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Abstract 

The problem of satisfiability of a specific class of 
integrity constraints in data bases, namely the depen- 
dency constraints, is analysed. An Entity-Relationship 
model is used for expressing data schemata. In this 
model suitable types of dependency constraints, called 
cardinality ratio constraints, allow one to impose re- 
strictions on the mappings between entities and re- 
lationships. We show that, as far as such a class of 
constraints is concerned, the usual notion of satisfia- 
bility is not sufficiently meaningful. For this reason we 
introduce the notion of strong satis6abiJity, ensuring 
that no entity or relationship is compelled to be empty 
in all of the legal instances of the schema. We propose 
to model the cardinality ratio constraints of a schema 
by means of a suitable linear inequality system and we 
show that a schema is strongly satisfiable if and only 
if there exist solutions for the associated ‘system. fir- 
thermore, we describe a method for discovering which 
are the sets of constraints that prevent a schema from 
being strongly satisfiable. 

1. Introduction 

Semantic integrity constraints in data bases are 
used to specify the rules which data have to satisfy in 
order to reflect the properties of the represented objects 
in the modeled real world. 

Great attention has generally been devoted to a 
particular class of integrity constraints, the so-called 
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dependency constraints, that are UBUI to specify re- 
strictions on the mappings between the data classes of 
a schema. They represent a very important and com- 
monly occurring class of constraints ([S], [ 111): func- 
tional and numerical dependencies (see [6] and (121) in 
the relational model, as well as many types of existence 
constraints expressible in semantic data models (for ex- 
ample [I], 121 and [7]), are meaningful examplea of such 
a kind of constraints. 

Dependency constraints have mainly been &died 
from the perspective of data design, where the goal 
is to obtain a ‘good” schema with respect to the 
efficiency of data base operations. In such a context, 
the major issues that have been addressed are related to 
the implication of data dependencies, i.e. the problem 
of finding sound and complete inference systems for a 
given class of dependency constraints. 

In this paper we deal with one important property 
of dependency constraints, namely their ratisfiability. 
We remind the reader that the set of integrity con- 
straints of a schema is said to be satisfiable if some 
instance of the schema (i.e. data base state) exists 
which satisfies them (in this case the sthema itself is 
said to be satisfiable). It is interesting to observe that, 
although the concept of satisfiability can be very helpful 
in verifying the correctness of the data base design pro- 
cess, it has not been deeply addressed in the literature. 
We shall see in section 3 that, when dependency con- 
straints are considered, the usuaI notion of aatisfiability 
is not. sufficient for capturing significant properties of 
a schema. In fact, although several instances of the 
schema may exist that satisfy a set of dependency con- 
straints, it may happen that in all of such instances, 
some of the classes of the schema are invariably empty. 
For this reason we define a new property of a schema, 
called strong satisfiability, ensuring that each class is 
non-empty in at least one of its instances. 

Our work is carried out in the context of the 
Entity-Relationship approach to data modeling (IS]). 
Such an approach has largely inluenced many method- 
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ological proposals for enhancing the effectiveness and 
the correctness of information systems design ([4]). 

Entity-Relationship based formalisms are now wide- 
ly adopted in the so-called conceptual phase of data base 
design, whose goal is to obtain a complete, precise and 
implementation independent description of the objects 
to be represented in the data base. We shall refer 
to a particular data model, called Semantic Entity- 
Relationship Model (SERM, in the following), defined 
in IS], in which a specific kind of constraints, namely 
the cardinality ratio constraints, is provided for express- 
ing dependencies between entities and relationships. In 
section 2 we describe the main characteristics of SERM 
that are useful for the subsequent sections. 

The goal of our work is twofold: 
l Providing necessary and sufficient conditions for 

a SERM schema to be strongly satisfiable. This 
aspect is dealt with in section 3. 

l Presenting a method for discovering possible unsat- 
isfiable sets of cardinality ratio constraints. Such a 
method is described in section 4. 

2. The Data Model 

In this section we briefly describe the characteris- 
tics of the SERM data model that are useful for the 
subsequent sections. We assume that the reader is fa- 
miliar with the concepts and the terminology of the 
Entity-Relationship model. 

An entity (Uentity type” in [5]) denotes a set of 
individuals, called its instances, representing real world 
objects with common properties. 

Relationships among entities are used to model 
logical associations among real world objects. A rela- 
tion&+ (“relationship type” in [5]) denotes a set of 
individuals, called its instances: each element of such 
a set represents a logical association among a differ- 
ent combination of instances of the entities that are 
connected to the relationship. In the following, we use 
the term class to refer to an entity or ‘a relationship. 
Since a relationship can be connected to the same entity 
more than once, the concept of role is introduced to 
distinguish different connections of the same entity with 
a relationship. More precisely, a role is a name which 
univocally determines the connection between an entity 
and a relationship. 

For the purpose of this paper, a SERM schema 
consists of a set of entities, a set of relationships, a set 
of roles, and a set of cardinality ratio constraints, which 
are defined later in this section. 

Using the common conventions of representing 
Entity-Relationship schemas by means of diagrams, 
we show an example of schema in fig. 1. 

Figure 1. 

Notice that in the diagram, roles are associated 
to the edges connecting the corresponding entities and 
relationships. The example concerns partnerships and 
financial supports for bilateral research projects. Each 
research institute can partecipate to bilateral projects 
either as project leader or as partner. For this rea- 
son, the entity “Research-Institute” is connected to the 
relationship “Partnership” through two different roles, 
“Leadern and ‘Partner”. 

A subschema of a SERM schema S is a schema 
constituted by a subset of the entities and relationships 
of S and satisfying the condition that every relationship 
is connected to the same set of entities and through the 
same roles as in S. For example, the classes “Research- 
Institute”, “Partnership”, and “Bilateral-Project”, to- 
gether with the roles “Leader”, “Partner” and “Project” 
constitute a subschema of the schema shown in fig. 1. 

In SERM, the concepts of attribute of entities and 
relationships and subset relationship between classes 
are also considered; however, they are not dealt with in 
the present work. 

An instance of a SERM schema S is a finite col- 
lection of instances of the entities and the relationships 
of S, satisfying a set of rules (inherent constraints) to 
be described later. Each instance of a relationship R 
is linked to a combination of instances of the entities 
that are connected to R in the schema. The roles are 
used also at the instance level for identifying the links 
between relationship and entity instances. For exam- 
ple, an instance of the relationship “Partnership” of the 
schema shown in fig. 1 can be linked respectively to 
the instance al of “Research-Institute” through the role 
‘Leader”, to the instance ap of “Research-Institute” 
through the role “Partner”, and to the instance bi of 
“Bilateral-Project” through the role “Project”. 

We assume that no limit exists’for the number of 
possible instances of entities and relationships. Further-’ 
more, the instance of a schema in which all the classes 
have an empty set of instances is called empty. 

In fig. 2 we give a representation of an instance of 
the schema shown in fig. 1. 
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1’1 = {<al.Lcwhr>. <a2.Partnc.r>. <I~~.Projcct>} 

1’2 = { <i~.Lc~adc~r>. <al .Partucr>. <b2.Pwjcwf >} 

“1 = { <I,1 .Filrirlr~rd-Project>. <c.l .Spomwr> } 

“2 = { <b2.F’ nrnnccd-Project>. <c2,Spo11sor> > 

Figure 2. 

We write: 
r = { <el,Ul>, <e2,U2> ,..., <e,,U,,,> 1 

to denote the relationship instance r connected to the 
entity instances ei ,e2,. . . ,h, respectively through roles 
Ul,U2,. . . ,U”,. The pair <e,,Ui> is said to be the 
component of r corresponding to the role Ui. 

Every instance I of a SERM schema must satisfy 
the following set of rules, called inherent constraints: 

for each relationship R, for each instance r = 
{<el,Ul>,.. .,<h, U,>} of R, for each i (1 5 
i < m), e; is an instance of the entity connected to 
R through role U;. 
for each relationship R, each instance of R has 
exactly one component corresponding to each role 
of R; 
for each relationship R, different instances of R 
have different sets of components. 

It is easy to verify that the above conditions are 
satisfied by the instance shown in fig. 2. 

In SERM, a specific class of integrity constraints, 
namely the cardinality ratio constraints, are used to 
express dependency constraints between classes. lnfor- 
mally, a cardinality ratio constraint prescribes the min- 
imum and the maximum number of instances of one 
relationship in which every instance of a connected en- 
tity must be involved for a given role. We shall write 
cardinality ratio constraints in the form: 

E(U) ,(+.Y) R 

where: 
l E is an entity, R a relationship, and U a role; in 

particular, E is connected to R by means of role U; 
l x is a non-negative integer, called the minimum 

cardinality of R with respect to E in the role U; 
l y is either a positive integer or 00, called the 

maximum cardinality of R with respect to E in the 
role U; 

l y>x. 

In order to characterize precisely the meaning of 
cardinality ratio constraints, we now state the condi- 
tions under which an instance of a schema satisfies a 
aiven martraid. 
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Definition 1. Let E(U) -+(z*Yl R be a cardinality ratio 
constraint of a schema S. Such a constraint is satisfied 
by an instance I of S if for every instance e of E in I, 
the number M of R instances connected to e by means 
of role U verifies: 

zlMly 

Notice that the value 0 for the minimum cardinality 
and the value oo for the maximum cardinality do not 
actually represent real constraints: however, for the 
purpose of this paper, they can be treated like any 
other values. 

In the following, we shall write MIN(R,E,U) and 
MAX(R,E,U) t o d enote respectively the minimum and 
the maximum cardinality of the relationship R with 
respect to the entity E in the role U. If no cardinality 
ratio constraint E(U) +(‘.Y) R appears in the schema, 
we assume that MIN(R,E,U)=O and MAX(R,E,U)=oo. 
The set of cardinality ratio constraints of a schema S 
will be denoted by I’“. Every instance of S in which all 
the cardinality ratio constraints in I” are satisfied will 
be called legal. 

Referring again to the example of fig. 1, let’s 
assume that the following cardinality ratio constraints 
are defined in the schema: 
Reaearclr-Illatitutc,(LrHder) -+ (0.2) Partucralrip 
Bilateral-Projert,(Projrrt) +(l*l’ Partueralrip 

Bihtvral-I’rojrct( Finauccd-Project ) ---) (1.1) Supported-hy 

lrlatitution( Sponxor) -+ (1.-J) Support.ed-hy 

The first constraint represents the rule which re- 
stricts research institutes to be project leaders of at 
most two bilateral projects. The second one imposes 
that each bilateral project is associated with exactly 
one project leader and one partner. By the third con- 
straint, bilateral projects are supported by one and 
only one institution. Finally, the fourth constraint rep- 
resents the fact that only the institutions supporting 
some project are meaningful for the application. It is 
easy to verify that the instance of fig. 2 satisfies all of 
the above constraints and, therefore,, is legal. 

S. Strong Satisfiability of SER.M Schemata 

As we said in the introduction, the usual notion 
of satisfiability is not sufficient for capturing interesting 
properties of a set of cardinality ratio constraints. In 
fact, since .at least the empty instance of a schema S 
satisfies all the constraints in I”, it follows that every 
SERM schema S is satisfiable with respect to I’“. On 
the other hand, it may happen that the cardinality 
ratio constraints of a SERM schema interact in such a 
way that no legal instance of the schema other than the 
empty one exists. Consider, for example, the schema 
shown in fig. 3 (in the diagram, the minimum and the 
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maximum cardinalities of relationships are associated 
with the corresponding roles). 

A 

11 (1.00) 

P-l 
w (0.1) R Q w v 11.1) z fZ,oo) B 

Figure 3. 

It is easy to verify that only the empty instance is 
legal for such a schema: in fact, the constraints defined 
on relationship R impose that entity A cannot have 
more instances than entity B, whereas the constraints 
defined on relationship Q impose that the number of 
instances of A is at least two times the number of 
instances of B. 

In the general case, the cardinality ratio constraints 
compel only some of the classes of the schema to be 
invariably empty. When this happens, we say that such 
classes cannot be populated in the legal instances of the 
schema. Since a class has to be considered meaningful 
only if the corresponding instances can be represented 
in the data base, we look for a new property, ensuring 
that all of the classes of the schema can be populated. 
We call such a property strong satisfiability. 

Definition 2. A SERM schema S is strongly satisfiable 

if for each class C of S, there exists at least one legal 
instance of S in which the set of instances of C is not 
empty. 

When a schema S is not strongly ‘satisfiable, we 
shall say that both S and the set of cardinality ratio 
constraints I” are unsatisfiable. 

In the following, every instance of a schema in 
which no class is empty will be called fully populated. 
The next theorem shows that we can check for the 
strong satisfiability of a schema by looking for the 
existence of fully populated legal instances. 

Theorem 1. A SERM schema S is strongly satisfiable 
if and only if there is at least one fuully populated legal 
instance of S. 

PROOF: If-part. It is evident that the existence of 
a fully populated legal instance of S implies that S is 
strongly satisfiable. 

Only-if-port. If S is strongly satisfiable, then, for 
every class C; of S, there exists a legal instance Ji of S 
in which Ci has a non-empty set of instances. Consider 
the instance 3 of S obtained from all the Ji’s by means 
of the following rules: (1) the set of instances of the 
generic class C in J is the union of the instances of 
C in all the Ji’s; (2) instances of classes coming from 
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different Ji’s are considered different. Clearly, J is fully 
populated. Furthermore, since all the Ji’s are legal, J is 
legal too. QED 

In order to characterize the strong satisfiability of 
SERM schemata we propose to model the cardinality 
ratio constraints of a schema by means of an associated 
linear inequality system. This system is defined in such 
a way that the existence of a fully populated legal 
instance of the schema (and, therefore, by theorem 1, 
the strong satisfiability of the schema) is reflected in 
the existence of some solutions for the corresponding 
system. 

Definition 3. Given a SERM schema S, we associate 
with it an inequality system 9.’ whose unkowns and 
inequalities are defined as follows. 

Unknowns of 9.“: 
l an unknown E for each entity E of S; 
l an unknown R for each relationship R of S. 

Inequalities of @: 
l an inequality of the form: 

ri 2%. E 
for each cardinality ratio constraint E(U) +fz.Yl R 
in S, with x # 0; 

0 an inequality of the form: 

for each cardinality ratio constraint E(U) +(=*Y) R 
in S, with y # 00; 

l an inequality 

E > 0 (A> 0) 

for each entity E (relationship R) of S. 

Notice. that by the above definition, Jr.” is homo- 
geneous (i.e. all of its constant terms are equal to sero) 
and has integer coefficients. 

A preliminary result can now be proved regarding 
a sufficient condition for the strong sat&&ability of a 
simple SERM schema, constituted by one relationship 
R connected to a collection of entities, each entity being 
possibly connected through several roles. 

Lemma 2. Let S be a schema constituted by one rela- 
tionship R connected to m different entities El,. . . ,Em. 
Assume that each & is connected to R through roles 
~il~~i2~~--,Uip,, with qi>l, for each i (1 5 i 5 m). 
Given m+l non-negative integer numbers p, 01,. . . , u,,, 
satisfying XV wken substituted for the unknowns re- 
spec tlvely associated with R, El, . . . ,&, a legalinstance 
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of S exists with 01 instances of El, ~72 instances of 
E-2,. . . I urn instances of E,,, and p instances of R if and 
only if the following condition holds: 

PROOF: If-part. Suppose condition (1) holds. We 
now exhibit a legal instance I of S with cl; instances of 
entity Ei for each i (1 5 i 5 m) and p instances of R. 
The way in which the instances of R are connected with 
the instances of El,. . . ,E,,, in I, is specified by means 
of the following procedure: 

- number arbitrarily from 0 to p - 1 the instances of 
R, and, for each i (1 5 i 5 m), number arbitrarily 
from 0 to o; - 1 the instances of E; ; 

- for i := 1 to m and for j := 1 to qi do 
1. for k := 0 to p - 1 assign the component 

<ei,,,Uii> (e;h is the h-th instance of Ei) to 
rk (the k-th instance of R), where h = k mod 
Oi; 

2. renumber the instances of R in such a way that 
instances having the same set of associated 
components are contiguous. 

Notice that the inherent constraint 1 is trivially 
satisfied by I. Therefore, in order to show that I is legal, 
it remains to prove that the following conditions are 
satisfied by I: 
CY) every instance of R has exactly one component 

corresponding to each role Uij; 
/3) different instances of R have different sets of com- 

ponents; 
+y) every cardinality ratio constraint of I’.’ is satisfied. 

With regard to condition a, notice that the above 
procedure assigns exactly one component to each in- 
stance of R, for each role of R (step 1). 

With regard to condition /3, after the first execution 
of step 2 of the procedure, the largest group of instances 
of R linked to the same instance of El by means of role 
Uii has at most: 

elements. After the second execution of step 2, the 
largest group of instances of R having the same set of 
component has at most: 

i=2 

elements. Analogously, after the qi-th execution, we 
have: W‘ 

PUl = h-lb11 I n”Y’ 
i=2 

and, after the n-th execution (with n = ~~=i qi), the 
largest group of instances of R having the same set of 
components has at most: 

elements. Therefore, condition /3 is satisfied by I. 
With regard to condition 7, note that, since 

PI 01 I . * *, urn constitute a solution for 9’, we have: 
MIN(R,Ei,Uij) 5 [p/uiJ L [p/uil I MAX(R&,Uij) 

foreachi(lIi<m)andforeachj(l<jLqi). Now 
it is easy to see that for each ehtity & (I 5 i 5 m), for 
each role Uij (1 5 i 5 pi), and for each instance ek of 
Ei (0 _< k 5 oi - l), the number of instances of R that 
are associated with the component <ek,uij> by the 
above procedure, is either [p/oiJ or [p/u;]. Therefore, 
condition 7 is satisfied by I. 

Only-if-part. Suppose that condition (1) doesn’t 
hold, i.e. suppose that: 

p > fiu;* 
i=l 

Consider any instance J of S with oi instances of Q 
(1 5 i 5 m) and p instances of R. Notice that the 
number of different sets of components that can be 
associated with an instance of R in J is n:, ur. 
If condition (2) holds, then there exist at least two 
instances of R in J having the same set of associated 
components and, hence, the above condition /3 is not 
satisfied in J. Therefore, J is not legal. QED 

We are now ready to relate the strong satisfiability 
of a SERM schema S to the existence of solutions 
for the associated system 9.‘. The following theorem 
gives a necessary and sufficient condition for the strong 
satisfiability of SERM schemata. Its proof makes use of 
the following lemma: 

Lemma S. If a linear homogeneous inequality system 
H with rational coeficients admits a positive solution, 
then it also admits an integer positive sol&on. 

PROOF: Let vi,vz, . . .,v, be the (possibly irra- 
tional) values assigned to the unknowns zi,22,. . . , z,, 
of H by a positive solution X0. By adding the following 
set of inequalities to H 

xi 2 bi (l<iLn) 

where, for each i, b; is any positive rational number 
less than or equal to vi, we obtain a new inequality 
system H’. It is evident that the solution space of H’ is 
a polyhedron that is not empty (in fact it includes at 
least Xe) and is contained in the solution space of H. 
Moreover, each vertex of such a polyhedron corresponds 
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to a rational positive solution of H. An integer positive 
solution for H can be easily obtained by multiplying any 
of such rational solutions to a suitable number. QED 

Theorem 4. A SERM schema S is strongly satisfiable 
if and only if there exist solutions for the associated 
system !Prs. 

PROOF: Ij--part. From lemma 3 it follows that. 
\Ir’ admits integer positive solutions. Let X be one of 
them. For each class C of S, let X(C] denote the value 
assigned by X to the unknown corresponding to the 
entity or relationship C. We can assume that for every 
relationship R of S, the following condition holds: 

(3) 
i=l 

where El,... ,E, are the entities connected to R and 
qi is the number of times entity Ei is connected to 
R. In fact, if some relationships existed for which 
condition (3) was not satisfied we could multiply X to 
a suitably large constant, obtaining another solution 
of !PTr” such that condition (3) is satisfied for every 
relationship of S. Now, since condition (3) is satisfied 
for all the relationships of S, it follows from lemma 
2 that for every subschema T of S, consisting of one 
relationship R and the connected entities El,. . . ,E ,,,, a 
legal instance IT exists with X[R] instances of R, XIEI] 
instances of El, . . . ,X[E,,,] instances of E,. Therefore, 
a legal instance I of S with X[C] instances for each class 
C can be easily obtained by merging the various IT’s and 
unifying the sets of instances of each entity belonging 
to more than one 1~. Since I is fully populated, we can 
conclude that S is strongly satisfiable. 

Only-if-part. Suppose a legal fully populated in- 
stance I of S exists and consider one relationship R and 
one entity E connected to it by means of role U. Let u 
and p be the number of instances of E and R in I. Since 
every cardinality ratio constraint is satisfied by I, the 
following condition holds: 

MIN(R,E,U) ‘a I p I MAX(R,E,U) u 
In other words, the positive integers 0 and p satisfy 

*’ when substituted for the unknowns ,& and &. By 
generalization, it is easy to see that we can construct a 
positive solution of !V” by assigning to each unknown 
& the value corresponding to the number of instances 
of C in I. QED 

The above result ensures that the problem of ver- 
ifying the strong satisfiability of a SERM schema S 
can be solved in polynomial time with respect to the 
number of classes of S. In effect, by theorem 4, such 
a problem can be reduced to the one of testing the 
polyhedral cone defined by 9’ (i.e. its solution space) 

for non-emptyness, which can be done in polynomial 
time (see, for example, IlO], pp. 170-185). 

4. Analysis of Unsatisfiable Schemata 

As already noticed in section 3, a SERM schema 
S which is not strongly satisfiable includes one or more 
sets of cardinality ratio constraints (i.e. subsets of I”) 
that are unsatisfiable. As a result, some classes of S 
are compelled to be invariably empty in all of the legal 
instances of the schema. The goal of this section is 
to provide a method for discovering each unsatisfiable 
set of cardinality ratio constraints of a schema. Such 
a method can be very helpful for identifying those 
dependency constraints whose specification is erroneous. 

In what follows we make use of graph concepts 
to represent SERM schemata. In particular, we show 
that, for a schema S which is not strongly satisfiable, 
information about the sets of unsatisfiable cardinality 
constraints can be obtained from a suitable analysis on 
a particular graph associated with S. 

Definition 4. Given a SERM schema S, the associated 
graph G.’ is a directed multigraph <N,A> labeled in 
the arcs, where: 

l the set, of nodes N is in one-to-one correspondence 
with the set of classes of S; 

l the set of arcs A is determined by the following 
rules: for each connection in-S between an entity 
E and a relationship R through role U, two arcs 
el and e2 are in A; el is directed from the node 
corresponding to E to the node corresponding to 
R and is Jabelled with MAX(R,E, U); e is directed 
from the node corresponding to R to the node 
corresponding to E and is labelled either with 
I/MIN(R,E,U), if MJN(R,E, V)#O, or with co, if 
MIN(R,E, U)=O. 

Every graph associated with a SERM schema will 
be called an ER-graph. The label of an arc e will be 
denoted by LABEL(e). Moreover, if 7~ is a path ‘(or a 
cycle) of an ER-graph G”, then the weight of r (denoted 
by WEIGHT(T)) is defined as follows: 

WEIGHT(a) = n LABEL(e). 
eE* 

If 7 is a cycle, and WEIGHT(+r)<l, then we say 
that 7 is critical. 

An assignment 4 for an ER-graph G=<N,A> is a 
mapping 

4: N-R+ 

associating positive rational numbers with its nodes. 
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An assignment is said to be correct if for each arc 
e=<nl,nZ> in A, the following condition holds: 

$$ 5 LABEL(e). 

An ER-graph is said to be inconsistent if no correct 
assignment exists for it, consistent otherwise. 

We observe that, if r is a path from n,, to nl, 
(not necessarily distinct) of an ER-graph G, then 
WEZGHT( ) p A re resents an upper bound for w, 
for each correct assignment 4 of G, i.e.: 

a cut (N,,Nb) of G, with n, EN, and nb E Nh. Hence, 
by multiplying every 4’(n) (for n EN,) to a suitable 
positive number, we can obtain a correct assignment 3 
such that $$ > $$, contradicting the hypothesis 
on 4’. QED 

Theorem 6. An l.QZ-graph G is inconsistent if and 
only if it contains a critical cycle. 

PROOF: If-part. Assume that G contains a critical 
cycle -y with weight w, and suppose that 4 is a correct 
assignment for G. Then, for any node n in 7, it would 
hold that 

Notice that the assignment obtained by multiplying 
a correct assignment by a rational number is also cor- 
rect. Therefore, whenever a correct assignment exists 
for a graph, an integer assignment (i.e. an assignment 
associating integer numbers to the nodes) also exists 
which is correct. 

By the above definitions and by theorem 4, one can 
easily verify that the problem of checking a schema for 
strong satisfiability is isomorphic to the one of finding 
a correct assignment for the associated graph. 

The goal of this section is to show that there exists 
a strict correspondence between sets of unsatisfiable car- 
dinality ratio constraints in a schema. and critical cycles 
in the associated graph. In particular, it will be shown 
by theorem 6 that a critical cycle is an inconsistent 
ER-graph and, on the converse, any inconsistent ER- 
graph contains a critical cycle. The following lemma 
introduces such a theorem. 

Lemma 5. Let G be a consistent El&graph and ncr 
and nh two of its nodes. Let. @ be the collection of all 
the correct assignments for G, and II the collection of 
all paths from 111, to n,, in G. Then, it holds thab 

where, if II is empty, the right hand side is to be 
interpreted as 00. 

PROOF: It is obvious that maxge+ w is less 
than or equal to minnEn WEIGHT(r), so that we can 
consider only the case where the left hand side is finite. 
Let 4’ be a correct assignment such that $$ is maxi- 

mum, and suppose that - ‘$l“‘l < min,En WE;GHT(r). 

This means that every path A, in II contains an arc e; 
(say from p to q) such that e < LABEL(ei). It is 
easy to verify that the set of all such e;‘s constitutes 

obtained by applying (4) to 7. Since (5) cannot be 
satisfied, we can conclude that no correct assignment 
exists for G. 

Only-if-part. Assume that G is inconsistent. Let 
G’ be a maximal consistent subgraph of G (notice that 
such a subgraph always exists, since at least the graph 
obtained from G by eliminating all of its arcs is consis- 
tent). Let e=<n,,nb> be any arc of G-G’. Lemma 5 
ensures us that there is at least one path from nh to n, 
in G’ (otherwise we could find a correct assignment for 
G’ u {e}, contradicting the hypothesis that G’ is maxi- 
mally consistent). From lemma 5 again, it follows that 
there is a correct assignment 4 for G’ and a path x from 
nr, t,o n,, such that +(,,,,) 90 = WEIGHT(r). Consider 
now the cycle 7 constituted by A and e, and suppose 
that. WEIGHT(?) 2 1, i.e. WE,&,Tfn, 5 LABEL(e). 

It. follows that. $# 5 LABEL(e), and, therefore, Q 
is correct also for G’ U {e}. Since this contradicts the 
hypothesis that G’ is maximally consistent, it follows 
that 7 is critical. QED 

The above theorem shows that critical cycles are 
responsible for the inconsistency of a graph associated 
with a SERM schema. Taking into account the corre- 
spondence between the strong satisfiabiiity of a SERM 
schema and the consistency of the associated graph, 
ea.ch critical cycle singles out an unsatisfiable set of 
cardinality ratio constraints, namely those correspond- 
ing to the labels of the component arcs. Notice that 
discovering critical cycles can be done in polynomial 
time, for example using a variant of the Floyd-Warshall 
algorithm for the determination of the shortest path 
between two nodes in a graph (see [lo], pp. 124133). 

5. Conclusions 

In this paper we have shown that significant prop 
erties of a SERM schema can be recognised by means of 
suitable computations performed on an associated in- 
equality system and by an analysis on a corresponding 
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graph. In particular, the results reported in section 3 
show that strong satisfiability can be checked in poly- 
nomial time with respect to the size of the schema by 
looking for solutions of the associated system; moreover, 
in section 4 it is shown that, for a schema which is not 
strongly satisfiable, information about the sets of unsat- 
isfiable cardinality ratio constraints can be obtained by 
discovering critical cycles in the corresponding graph. 

Since realistic schemata could lead to corresponding 
sizeable systems and graphs, it is worth noting that 
some simplifications of the schemata can be adopted and 
should obviously be considered, for the sake of efficiency, 
when applying the described techniques. However, the 
analysis of the possibilities of improving the efficiency 
of the proposed methods is beyond the scope of this 
paper and is investigated in 191. 

In the same paper, we study the problem of check- 
ing a schema for strong satisfiability when further 
capabilities of SERM are taken into account. In partic- 
ular, we demonstrate that even small enrichments of the 
expressive power of the data model used in this paper, 
may result in a dramatical increase of the complexity of 
such a problem. 
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