

MAINTENANCE

SerNo Part Place Ts Te
91 Wheel Atlanta 10 20
105 Door N.Y. s 47
105 Door L.A. 55 62
142 Wing Boston 60 72

B. Relations According to the Current Schema

EMPLOYEE AIRPORT

EmpNo Sal Position Ts Te Place #Hangars

25 20K Mecchanic 10 35 Atianta 5

a7 32K Inspect. 23 55 L.A. 2

134 35K Mechanic 45 Now Boston 6

25 35K Inspect. 36 Now N.Y. i

156 40K Inspect. 100 120

156 45K Inspect. 121 Now

MAINTENANCE

SerNo Part Place Inspect. Mechanic Ts Te

105 Door N.Y 25 i34 i 13

97 Wheet L.A. 156 134 124 132

105 Door N.Y. 25 134 152 162

AIRPLANE ASSIGNED T
EmpNo Plac S

e Tt T 1 peC oY, 100

105 727 100 Now 25 N.Y. 100

127 747 100 Now 156 NY. 100
156 LA 120

Table 5: Modal Formulac Associatcd Exampic DB

A. Modal Formula Associated with Prev. Schema

rNo, Part, Place, Ts, Te)

’
SIS,y bRl

n
d
Iy
o
>
v
]

ociated with Curr. Schema
(1) EMPLOYEE (EmpNo, Sal, Position, Ts, Te¢)

(2) AIRPORT (Place, wHangars)

Te
Now
Now
120

Now

(3) MAINTENANCE (SerNo, Part, [nspector, Mechanic, Ts >~ 100, Te)

(4) AIRPLANE (SerNo, Type, Ts >= 100, Te)
(5) ASSIGNED (EmpNo, Type, Ts >= 100, T¢)
{6) MAINTENANCE(SerNo, Part, Place, Ts, Te < 100)

>]
Prev MAINTENANCE(SerNo, Part, Place, Ts, Te)

181

6.2. Mapping Queries of the Example Database after First
Reorganization

To process a query involving a relation with added
attributes, the modal formulae translate the query against the
current database into queries against the current database and
previous databases. For example the query:

SELECT SerNo FROM MAINTENANCE
WHERE Place = "Atlanta"

would be translated into two queries: one against the first
example database; one against the second. (see [19] for a
discussion of the TSQL language.) The new translated query
would be:

SELECT SerNo FROM Prev MAINTENANCE
WHERE Place = "Atlanta”

UNION

SELECT SerNo FROM MAINTENANCE
WHERE Place = "Atlanta".

To perform this transformation STL first looks in the
ground atomic formulae to see if there is a relation called
MAINTENANCE from which the attribute SerNo" can be
retrieved. Formula 3 provides such a relation, but it is restricted
to queries which specify a time start of greater or equal to 100.
Because no time start is specified in the query being processed, a
time start of O is assumed. Thus STL looks for a formula of the
form A -> B where A is a relation named MAINTENANCE from
which a attribute called "SerNo" can be retrieved. Formula 6 is
such a formula, so STL queries from the MAINTENANCE
relation found in the previous schema. The query against the
previous schema can be answered because it matches the ground
atomic formula in the set of modal formulae for that schema.

Queries which retrieve information only from the
current schema or only from previous schemas can also be
handled. For example,

SELECT SerNo FROM MAINTENANCE
WHEN Te < 100

retrieves information only from the previous MAINTENANCE
relation. On the other hand,

SELECT SerNo FROM MAINTENANCE
WHEN Ts > 100

retrieves information only from the current MAINTENANCE
relation.

To retrieve information from relations which have been
reorganized by adding temporal information, the schema from
which they are retrieved must be returned with the tuple. In
that way data from old schemas without time stamps will not be
confused with data from the current schema for which the time

182

stampes were not requested. Some measure of ambiguity will

result from such retrievals due to the lack of information in the
earlier schemas. The user will know that the earlier information

was current during a certain time frame, but will not know the
precise boundaries of that currency.

Queries which generate negative propositions will
return "unknown” with the negation of the negative proposition
as a parameter. For example if presented with the query

SELECT SerNo FROM AIRPLANE
WHEN Ts = 60,

the system can find the required relation in neither the ground
clauses, nor the sentences which translate the query to one
against another relation. Therefore the system will return
"unknown(AIRPLANE(Ts >= 0,Te < 100))".

Similarly, queries involving added relationships may
return "unknown”. As in the above example, the query

SELECT Sal FROM EMPLOYEE
WHERE EmpNo =
SELECT EmpNo FROM ASSIGNED
WHEN Ts = §0

will also return "unknown".

the modal formulae, however, the system can give an indication
Here, the system will

as to why the information is unknown.
return "unknown{ASSIGNED(Ts >= 0,Te < 100)).

5.3 Example Database after a Second Reorganization

Suppose now that at time t =
represented in table 4 has again been reorganized. The only
changes to the database are the deletion of the attribute, Place,
from the MAINTENANCE relation, and the removal of the
relation, ASSIGNED.
are changed, they are all moved to the new current schema.
he new database will appear as in table 8C. The two previous
databases will appear as in tables 6A and 6B. The database in
6A is not changed; the database in 6B is the current database
from table 4.

Because the database represented in table 6B has been
changed, the modal formulae associated with this database also
need to be changed. The formulae are altered by moving

forward all formulae associated with the relations in the current
schema. The formulae associated with relations which are not

moved forward (i.e., those designated as being in the previous
schema) are not changed. The modal formulae associated with

the schemas created by the second reorganigation of the example

database are shown in table 7.

Proceedings of the 13th VLDB Conference, Brighton 1987

Using the information encoded in

200 the database

Because none of the other relations

Table 6: Database jmmedialciy After Second Reorganization

A. Relation According to the First Schema

MAINTENANCE
SerNo Part Place Ts Te
91 Wheel Atlanta 10 20
105 Door N.Y. 35 47
105 Door LA 55 62
142 Wing Boston 60 72
B. Relations According to the Previous Schema
MAINTENANCE
SerNo Part Place Inspector Mecchanic Ts Te
105 Door N.Y 25 134 1 113
97 Wheel L.A. 156 134 124 132
105 Door N.Y. 25 134 152 162
ASSIGNED
EmpNo Place Ts Te
134 N.Y. 100 Now
25 N.Y. 100 Now
156 N.Y. 100 120
156 L.A. 121 Now
C. Relations According to the Current Schema
EMPLOYEE AIRPORT
EmpNo Sal Position Ts Te Place #Hangars
25 20K Mechanic 10 35 Atlanta §
47 32K Imspector 23 35 L.A. 2
134 35K Mechanic 45 Now Boston 6
25 35K Inspector 36 Now N.Y. 1
156 40K Inspector 100 120
156 45K Inspector 120 Now
MAINTENANCE
SerNo Part Inspector Mechanic Ts Te
AIRPLANE
SerNo Type Ts Te .
97 747 100 143
105 727 100 Now
127 747 100 Now

Table 7: Modal Formulae Associated Exampie Database

A. Modal Formula Associated with First Schema

(1) MAINTENANCE (SerNo, Part, Place, Ts, Te)

B. Modal Formulae Associated with Previous Schema
(1) MAINTENANCE (SerNo, Part, Place, Inspector, Mechanic, Ts >= 100, Te)
(2) ASSIGNED (EmpNo, Type, Ts >= 100, Tc)
(3) MAINTENANCE(SerNo, Part, Place, Ts, Te < 100)

->
Prev MAINTENANCE(SerNo, Part, Place, Ts, Tec)

Proceedings of the 13th VLDB Conference, Brighton 1987

C. Modal Formulae Associated with Curreat Schema

(1) EMPLOYEE (EmpNo, Sal, Position, Ts, Te)
(2) AIRPORT (Place, #Hangars)
(3) MAINTENANCE (SerNo, Part, Inspector, Mechanic, Ts >= 200, Te¢)
(4) AIRPLANE (SerNo, Type, Ts >= 100, Te)
(5) ASSIGNED (EmpNo, Type, Ts, Te < 200)

:rev ASSIGNED (EmpNo, Type, Ts, Te)
(6) MAINTENANCE(SerNo, Part, Place, Inspector, Mechanic, Ts, Te < 200)

->
Prev MAINTENANCE(SerNo, Part, Place, Inspector, Mechanic, Ts, Tec)

6.4. Mapping Queries on the Example Database after Second
Reorganization

Now the query:

SELECT SerNo FROM MAINTENANCE
WHERE Place = "Atlanta”

must be translated into a union of three queries: one against the
first database, one against the second, and one against the
current database. This query will be:

SELECT SerNo FROM Prev Prev MAINTENANCE

WHERE Place = "Atlanta",

UNION

SELECT SerNo FROM Prev MAINTENANCE
WHERE Place = "Atlanta”

UNION

SELECT SerNo FROM MAINTENANCE
WHERE Place = "Atlanta”.

STL performs this translation by first looking at the
ground atomic formulae of the current schema. The query can
be partially answered from the current schema, so the current
schema is queried. The rest of the information is retrieved by
querying against the previous schema.This new query is again
translated by the modal formulae associated with the previous
schema into two queries: one against its previous schema (Prev)
and one against the first schema (Prev Prev). Because the first
schema can completely satisfy the query it receives, no further
translation is necessary.

183

Conclusion

The clear conclusion to draw from this work is that
including temporal information in a database through a policy of
non-destructive updates will introduce difficulties in an evolving
situation requiring database schema updates. This paper has
attempted to explore these difficulties and has suggested a
possible solution to them.

Modal temporal
candidate for solving the problems that occur when temporal
schemas are updated. Because modal logics describe collections
of worlds with well defined interactions, they appear to offer

logic seems to be a promising

semantics tailored to the problem of retrieving information from
multiple schemas. Each schema represents a single world within
the modal structure about which the modal logic reasons. Thus,
the reasoning required to determine whether information need be
retrieved from another schema can be divorced from the logic
required to retrieve information within the schema.

Acknowledgments
The authors would like to thank Alex Papachristidis
for many helpful discussions.

References
[1] S.B. Navathe, and Rafi Ahmed. "A Temporal Relational
Modal and & Query Language”, UF-CIS Technical Report TR-
86-16, April 1986.
[2] Richard Snodgrass and Ilsoo Ahn. "Temporal Databases”,
Computer, 19:2, September 1986, pp. 35-42.
(3] Richard Snodgrass and Ilsco Ahn. "A Taxonomy of time in
Databases,” Proc. Int’l conf. Management of Data, ACM
SIGMOD, Austin, TX, May 1985, pp. 136-246.
[4] Ariav, Gad, Aaron Beller, and Howard L. Morgan. "A
Temporal Data Model" New York Univerisity, December 1984.
(5] Clifford, James and Abdullah Uz Tansel. "On an Algebra for
Historical Relational Databases: Two Views” ACM SIGMOD
Record 1986, pp. 247-265.
(6] Gadia, Shashi K. "Toward a Multihomogeneous Model for a
Temporal Database” IEEE Conf. on Data Engineering 1986, pp.
390-397.
[7] E. F. Codd. "A Relational Model of Data for Large Shared
Data Banks", CACM, 18:6, June 1970.
[8] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. "Logic
and Databases: A Deductive Approach”, Computing Surveys,
16:2, June 1984.
{8]) Raymond Reiter. "Towards a Logical Reconstructions of
Relational Database Theory”, in On Conceptual Modeling, M.
Brodie, J. Mylopoalos, and J. Schmidt (eds.), (Springer-Verlag,
1985).
(10] 3. McCarthy and P. J. Hayes. "Some Philosophical Problems
from the Standpoint of Artificial Intelligence”, in Machine
Intelligence 4, (Edinburg: Edinburg University Press, 1969).
(11) James Allen. "Maintaining Knowledge about Temporal
Intervals”, CACM, 26:11, November 1988, pp. 832-843.

184

[12] P. J. Hayes "The Second Naive Physics Manifesto”, in
Formal Theories of the Common Sense World, (Norwood: Ablex
Publishing, 1985) pp. 1-36.

(13} Robert Kowalski. "Database Updates in the Event
Calculus”, Imperial College, July 1986.

{14] Drew McDermott. "A Temporal Logic for Reasoning About
Processes and Plans”, Cognitive Science 6, 19082, pp. 101-155.
[15]) J. Jay Zeman Modal Logic: The Lewis-Modal Systems
(London: Oxford University Press), 1973.

[18] Zohar Manna and Pierre Wolper. "Synthesis of
Communicating Processes from Temporal Logic Specifications”,
ACM Transactions on Programming Languages and Systems,
6:1, January 1984, pp. 68-93.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla. "Automatic
Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications”, ACM Transactions on Programming
Languages and Systems, 8:2, April 1986, pp. 244-263.

(18} D. Gabbay, A. Pneuli, S. Shelah, and J. Stavi. "On the

Temporal Analysis of Fairness”, Proc. 7th ACM symposium on

Principles of Programming Languages, Las Vegas, January 1980,
pp. 163-173.

(18} S.B. Navathe, and R. Ahmed. "TSQL--A Language Interface

for Temporal Databases”, Proc. of Temporal Aspects of
Information Systems, North-Holland, May 1987.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and. its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

