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Abstract 

While a variety of sophisticated phy&al database design techni- 
que6 ha6 been deviled in research, only very limited capabilitie6 
are available in practice. Thir ie mostly due to the fact, that 
designing intunal hsyoutr di!Tering from the loscal view b not 

transparent to the user. We present a more general two-level rolu- 
tion: Our databsse kernel offer6 hierarchical clnsteriug expmwed 
as nested (NF2) relationa Flat relations, resulting from logical 
database d&n, are then mapped to thir internal kernel inter- 
face. We show, how the variour physical structuring approache6 
cau be espre66ed in thi6 model. Phy6i’cd database de6ign for a 
flat relational front-end can then be described formally within the 
(NF2) relational model. The important sclpect of join 6upport h 
pursued by materializing 6ome join6 in ne6ted relation6 without 
any redundancy. S&&project-join quexiea on the logical rchema 
can be transformed to efficiently proce66ible intemd queries by 
applying algebraic optimization techniques, h~own e.g. from view 
optimization. P&minary performau ce evaluation6 are reported 
that were carried out on commerciay adable system6 and soli- 
cited our expectation6. 

1 Introduction & Problem Statement 

Currently relationd database management system6 (RDBMS) 
have reached wide acceptaua in commercial applications. One 
of the rea6on6 certainly k that the logic41 design of a relational 
database is mostly undemtood and often supported by additional 
software tools. However, the physical databa6e design a6 the ma- 
jor performma tuning tool t rtin a rtmggk agaiust a bunch of 
interrelated parameter6 offered by the DBMS and/or the under- 
lying file management 6J'SteIlL 

Physicd database de&t techniques applicable in available 
RDBMSs generally include acce66 path generation. The access 
path selection problem [Schk75], i.e. the decision which 6et of ac- 
ce66 path6 should be generated to establish the best performance 
of querie6 and update transsctionr, ha6 to be solved intellectually. 
The implicit a66umption to thir problem i that the relation6 found 
by the logical database design are al6o stored a6 “ba6e” relations. 
While thi6 particular design technique is available in all RDBMSs, 
a variety of other, rophi6ticakd techniquea have been devi6ed and 
are offered by 6ome system or the other. Example6 are “cl~tem” 
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in ORACLE [ORACLE], aiming at the tupk-tepage6 allocation 
strategy, which allow to store tuple6 of different relation6 into one 
page according to identical value6 in common attribute6. The 
main application of this feature is the efficient support of joins. 
Another facility for the 6ame purpose are the “lb& field” offe- 
red by the Research Storage System (RSS)’ of Sy6tem/R [As76, 
Ch81]-which, however are not utilized by the ReLational Data 
sy6ta (RDS). shady, %OUph$ in ADABAS [ADABAS] SUP 
ports access from one tuple to another rehbted by e.g. foreign keys. 
The “general&d acce(u~ path” technique [Ha781 or the 6o-called 
“join indices” [LC86] are rueareh propo6d6 providing join 6up 
port. 

A common ob6ervation for the variou6 approaches to physical 
databa6.e design is the following: The mapping from logical (tu- 
pier) to intemd (records) data structure6 i6 mostly t&id. ‘zhpkr 
of the logicd database relation6 are mapped one-t-one to internal 

records. Optimization issues like the +portant e&t of chric- 
riry are deferred to the next deeper h@r, namely the mappiug of 
internd record6 to the page6 (blocks). The overall objective of n- 
ducing the number of I/O operations neccea6ary to compute query 
re6ultr or perform update6 i6 pur6ued by specid technique6 for thi6 
pag&evel database layout. ORACLE dustem, for instance, can 
be defined to let the DBMS allocate space for “member” tupla 
on the 6ame pa8x a6 their “owner” tuple (Tnple6 related by a key- 
foreign key relationship will be called owner and member6 in the 
sequel adopting these notion6 from the CODASn model). Ten- 
tative TIDs can be given to the fxee place admi&tration module 
to achieve the 6ame effect. The distinction between a clusteriug 
and a non-clustering index is another example of 6uch teehniquu. 

The problem with these approaches i6 that query optimieation, 
which is performed on a high level to reduce processing co6t6, e6- 

pecially algebraic optimization (cf. [ms2, Ma83, ASU79, Scho88]) 
is too far from this page-level to take advantage of the ehmtcring 

information. However, incorporating the influence of a specific 
clustering technique, e.g. in the selection of join algorithuq h au 
important issue in query optimi6ation [ASK89, U182, WY76j. 

One approach which ha6 not yet been mentioned M) lar b “de- 
normalization” [SSSO, SS81]. The idea, that has also iufbenced 
our direction, ba&ally consits in storing ma&abed joius. Hc+ 
wevcr, as oppo6ed to Schkoh&k, who stays within the ht rel& 
tional model to describe the material&J join6, our approach b 
con6iderably more general: we utilize (a subset of) the ncrfcl n- 
lotional model (al60 called NF2 model) for the (intemd) record 
level. we see the following advantage6: Fit, the variour tech& 
quecl applied in the physicd database design cau be exprea6ed in 
a unique, formal manner. Second, the underlyii NF2 databare 
kernel system (cf. [DPS86, PSSWD87, SW88]) cau be exploited 
to efficiently manage rektiond applications. An additional ad- 
vantage i6 that flat relation6 of coume are a special ca6e of nested 
ones, which allows to define the mapping between logical (flat) 
aud internal (nested) relationd schemata by meaus of a (nerted) 
relationd algebra. As a result, this formal tran6formation can be 

bow called Data Base Storage System (DBSS) iu SQL/DS 
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utilked in the algebraic optimixation step, which then already ro- 
iectr the phy&al database design. Thus, algebraically optimized 
query formulationa alno rdect the clustering rtrategy. 

Figure 1: Supporting a 4NF front-end by an NF2 hernel 

Two related probknu have to be nolved when we follow this 
idea of utilixing our nested rektiond kernel DBMS “DASDBS” 
(Dumstadt Databare System). The first one b phyalcd data- 
bane desiguz given a logical database schema and rtatistical data 
about the frequenciu of certain typa of retrkval and update opt- 
rationr (i.e. a %annac tion mix”), llnd a pbyrical database layout 
that guarmtecs optimal overall DBMS performance. Usually the 
number of I/Oe ir taken an the measure of oyrtem performance, 
computing time in mostly neglected. Our specific approach to thk 
probkm k to describe the physicd layout by a formal data model, 
vk. NF2 relationr. Whik other project8 aim at an extensibility of 
l tomge rtmctw (e.g. STARBURST [LMP8Q, i.e. rpecid im- 
plementationa of a relatiin can be added to the system, we show 
how different (rellhnown) storage rtructunw can be expressed by 
using nated relations as the internal data modeL Defining au 
NF2 relation for the intemd databane n&ma achiever a hiem 
chical clustering rtmtegy. JU commonly used intemal structures 
(or at least the important on-) can be represented in thir mo 
deL Thaw, we can in fact mlve the physical design probkm on 
thk abstract level without loosing important structuring alterna- 
tives. Therefore, the second problem, to be solved at tramaction 
processing time, vix. traudormation (and optimixatiin) of logical 
database schema level operationa to the physical storage level, cau 
be attached in au algebraic fa&ion. The tranformation k simply 
performed by subrtituting algebraic deflnitionr cf the mapping 
between the two views into user operatiorur. However, nimilar 
to a more ckssical setting, some sort of view optimixation pro 
bkm ariuu. Redundant fcrmulationr of operationr result from 
thir substitution process, which cau be eliminated by algebraic 
optimixatiou techniques. 

Whik preliminary ideas of our approach were described in 
[SS83] an a reaearch programme for the project, tbk paper de- 
-ien the actud resulta based on au implemented debraic op 
timiuer and on an implemented database hemeL Some of the 
theoretical Mpectr have been discumed in [S&88]. 

The paper pro&a by giving a summary of our kernel system, 
itr data stmcturen and operations in section 2. It ie also &own 
how the kernel impkmentr these structures on the underlyii pa 
gu. In section 3 we discusa important physicd atmcturing tech& 
quea and how these cau be expressed in termn of nested relationa. 
Section 4 describea the algebraic transformation and optimization 
rtep. It ir shown that importaut typea of querier (including joinl) 
at the logical level can be mapped to simple operations at the 
iuternd 1eveL The rationale behind our approach, improving per- 
formance by hierarchical clustering, is solicited by experimental 
evaluations reported in 8ection 5. 

2 DASDBS Kernel: Overview 

2.1 Data Structures 

DASDBS is a family of database systems based on a common her- 
nel [SWSS, PSSWD871. Tbir kernel can be considered the rtorsC(e 
mbsystem of the DBMS8 in the family (cf. figure 2). Nested re- 
lations [AB&I, FI83, RKS85, SS83, SSSS] are the data stictn 
available at the hemel interface. In contrast to traditional (flat, 
first normal form) relations, where attribute values are restricted 
to be atomic, i.e. undecomposable by the DBMS, nktioar are al- 
lowed as attribute valuea (aubrelations) in thk “non tlrst normal 
form” (=NF2) relational model. Thur, a hkmrchicd rtmcture, 
viz. relations consisting of tupla with comport&r that are nLa- 
tions in turn etc., is established. 

Figure 2: The DASDBS family 

In the kernel, tupla of NF2 relations--called Complex Record8 
(CR) at thin level-are impkmented M “Stomgc Clrrter~” 
[DPS88]. Thin meana, a CR b mapped to a.~ few pqpm M pomiile. 
Particularly, if a CR spans pages, this ret of pw is exclusively 
occupied by the CR. If, on the other hand, the CR ir tuualkr 
than a page, severd CRn may share the page. However, only 
CRa belonging to one (internal) relation may be stored on the 
name page. Thur, the definition of internal relation is our mean8 
of defining a (hierarchical) &&ring strategy in a twofold rense: 
individual CEL are clustered on a minimal set of pages, and fur- 
thermore, all CIb belonging to a relation are etored on adjacent 
pages. Of course, the latter clurtering effect can be disturbed by 
the databaae’r dynamic behaviour, but not the former one! In 
contrast to GENESIS IBa86j, for inrtance, we apply one raiguc 
rtoregc tcdaigre for Complex Records. Our argument for this 
decision in that we want to express difkrent rtorage techniquea on 
a higher level, namely by defining appropriate intemd relatious: 
the implementor of a DASDBS front-end can express hip favourite 
rtorage technique in terms of Compkx Recorda. In the sequel we 
give exampka how this ir done for lome importaut rtmctw. 

The iutra-record structure wan detdgned in ruch a way that ht 
accum to compkte CRa M well aa to part8 of them (e.g. part8 
rpecitled by a neated projection, see below) is acomplbhed. Thk 
rtructure guaranteea getting the desired (part of the) CR into the 
page b&r by two I/O operations on the average. The firat I/O 
reads the tint page belongiug to the CR (the “root page”). Based 
on the query and the information in the root page, the set of pages 
in determined that is needed to complete the request. A second 
(set-oriented, “chained”) I/O operation k rtarted to fetch this ret 
into &he buffer (see [DGw85, WNPS’I] for detaik). Furthermore, 
the structure applkd on the page level Watt desigued in such a way 
that the trivial case of CR+ namely iat tupkn, ir handled without 
overhead compared to existing relational DBMSI. 

An example of an NF2 relational schema, together with a cor- 
responding flat relational (4NF) achema is shown in figure 3. Da 
partmentr and employea are de&bed an well m coaner and the 
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coume~ attended by employees. In the flat schema we marked the 
key-teforeign key relationships by arrows. We will refer to this 
example throughout the following sections of thin paper. 

\ 
Emp (ero,dno,rname, . . . ) 

\ / 
Ali (cao,cro,doie) 

Nested Relations, Dapi COW** 

dmo drone . . . Emp A 

;‘. A 
CIQ dale 

Figure 3: Example of 4NF aud NF2 relations 

2.2 Operations 

Subset of the neated relational algebra 

Similar to the nesting of data structures (relationa), n-ted oper- 
ations in algebra/calc&s [AB84, RKS85, SW] or SQL [PA88, 
RKB85] style have been proposed for this model. A subset of the 
nerted rektiond *bra defined in [SSSS] ia implemented within 
the kernel of DASDBS, the s+called “~iagle parr procerrible” op- 

erations [Sche85, Scho88]. This term indicates the fact, that these 
operation8 can be computed efficiently, in a single (hierarchicd) 
scan (i.e. with a complexity linear in the size of the relation) 
(pSSWD871. 

The operations available at the kernel iuterface cau be described 
M allowing application of relational selection and projections to 
every hierarchicd level of a nested relation. Particuhuly, all single 
psu queries are &g/e table (r&&on) queries. But additional 
restrictiona have to be imposed to disallow eeiectiona with set 
comparieo~ introducing join complexity, for instance. For the 
achema above we can, for example, select department taplea with 
dnome = ‘Computer Science’, project some of their attributes, 
e.g. dno and Emp. Furthermore, we want only the namea (project 
on enome) of programmen (select e&ill = ‘Programmer’). In the 
neated relational algebra formulation this query would look like: 

r[dno, r[ename)(a[ertill = ‘F’rogrammer’](Emp))] 
(a[dnome = ‘Computer Science’](DepO) 

Notice that this query would have required a join in the corre- 
rpondiug fiat relationd achema, but b inexpensive in the nested 
one because of the following facts. The query h au example of 
a single-rcan operation: the join between employees aud depart- 
mentr k~ material&d and the additiond conditionr are checked 
during a single, hierarchicd scan. If no acce~ paths are ava&bie 
(the wont case) every department CR haa to be inspected. Tb 
meam, the root page of ouch a Complex Record haa to be fetched 
and it ir determined, which other w have to be read ln order 
to check the conditions. According to the storage rtrategy and to 
the header orgauisation [DPS88] only the minimum possible num- 
ber of page accessen (without accclls pathr) H required to execute 
thin query. This observation h important, because it h- been 
the driving force behind our idea of implementing a flat relational 
view on top of au NF2 kernel system. 

Another important observation, derived from the algebraicdly 
defined interface, is that all operations of the kernel are e&et- 
oriented. Thus retr of CRs are trau&red to the calling program 
M the result of a query or given to the kernel for update operaticmr 
(cf. the database port& approach of [SRM]). 

Addreu selection 

An we apply the NF2 model to the storage structure level of our 
ryrtem, we extended the model by the notion of addrerrer of Cam- 
piex Recorder. (On a higher level of abstraction we would w the 
term murrogaten, i.e. a system provided, unique, stabk idenser. 
On the kernel level it is known in addition that these identillen 
allow very fast (diict) accew.) A virtual attribute OR L asao- 
ciated with e& (internal) relational schema R. These ad& 
mqy be given outside the kemeL Thus, front-end systems cau use 
these addresses to formulate direct acceaa (eerier at the kerael 
interface. We intmduc+ a special operation into the algebra to 
describe thir kind of “query”, the addrerr releclior 16. For a given 
set A of addreuses-obtained by previous retrieval operations-, 
$[A](R) retrieves, via direct acce~, the set of Complex Recordr 
addrumed by the ret A. This mechanism may be used to construct 
and IJJX access paths on top of the kernel. If, in our case, an index 
on dnome were available, the +-operation only fetch- the pagea 
of those De@CRs that contain computer rcience departmentr. 

Acceu cortr 

Our addressing scheme [DPS88] b a hierarchicd one, namely a 
combination of the tupie identifier (TID) concept and (sub) tu- 
pie numbers. The beginning of a Complex Record (= Storage 
Ciurter) is addressed by a TID and any mbrecord is identified by 
a sequence number which, in turn, ir used to identify the corre- 
sponding page number in the header of the Storage Cluster. The 
discussion of thin technique is contained in [DPS88] and shall not 
be repeated here. However, for the purpcae of phy&al deaigu the 
access costs listed in table 1 cau be derived from the addressing 
scheme, whatever the length aud nesting depth of a CR is. 

Tabk 1: Number of page accesses for the begiuniug of a Complex 
Record (CR) and additional page accesses for the beginning of 
any subrecord (ASR) 

(a) b the case of a Complex Record which is shorter than one 
page. Here, a (0 < u < 1) accounts for the amount of extra ac- 
ceu due to overflow-TIDE an in the usual TID concept. In (b) we 
condder the case that a CR is larger than a page but the desired 
subrecord ir asO stored on the header page whereae in (c) we need 
one additional page acce~ for the aubrecord. In (d) we need two 
additional page accest3e6 which are necesuwy for a very large Stor- 
age Cluster whore header dacl no fit into the root page; In thk 
case we need one additional page access for the part of the header 
whirh containe the page number for the subrecord. A reasonable 
physicd dedga of Storage &stem, however, should avoid a~ 
(d) and preferably produce casea (a), (b), and (c). Furtheron, if 
not only the beginning of a whole Complex Subrecord in de&d, 
i.e. if the whole ret of rrbncord8 k to be fetched, ASR in table 1 
can be interpreted aa the number of additional page ret request8 
to be supported by chaiued I/O if offered by the operatiug rystem. 

Proceedings of the 13th VLDB Conference, Brighton 1987 139 



3 Physical Database Design Using into the bnffer that are rarely used). On the other hand, retrieving 

Nested Relations whole relations/tnples becomes less efficient, of course. 
An important structuring alternative found in practice is “sort- 

The overall objective of physical database design in general is to 
fmd an optimal internal representation of the logicd schema r.r.t. 
a given (or estimated) workload of transactions. The number of 
I/O operations is used as the most importaut indicator of DBMS 
performance. Thus the generd guideline of physical design is: 
data that is needed together should be stored together on one 
page if possible or on neighbouring pages (i.e. chlerirg). In the 
first case we are quite sure that the result of the query is obtained 
by one block access. The latter is only useful, if the mapping 
from database pages to blocks preserves neighbourhood and when 
chained I/O is exploited. Then, in both cases one I/O opus- 
tion fetches the necessary data into the bnffer without the need 
for further I/OS. An optimal performance w.r.t. queries would be 
achieved if all query results are internally chtstered on one or 8 few 
neighbouring pages. This, however, is impossible in general with- 
out introducing redundancy, which in the case of updates causes 
overhead due to the maintenance of consistency among the mul- 
tiple copies. Thus query and update ratios have to be considered 
carefully to find au optimal compromise. As commercial RDBMSs 
apply dmoet trivial mappings from logical to internal structures, 
the only DBMS co~iwlled ndrndancy that can be introduced are 
the generated access paths. Additiond redundancy cau only be 
introduced on the logical level, which, however, gives responsibil- 
ity for consistency to the user. In contrast to this, our approach 
allows for redundancy in the mapping to intemd representations. 
Therefore, the DBMS can take the necessary actions to preserve 
consistency among the replicated data. 

In the seqnel we will show how to use the hierarchicd stmctures 
of NF2 relations in the physical design for a flat relationd logical 
database schema Because data have to be mapped to a linear 
(block structured) storage space of the physical device, u&g hi- 
erarchies for the description of the clusteriug strategy does not 
impose any restrictions. This is because hierarchies are the most 
generd structures that can be linearized without introducing re- 
dundaucy or references. Obviously, by using references to subob- 
jects instead of subobjects themselves, non-hierarchical structures 
can be stored without redundancy in primary data Only the ref- 
erences are redundaut in some sense (cf. “key redundancy” in the 
relationd model). III our discussion we will iutroduce redundant 
auxiliary data to represent non-hierarchical structures stepwise 
by using references first, and replicated data in a subsequent step. 
Emphasis is put on support for join operations, dthough we start 
with an easier case. We assume that the ilat relations from figure 3 
are given as the logical datdbase schema. Several dtematives of 
intemd representations for parts of this schema will be presented. 

3.1 Alternatives for Single Relations 

Already for the simple case of a single relation a variety of storage 
structures can be considered: The trivid structure, of course, is 
to apply au identity mapping. One tuple of the logicd relation be- 
comes one Complex Record (the speci.+ case of a “non-complex” 
one is included in the model). This is the usual techuique applied 
in commercid systems. Horixontd or verticd partitioning (with 
or without redundancy) can be expres&l’by generating more than 
one internal relation obtained by selections or projections of the 
logical relation, respectively [CNW83, MS77, NCWD84]. These 
techniqnes aim at efficient support for selections (mostly in dis- 
tributed database environments, where tuples of a relation get 
partitioned on severd sites according to frequent accesses) or prc+ 
jections on frequently used attributes (to avoid reading attributes 

ing” a relation w.r.t. cert& attribute values. The sort order is 
preserved by an appropriate indexing structure (“clurtend imfer” 
[SQL, ORACLE]). Sequential access in sort order as well as se+ 
lections on the ordering attribute(s) are supported by this mech- 
anism. We can model this technique by creating one Complex 
Record for the set of logical tuples having identical values in the 
ordering attribute (or values in a certain range, to be more gen- 
erd). The indexing part, however, is managed by the front-end 
not by the kernel itself. ,’ 

For instance, if employee tuples shall’be clustered according to 
identicd department numbers (clustered index on dno), we use 
a nesting opemtion which yields one tuple for each department 
number having all employees as subtuples: 

Emp (w, dno, ename, . . .) 

1 ZEmp := v[Dcmpe = (eso, emame,. . .)](Emp) 

ZEmp (&g, Dempd(eno. ename, . . .)) 

mm 

1 tuple per employee 1 cluster per department 

Figure 4: Clustering employees w.r.t. departments 

While in a trivial representation (with unclustered index) a 
query like “u[dno = 42](Emp)” would require (roughly) one I/O 
per matching tuple (i.e. height(indez) + N), a clustered index 
needs height(in&z) + n, where n is the number of pages neces- 
aary to store all Emp tuples (the number of which is N) for this 
particular department. Obviously, n < N, thus a clustered index 
performs better. On the other hand, in case of updates on &to, 
tuples would have to be moved between pagea to maintain the 
clwtering. (Most systems do not move and thus clustering is not 
kept iu a strict sense.) With our nested representation the above 
query performs even better, because we need the same number 
of I/OS for the index and the data, but the kernel can fetch the 
whole Complex Record in 2 I/O operations: one for the root page 
of the record, and one (set-oriented, chained I/O) for the rest, 
cf. section 2.1. Given that the operating system allows chained 
I/O ([PSSWD87, WNP81) we perform better, but never worse. 
However, in case of updates on dno, we are forced to maintain 
clustering by deleting the empolyee subtuple in the old depart- 
ment’s CR and insert it into the new one. 

Another difference exists since we maintain the clusters: assume 
an index is generated on employee names which provides us with 
add. Then, in the flat storage structure 1 + Q page accents 
would be necessary to fetch the required page. If we store em- 
ployees according to the ZEmp schema above, the address of an 
emplope (also obtained by an index) is a hierarchicd one: it con- 
sists of the TID of the Storage Cluster and of a (relative) subtuple 
number for the employee. Therefore the number of page accesses 
for one specific employee may vary between 1 and 3 (table 1). 
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Without redundancy we can only create one clustered index. 
Therefore, support for other selections can only be established by 
unclnstered indices. 

3.2 Non-Clustered Indices 

Like all available DBMSs, we can use non-clustered indices in the 
relational frontend to the DASDBS kemeL Addresses of tnples are 
known outside the kernel and can be used to build access paths on 
top. The address attributes, however, can also be used to build 
“link fields” (RSS of System/R [As76, Ch81]), see below. From 
a systematic point of view our approach can be characterized as 
clustering references to Complex Records instead of the records 
themselves. This allows for mnltiple clnsteriug strategies at little 
costs due to redundancy. Only the references sre kept iu redun- 
dant representation. In our example, we can have an index on dno 
as well as on enome, both having references to IEmp tuples (here 
the address attribute OZEmp is stored like ordinary attributes in 
the index entries): 

IEmp (eno. ename, dno, . . .) 

Idnoindex (& IEmprefs(OZEmp)) 

Ienomeindez (ename, IEmprefs(@ZEmp)) 

The influence on performauce of this type of indices is known from 
traditional systems. Again we can profit from the set-orientation 
of the kemeh given a reference list IEmprefr obtained from ei- 
ther index, a single set-oriented I/O request (using the address 
selection operation (b) cau be used to fetch the addressed IEmp 
records. While chained I/O may be not profitable in the caxe of 
non-clustered IEmp records, it certainly is not worse thau multi- 
ple single I/Os, thus we can only gain and not loose. 

As for the drawbacks of these indices, it is clear that mainte- 
nance costs arise during updates on inverted attributes. There is 
no difference of our solution and the classical ones. 

3.3 Join Materialieation: l:n-Relationships 

Join index 

Now we discuss the support of joins, notably the most expen- 
sive operation. In practical applications, access paths are gm- 
erated that support all important join operations, because this 
is the only possibility. A special kind of “join index” has been 
proposed in [Hii78, LC86] and implemented in ADABAS for the 
“Coupling” (ADABAS] of relations related by key-foreign key ro 
lationships. There, in a single index structure (B+-tree) on the 
join attribute(s), the leaf-nodes contain two kinds of references. 
If in our example IDept and ZEmp were stored as two internal 
tables, a join index on these two could be 

IDE(rJgo- OZDept, IEmpref s(BIEmp)) 

Obviously, using the internal addresses stored in IDE, we can 
easily find a department record and all correspondii employee 
records. 

Dcnormalllation 

In research, another technique has been proposed that influ- 
enced our project very much. “Denormalization” was proposed 
by Schkomick and Sorenson [SSSO, SSSl] as a meaus of (inter- 
nally) materialixing joins. In addition to the logical relations, the 
most frequent join results are stored internally. Thus, these joins 
become inexpensive operations at the cost of redundancy which 

causes overhead for updates. Nevertheless, performance gains by 
factors of 3 to 4 were reported in [SS81]. This technique hm al- 
ready migrated into practice: the database sdminirtrator’s guldt 
of SQL/DS [SQL] recommends “storing the join of tables” aa a 
very effective performance tuning tooL However, as the user aud 
application programs are not shielded against such optimidions, 
i.e. they are performed on the lo+d schema level, all operations 
on the database have to be reformulated accordiugly! In par- 
ticular, update transactions have to take care of updating the 
redundant representation. 

The problem of loosing “daugling tuples” in the join wan the 
reason for storing joins pier the original relations and not using 
the join iartead of the l+cal relations in [SSSO, SSSl]. This 
problem, however, cau easily be solved by usiug outer joiu, which 
introduce null values for daugliug tuples. A second problem, and 
a more substautid one, is the redundancy in the join relation. A 
tuple from the one relation is repeated for every matching tuple 
iu the other one. Both problems can be solved by uslug a neded 
relation for the join result. Furthermore, as the join relation is 
au irfenrl one in our approach and the logical schema is not 
chauged, the user and application programs are not affected, as 
opposed to the SQL/DS recommendation. 

Fit consider two relations related through a foreign key (Dept 
and Emp in our example). Without auy redundancy, we can inter- 
nally store the nested relation IDept with ZEmp as a subrelation. 

IDept(&, dnome, . . . , IEmp&,enome, . . .)) 

Departments without employees result in a Complex Record with 
au empty subrelation. This quite naturally indicates that there 
are no employees. A slight problem occurs, if rug employee is 
not yet as&red to any department. l$r all these employees we 
internally introduce a special null-valued department. 

This stucture closely corresponds to the intention of ORACLE 
clnstem [ORACLE], were Emp tuples cau be stored on the same 
page as their Dept tuple. However, ORACLE neither guarantees 
this clustering, nor is a page+spauning neighbourship established. 
In SQL/DS a similar eiTect can only be achieved by au appropriate 
initial loading sequence of tuples from the owner and member 
relations. However, the join between Emp and Dept hw to be 
executed if required, which results in requesting the same page 
several times. So, join queriu benefit from this structure, because 
the required page is already in the bnfier with a high probability. 

In our approach, however, the system knoor that all join part- 
ners (Emp subtuples) are contained in the Storage Cluster (Dept 
tuple). Thus, the correspondiug pages are requested only once. 
Access paths on dno can be applied in addition to support selective 
access. On the other hand, let us consider the kind of operations 
that become more expensive. Sequentid processing of Dept tu- 
plea is more costly, because only one tuple can be found on a page 
as opposed to clustexing severd of them on a page in a separate 
IDept relation without IEmp subrelation. If an employee is as- 
signed to another department, this update is also more expensive 
as it must be implemented as (subtuple) delete phrs (subtuple) 
insert in the new department as opposed to simply changing au 
attribute value (dno in Emp). Sequential processing of employees 
b only slightly worse than in a separate IEmp relation, because 
one Dept tuple shares a (set of) page(s) with a mtmber of Emp 
tuples, which would be clustered on fewer pages otherwise. 

3.4 Join Materialization: mm-Relationships 

Similar to the consideration of clustered indices vs. non-clustered 
ones, materialixii joins cau only be performed in one direction 
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without iutroducing redundancy. For example, consider our rela- 
tiona Emp, Att and Courrer. Att k related to both Emp and 
Cowrer by a foreigu key. This is because au mm (mauy-to- 
II+ r&ion&p exists between employees and courses, a uoa- 
hienrchid (network) structure is contained in our logical dats- 
hue rrhaM So, what k our solution to thin problem? At first 
sight, au hiemrchicd kemd interface seems to be overstrained. 
However, let us inspect the sohttions that other systems found 
fbr the repraentation of many-t*nmny relationships. Relational 
systems uw lo&n keys and three separate relations, hierar&cal 
rysteuts like IMS pa] offer several dtemativa based on two or 
three “&&al databarer” with additional “viiod pointers” (in 
“lo&d databad) or have to introduce two redundant hierarc!ii- 
cd views. Network database systems according to the CODASYL 
DBTG proposal [Olfi use three recmd;typen (relations) and two 
set typa (key-foreign key relationshipb) and allow several chm- 
t&g dtamativu (SET MODDs). 

Sumu&uiug, we can state that no storage structure can be 
fouud that dlows symmetricd treatment of many-tomany reb~- 
tlodlps l J clustering without redundancy. So, our choices are 
either introducing redundaucy to allow clustering in both hierar- 
chical views or use r&rences instead of objecta for the clustering 
(which is dso a restricted kind, of redundancy). 

As we could expect form the above andysis, no new structures 
um be fouud for the representation of many-temauy relation- 
ships. b&ad, we am apply any of the alternatives discussed for 
the simple case iu section 3.3, but now the representations of both 
hkarchical views (from Emp to Aft and from Courrer to Att) 
are interrelated and have to be evahrated iu parallel. Dekrmmiug 
au optima lntemd rtmcture has to take into account both views 
with their corresponding operational characteristics. 

Thus we have a variety of dtematives, some of which are 
sketched iu Sgure 5. The intemd representations which are sorted 
ht order of ascending degree of redundancy. (Symmetricd alterna- 
tives are mu&d.) As for the discussion of operations that benefit 
&om these structures and those that become more expensive, the 
same arguments apply as in the simple case in section 3.3. Aa 
l general guideline we cau state: the more frequent update op- 
erations on the foreign keys are, the more likely are references 
iutead of subobjects. If both diitions are frequently updated, 
the soh~tioms (2) or (3) iu Egure 5 may be good choices, because 
there is little overhead, but nevertheless, queries are well sup- 
ported. The subrelations containing the referencea in (3) am be 
ausidered “declustered” access paths. A join index (2) wonld be 
clustered on its own, while here the references are clustered with 
the oue relation. Therefore, maintenance costs in case of updates 
(on the foreign key) are comparable to access paths. A reference 
mmt be elimiuated from one list and appended to auother. Ad- 
dititmd references may be introduced in any of the alternatives, 
polutlltg hill %embem” to “owners” (in addition to the “logicd 
pointed, vis. foreign keys). This possibility is sketched in the 
Att mbrelation of Emp in (5). Whenewr one hierarchical view 
of the relationship is more important (i.e. frequently used) thau 
the other dtemative (4) can be selected (perhaps combined with 
materislised refereltcu (5)). 

Clearly, if updates are very infrequent or not critical w.r.t. per- 
brmance, redunclaut representations (6,7) are the best, becanse 
they support quesia most efficiently. In practice, those many-t+ 
-y relationships are often not subject to updates. In our exam- 
ple the fnct that an employee attended a certain course would not 
be updated lateron. Therefore, redundancy as au internal means 
of amelioratiug performance should be considered carefully, not 
only in the specid appearence of access paths. 

*0* cnwmc . . . All cm* cm.nc .., Ail 

e*e cr.ne dmo . . . 

Figure 5: Some storage alternatives for m:n-relationships 

Summarising we see the need for a physical design optimixation 
supported by some piece of software. An dgorlthm that solves the 
whole problem (with rmsonable eflort) is not in sight, but heuris- 
tics will help in finding b&id physical database layouts to start 
with. Currently, we are workiug on such he&tic approaches. 
Considering spanniug forests of the logicd schema network (r+ 
l&on schemata connected by key-foreign key rektionships in au 
acyclic graph) is a starting point for these physicd deeitpr aids. 

If we waut to support more general joius, the generalized acceu 
path te&nique of [H&76] cau be applied. While we only con- 
sidered key-foreign key joins until now, suppose that a join on 
other common attriiutes is a frequent operation. Par instance we 
cau think of employees and departments beiug joined on locatious 
(&c is the location of departments and efoc describes where em- 
ployeee live, lot is declared on the union of both domains). Now, 
every index entry for a specific location would contain too retr of 
mfcmncc~, one for departments and one for employees: 

GAP~(&, ZEmpref n(QsZEmp), ZDeptref4@ZDpet)) 
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4 Query Optimization 

4.1 Algebraic Optimization 

The problem discussed so far, physical database design, has to be 
solved offline, i.e. before the database is installed, or when a reor- 
ganization is planed. Our second problem, however, is a dynamic 
one in the sense that it must be solved during query (and update) 
erecrlioa time. Operations issued by the user against the logi- 
cd schema of the database have to be optimized and trausformed 
to the internal schema, which has been determined by physical 
datak design and can be quite different. The advantage of 
describii the internal database layout by meas of our nested re- 
lational model turns out to be that the transformations between 
the two schemata can be defined formally using the (nested) rok- 
tional algebra 

Let us reconsider the example given in figure 3 and let us assame 
the 4NF view as the logical (L) and the NFz relations a the 
intemd (I) database schemaa respectively. Then the mapping 
from L to Z is defined by the following algebraic expressions (using 
the notation from [SS86], Y means nestiug): 

ICoarse := Courre 
ZDept := u[ZEmp = (eno, ename, . . .)](u[ZAtt = (cno, date)] 

(Dept IXI Emp •XI AH)) 

Notice that we used the outer join operation (8) to avoid loosing 
“dangling tnples”. In generd, to preserve information during the 
transformation, we have to guarautee “losslessness” of the map- 
ping. This notion, initially used in [ABU79] for project-join se- 
quencea only, has to be extended to apply to other operations too. 
We rather use the term “invertibility” [S!%3, Schog6] to empb 
&e the fact that the information content has to be reprodaced if 
we apply the inverse transformation from Z back to L. Obviously, 
dl physicd design techniques have to guarauta invatibiity. 

For our example, the inverse transformation is ddined by (p 
denotes unnesting): 

Course = ZCourre 

Defl = z[dno, dname, . . .](ZDept) 

Emp = s[dno, eno,ename,. . .](p[ZEmpl(ZDept)) 

Att = s[eno, cno, date](~[ZAtt](~[ZEmp](ZDept))) 

These eqaations can now be used by the relationd front-end to 
transform a user query from logical to internal relations by sim- 
ply substituting the right-hand sides for the logical relations men- 
tioned in the query. For our example consider a query asking for 
the name of Smith’s department: 

LQuery = r[dname](Dept W alename = ‘Smith’](Emp)) 

1 
IQuery = r[dname](*[dno, dname,. . .](ZDept) W 

a[ename = ‘Smith’](r[dno, eno, ename, . . .] 

WEwlWer4)) 
The need for algebraic optimization techniques is obvious, as sim- 
ple formal substitation yields a formulation, where the join op- 
eration is still present! However, intuitively it is clear that the 
join in IQuery is redundant, because two projections of ZDept 
are joined on dno, the key attribute. Nevertheless, from a formal 
point of view, join elimination criteria like those of [ASU79] UC 
not applicable, because the unnest operation p is not included in 
their criteris III fact, we have developed a theory of algebraic 

optimization in this new context that proves our intaitloni the 
join can be eliminated. 

The idea of our approach is the followingz the exprasions 
obtained by the substitution of equations de&&g the inverse 
transformation are “almost flat relationd”, which meanstheonly 
nested relational operstion k c. If we now apply a totd unntrt 
operation p’ (cf. [F’T83]) to the intemd rehions in dl exprea- 
sions defming the mapping Z + L we obtdn kkatical iat (!) 
relstionr in the espreaaionr (#(ZDept) in our example) defining 
C-relations contdned in the same Z-relation. 

ZQaery = r[dname](s[dno, dname, . . .]($(ZDept)) W 
u[ename = ‘Smith’](r[dno,eno, ename,. . .] 

b*Wepf))) 

Then iat relationd optimization technlqua become applicable. 
However, we have to solve another problem before: a specid type 
of n14 vdue is introduced by the outer join operation to guaraatee 
invertibility. The nest and unnat operations had to be reddined 
in order to map null valaes to empty sets (sub&ions) and vice 
versa Farthermore, we must be able to drop tuphx of the totally 
unnested relation that contain mall vdua in specitk attributes 
(because the null values were not present in the logical relations): 
a reduction operation “p” wz~ introduced for this purpose. 

ZQuery = r[dname](r[dno,dname, . . .](p[dno,dname, . . .] 

(ND@))) W 
a[ename = ‘Smith’](r[dno, eno,ename, . . .] 

b[em enam,. . .Ib*(~Dept))N 
Some additional dgebraic equivalences incorporating this reduc- 
tion operation p were necessary to alh3w afiplication of traditional 
relationd join elimination techniques, e.g. tableaux [ASU79]. Par- 
ticularly, we can prove that select-project-join queries on the log- 
ical 4NF schema (with conjunctive selection form&e) can efli- 
ciently be optimized and transformed to the intend nested re- 
lational schema Moreover, the queries remlting from thh tmns- 
formation are single pan processible (see above), ifT all joins con- 
tained in the logicd query are &ady material&d in the internd 
database [Sch&] (the “superselection” of VERSO [Ab8B] can also 
expras sach materialized join queries): 

ZQuery = s[dname](o[u[ename = ‘Smith’](ZEmp) # S](ZDept)) 

4.2 Non-Materialized Joins, Access Paths 

The algebraically optimined query is suitable for direct execution 
by the kernel, if all joins in the query are materiali4. However, 
this is only the best case. Usually, some joins are left which mast 
be computed on top of the kernel by repeated cdla and according 
to a strategy which must be determined camfully. Notice, that 
referemca (ddresses) to join partners mqy only be maMalised 
instead of the partners. As an example consider a query 

*[ename](Emp W a[dname = ‘Computa Science’](Dept)) 

and assame au internal representation that contains materid&ed 
refumca to ZEmp in ZDept: 

ZDept (Qna dname, . . . , ZEmprefr(OZEmp)) 
Zdnameindez ($na~,ZDeptrefr(QZDept)) 

ZEmp (m ename, dno, . . .) 

In addition we may have separate access paths (Zdnameindet) or 
join indll which have been generated to support joins. Em if 
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tke algebraic optimization could eliminate all joins there is still 
th problem of how to process the resulting single-relation and 
siuglescan operation by the kernel if one or several access paths 
exist on that relation! 

Thus we still have to select access paths to process queries, i.e. 
to generate access plans. We have not yet found exciting new 
ideas to solve this old problem. Our strategy is the following: 
every scau of a kernel relation cau be restricted to a subset of 
records by a predetermined set of addresses (as au input for the 
addreas selection). The worst case is a (full) r&ion seaa, i.e. 
we never need a segment scan. However, we can spend some ef- 
fort in obtaiuing a smaller set of addresses by considering access 
paths. Obviously, the amouut of I/O for the construction of such 
address sets should be small compared to a full scan. In our ex- 
ample above the strategy would be to use the index on home 
&rst to find the references to ZDept. Th& a (direct access) query 
fetches the correspomling Zdept tuple(s). The makdized refer- 
encea contained therein can be used to/retrieve the ZEmp tuples 
h a third step (a& a direct access query, but now set-oriented, 
i.e. dl matching ZEmp tuples are obtained by one kernel call): 

Use access path: 
DREFS := a[dname = ‘Computer Science’](Zdnameindez) 

Get department tuple with embedded references: 
EREFS := r[ZEmprej~]($[DREFfl(ZDept)) 

Retrieve employee tuples: 
RESULT := z[ename]($[EREFS](ZEmp)) 

In contrast to the approach of System/R and SQL/DS, where only 
one index could be selected to open au “index scau” or nose to 
open a %egment scan”, our system performs merging operations 
on sets of addresses from various sources (embedded references, 
references in join indices, access paths) to construct miuimal sets 
for the address selection. 

One negative result of our investigations should also be reported 
here: When we started our project in this direction [SS83] we saw 
a chance to combine the execution plau generation with the alge- 
braic optimization in one step. The motivation wes that all data 
including indices are represented as nested relations and the oper- 
ations (including direct access via addresses) are described by the 
(nested) relationd algebra. The result of such a combined step 
therefore could have been an optimized sequence of nested rela- 
tional algebra expressions to be executed directly by the kernel. 
Obviously, this has not been achieved by the optimizer described 
in the previous section. The reason is that the algebraic optimizer 
chinafer redundant operations, whereas the access path selection 
afterwards irfrodscer additional operations, nrunely those on the 
indices. From au algebraic point of view, these additional opera- 
tions are redumlaut. Therefore, a combined optimizer must con- 
sider re6rercer of algebraic expressions that are dependent from 
each other. A single cost function has to be found that combines 
the costs of dgebraic operations and the transfer of data between 
subsequent operations in a unique fashion. While there is still a 
hope that an elegaut combined solution cau be found, we have 
decided to follow the classical separate approach. 

Thus, the architecture of the flat relational DBMS front-end for 
the DASDBS kernel consists of three main modules (cf. figure 6): 
au algebraic ‘Transformation and Optimization Processor (TOP), 
a Multi Pass query (and update) Processor (MPP). Here access 
path selection is performed and join processing is realized by re- 
peatedly calling the underlying Single Pass Processor (SPP). The 
difference between the SPP and the kernel is, that access paths 
can be evaluated aud maintained by the SPP, while access paths 
are just ordinary internal relations for the kernel interface. Hence, 
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TOP 

q MPP 

SPP 

Figure 6: Architecture of the DASDBS relational front-end 

query processing using access paths is separakd iu a part located 
at the MPP module, namely finding the strategy, and the opera 
tional part within the SPP for single pass queries. In the case of 
multi pass operations, the SPP is used by the MPP in a nested 
loop like manner. 

5 Evaluation 

As the very first version of our nested relational DASDBS kernel 
came up running just a few days ago, we are currently unabk to 
report on performance evaluations of our own system. However, 
previous practical experiments can be taken as strong indications 
that the direction we chose is a promising one: previous work on 
join elimination for relational DBMSs (System/R) was reported in 
[SSSO, SSSl]. Results achieved there indicate performance gains of 
factor 3 with a transaction mix containing not only those queries 
that benefit from denormalization, but also some that perform 
worse and updates [SSSl]. The evaluations were based on the 
cost estimates of the System/R optimizer [ASK86]. These eval- 
uations did not include the algebraic optimization step as the 
denommlixed relations were visible in the logicd schema, Join 
elimination (algebraic optimization) aad execution of the queries 
was investigated in [OH85]. The figures obtained there are very 
drasticah factors of 566 to loo0 were achieved in elapsed time for 
single queries involving joins as opposed to optimized queries with 
2 redundant joins removed. 

In order to interpret and understand these previous results we 
started a series of own evaluations, sbo based on SQL/DS. The 
objective of our experiments was to gain insight into the impor- 
tance of clustering and/or access paths for join support. To a 
certain extent we tried to simulate the &ect of a nested relational 
join materialixation by a suitable loadiug sequence of tuples from 
the involved relations and by creating indices. The following ob- 
servations, however, must be kept in mind: 

l Even if an owner and its member tuples are cluskred within a 
page in the SQL/DS sense, we still have to create appropriate 
access paths in order to get direct access to the members in 
a join. Otherwise the system would not know that the join 
partners are already there and would search for them. 

l The optimizer decides whether an index scan or segment scan 
is opened. If two indices are availabk, at most one is used. 

One might think of a more sophisticated access plau generation, 
but our approach would move some of these problems into the 
algebraic optimization step. 

For the flat relational schema from figure 3 we generated three 
SQL/DS databases each with 25,000 employees, 1,006 depart- 
ments, 206 courses and 75,666 attended courses. The physical 
layout of these databases was differing in the clustering strategy 
achieved by the loading sequences: 
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4NF-DB: Emp, Dept and Course were loaded in ascending key 
sequence, i.e. clustered, unique indices were available on eno, 
dno and cno respectively. Att was loaded in a random I)O 
quence with a unique index on eno,cno. Relations were loaded 
one after the other. An additional index to Emp on dno was 
created to support joins. 

Sort-dn*DB: Similar to INF-DB, except the fact that Emp tu- 
plea are loaded in ascending dno sequence, i.e. now the dn+ 
index is the clustered index. 

‘WF2”-DB: Utilizing the fact that tnples from several relations 
are stored in the same page, if they are inserted in the corre- 
sponding sequence, au internal layout was established, that 
simulates our NF2 database structure as closely as possible. 
For each Dept tuple the corresponding Emp tuples and their 
Att tuples were loaded in sequence. This simulates the NF2 
schema shown in figure 3. 

A series of queries was run against the three databases, perfor- 
mance of SQL/DS was evaluated in terms of I/OS and DBSS-Calls. 
Sample queries reported in table 2 are (ln algebra notation): 

Qlr u[eno = 4242](Emp) W Dept 

Q2: a[dno = 42](Dept) W Emp 

Q2: a[ename = ‘Jones’](Emp) W&o a[ename = ‘Smith’](Emp) 
M Dept 

Q4r a[dno = 42]( Dept) W Emp W Att 

Moreover, query 1 was evaluated with the indices mentioned above 
and without any index in order to get a quantitive measure of 
the influence of indices on join processing costs. The results are 
contained in table 2. The following observations can be drawn: 

l The join without any index support (segment scan) is by a 
factor of 300-400 slower than the one with index (index scan). 
Obviously, this factor depends on the size of the segment. 
Query 1 without index perform equal on the 4NF and Sort- 
dno databases. 

l Clustering employees according to department numbers 
makes query 2 run faster, because all accessed employees 
share a (small set of) page(s). The ‘NF2” structure is even 
better, because the Dept tuple is also on this (set of) page(s). 
A factor of 2 can be observed compared to the 4NF schema 
(unclustered). For the DASDBS kernel, we expect even more 
performance enhancements, because the pages containing em- 
ployees of a department are fetched into the buffer by one 
chained Z/O. 

l In query 3 the SORT-dno database performs better than 
VJF2”, because of the superior clustering for this particular 
query. In the NF2 structure, also the Att tuples are clustered 

cdla 1 I/OS calls ] I/OS calls 

Table 2: Performance of selected queries 

with the departments, but this is not needed in query 2. In 
the ‘NF2” database the employee relation spans 2,140 pages, 
while in the other two databases 1,250 pages are enough to 
keep all Emp tuples. Nevertheless, “NF2” performs better 
than 4NF. As indicated iu query 2, without the Att tuples a 
twolevel “NF2” stmcture would be superior to Sort-dno. 

l Query 4 takes full advantage of the VF2” three-level cluster- 
ing strategy, thus this stmcture outperforms all of the others. 
In particular, a factor of 2 is achieved compared to the “usual” 
clustering approach (Sort-dno). 

6 Summary and Outlook 

We discussed the issue of physical database dasiga expressed in 
terms of the nested relational model. Asan example for a logical 
schema we considered flat relations. Emphasis was put on tech- 
niques that efficiently support joia processing. Common rtruc- 
turea like indices, join indices or link fields have bem presented 
as well as more unusual ones, namely denormabmtion. All of 
these techniques can be described formally by Complex Recorda 
of the DASDBS kernel, i.e. as nested relations. Moreover, the 
substantial problems introduced by the most effective joiu sup- 
port mechanism, denormalization, namely redundancy and loss of 
information can ervrily be avoided by using nerted join relations. 

Besides the formal description, which is an advantage on its 
own, we could benefit from the fact, that the front-end data model 
@at relations) is a subset of the internal one: the transformation 
of operations issued to the database from the logical schema view 
to the internal representation cau be performed easily. The map- 
pingx between internal and logical relations are defined as (nested 
relationd) dgebra expressions. Thus, simple substitution of these 
expressions into the user queries yields intemd equivalents. How- 
ever, similar to the usual view optimization problem, there is the 
need for algebraic optimization in order to avoid computing m- 
dundaut operations. Our aproach to this problem was to find 
transformations of the nested algebra operations that allow ap- 
plication of known joiu elimination techniques. To establish this 
goal, null values were introduced to achieve information preserv- 
ing mappings, the dgebraic operators were extended accordingly 
and a special reduction operation was introduced to elimlnate null 
values when necessary. 

The kernel interface allows to generate access paths on top of 
it, as addresses of intemd records can be given outside. Such 
addreasea cau later be used to formalate dii access queries. 
While our aim at the beginning of research in this direction was, 
to include access path selection at query execution time in the 
algebraic optimizer, our current solution pursues the claesicd two 
step approach of a separate “access plan generation” after the 
algebraic optimization. 

Physical database design has been discussed systematically by 
relaxing the paradigm of avoiding redundancy iu the database. A 
distinction between primary data (contained in the logical rela- 
tions) and derived, auxiliary data (e.g. references, access paths) 
was useful in the discussion of ryrtem controlled rednndaucy intro 
duced to enhance performance. This way, we could also show that 
non-hierarchically related data can be represented by our kernel. 
We presented several alternatives for many-to-many relationships 
mapped to the kernel data stmctures. These included all stmc- 
trues found in, e.g. network database systems. Therefore, other 
front-ends for the DASDBS kernel, including those that support 
some notion of “shared subobjects” (Ro88], “Complex Objects” 
(LKMPM85] or other types of stmcturea [BB84, Mi87] will abo 
find the kernel an appropriate storage system as far as stmctur- 
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ing k concerned, In contrast to the rclationd front-end, howevar, 
. opemtmm of lada m&k aumot mapped to kesnel opemtionr Y) 

edly by aimply mbatitutiag dgebraic erpresaionn. 
The udvaaced moddliug faditka of thooe data mod& includa 

faaturae razulsive atructure# a attribute inheritaaa that mq 
introduce additiond complexity to the physical da problem. 
However, the dtanativa will &o be chamctcrizcd by either h- 
troduciag radun&cy a referencea. Thus, we think that our ap 
prod wiR ti be aPPropxiate fa thus applications. 
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