
PROVIDING TIME-RELATED CONSTRAINTS FOR CONVENTIONAL DATABASE SYSTEMS.

T. Abbod, K. Brown and H. Noble

School of Mathematical Sciences and Computer Studies
Robert Gordon’s Institute of Technology

St. Andrew Street, Aberdeen

Abstract

A model for a historical database is described
which is based upon time-stamped tuples as
the unit of storage. The model includes both
physical and logical time-stamps. The techni-
cal characteristics of write-once laser discs
prevent the use of double logical time-stamps.
The model distinguishes version from
correction-updates. It is shown that if set-
valued attributes are involved the use of null
values is unavoidable if back-dated
correction-updates are allowed. A method of
handling user-defined integrity constraint
rules is outlined which involves the mainte-
nance of a time-stamped trace of such rules.
Such a trace is necessary for the proper han-
dling of back-dated correction-updates. An
outline of a system SIS-BASE is described
which implements some of these ideas.

1. Introduction.

Historical databases in which data once
recorded are never deleted but are instead
time-stamped and augmented by more up-to-
date data, have been discussed for some years
(1,3,4,5,11,13). The idea has obvious attractions
for those applications in which the maintenance
of a perfect audit trail, or the rapid retrieval of
time-expired data is important. It also holds
out the possibility of a more complete model of
the real world than is possible with conventional
dambase systems (10).

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

The storage requirements are so onerous,
however, that there have been few, if any,
attempts to construct a practical implementa-
tion. The advent of write-once laser discs sug-
gests that the idea should be reexamined.

2. Previous work

Various issues have been debated, such as the
use of single and double time-stamps (19). the
distinction between logical and physical
time-stamps (13), the distinction between attri-
butes which are considered fixed in value and
those which require progressive amendment
over time (19), the distinction between athi-
butes which change continuously with time
and those which change according to a step
function (12). Theoretical analysts have used
a model of a historical dambase called an
“infinite-state” database which records separate
(complete) entries ‘for every relation at zero
time-intervals (12). As a theoretical construct it
forms an interesting model with which other
models can be compared. Another model
appends time-stamps to individual attribute
instances giving rise to a four-way classification
of attributes (19). That is, those which have a
single fixed value, those which have a single
value associated with a double time-stamp
(showing the time interval over which the value
accurately corresponds to the real world), ami-
bums which have a set of values and those
which have a set of time-stamped values.

Additions to the relational algebra have been
proposed which take into account the time
dimension and the set-value nature of some
attributes. The operations proposed allow the
user to switch between normalised and de-
normal&d relations and to bring time-stamps of
two attributes into correspondence (“time
slice”) (6). Snodgrass (16) has complained that
there is little agreement on the terminology
for most of these ideas and few workers have
considered the practical problems of implemen-
tation.

proceedings of the 13th VLDB Conference, Brighton 1987 167

-.

3. An outline of our model.

The work we shall describe here is based on a
data model which is similar but not identical to
that described by Kobayashi (12). Following
his terminology we can call it a database with
“event” relations. In such a database the exist-
ing data is augmented only when a change (an
event) occurs. When a single attribute is
involved but is part of a tuple, the complete
tuple is recreated with the new attribute
value, and the whole tuple is time-stamped.
Kobayashi has demonstrated the equivalence of
such a database with an infinite state database.
Later we shall compare this model with a model
in which individual attributes are the unit of
storage.

We recognise a distinction between updates to
the data which are carried out because the
conditions in the external or real world have
changed and those which am carried out
because an error in the existing data has been
detected. To avoid confusion we will refer to
these as “version-updates” and “cotrection-
UpdiittX” respectively. The distinction, which
was noted by Klopprogge (1 l), is, we believe,
an important one and it is reflected in our
model. We note that while some types of
attribute may appear to be fixed. in value with
respect to version-updates, no attribute is free
from a possible correction-update.

The maintenance of a historical database
requires the use of two kinds of time-stamp.
Following Lum (13) we shall refer to “physical
time” and “logical time”. Physical time is the
time at which an update takes place and its
value can be supplied automatically by a sys-
tem clock. Logical time is the time in the real
world at which a change of circumstances
occurred which necessitated a change in the
database in order to maintain correspondence
with the real world. Logical time values must
be supplied by the database user but their
importance to operations over a historical data-
base system is so great that we have placed
their provision and manipulation under system
control.

Every data item is associated with two logical
timestamps. These correspond to the earliest
and latest limits of the period of time over
which the data corresponds to the real world.

This is called the “transaction time” by
Snodgrass. It is possible to implement a histori-
cal database in such a way that each data item
holds only its earliest time-stamp limit. To dis-
cover the latest limit to its period of “applica-
bility” it is then necessary to consult the next
datum in the time sequence. It is also possi-
ble to store both limits with each data item.
Tansel (19) has discussed the relative merits of
each approach. A major disadvantage of the
double time-stamp approach, however, is that
the value of the second of the two time-stamps
(usually) cannot be known at the time a tuple is
created. To use double time-stamps therefore, it
would be necessary to update the tuple in situ
some time after its original creation. We are
not swam of any write-once laser disc system in
which this is possible and we have therefore
adopted the single time-stamp approach. To
reduce the inconvenience of having incomplete
information stored with each tuple we have
introduced “version numbers” which indicate
the ordinal position of a tuple in a sequence of
such tuples.

To be more precise our model is as follows: Let
R be a relation with attributes (Al, A2, A3,).
Let r be a predicate such that r(a1, a2, a3, . ..)
is trne if the set of data values (al, a2, a3,
. . .) is an instance of a triple within R. We
will use suffices to distinguish between tuples
in the same relation
a31,...),

thus (al,, ql.
and (alz, a2z, a32,..) are both tuples m

R. We augment the schema by adding extra
attributes: S = a surrogate, T = a logical time-
stamp, P = a physical time-stamp, V = a version
number, C = a correction number. E = an expla-
nation. Although we shall represent these as
part of the tuple, they are not seen by the user
and should be regarded as being under system
control. We term them “meta-data” because
they represent “information about data” rather
than simply “data”. The values of T and E
are supplied by the user.

As a simple example of how version and
correction numbers are related to physical and
logical time-stamps consider the history of the
salary of “joe” shown in figure 1. We can read
joe’s salary “version-history” (as we currently
believe it to be) by reading the top edge or
envelop of the chart

168 Proceedings of the 13th VLDB Conference, Brighton 1987

correction
number

2 joe,3000
ep4

joe,3002
t2,p3

joeJO
tap0

joe,2000
t1q1

joe,3001
r&P2

joe,4000
O,P5

0 1 2 3

version number

Figure 1

pl, p2, p3, . . . physical time-stamps
t1, t2, t3, . . . logical time-stamps

We can read the “correction-history” for ver-
sion 2, say, by reading vertically on that
column. In order to read the chart envelop,
however, it is necessary for the system to navi-
gate from the top entry in a column to the
top entry in the previous column. In a practi-
cal database on laser disc pointer fields would
be requkd. A backdated correction-update,
however, requires the creation of a new envelop
consisting of simple pointer records inserted to
maintain pointer continuity.

Successive Attributes. For an attribute such as
“salaty ” each version succeeds its prede-
cessors and is independent of them. We shall
call such an attribute a “successive” attribute.
The example above illustrates such an attribute.

Consider the chart of such a relation (figure 2).
We dispense with some of the, details in this
chart but the same conventions hold. Versions
are read from left to right and corrections verti-
cally. Here we see that joe has accu-
mulated three degrees (bscmsc,phd) at
different times and that what corresponds to the
“current version” is found by reading the chart
envelop. Each version is the set of tuples
obtained by reading the envelop from the
left, up to and including the column bearing
the appropriate version number. In effect, each
version is embedded in its successors. The
model still holds but its interpretation has
changed to correspond to the semantics of the
type of attribute being amended.

Set-Valued Attributes. Consider a relation
which holds information of a people’s
qualiftcations. If a person acquires a new
qualification it is appended to his/her collec-
tion. It does not replace previous qualifications.
Tansel modelled this by defining a class of attri-
bute which could have a set of values and
termed it a “set-valued” attribute. In a conven-
tional databas however this state of affairs
would be modelled by reduction to ftrst normal
form. Tansel suggests extensions to the rela-
tional algebra (pack and unpack) which switch
the data between these two formats.

At this point we must consider practical issues
of access efficiency. Typically, random access
times for an optical disc drive are of the order
of 150 milliseconds, or about 10 times the
access time for conventional disc drives. The
performance of a practical database therefore
would be greatly impaired if, in order to retrieve
the “current status” it was necessary to make
multiple random access retrievals. It may there-
fore be advisable in some applications that the
model should allow storage in the “packed”
form - as an unnormalised set of attribute
values.

proceedings of the 13th VLDB Conference, Brighton 1987 169

joe,init joe,bsc
ape &Pl

joem
Q,P2

jwphd
t393

0 1 2 3

Figure 2

(joe,4,lO,bsc)

(joe,7,15,---)
(joe.8.15,---)
(joe,9,15,---)

Cjoe,7,15,msc)
(ioeJAl%mW
(ioe,9,15,ma) @X,720,---)

1 2 3

Figure 3

4

This, however, introduces all of the complica-
tions associated with correction-updates which
we describe for “cumulative” attributes below.

Cumulative Attributes. Consider an attribute
which represents a cumulative total, or some
other aggregation of all previous values. We
shall call these “cumulative” attributes. A typi-
cal example is an attribute which records a
bank-account balanw. A backdated correction
will propagate forwards in time and require a
sequence of correction-updates. In practice an
alternative method would be to adopt the time
honoured methods of the accountant and make
a single correction-update to the most recent
version (with an appropriate explanation). This
is one of the possible uses of the “explanation”
attribute. Such a “solution”, however, destroys
the integrity of the historical trace and we shall
ignore it for the purposes of this discussion.

The final consideration, before we leave this
topic, is the treatment of tuples which have
more than one attribute of more than one type.
Consider the tuple with schema
person(name,balance,salary,qualification). Each
one of these attributes could be the subject of
an update and our method of identifying a ver-
sion would be in some disarray if we could not
identify which attribute had been updated at
any one time.

170

In figure 3, note the use of null values for the

attribute qualification in those columns where
it is not the subject of a version Update.

Without the use of null values (in column 2 for
example) we would be gratuitously providing
joe with an additional qualification. It is worth
noting therefore that null values are obligatory
in a historical database which uses the tuple-
based model and does not use set-valued attri-
butes. It is still possible to read off the current
version for the set-valued attribute
qualifications (ie the envelop) provided we
ignore the null values.

In the case of a successive attribute
(salary) we have successive versions
corresponding to columns 1.2 and 4. There was
no salary change corresponding to column 3.
To avoid wrongly taking column 3 to be a
version with respect to salary we require that
entries carry some indication of which attri-
bute is the subject of version-update. Furtber-
more this indicator must be inherited by sub-
sequent correction-update entries. Correction-
updates are applied to the appropriate version
(or column) and the “knock on” effect (ie pro-
pagation of correction to columns on the right)
extends only as far as (but not including) the
column where the next version update for that
attribute occurred. The need for indicators
showing which attribute is the subject of update
is the main functions of the “explanation”
parameter E introduced earlier.

Proceedings of the 13th VLDB Conference, Brighton 1987

The history of “joe” is still represented by the
chart envelop and the model holds for tuples
with mixed attribute types.

4. Integrity Constraints

It is not common for a database system to
support user-defined integrity constraints but
some do (8). The constraints normally consist
of rules which are applied whenever an
attempt is made to insert a new item of data
(or when an existing item is updated). The
insertion/update is prevented if the rules are
violated. Various strategies for the invocation
of integrity constraints have been proposed
(2,17) and the relationship between integrity
constraints and formal logic has been analysed
(9). What does not appear to have been pointed
out before, however, is that, if integrity con-
straints are user-defined they can be expected to
change from time to time. In a historical data-
base system the rules should be time-stamped
and a back trace of rules should be maintained
as for data. It would be inappropriate to apply
current integrity constraints to a correction-
update being applied to old data, which was ori-
ginally created when the integrity constraints
were quite different. This has considerable
implications for the implementation of the
propagation aspect of correctionupdates. In
making a distinction between version and
correction-updates Klopprogge (11) suggested
that the end-user without special access rights
should be able to make only version-updates to
the database. Correction-updates would be
reserved for “superusers” who could ignore the
normal integrity constraints. We suggest that
this would not be necessary if correction-
updates were subjected to back-dated integrity
constraints.

If integrity constraints are user-defined they can
not only be expected to change from time to
time but they can be expected to be defined
incorrectly on occasions. It follows that there
should be a set of me&rules, (which are univer-
sal in their application and which am never
userdelined and therefore are not subject to
timerelated changes), which can be used to
prevent the insertion of incorrect user-de&d
integrity constraints (15). Our model supports
meta-constraints as well as constraints and uses
a classical proof by contradiction method
for proving constraints. Our model does not

therefore support the idea of correction-updates
with respect to integrity rules, only version-
updates are allowed.

Mets-constraints are not time-dependent in our
model. They are intended to correspond to real
world common sense rules such as “an object
cannot exist in two locations at the same
time”. The model does not support user-
definition of meta-constraints.

In section 3 we introduced the idea of a predi-
cate r(al., a2., a3 .,....) which is true if and only
if the tdple ta1.h. a3 ,..) is a tuple within the
relation R. We ’ no’w &oduce a new relation
R’ with an associated predicate r’ which is
analogous to R and r. In concrete terms, R’
can be regarded as a “scratch” relation within
the deletable file-store which acts as a tem-
porary holding point for tuples submitted for
insertion to the relation R which resides in
permanent (non-deletable) file-store. There is
one R’ for every R within the database schema.
When we define an integrity constraint we
CM therefore distinguish between newly sub-
mitted tuples and those which are already in
the main database and have therefore,
presumably, already been passed by the
integrity constraint mechanism as valid. In
general we write an integrity constraint in the
form:

(rule-form-l)

over(&neinterval>):
(<condition-l>

=> should_be(<condition-2>))

Where: <time-interval> indicates the limits of
applicability of the rule. <condition-l> is
some condition involving r’ , which will have a
time-stamp 0. ccondition3> is some condi-
tion which can be inferred from- condition-l
provided T lies within the time span of
<time-interval>.

The introduction of the modal operator
“should-be” may be thought an UnneCesSary

embellishment, but it is not only intuitively
“comfortable” - most people when asked to
describe informally an integrity constraint
rule use exactly this construct - but it
simplities the translation of the rule into Pro-
log-(15).

Proceedings of the 13th VLDB Conference, Brighton 1987 171

In addition to such rules which are user-
defined we add the meta-rules in the form:

(rule-form-2)

shouldJe(ccondition-2>)
at (4meintervaL2>)

& should_be(<condition-32)
at (ctimeinterval-3>)

L concurrent&timeinterval-ti,
<time-interval-3>)

=> contradiction;

It is simple to translate a rule in the
“should~W form into another with the form:

(rule-form-3)

over&time-inten&):
<condition-l> & not(<condition-2>)

=> invalid;

and in this form efficient checking of the
integrity of a tuple can be preformed. In rule-
form-l, however, the validity of the rules
themselves can be checked by the meta-
rules by the classical proof by contradiction.

5. SIS-BASE and SIS-BASE3

The model we have been describing arose out of
a project to develop a system called “SIS-
BASE”. This system embodies many (but not
all) aspects of the model we have already
described. In addition it has one important
feature which distinguishes it from other
attempts to construct a temporal dambase.
Instead of trying to develop a completely new
database system SIS-BASE is what might be
described as a temporal front-end to INGBES.
Stonebraka (18) has described some temporal
extensions to INGBBS but in our case the addi-
tional features are separate and distinct from the
existing features of INGBES. This approach
was discussed some time ago by Ariav (1).
Another prominent feature of SIS-BASE is that
Prolog is the implementation language of the
front-end. This makes possible the con-
venient specilication of integrity constraints.
Our hope is that it will eventually become an
easily ported front end to a variety of database
systems.

One drawback is that the association with

INGBBS curtailed our freedom with respect to
the model and predisposed us to a tuple-based
model. To free ourselves from this restriction
and to address the problems of a practical sys-
tem making use of write-once laser discs we
have begun to develop a model for a second
system (SIS-BASE-2).

6. SIS-BASE: An outline of the system

SIS-BASE holds the “historical” information in
tabular form. We shall refer to this table as the
“meta-information table” (MIT). There is one
table for each conventional relation in the
database. Bach table has the structure: (key,
physical-time, logical-time, status pointer,
explanation). “Key” is the value of the primary
key for a given ‘tuple within the relation.
“Physical-time” is obtained from the system
clock. “Logical-time” is provided by the user
but the SIS-BASE prompts the user for its
value. To determine which attribute has
changed between versions it is necessary to
examine the “explanation”. The “status” indi-
cates whether the tuple concerned is “initial”,
“historical” or “terminal”. The “pointer” (a sur-
rogate index number) identifies the previous ver-
sion in the prolog database. An “initial” tuple
is one which is the starting point of a
sequence of versions. A “historical” tuple has
both antecedent and possible descendent ver-
sions and a “terminal” tuple brings a series of
versions to a close.

An interesting point which arises in a tem-
poral databas concerns the reuse of a key
value after it has been terminated. An example
would be the reuse of an employee works
number some years after the original employee
with that number had died. SIS-BASE has a
special indicator (under status) which means
“was terminated - is now reinitialised”).
Allied to this is the possible update of a
key. It is sometimes necessary to re-
structure a dambase and redefine keys. The
need for this occurs for example when com-
panies merge and customer numbers are re-
assigned. In a conventional system the data-
base is simply re-structured and no anomalies
arise, but in a temporal dambase with its need
to maintain continuity with past history, the
old keys values must be retained and linked in
some way with the new values. The suno-
gate intmduced earlier is designed to

172 Proceedings of the 13th VLDB Conference, Brighton 1987

maintain this continuity. It is hidden from the
user. By definition surrogates do not undergo
update.

SIS-BASE accepts definitions of relation schema
(attribute names, attribute types and tuple struc-
tures) and stores these. It also converts the
schema with meta-attributes appended into
the appropriate format and submits them to
INGRES. SK&BASE is therefore able to
prevent erroneous attempts to insert data into
non-existent relations without invoking INGRES
facilities.

The user specifies the target relation and
enters the data. Integrity constraints are
invoked and these may be of two types -
referential constraints which check for the
existence of cross-reference keys etc in other
relations (7.14) and assertion constraints
which require the specification of rules. These
rules are coded in Prolog and can therefore go
well beyond the normal facilities of INGRBS.
Referential constraints are not available in
INGRES. If the tuple passes these checks it
is translated into the appropriate code in
QUBL and submitted to INGRBS.

The deletion of a tuple is converted into the
insertion of a tuple with status, = “termina-
tion” which becomes the current version. The
amendment of a tuple is converted into the
insertion of a new current version of the tuple.
It inherits the un-amended data from the previ-
ous current version. SIS-BASE does not dis-
tinguish between version and correction-
updates. Version-update also becomes an
insertion process and integrity constraints are
invoked.

7 The Specification of Integrity Constraints.

To illustrate the conversion of a constraint rule
in rule-form-l into Prolog consider the rule that
no salary should exceed or equal 25ooO dur-
ing the time interval ttl to tt2. We assume that
our database contains a relation R with schema
(N,S) or (Name,Salary) and that we have
extended it by the addition of a logical time-
stamp attribute T.

over@1 ,tt2):
r’(N,S,T) => shouldJe(lt(S,25OO0))

Where lt(X,Y) means “less_than(X,Y)“.

We introduce a new predicate with form
“should_be_lt(x,Y,Tl,T2)” which is true if
lt(x,Y) during the time interval Tl-T2. That is.
we combine the modal operator with the predi-
cate It to produce a composite predicate. The
use of the composite predicate makes it much
easier in Prolog to write rules for (say) the
transitivity of the relation less-than without
generating infinite recursion. We can now
write:

shouldbe~lt(S,25OOO.ttl,tt2):-
r’@l,S,T),within(ttl,T,t@.

where within(Tl,T,T2) is true if T lies in the
time interval Tl- 72.

This in tum translates into a rule in rule-form-3

invalid :- r’(N.S,T),
within(ttl,T,tt2), notJ(S,25000).

where not-lt (“not less than”) is the converse of
should_be_lt.

This representation of the rule conforms to the
structure of the rules described by Weigand (20)
which in turn was shown by him to conform
to the ISO-report version of Interpretative Predi-
cate Logic.

r’ is the predicate associated with the scratch
relation R’ which is held in SIS-BASE but is
not “seen” by INGRES. The predicate r how-
ever which is necessary for the de8nition of
some constraint rules invokes in SIS-BASE
the retrieval of the appropriate relation from
INGRBS to make it available to the Pro-
log inference engine.

In a historical database the concept of “next” is
important. We might for example wish to
specify that after a person has been employed
in department dl he or she must be employed in
department d2 “next”. When tuples carry only
single time-stamps it could be difficult to
define the concept “next”. One method of
showing that a tuple rc.T2) is the “next” tuple
after rC,Tl) is to search and fail to find
another tuple LT) such that
within(Tl,T,T2) is true. This is a very clumsy
mechanism which is eliminated by the use of

Proceedings of the 13th VLDB Conference, Brighton 1987 173

version numbers. rc,T2,V2) is the next tuple
after rC,Tl ,Vl) if Vl and V2 are version
numbers and V2=Vl+l. The use of double
timestamps also simplifies the definition of
“next” but violates our principle that updates to
a tuple are disallowed once it has been inserted
into the database.

8 Discussion

The initial object in mind was the provision
of a portable temporal front-end to a conven-
tional dambase system and to make available
the full power of Prolog as a means of
specifying integrity constraints (including
temporal constraints) (SIS-BASE). The
development of a temporal model was a
necessary adjunct to this work and in the event,
the attempt to implement SIS-BASE resulted
in a considerable clarification and refinement of
the model. Some of the results were a surprise
to ourselves. We did not expect that the need
for null-values would arise from the tuple-
based event model we have described but we
believe that the result is important. In a prac-
tical database the designer would no doubt
normalise the data so that set-valued attributes
formed a relation of their own thus minimising
the need for null values, but the need cannot
be eliminated in a relational database if one
concedes that every relation needs a primary
key and that no attribute is ultimately free
from the need for updates. A model which
relied on pointer connections rather than foreign
keys to link tuples would avoid this problem.

A second aspect of the work to which we draw
attention is the use of version numbers to
replace the double timestamps favoured by
some workers, a decision forced upon us by the
assumptions we made about the characteristics
of the non&&able file-store. Version
numbers simplify the specification of
integrity constraints in Prolog (as do double
timestamps) without introducing a degree of
update dependency. Double time-stamps based
on logical time values which are supplied by the
user are possible targets for version-update and
this would then require two tuples to be
updated in this manner to avoid possible gaps or
overlaps in the time continuum.

We have proposed the use of pointers to allow
navigation between the various versions and

their respective corrections (and not to replace
the use of keys). These are unnecessary in an
environment like SIS-BASE which makes
heavy use of Prolog but would be necessary
to minim& access times in a system based on
large scale file-stores.

What emerges from our analysis is the
complexity of the procedure necessary for a
correction-update which is applied to time-
expired versions. and the significant over-
heads in maintaining these pointers. There is
the additional complexity introduced by the
fact that the requirements for such updates
vary with the type of attribute being updated.
Cumulative attributes require a procedure
which propagates throughout the database,
set-valued attributes do not and successive aari-
butes require a “knock-on” procedure which
terminates at the next version which modified
that particular attribute.

Some comment on the relative merits of the
tuple-based model described here and an
attribute-based model would be appropriate.
Both models are subject to correction-update
propagation problems. It is obvious that the
tuple-based model involves the redundant
storage of data which an attribute-based model
avoids. The attribute-based model also avoids
the need for null values which we identified in
section 3 but increases the number of pointer
fields. The most important factor is the typical
proportion of a tuple (in terms of storage
volume) which is updated. If attributes are
updated singly and independently of each other
and no attribute is large in proportion to the
whole tuple then the attribute-based model is
clearly the best choice. In other circumstances
it may be advantageous to trade storage space
for access speed. A practical system can be
based upon a hybrid model in which the unit of
storage would change dynamically.

Perhaps the most important aspect of our
analysis is the need for time-stamped integrity
constraints. These are required to control back-
dated correction-updates but could also be used
to reduce the search space of some queries.
Examination of the historical trace of integrity
constraints could be used to eliminate certain
periods of time from the search because the
condition sought was impermissible during those
piOdS.

174 Proceedings of the 13th VLDB Conference, Brighton 1987

Acknowledgements

T. Abbod’s research is funded by the Scottish
Education Department. We would also like to
thank the Govemers of RGIT for providing the
facilities with which this work was carried out.

References

1. Ariav G. , Clifford J. and Jarke M. “Time
and Databases”, ACM-SIGMOD, SIGMOD
Record, Vol. 13, No. 4, SAN JOSE, 1983.

2. Brodie M. L., “The Application of Data
Types to Database Semantic Integrity”, Infor-
mation Systems, Vol. 5, 1980.

3. Bubenko, J. A. “The temporal dimension in
information modelling”, Architecture and
Models in Database Management System, (G.
M. Nijssen ed), North Holland, 1977.

4. CastiIho J. M. , Casanova M. A. and Furtado,
“A Temporal Framework for Database
Specifications”, Pmt. of the 8th Int. Conf. on
VLDB, Mexico City, 1982.

5. Clifford J. and Warren D. S., “Formal Seman-
tic for Time in Database”, ACM-TOD, Vol. 8,
No. 2, 1983.

6. Clifford J. and Tansel A., “On An Algebra
for Historical Relational Databases: Two
Views”, Proc. of ACM-SIGMOD, Austin, Texas,
1985.

7. Date C. J., “Referential Integrity”, IBM Gen-
eral Products Division, 555 Bailey Avenue, San
Jose, 1981.

8. Frost R. A. and Whittaker S., “A Step
Towards the Automatic Maintenance of the
Semantic Integrity of Databases”, The Computer
Journal, Vol. 26, No. 2, 1983.

9. Frost R. A. “Formabsing the Notion of
Semantic Integrity in Database and Knowledge
Base Systems Work”, Proc. of the 5th BNCOD,
Kent, 1986.

10. Jones S. and Mason P. J., ‘Handling the
Time Dimension in a Database”, BNCOD- 1,
Aberdeen, 1980.

Proceedinns of the 13th VLDB Conference, Brighton- 1987

11. Klopprogge M. R. and Lockemann P.C.
“ModeIling Information Preserving Databases;
Consequences of the Concept of Time”, Proc. of
Int. Conf. on VLDB, Florance, Italy, 1983.

12. Kobayashi I., “Validating Database
Updates”, Information Systems, Vol. 9, No. 1,
1984.

13. Lum V., Dadam P., Erbe R., Guenauer J.
and Pistor P. “Designing DBMS Support for
the Temporal Dimension”, ACM-SIGMOD
Record, Boston, 1984.

14. Noble H., “Occurrence Dependencies in a
Relational Database”, Proc. of 3rd BNCOD,
Leeds, 1984, Camb. Univ. Press.

15. Noble H. and Abbod T. “Meta-rules and
Semantic Integrity Constraints in Databases”
Proc. of 5th BNCOD, Kent’ 1986, Camb. Univ.
Press.

16. Snodgrass R. and Ahn I. “A Taxonomy of
Time in Database”, Proc. of, ACM-SIGMOD,
Austin, Texas, 1985.

17. Stonebraker M., “Implementation of
Integrity Constraints and Views By Query
Modification”, ACM-SIGMOD 1875.

18. Stonebraker M., “Adding Semantic
Knowledge to a Relational Database System”,
in Conceptual ModeIling, (edz Brodie, Mylo-
poulos and Schmidt), Springer-Verlag, 1984.

19. Tansel A. U., “Adding the Time Dimension
to Relation Model and Extending Relational
Algebra”, Inf. Systems, Vol. 11, No. 4, 1986.

20. Weigand H. ‘Conceptual Models in Prolog”
in Database Semantics (edz Steele and Meers-
man) pp 56-69, Elsevier SC. Pub. IFIP 1986.

175

