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Abstract 

A model for a historical database is described 
which is based upon time-stamped tuples as 
the unit of storage. The model includes both 
physical and logical time-stamps. The techni- 
cal characteristics of write-once laser discs 
prevent the use of double logical time-stamps. 
The model distinguishes version from 
correction-updates. It is shown that if set- 
valued attributes are involved the use of null 
values is unavoidable if back-dated 
correction-updates are allowed. A method of 
handling user-defined integrity constraint 
rules is outlined which involves the mainte- 
nance of a time-stamped trace of such rules. 
Such a trace is necessary for the proper han- 
dling of back-dated correction-updates. An 
outline of a system SIS-BASE is described 
which implements some of these ideas. 

1. Introduction. 

Historical databases in which data once 
recorded are never deleted but are instead 
time-stamped and augmented by more up-to- 
date data, have been discussed for some years 
(1,3,4,5,11,13). The idea has obvious attractions 
for those applications in which the maintenance 
of a perfect audit trail, or the rapid retrieval of 
time-expired data is important. It also holds 
out the possibility of a more complete model of 
the real world than is possible with conventional 
dambase systems (10). 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the 
VLDB copyright notice and the title of the publication 
and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. 
To copy otherwise, or to republish, requires a fee and/or 
special permission from the Endowment. 

The storage requirements are so onerous, 
however, that there have been few, if any, 
attempts to construct a practical implementa- 
tion. The advent of write-once laser discs sug- 
gests that the idea should be reexamined. 

2. Previous work 

Various issues have been debated, such as the 
use of single and double time-stamps (19). the 
distinction between logical and physical 
time-stamps (13), the distinction between attri- 
butes which are considered fixed in value and 
those which require progressive amendment 
over time (19), the distinction between athi- 
butes which change continuously with time 
and those which change according to a step 
function (12). Theoretical analysts have used 
a model of a historical dambase called an 
“infinite-state” database which records separate 
(complete) entries ‘for every relation at zero 
time-intervals (12). As a theoretical construct it 
forms an interesting model with which other 
models can be compared. Another model 
appends time-stamps to individual attribute 
instances giving rise to a four-way classification 
of attributes (19). That is, those which have a 
single fixed value, those which have a single 
value associated with a double time-stamp 
(showing the time interval over which the value 
accurately corresponds to the real world), ami- 
bums which have a set of values and those 
which have a set of time-stamped values. 

Additions to the relational algebra have been 
proposed which take into account the time 
dimension and the set-value nature of some 
attributes. The operations proposed allow the 
user to switch between normalised and de- 
normal&d relations and to bring time-stamps of 
two attributes into correspondence (“time 
slice”) (6). Snodgrass (16) has complained that 
there is little agreement on the terminology 
for most of these ideas and few workers have 
considered the practical problems of implemen- 
tation. 
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3. An outline of our model. 

The work we shall describe here is based on a 
data model which is similar but not identical to 
that described by Kobayashi (12). Following 
his terminology we can call it a database with 
“event” relations. In such a database the exist- 
ing data is augmented only when a change (an 
event) occurs. When a single attribute is 
involved but is part of a tuple, the complete 
tuple is recreated with the new attribute 
value, and the whole tuple is time-stamped. 
Kobayashi has demonstrated the equivalence of 
such a database with an infinite state database. 
Later we shall compare this model with a model 
in which individual attributes are the unit of 
storage. 

We recognise a distinction between updates to 
the data which are carried out because the 
conditions in the external or real world have 
changed and those which am carried out 
because an error in the existing data has been 
detected. To avoid confusion we will refer to 
these as “version-updates” and “cotrection- 
UpdiittX” respectively. The distinction, which 
was noted by Klopprogge (1 l), is, we believe, 
an important one and it is reflected in our 
model. We note that while some types of 
attribute may appear to be fixed. in value with 
respect to version-updates, no attribute is free 
from a possible correction-update. 

The maintenance of a historical database 
requires the use of two kinds of time-stamp. 
Following Lum (13) we shall refer to “physical 
time” and “logical time”. Physical time is the 
time at which an update takes place and its 
value can be supplied automatically by a sys- 
tem clock. Logical time is the time in the real 
world at which a change of circumstances 
occurred which necessitated a change in the 
database in order to maintain correspondence 
with the real world. Logical time values must 
be supplied by the database user but their 
importance to operations over a historical data- 
base system is so great that we have placed 
their provision and manipulation under system 
control. 

Every data item is associated with two logical 
timestamps. These correspond to the earliest 
and latest limits of the period of time over 
which the data corresponds to the real world. 

This is called the “transaction time” by 
Snodgrass. It is possible to implement a histori- 
cal database in such a way that each data item 
holds only its earliest time-stamp limit. To dis- 
cover the latest limit to its period of “applica- 
bility” it is then necessary to consult the next 
datum in the time sequence. It is also possi- 
ble to store both limits with each data item. 
Tansel (19) has discussed the relative merits of 
each approach. A major disadvantage of the 
double time-stamp approach, however, is that 
the value of the second of the two time-stamps 
(usually) cannot be known at the time a tuple is 
created. To use double time-stamps therefore, it 
would be necessary to update the tuple in situ 
some time after its original creation. We are 
not swam of any write-once laser disc system in 
which this is possible and we have therefore 
adopted the single time-stamp approach. To 
reduce the inconvenience of having incomplete 
information stored with each tuple we have 
introduced “version numbers” which indicate 
the ordinal position of a tuple in a sequence of 
such tuples. 

To be more precise our model is as follows: Let 
R be a relation with attributes (Al, A2, A3, . . . . ). 
Let r be a predicate such that r(a1, a2, a3, . ..) 
is trne if the set of data values (al, a2, a3, 
. . . ) is an instance of a triple within R. We 
will use suffices to distinguish between tuples 
in the same relation 
a31,...), 

thus (al,, ql. 
and (alz, a2z, a32,..) are both tuples m 

R. We augment the schema by adding extra 
attributes: S = a surrogate, T = a logical time- 
stamp, P = a physical time-stamp, V = a version 
number, C = a correction number. E = an expla- 
nation. Although we shall represent these as 
part of the tuple, they are not seen by the user 
and should be regarded as being under system 
control. We term them “meta-data” because 
they represent “information about data” rather 
than simply “data”. The values of T and E 
are supplied by the user. 

As a simple example of how version and 
correction numbers are related to physical and 
logical time-stamps consider the history of the 
salary of “joe” shown in figure 1. We can read 
joe’s salary “version-history” (as we currently 
believe it to be) by reading the top edge or 
envelop of the chart 
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correction 
number 

2 joe,3000 
ep4 

joe,3002 
t2,p3 

joeJO 
tap0 

joe,2000 
t1q1 

joe,3001 
r&P2 

joe,4000 
O,P5 

0 1 2 3 

version number 

Figure 1 

pl, p2, p3, . . . physical time-stamps 
t1, t2, t3, . . . logical time-stamps 

We can read the “correction-history” for ver- 
sion 2, say, by reading vertically on that 
column. In order to read the chart envelop, 
however, it is necessary for the system to navi- 
gate from the top entry in a column to the 
top entry in the previous column. In a practi- 
cal database on laser disc pointer fields would 
be requkd. A backdated correction-update, 
however, requires the creation of a new envelop 
consisting of simple pointer records inserted to 
maintain pointer continuity. 

Successive Attributes. For an attribute such as 
“salaty ” each version succeeds its prede- 
cessors and is independent of them. We shall 
call such an attribute a “successive” attribute. 
The example above illustrates such an attribute. 

Consider the chart of such a relation (figure 2). 
We dispense with some of the, details in this 
chart but the same conventions hold. Versions 
are read from left to right and corrections verti- 
cally. Here we see that joe has accu- 
mulated three degrees (bscmsc,phd) at 
different times and that what corresponds to the 
“current version” is found by reading the chart 
envelop. Each version is the set of tuples 
obtained by reading the envelop from the 
left, up to and including the column bearing 
the appropriate version number. In effect, each 
version is embedded in its successors. The 
model still holds but its interpretation has 
changed to correspond to the semantics of the 
type of attribute being amended. 

Set-Valued Attributes. Consider a relation 
which holds information of a people’s 
qualiftcations. If a person acquires a new 
qualification it is appended to his/her collec- 
tion. It does not replace previous qualifications. 
Tansel modelled this by defining a class of attri- 
bute which could have a set of values and 
termed it a “set-valued” attribute. In a conven- 
tional databas however this state of affairs 
would be modelled by reduction to ftrst normal 
form. Tansel suggests extensions to the rela- 
tional algebra (pack and unpack) which switch 
the data between these two formats. 

At this point we must consider practical issues 
of access efficiency. Typically, random access 
times for an optical disc drive are of the order 
of 150 milliseconds, or about 10 times the 
access time for conventional disc drives. The 
performance of a practical database therefore 
would be greatly impaired if, in order to retrieve 
the “current status” it was necessary to make 
multiple random access retrievals. It may there- 
fore be advisable in some applications that the 
model should allow storage in the “packed” 
form - as an unnormalised set of attribute 
values. 
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Figure 3 

4 

This, however, introduces all of the complica- 
tions associated with correction-updates which 
we describe for “cumulative” attributes below. 

Cumulative Attributes. Consider an attribute 
which represents a cumulative total, or some 
other aggregation of all previous values. We 
shall call these “cumulative” attributes. A typi- 
cal example is an attribute which records a 
bank-account balanw. A backdated correction 
will propagate forwards in time and require a 
sequence of correction-updates. In practice an 
alternative method would be to adopt the time 
honoured methods of the accountant and make 
a single correction-update to the most recent 
version (with an appropriate explanation). This 
is one of the possible uses of the “explanation” 
attribute. Such a “solution”, however, destroys 
the integrity of the historical trace and we shall 
ignore it for the purposes of this discussion. 

The final consideration, before we leave this 
topic, is the treatment of tuples which have 
more than one attribute of more than one type. 
Consider the tuple with schema 
person(name,balance,salary,qualification). Each 
one of these attributes could be the subject of 
an update and our method of identifying a ver- 
sion would be in some disarray if we could not 
identify which attribute had been updated at 
any one time. 

170 

In figure 3, note the use of null values for the 

attribute qualification in those columns where 
it is not the subject of a version Update. 

Without the use of null values (in column 2 for 
example) we would be gratuitously providing 
joe with an additional qualification. It is worth 
noting therefore that null values are obligatory 
in a historical database which uses the tuple- 
based model and does not use set-valued attri- 
butes. It is still possible to read off the current 
version for the set-valued attribute 
qualifications (ie the envelop) provided we 
ignore the null values. 

In the case of a successive attribute 
(salary) we have successive versions 
corresponding to columns 1.2 and 4. There was 
no salary change corresponding to column 3. 
To avoid wrongly taking column 3 to be a 
version with respect to salary we require that 
entries carry some indication of which attri- 
bute is the subject of version-update. Furtber- 
more this indicator must be inherited by sub- 
sequent correction-update entries. Correction- 
updates are applied to the appropriate version 
(or column) and the “knock on” effect (ie pro- 
pagation of correction to columns on the right) 
extends only as far as (but not including) the 
column where the next version update for that 
attribute occurred. The need for indicators 
showing which attribute is the subject of update 
is the main functions of the “explanation” 
parameter E introduced earlier. 
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The history of “joe” is still represented by the 
chart envelop and the model holds for tuples 
with mixed attribute types. 

4. Integrity Constraints 

It is not common for a database system to 
support user-defined integrity constraints but 
some do (8). The constraints normally consist 
of rules which are applied whenever an 
attempt is made to insert a new item of data 
(or when an existing item is updated). The 
insertion/update is prevented if the rules are 
violated. Various strategies for the invocation 
of integrity constraints have been proposed 
(2,17) and the relationship between integrity 
constraints and formal logic has been analysed 
(9). What does not appear to have been pointed 
out before, however, is that, if integrity con- 
straints are user-defined they can be expected to 
change from time to time. In a historical data- 
base system the rules should be time-stamped 
and a back trace of rules should be maintained 
as for data. It would be inappropriate to apply 
current integrity constraints to a correction- 
update being applied to old data, which was ori- 
ginally created when the integrity constraints 
were quite different. This has considerable 
implications for the implementation of the 
propagation aspect of correctionupdates. In 
making a distinction between version and 
correction-updates Klopprogge (11) suggested 
that the end-user without special access rights 
should be able to make only version-updates to 
the database. Correction-updates would be 
reserved for “superusers” who could ignore the 
normal integrity constraints. We suggest that 
this would not be necessary if correction- 
updates were subjected to back-dated integrity 
constraints. 

If integrity constraints are user-defined they can 
not only be expected to change from time to 
time but they can be expected to be defined 
incorrectly on occasions. It follows that there 
should be a set of me&rules, (which are univer- 
sal in their application and which am never 
userdelined and therefore are not subject to 
timerelated changes), which can be used to 
prevent the insertion of incorrect user-de&d 
integrity constraints (15). Our model supports 
meta-constraints as well as constraints and uses 
a classical proof by contradiction method 
for proving constraints. Our model does not 

therefore support the idea of correction-updates 
with respect to integrity rules, only version- 
updates are allowed. 

Mets-constraints are not time-dependent in our 
model. They are intended to correspond to real 
world common sense rules such as “an object 
cannot exist in two locations at the same 
time”. The model does not support user- 
definition of meta-constraints. 

In section 3 we introduced the idea of a predi- 
cate r(al., a2., a3 .,....) which is true if and only 
if the tdple ta1.h. a3 ,..) is a tuple within the 
relation R. We ’ no’w &oduce a new relation 
R’ with an associated predicate r’ which is 
analogous to R and r. In concrete terms, R’ 
can be regarded as a “scratch” relation within 
the deletable file-store which acts as a tem- 
porary holding point for tuples submitted for 
insertion to the relation R which resides in 
permanent (non-deletable) file-store. There is 
one R’ for every R within the database schema. 
When we define an integrity constraint we 
CM therefore distinguish between newly sub- 
mitted tuples and those which are already in 
the main database and have therefore, 
presumably, already been passed by the 
integrity constraint mechanism as valid. In 
general we write an integrity constraint in the 
form: 

(rule-form-l) 

over(&neinterval>): 
( <condition-l> 

=> should_be(<condition-2>) ) 

Where: <time-interval> indicates the limits of 
applicability of the rule. <condition-l> is 
some condition involving r’ , which will have a 
time-stamp 0. ccondition3> is some condi- 
tion which can be inferred from- condition-l 
provided T lies within the time span of 
<time-interval>. 

The introduction of the modal operator 
“should-be” may be thought an UnneCesSary 

embellishment, but it is not only intuitively 
“comfortable” - most people when asked to 
describe informally an integrity constraint 
rule use exactly this construct - but it 
simplities the translation of the rule into Pro- 
log-(15). 
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In addition to such rules which are user- 
defined we add the meta-rules in the form: 

(rule-form-2) 

shouldJe(ccondition-2>) 
at (4meintervaL2>) 

& should_be(<condition-32) 
at (ctimeinterval-3>) 

L concurrent&timeinterval-ti, 
<time-interval-3>) 

=> contradiction; 

It is simple to translate a rule in the 
“should~W form into another with the form: 

(rule-form-3) 

over&time-inten&): 
<condition-l> & not(<condition-2>) 

=> invalid; 

and in this form efficient checking of the 
integrity of a tuple can be preformed. In rule- 
form-l, however, the validity of the rules 
themselves can be checked by the meta- 
rules by the classical proof by contradiction. 

5. SIS-BASE and SIS-BASE3 

The model we have been describing arose out of 
a project to develop a system called “SIS- 
BASE”. This system embodies many (but not 
all) aspects of the model we have already 
described. In addition it has one important 
feature which distinguishes it from other 
attempts to construct a temporal dambase. 
Instead of trying to develop a completely new 
database system SIS-BASE is what might be 
described as a temporal front-end to INGBES. 
Stonebraka (18) has described some temporal 
extensions to INGBBS but in our case the addi- 
tional features are separate and distinct from the 
existing features of INGBES. This approach 
was discussed some time ago by Ariav (1). 
Another prominent feature of SIS-BASE is that 
Prolog is the implementation language of the 
front-end. This makes possible the con- 
venient specilication of integrity constraints. 
Our hope is that it will eventually become an 
easily ported front end to a variety of database 
systems. 

One drawback is that the association with 

INGBBS curtailed our freedom with respect to 
the model and predisposed us to a tuple-based 
model. To free ourselves from this restriction 
and to address the problems of a practical sys- 
tem making use of write-once laser discs we 
have begun to develop a model for a second 
system (SIS-BASE-2). 

6. SIS-BASE: An outline of the system 

SIS-BASE holds the “historical” information in 
tabular form. We shall refer to this table as the 
“meta-information table” (MIT). There is one 
table for each conventional relation in the 
database. Bach table has the structure: (key, 
physical-time, logical-time, status pointer, 
explanation). “Key” is the value of the primary 
key for a given ‘tuple within the relation. 
“Physical-time” is obtained from the system 
clock. “Logical-time” is provided by the user 
but the SIS-BASE prompts the user for its 
value. To determine which attribute has 
changed between versions it is necessary to 
examine the “explanation”. The “status” indi- 
cates whether the tuple concerned is “initial”, 
“historical” or “terminal”. The “pointer” (a sur- 
rogate index number) identifies the previous ver- 
sion in the prolog database. An “initial” tuple 
is one which is the starting point of a 
sequence of versions. A “historical” tuple has 
both antecedent and possible descendent ver- 
sions and a “terminal” tuple brings a series of 
versions to a close. 

An interesting point which arises in a tem- 
poral databas concerns the reuse of a key 
value after it has been terminated. An example 
would be the reuse of an employee works 
number some years after the original employee 
with that number had died. SIS-BASE has a 
special indicator (under status) which means 
“was terminated - is now reinitialised”). 
Allied to this is the possible update of a 
key. It is sometimes necessary to re- 
structure a dambase and redefine keys. The 
need for this occurs for example when com- 
panies merge and customer numbers are re- 
assigned. In a conventional system the data- 
base is simply re-structured and no anomalies 
arise, but in a temporal dambase with its need 
to maintain continuity with past history, the 
old keys values must be retained and linked in 
some way with the new values. The suno- 
gate intmduced earlier is designed to 
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maintain this continuity. It is hidden from the 
user. By definition surrogates do not undergo 
update. 

SIS-BASE accepts definitions of relation schema 
(attribute names, attribute types and tuple struc- 
tures) and stores these. It also converts the 
schema with meta-attributes appended into 
the appropriate format and submits them to 
INGRES. SK&BASE is therefore able to 
prevent erroneous attempts to insert data into 
non-existent relations without invoking INGRES 
facilities. 

The user specifies the target relation and 
enters the data. Integrity constraints are 
invoked and these may be of two types - 
referential constraints which check for the 
existence of cross-reference keys etc in other 
relations (7.14) and assertion constraints 
which require the specification of rules. These 
rules are coded in Prolog and can therefore go 
well beyond the normal facilities of INGRBS. 
Referential constraints are not available in 
INGRES. If the tuple passes these checks it 
is translated into the appropriate code in 
QUBL and submitted to INGRBS. 

The deletion of a tuple is converted into the 
insertion of a tuple with status, = “termina- 
tion” which becomes the current version. The 
amendment of a tuple is converted into the 
insertion of a new current version of the tuple. 
It inherits the un-amended data from the previ- 
ous current version. SIS-BASE does not dis- 
tinguish between version and correction- 
updates. Version-update also becomes an 
insertion process and integrity constraints are 
invoked. 

7 The Specification of Integrity Constraints. 

To illustrate the conversion of a constraint rule 
in rule-form-l into Prolog consider the rule that 
no salary should exceed or equal 25ooO dur- 
ing the time interval ttl to tt2. We assume that 
our database contains a relation R with schema 
(N,S) or (Name,Salary) and that we have 
extended it by the addition of a logical time- 
stamp attribute T. 

over@1 ,tt2): 
r’(N,S,T) => shouldJe(lt(S,25OO0)) 

Where lt(X,Y) means “less_than(X,Y)“. 

We introduce a new predicate with form 
“should_be_lt(x,Y,Tl,T2)” which is true if 
lt(x,Y) during the time interval Tl-T2. That is. 
we combine the modal operator with the predi- 
cate It to produce a composite predicate. The 
use of the composite predicate makes it much 
easier in Prolog to write rules for (say) the 
transitivity of the relation less-than without 
generating infinite recursion. We can now 
write: 

shouldbe~lt(S,25OOO.ttl,tt2):- 
r’@l,S,T),within(ttl,T,t@. 

where within(Tl,T,T2) is true if T lies in the 
time interval Tl- 72. 

This in tum translates into a rule in rule-form-3 

invalid :- r’(N.S,T), 
within(ttl,T,tt2), notJ(S,25000). 

where not-lt (“not less than”) is the converse of 
should_be_lt. 

This representation of the rule conforms to the 
structure of the rules described by Weigand (20) 
which in turn was shown by him to conform 
to the ISO-report version of Interpretative Predi- 
cate Logic. 

r’ is the predicate associated with the scratch 
relation R’ which is held in SIS-BASE but is 
not “seen” by INGRES. The predicate r how- 
ever which is necessary for the de8nition of 
some constraint rules invokes in SIS-BASE 
the retrieval of the appropriate relation from 
INGRBS to make it available to the Pro- 
log inference engine. 

In a historical database the concept of “next” is 
important. We might for example wish to 
specify that after a person has been employed 
in department dl he or she must be employed in 
department d2 “next”. When tuples carry only 
single time-stamps it could be difficult to 
define the concept “next”. One method of 
showing that a tuple rc.T2) is the “next” tuple 
after rC,Tl) is to search and fail to find 
another tuple LT) such that 
within(Tl,T,T2) is true. This is a very clumsy 
mechanism which is eliminated by the use of 
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version numbers. rc,T2,V2) is the next tuple 
after rC,Tl ,Vl) if Vl and V2 are version 
numbers and V2=Vl+l. The use of double 
timestamps also simplifies the definition of 
“next” but violates our principle that updates to 
a tuple are disallowed once it has been inserted 
into the database. 

8 Discussion 

The initial object in mind was the provision 
of a portable temporal front-end to a conven- 
tional dambase system and to make available 
the full power of Prolog as a means of 
specifying integrity constraints (including 
temporal constraints) (SIS-BASE). The 
development of a temporal model was a 
necessary adjunct to this work and in the event, 
the attempt to implement SIS-BASE resulted 
in a considerable clarification and refinement of 
the model. Some of the results were a surprise 
to ourselves. We did not expect that the need 
for null-values would arise from the tuple- 
based event model we have described but we 
believe that the result is important. In a prac- 
tical database the designer would no doubt 
normalise the data so that set-valued attributes 
formed a relation of their own thus minimising 
the need for null values, but the need cannot 
be eliminated in a relational database if one 
concedes that every relation needs a primary 
key and that no attribute is ultimately free 
from the need for updates. A model which 
relied on pointer connections rather than foreign 
keys to link tuples would avoid this problem. 

A second aspect of the work to which we draw 
attention is the use of version numbers to 
replace the double timestamps favoured by 
some workers, a decision forced upon us by the 
assumptions we made about the characteristics 
of the non&&able file-store. Version 
numbers simplify the specification of 
integrity constraints in Prolog (as do double 
timestamps) without introducing a degree of 
update dependency. Double time-stamps based 
on logical time values which are supplied by the 
user are possible targets for version-update and 
this would then require two tuples to be 
updated in this manner to avoid possible gaps or 
overlaps in the time continuum. 

We have proposed the use of pointers to allow 
navigation between the various versions and 

their respective corrections (and not to replace 
the use of keys). These are unnecessary in an 
environment like SIS-BASE which makes 
heavy use of Prolog but would be necessary 
to minim& access times in a system based on 
large scale file-stores. 

What emerges from our analysis is the 
complexity of the procedure necessary for a 
correction-update which is applied to time- 
expired versions. and the significant over- 
heads in maintaining these pointers. There is 
the additional complexity introduced by the 
fact that the requirements for such updates 
vary with the type of attribute being updated. 
Cumulative attributes require a procedure 
which propagates throughout the database, 
set-valued attributes do not and successive aari- 
butes require a “knock-on” procedure which 
terminates at the next version which modified 
that particular attribute. 

Some comment on the relative merits of the 
tuple-based model described here and an 
attribute-based model would be appropriate. 
Both models are subject to correction-update 
propagation problems. It is obvious that the 
tuple-based model involves the redundant 
storage of data which an attribute-based model 
avoids. The attribute-based model also avoids 
the need for null values which we identified in 
section 3 but increases the number of pointer 
fields. The most important factor is the typical 
proportion of a tuple (in terms of storage 
volume) which is updated. If attributes are 
updated singly and independently of each other 
and no attribute is large in proportion to the 
whole tuple then the attribute-based model is 
clearly the best choice. In other circumstances 
it may be advantageous to trade storage space 
for access speed. A practical system can be 
based upon a hybrid model in which the unit of 
storage would change dynamically. 

Perhaps the most important aspect of our 
analysis is the need for time-stamped integrity 
constraints. These are required to control back- 
dated correction-updates but could also be used 
to reduce the search space of some queries. 
Examination of the historical trace of integrity 
constraints could be used to eliminate certain 
periods of time from the search because the 
condition sought was impermissible during those 
piOdS. 
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