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Abstract

While a variety of sophisticated physical database design techni-
ques has been devised in research, only very limited capabilities
are available in practice. This is mostly due to the fact, that
designing internal layouts differing from the logical view is not
transparent to the user. We present a more general two-level solu-
tion: Qur database kernel offers hierarchical clustering expressed
as nested (NF2) relations. Flat relations, resulting from logical
database design, are then mapped to this internal kernel inter-
face. We show, how the various physical structuring approaches
can be expressed in this model. Physical database design for a
flat relational front-end can then be described formally within the
(NF2) relational model. The important aspect of join support is
pursued by materializing some joins in nested relations without
any redundancy. Select-project-join queries on the logical schema
can be transformed to efficiently processible internal queries by
applying algebraic optimization techniques, known e.g. from view
optimization. Preliminary performance evaluations are reported
that were carried out on commercially available systems and soli-
cited our expectations.

1 Introduction & Problem Statement

Currently relational database management systems (RDBMS)
have reached wide acceptance in commercial applications. One
of the reasons certainly is that the logical design of a relational
database is mostly understood and often supported by additional
software tools. However, the physical database design as the ma-
jor performance tuning tool is still a struggle against a bunch of
interrelated parameters offered by the DBMS and/or the under-
lying file management system.

Physical database design techniques applicable in available
RDBMSs generally include access path generation. The access
path selection problem [Schk75), i.e. the decision which set of ac-
cess paths should be generated to establish the best performance
of queries and update transactions, has to be solved intellectually.
The implicit assumption to this problem is that the relations found
by the logical database design are also stored as “base” relations.
While this particular design technique is available in all RDBMSs,
a variety of other, sophisticated techniques have been devised and
are offered by some system or the other. Examples are “clusters”
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in ORACLE {ORACLE], aiming at the tuple-to-pages allocation
strategy, which allow to store tuples of different relations into one
page according to identical values in common attributes. The
main application of this feature is the efficient support of joins.
Another facility for the same purpose are the “link fields” offe-
red by the Research Storage System (RSS)! of System/R [As76,
Ch81]—which, however are not utilized by the Relational Data
System (RDS). Similarly, “coupling” in ADABAS [ADABAS] sup-
ports access from one tuple to another related by e.g. foreign keys.
The “generalized access path” technique [Ha78] or the so-called
“join indices” [LCB86] are research proposals providing join sup-
port.

A common observation for the various approaches to physical
database design is the following: The mapping from logical (tu-
ples) to internal (records) data structures is mostly trivial. Tuples
of the logical database relations are mapped one-to-one to internal
records. Optimization issues like the important effect of cluste-
ring are deferred to the next deeper lay¢r, namely the mapping of
internal records to the pages (blocks). The overall objective of re-
ducing the number of I/O operations neccessary to compute query
results or perform updates is pursued by special techniques for this
page-level database layout. ORACLE clusters, for instance, can
be defined to let the DBMS allocate space for “member” tuples
on the same page as their “owner” tuple (Tuples related by a key-
foreign key relationship will be called owner and members in the
sequel adopting these notions from the CODASYL model). Ten-
tative TIDs can be given to the free place administration module
to achieve the same effect. The distinction between a clustering
and a non-clustering index is another example of such techniques.

The problem with these approaches is that query optimization,
which is performed on a high level to reduce processing costs, es-
pecially algebraic optimization (cf. (U182, Ma83, ASU79, Scho86))
is too far from this page-level to take advantage of the clustering
information. However, incorporating the influence of a specific
clustering technique, e.g. in the selection of join algorithms, is an
important issue in query optimization [ASK80, U182, WY76).

One approach which has not yet been mentioned so far is “de-
normalization” [SS80, SS81]. The idea, that has also influenced
our direction, basically consists in storing materialized joins. Ho-
wever, as opposed to Schkolnick, who stays within the flat rela-
tional model to describe the materialized joins, our approach is
considerably more general: we utilize (a subset of) the nested re-
lational model (also called NF? model) for the (internal) record
level. We see the following advantages: First, the various techni-
ques applied in the physical database design can be expressed in
a unique, formal manner. Second, the underlying NF2 database
kernel system (cf. [DPS86, PSSWD87, SW86]) can be exploited
to efficiently manage relational applications. An additional ad-
vantage is that flat relations of course are a special case of nested
ones, which allows to define the mapping between logical (flat)
and internal (nested) relational schemata by means of a (nested)
relational algebra. As a result, this formal transformation can be

!now called Data Base Storage System (DBSS) in SQL/DS
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utilized in the algebraic optimization step, which then already re-
flects the physical database design. Thus, algebraically optimized
query formulations also reflect the clustering strategy.

SNP 4NF Relations result of logical
front . databare deoign

ut-end Algebraic Optimization

Access Path Management
resull of physical
DASDBS Nested Relations resull of phys
kerae) Storage Cluster Mgmt. v
Page & Object Buffer

Figure 1: Supporting a 4NF front-end by an NF2 kernel

Two related problems have to be solved when we follow this
idea of utilizing our nested relational kernel DBMS “DASDBS”
(Darmstadt Database System). The first one is physical data-
base design: given a logical database schema and statistical data
about the frequencies of certain types of retrieval and update ope-
rations (i.e. & “transaction mix”), find a physical database layout
that guarantees optimal overall DBMS performance. Usually the
number of I/Os is taken as the measure of system performance,
computing time is mostly neglected. Our specific approach to this
problcm is to describe the physical layout by a formal data model,
viz. NF2 relations. While other projects aim at an extensibility of
storage structures (e.g. STARBURST [LMP87)), i.e. special im-
plementations of a relation can be added to the system, we show
how different (wellknown) storage structures can be expressed by
using nested relations as the internal data model. Defining an
NF? relation for the internal database schema achieves a hiera-
chical clustering strategy. All commonly used internal structures
(or at least the important ones) can be represented in this mo-
del. Thus, we can in fact solve the physical design problem on
this abstract level without loosing important structuring alterna-
tives. Therefore, the second problem, to be solved at transaction
processing time, viz. transformation (and optimization) of logical
database schema level operations to the physical storage level, can
be attacked in an algebraic fashion. The tranformation is simply
performed by snbstltutmg algebraic definitions of the mapping
between the two views into user operations. However, similar
to a more classical setting, some sort of view optimization pro-
blem arizes. Redundant formulations of operations result from
this substitution process, which can be eliminated by algebraic
optimization techniques.

While preliminary ideas of our approach were described in
[SS83] as a research programme for the project, this paper de-
scribes the actual results based on an implemented algebraic op-
timizer and on an implemented database kernel. Some of the
theoretical aspects have been discussed in [Scho86].

The paper procedes by giving a summary of our kernel system,
its data structures and operations in section 2. It is also shown
how the kernel implements these structures on the underlying pa-
ges. In section 3 we discuss important physical structuring techni-
ques and how these can be expressed in terms of nested relations.
Section 4 describes the algebraic transformation and optimization
step. It is shown that important types of queries (including joins)
at the logical level can be mapped to simple operations at the
internal level. The rationale behind our approach, improving per-
formance by hierarchical clustering, is solicited by experimental
evaluations reported in section 5.
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2 DASDBS Kernel: Overview

2.1 Data Structures

DASDBS is a family of database systems based on a common ker-
nel [SW86, PSSWD87]. This kernel can be considered the storage
subsystem of the DBMSs in the family (cf. figure 2). Nested re-
lations [AB84, FT83, RKS85, 5583, S586] are the data structures
available at the kernel interface. In contrast to traditional (flat,
first normal form) relations, where attribute values are restricted
to be atomic, i.e. undecomposable by the DBMS, relations are al-
lowed as attnbute values (subrelations) in this “non first normal

rm” (=NF2) relational model. Thus, a hierarchical structure,
viz. relatlons consisting of tuples with components that are rela-
tions in turn etc., is established.

‘C_ko B iNP . (L)!Ilco N EBMS‘
DASDBS
kernd

Figure 2: The DASDBS family

In the kernel, tuples of NF? relations—called Complex Records
(CR) at this level—are implemented as “Storsge Clusters”
[DPS86]. This means, a CR is mapped to as few pages as possible.
Particularly, if a CR spans pages, this set of pages is exclusively
occupied by the CR. If, on the other hand, the CR is smaller
than a page, several CRs may share the page. However, only
CRs belonging to one (internal) relation may be stored on the
same page. Thus, the definition of internal relations is our means
of defining a (hierarchical) clustering strategy in a twofold sense:
individual CRs are clustered on a minimal set of pages, and fur-
thermore, all CRs belonging to a relation are stored on adjacent
pages. Of course, the latter clustering effect can be disturbed by
the database’s dynamic behaviour, but not the former one! In
contrast to GENESIS [Ba86}, for instance, we apply one unigue
storage technigue for Complex Records. Our argument for this
decision is that we want to express different storage techniques on
a higher level, namely by defining appropriate internal relations:
the implementor of a DASDBS front-end can express his favourite
storage technique in terms of Complex Records. In the sequel we
give examples how this is done for some important structures.

The intra-record structure was designed in such a way that fast
access to complete CRs as well as to parts of them (e.g. parts
specified by a nested projection, see below) is acomplished. This
structure guarantees getting the desired (part of the) CR into the
page buffer by two I/O operations on the average. The first 1/O
reads the first page belonging to the CR (the “root page”). Based
on the query and the information in the root page, the set of pages
is determined that is needed to complete the request. A second
(set-oriented, “chained”) I/O operation is started to fetch this set
into the buffer (see [DGW85, WNP87] for details). Farthermore,
the structure applied on the page level was designed in such a way
that the trivial case of CRs, namely flat tuples, is handled without
overhead compared to existing relational DBMSs.

An example of an NF?2 relational schema, together with a cor-
responding flat relational (4NF) schema is shown in figure 3. De-
partments and employees are described as well as courses and the
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courses attended by employees. In the flat schema we marked the
key-to-foreign key relationships by arrows. We will refer to this
example throughout the following sections of this paper.

4NF relations: Dept (dno,dname, ... )

N\

B el e )
Emp {(eno,dno,ename, ... J

Course (cne,cname, ... )

Att (emo,cno,date)

Nested Relations: Dept Course

dno dname ... Emp cno  cname ...

eno ename ... Aft

,
,
cno  date

Figure 3: Example of 4NF and NF? relations

2.2 Operations
Subset of the nested relational algebra

Similar to the nesting of data structures (relations), nested oper-
ations in algebra/calculus [AB84, RKS85, SS86] or SQL [PAS6,
RKBS8S5] style have been proposed for this model. A subset of the
nested relational algebra defined in [SS86] is implemented within
the kernel of DASDBS, the so-called “single pass processible” op-
erations [Sche85, Scho86]. This term indicates the fact, that these
operations can be computed efficiently, in a single (hierarchical)
scan (i.e. with a complexity linear in the size of the relation)
{PSSWD87].

The operations available at the kernel interface can be described
as allowing application of relational selections and projections to
every hierarchical level of a nested relation. Particularly, all single
pass queries are single iable (relation) queries. But additional
restrictions have to be imposed to disallow selections with set
comparisons introducing join complexity, for instance. For the
schema above we can, for example, select department tuples with
dname = 'Computer Science’, project some of their attributes,
e.g. dno and Emp. Furthermore, we want only the names (project
on ename) of programmers (select eskill = 'Programmer’). In the
nested relational algebra formulation this query would look like:

x[dno, xlename](o[eskill = 'Programmer’|( Emp))]
(sldname = 'Computer Science'|( Dept))

Notice that this query would have required a join in the corre-
sponding flat relational schema, but is inexpensive in the nested
one because of the following facts. The query is an example of
a single-scan operation: the join between employees and depart-
ments is materialized and the additional conditions are checked
during a single, hierarchical scan. If no access paths are available
(the worst case) every department CR has to be inspected. This
means, the root page of such a Complex Record has to be fetched
and it is determined, which other pages have to be read in order
to check the conditions. According to the storage strategy and to
the header organisation [DPS86] only the minimum possible num-
ber of page accesses (without access paths) is required to execute
this query. This observation is important, because it has been
the driving force behind our idea of implementing a flat relational
view on top of an NFZ kernel system.

Proceedings of the 13th VLDB Conference, Brighton 1987

Another important observation, derived from the algebraically
defined interface, is that all operations of the kernel are set-
oriented. Thus seis of CRs are transfered to the calling program
as the result of a query or given to the kernel for update operations
(ci. the database portals approach of [SR84]).

Address selection

As we apply the NF2 model to the storage structure level of our
system, we extended the model by the notion of eddresses of Com-
plex Records. (On a higher level of abstraction we would use the
term surrogates, i.e. a system provided, unique, stable identifier.
On the kernel level it is known in addition that these identifiers
allow very fast (direct) access.) A virtual attribute QR is asso-
ciated with each (internal) relational schema R. These addresses
may be given outside the kernel. Thus, front-end systems can use
these addresses to formulate direct access gueries at the kermel
interface. We introduced a special operation into the algebra to
describe this kind of “query”, the address selection ¢. For a given
set A of addresses—obtained by previous retrieval operations—,
Y[A](R) retrieves, via direct access, the set of Complex Records
addressed by the set A. This mechanism may be used to consiruct
and use access paths on top of the kernel. If, in our case, an index
on dname were available, the ¢-operation only fetches the pages
of those Dept-CRs that contain computer science departments.

Access costs

Our addressing scheme [DPS86] is a hierarchical one, namely a
combination of the tuple identifier (TID) concept and (sub-) tu-
ple numbers. The beginning of a Complex Record (= Storage
Cluster) is addressed by a TID and any subrecord is identified by
a sequence number which, in turn, is used to identify the corre-
sponding page number in the header of the Storage Cluster. The
discussion of this technique is contained in [DPS86] and shall not
be repeated here. However, for the purpose of physical design the
access costs listed in table 1 can be derived from the addressing
scheme, whatever the length and nesting depth of a CR is.

CR|{l14a |1l
ASR 0 0]1]2

ot
—

Table 1: Number of page accesses for the beginning of a Complex
Record (CR) and additional page accesses for the beginning of
any subrecord (ASR)

(a) is the case of a Complex Record which is shorter than one
page. Here, a (0 < a < 1) accounts for the amount of extra ac-
cess due to overflow-TIDs as in the usual TID concept. In (b) we
consider the case that a CR is larger than a page but the desired
subrecord is also stored on the header page whereas in (c) we need
one additional page access for the subrecord. In (d) we need two
additional page accesses which are necessary for a very large Stor-
age Cluster whose Aeader does no fit into the root page. In this
case we need one additional page access for the part of the header
which contains the page number for the subrecord. A reasonable
physical design of Storage Clusters, however, should avoid case
(d) and preferably produce cases (a), (b), and (c). Furtheron, if
not only the beginning of a whole Complex Subrecord is desired,
i.e. if the whole set of subrecords has to be fetched, ASR in table 1
can be interpreted as the number of additional page set requests
to be supported by chained I/O if offered by the operating system.
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3 Physical Database Design Using
Nested Relations

The overall objective of physical database design in general is to
find an optimal internal representation of the logical schema w.r.t.
a given (or estimated) workload of transactions. The number of
I/0O operations is used as the most important indicator of DBMS
performance. Thus the general guideline of physical design is:
data that is needed together shoul! be stored together on one
page if possible or on neighbouring pages (i.e. clustering). In the
first case we are quite sure that the result of the query is obtained
by one block access. The latter is only useful, if the mapping
from database pages to blocks preserves neighbourhood and when
chained I/O is exploited. Then, in both cases one I/O opera-
tion fetches the necessary data into the buffer without the need
for further I/Os. An optimal performance w.r.t. queries would be
achieved if all query results are internally clustered on one or a few
neighbouring pages. This, however, is impossible in general with-
out introducing redundancy, which in the case of updates causes
overhead due to the maintenance of consistency among the mul-
tiple copies. Thus query and update ratios have to be considered
carefully to find an optimal compromise. As commercial RDBMSs
apply almost trivial mappings from logical to internal structures,
the only DBMS controlled redundancy that can be introduced are
the generated access paths. Additional redundancy can only be
introduced on the logical level, which, however, gives responsibil-
ity for consistency to the user. In contrast to this, our approach
allows for redundancy in the mapping to internal representations.
Therefore, the DBMS can take the necessary actions to preserve
consistency among the replicated data.

In the sequel we will show how to use the hierarchical stractures
of NF? relations in the physical design for a flat relational logical
database schema. Because data have to be mapped to a linear
(block structured) storage space of the physical device, using hi-
erarchies for the description of the clustering strategy does not
impose any restrictions. This is because hierarchies are the most
general structures that can be linearized without introducing re-
dundancy or references. Obviously, by using references to subob-
jects instead of subobjects themselves, non-hierarchical structures
can be stored without redundancy in primary data. Only the ref-
erences are redundant in some sense (cf. “key redundancy” in the
relational model). In our discussion we will introduce redundant
auxiliary data to represent non-hierarchical structures stepwise
by using references first, and replicated data in a subsequent step.
Emphasis is put on support for join operations, although we start
with an easier case. We assume that the flat relations from figure 3
are given as the logical database schema. Several alternatives of
internal representations for parts of this schema will be presented.

3.1 Alternatives for Single Relations

Already for the simple case of a single relation a variety of storage
structures can be considered: The trivial structure, of course, is
to apply an identity mapping. One tuple of the logical relation be-
comes one Complex Record (the special case of a “non-complex”
one is included in the model). This is the usual technique applied
in commercial systems. Horizontal or vertlcal partitioning (with
or without redundancy) can be expreued by generating more than
one internal relation obtained by selections or projections of the
logical relation, respectively [CNW83, MS77, NCWD84]. These
techniques aim at efficient support for selections (mostly in dis-
tributed database environments, where tuples of a relation get
partitioned on several sites according to frequent accesses) or pro-
jections on frequently used attributes (to avoid reading attributes
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into the buffer that are rarely used). On the other hand, retrieving
whole relations/tuples becomes less efficient, of course.

An important structuring alternative found in practice is “sort-
ing” a relation w.r.t. certain attribute values. The sort order is
preserved by an appropriate indexing stracture (“clustered indez”
[SQL, ORACLE]). Sequential access in sort order as well as se-
lections on the ordering attribute(s) are supported by this mech-
anism. We can model this technique by creating one Complex
Record for the set of logical tuples having identical values in the
ordering attribute (or values in a certain range, to be more gen-
eral). The indexing part, however, is managed by the front-end
not by the kernel itself.

For instance, if employee tuples sha.ll’ be clustered according to
identical department numbers (clustered index on dno), we use
a nesting operslion which yields one tuple for each department
number having all employees as subtuples:

Emp (eno, dno,ename,...)

1 IEmp := y[Demps = (emo,ename,...)|(Emp)

IEmp (dno, Demps(eno, ename, .. .))
Emp IEmp
eno | dno | ename dno Demps
eno ename

1 tuple per employee 1 cluster per department

Figure 4: Clustering employees w.r.t. departments

While in a trivial representation (with unclustered index) a
query like “of{dno = 42](Emp)” would require (roughly) one I/O
per matching tuple (i.e. height(indez) + N), a clustered index
needs height(index) + n, where n is the number of pages neces-
sary to store all Emp tuples (the number of which is N) for this
particular department. Obviously, n € N, thus a clustered index
performs better. On the other hand, in case of updates on dno,
tuples would have to be moved between pages to maintain the
clustering. (Most systems do not move and thus clustering is not
kept in a strict sense.) With our nested representation the above
query performs even better, because we need the same number
of I/Os for the index and the data, but the kernel can fetch the
whole Complex Record in 2 I/O operations: one for the root page
of the record, and one (set-oriented, chained I/O) for the rest,
cf. section 2.1. Given that the operating system allows chained
I/0 ([PSSWD87, WNP87]) we perform better, but never worse.
However, in case of updates on dno, we are forced to maintain
clustering by deleting the empolyee subtuple in the old depart-
ment’s CR and insert it into the new one.

Another difference exists since we maintain the clusters: assume
an index is generated on employee names which provides us with
addresses. Then, in the flat storage structure 1 + a page accesses
would be necessary to fetch the required page. If we store em-
ployees according to the JEmp schema above, the address of an
employee (also obtained by an index) is a hierarchical one: it con-
sists of the TID of the Storage Cluster and of a (relative) subtuple
number for the employee. Therefore the number of page accesses
for one specific employee may vary between 1 and 3 (table 1).
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Without redundancy we can only cx;'egtc one clustered index.
Therefore, support for other selections can only be established by
unclustered indices.

3.2 Non-Clustered Indices

Like all available DBMSs, we can use non-clustered indices in the
relational frontend to the DASDBS kernel. Addresses of tuples are
known outside the kernel and can be used to build access paths on
top. The address attributes, however, can also be used to build
“link fields” (RSS of System/R [As76, Ch81]), see below. From
a systematic point of view our approach can be characterized as
clustering references to Complex Records instead of the records
themselves. This allows for multiple clustering strategies at little
costs due to redundancy. Only the references are kept in redun-
dant representation. In our example, we can have an index on dno
as well as on ename, both having references to I Emp tuples (here
the address attribute @I Emp is stored like ordinary attributes in
the index entries):

IEmp (eno, ename, dno, .. .)
Idnoindez  (dno, IEmprefs(@I Emp))

Ienameinder  (ename, IEmprefs(@IEmp))

The influence on performance of this type of indices is known from
traditional systems. Again we can profit from the set-orientation
of the kernel: given a reference list I[Emprefs obtained from ei-
ther index, a single set-oriented 1/O request (using the address
selection operation ¢) can be used to fetch the addressed IEmp
records. While chained I/Q may be not profitable in the case of
non-clustered I Emp records, it certainly is not worse than multi-
ple single I/Os, thus we can only gain and not loose.

As for the drawbacks of these indices, it is clear that mainte-
nance costs arise during updates on inverted attributes. There is
no difference of our solution and the classical ones.

3.3 Join Materialization: 1:n—Relationships
Join index

Now we discuss the support of joins, notably the most expen-
sive operation. In practical applications, access paths are gen-
erated that support all important join operations, because this
is the only possibility. A special kind of “join index” has been
proposed in [Ha78, L.C86] and implemented in ADABAS for the
“Coupling” [ADABAS)] of relations related by key—foreign key re-
lationships. There, in a single index structure (B*-tree) on the
join attribute(s), the leaf-nodes contain two kinds of references.
If in our example IDept and IEmp were stored as two internal
tables, a join index on these two could be

IDE(dno, @I Dept, I Empre f s(@1 Emp))

Obviously, using the internal addresses stored in IDE, we can
easily find a department record and all corresponding employee
records.

Denormalization

In research, another technique has been proposed that influ-
enced our project very much. “Denormalization” was proposed
by Schkolnick and Sorenson [SS80, SS81] as a means of (inter-
nally) materializing joins. In addition to the logical relations, the
most frequent join results are stored internally. Thus, these joins
become inexpensive operations at the cost of redundancy which
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causes overhead for updates. Nevertheless, performance gains by
factors of 3 to 4 were reported in [SS81]. This technique has al-
ready migrated into practice: the database administrator’s gunide
of SQL/DS [SQL] recommends “storing the join of tables” as a'
very effective performance tuning tool. However, as the user and
application programs are not shielded against such optimizations,
i.e. they are performed on the logical schema level, all operations
on the database have to be reformulated accordingly! In par-
ticular, update transactions have to take care of updating the
redundant representation.

The problem of loosing “dangling tuples” in the join was the
reason for storing joins plus the original relations and not using
the join instead of the logical relations in [SS80, SS81]. This
problem, however, can easily be solved by using oster joins, which
introduce null values for dangling tuples. A second problem, and
a more substantial one, is the redundancy in the join relation. A
tuple from the one relation is repeated for every matching tuple
in the other one. Both problems can be solved by using a nested
relation for the join result. Furthermore, as the join relation is
an infernal one in our approach and the logical schema is not
changed, the user and application programs are not affected, as
opposed to the SQL /DS recommendation.

First consider two relations related through a foreign key (Dept
and Emp in our example). Without any redundancy, we can inter-
nally store the nested relation I Dept with IEmp as a subrelation.

IDept(dno,dname, ..., IEmp(eno,ename,...))

Departments without employees result in a Complex Record with
an empty subrelation. This quite naturally indicates that there
are no employees. A slight problem occurs, if an employee is
not yet assigned to any department. For all these employees we
internally introduce a special null-valued department.

This stucture closely corresponds to the intention of ORACLE
clusters [ORACLE], were Emp tuples can be stored on the same
page as their Dept tuple. However, ORACLE neither guarantees
this clustering, nor is a page-spanning neighbourship established.
In SQL/DS a similar effect can only be achieved by an appropriate
initial loading sequence of tuples from the owner and member
relations. However, the join between Emp and Dept has to be
executed if required, which results in requesting the same page
several times. So, join queries benefit from this structure, becaunse
the required page is already in the buffer with a high probability.

In our approach, however, the system knows that all join part-
ners (Emp subtuples) are contained in the Storage Cluster (Dept
tuple). Thus, the corresponding pages are requested only once.
Access paths on dno can be applied in addition to support selective
access. On the other hand, let us consider the kind of operations
that become more expensive. Sequential processing of Dept tu-
ples is more costly, because only one tuple can be found on a page
as opposed to clustering several of them on a page in a separate
IDept relation without IEmp subrelation. If an employee is as-
signed to another department; this update is also more expensive
as it must be implemented as (subtuple) delete plus (subtuple)
insert in the new department as opposed to simply changing an
attribute value (dno in Emp). Sequential processing of employees
is only slightly worse than in a separate /Emp relation, because
one Dept tuple shares a (set of) page(s) with a number of Emp
tuples, which would be clustered on fewer pages otherwise.

3.4 Join Materialization: n:m-Relationships

Similar to the consideration of clustered indices vs. non-clustered
ones, materializing joins can only be performed in one direction
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without introducing redundancy. For example, consider our rela-
tions Emp, Att and Courses. Att is related to both Emp and
Courses by a foreign key. This is because an n:m (many-to-
many) relationship exists between employees and courses, a non-
hierarchical (network) structure is contained in our logical data-
base schema. So, what is our solution to this problem? At first
sight, our hierarchical kernel interface seems to be overstrained.
However, let us inspect the solutions that other systems found
for the representation of many-to-many relationships. Relational
systems use foreign keys and three separate relations, hierarchical
systems like IMS [IMS] offer several alternatives based on two or
three “physical databases” with additional “virtual pointers” (in
“logical databases”) or have to introduce two redundant hierarciii-
cal views. Network database systems according to the CODASYL
DBTG proposal [O178] use three record.types (relations) and two
set types (key—foreign key relationships) and allow several clus-
tering alternatives (SET MODEs).

Summarizing, we can state that no storage structure can be
found that allows symmetrical treatment of many-to-many rela-
tionships end clustering without redundancy. So, our choices are
either introducing redundancy to allow clustering in both hierar-
chical views or use references instead of objects for the clustering
(which is also a restricted kind of redundancy).

As we could expect form the above analysis, no new structures
can be found for the representation of many-to-many relation-
ships. Instead, we can apply any of the alternatives discussed for
the simple case in section 3.3, but now the representations of both
hierarchical views (from Emp to Att and from Courses to Att)
are interrelated and have to be evaluated in parallel. Determining
an optimal internal structure has to take into account both views
with their corresponding operational characteristics.

Thus we have a variety of alternatives, some of which are
sketched in figure 5. The internal representations which are sorted
in order of ascending degree of redundancy. (Symmetrical alterna-
tives are omitted.) As for the discussion of operations that benefit
from these structures and those that become more expensive, the
same arguments apply as in the simple case in section 3.3. As
a general guideline we can state: the more frequent update op-
erations on the foreign keys are, the more likely are references
imstead of subobjects. If both directions are frequently updated,
the solutions (2) or (3) in figure 5 may be good choices, because
there is little overhead, but nevertheless, queries are well sup-
ported. The subrelations containing the references in (3) can be
considered “declustered” access paths. A join index (2) would be
clustered on its own, while here the references are clustered with
the one relation. Therefore, maintenance costs in case of updates
(on the foreign key) are comparable to access paths. A reference
must be eliminated from one list and appended to another. Ad-
ditional references may be introduced in any of the alternatives,
pointing from “members” to “owners” (in addition to the “logical
pointers”, viz. foreign keys). This poesibility is sketched in the
Att subrelation of Emp in (5). Whenever one hierarchical view
of the relationship is more important (i.e. frequently used) than
the other alternative (4) can be selected (perhaps combined with
materialized references (5)).

Clearly, if updates are very infrequent or not critical w.r.t. per-
formance, redundant representations (6,7) are the best, because
they support queries most efficiently. In practice, those many-to-
many relationships are often not subject to updates. In our exam-
ple the fact that an employee attended a certain course would not
be updated lateron. Therefore, redundancy as an internal means
of ameliorating performance should be considered carefully, not
only in the special appearence of access paths.
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Figure 5: Some storage alternatives for m:n-relationships

Summarizing we see the need for a physical design optimization
sapported by some piece of software. An algorithm that solves the
whole problem (with reasonable effort) is not in sight, but heuris-
tics will help in finding initial physical database layouts to start
with. Currently, we are working on such heuristic approaches.
Considering spanning forests of the logical schema network (re-
lation schemata connected by key-foreign key relationships in an
acyclic graph) is a starting point for these physical design aids.

If we want to support more general joins, the generalized access
path technique of {H378] can be applied. While we only con-
sidered key—foreign key joins until now, suppose that a join on
other common attributes is a frequent operation. For instance we
can think of employees and departments being joined on locations
(dloc is the location of departments and eloc describes where em-
ployees live, loc is declared on the union of both domains). Now,
every index entry for a specific location would contain two sets of
references, one for departments and one for employees:

G APloc(log, IEmpref s(@1 Emp), I Deptre fs(@IDpet))
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4 Query Optimization

4.1 Algebraic Optimization

The problem discussed so far, physical database design, has to be
solved offline, i.e. before the database is installed, or when a reor-
ganization is planed. Our second problem, however, is a dynamic
one in the sense that it must be solved during query (and update)
ezecution time. Operations issued by the user against the logi-
cal schema of the database have to be optimized and transformed
to the internal schema, which has been determined by physical
database design and can be quite different. The advantage of
describing the internal database layout by means of our nested re-
lational model turns out to be that the transformations between
the two schemata can be defined formally using the (nested) rela-
tional algebra.

Let us reconsider the example given in figure 3 and let us assume
the 4NF view as the logical (L) and the NF2 relations as the
internal (I) database schemas respectively. Then the mapping
from L to I is defined by the following algebraic expressions (using
the notation from [SS86], ¥ means nesting):

ICourse := Course
IDept := v[IEmp = (eno,ename,...)J(v[[ Att = (cno, date)]
(Dept R Emp 131 Att)) :

Notice that we used the outer join operation (I31) to avoid loosing
“dangling tuples”. In general, to preserve information during the
transformation, we have to guarantee “losslessness” of the map-
ping. This notion, initially used in [ABU79] for project-join se-
quences only, has to be extended to apply to other operations too.
We rather use the term “invertibility” [SS83, Scho86] to empha-
size the fact that the information content has to be reproduced if
we apply the inverse transformation from I back to L. Obviously,
all physical design techniques have to guarantee invertibility.

For our example, the inverse transformation is defined by (u
denotes unnesting):

ICourse

x[dno, dname, .. )(IDept)

x|dno, eno,ename, .. |(s{I Emp|(I Dept))
x[eno, cno, date](u[l Att](u[I Emp)(IDept)))

Course =
Dept
Emp =

At =

These equations can now be used by the relational front-end to
transform a user query from logical to internal relations by sim-
ply substituting the right-hand sides for the logical relations men-
tioned in the query. For our example consider a query asking for
the name of Smith’s department:

LQuery x[dname](Dept M olename = 'Smith’)(Emp))

i
IQuery = x|dname|(x[dno,dname,...J(IDept) X
alename = 'Smith'}(x[dno, eno,ename, .. |

(s[IEmp|(I Dept)))

The need for algebraic optimization techniques is obvious, as sim-
ple formal substitution yields a formulation, where the join op-
eration is still present! However, intuitively it is clear that the
join in IQuery is redundant, because two projections of IDept
are joined on dna, the key attribute. Nevertheless, from a formal
point of view, join elimination criteria like those of [ASU79} are
not applicable, because the unnest operation u is not included in
their criteria. In fact, we have developed a theory of algebraic
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optimization in this new context that proves our intuition: the
join can be eliminated.

The idea of our approach is the following: the expressions
obtained by the substitution of equations defining the inverse
transformation are “almost flat relational”, which means the only
nested relational operation is u. If we now apply a total unnest
operation p* (cf. [FT83]) to the internal relations in all expres-
sions defining the mapping I — L we obtain identical flat (!)
relations in the expressions (u*(IDept) in our example) defining
C-relations contained in the same I-relation.

x[dname](x[dno, dname, .. }(u* (I Dept)) M
olename = 'Smith’](x[dno, eno, ename, . . .}

(6*(IDept)))

Then flat relational optimization techniques become applicable.
However, we have to solve another problem before: a special type
of null value is introduced by the outer join operation to guarantee
invertibility. The nest and unnest operations had to be redefined
in order to map null values to empty sets (subrelations) and vice
versa. Furthermore, we must be able to drop tuples of the totally
unnested relation that contain null values in specific attributes
(because the null values were not present in the logical relations):
a reduction operation “p” was introduced for this purpose.

IQuery =

x{dname](x{dno, dname, .. J(p[dno, dname,.. ]

(#*(IDept))) W

olename = *Smith’](x{dno, eno,ename, .. .]

(pleno, ename, .. .|(s° (I Dept))))

Some additional algebraic equivalences incorporating this reduc-
tion operation p were necessary to allow application of traditional
relational join elimination techniques, e.g. tableaux [ASU79]. Par-
ticularly, we can prove that select-project-join queries on the log-
ical ANF schema (with conjunctive selection formulae) can effi-
ciently be optimized and transformed to the internal nested re-
lational schema. Moreover, the queries resulting from this trans-
formation are single pass processible (see above), iff all joins con-
tained in the logical query are already materialized in the internal
database [Scho86) (the “superselection” of VERSO [Ab86] can also
express such materialized join queries):

IQuery = x[dname|(e|os{ename = 'Smith'|(IEmp) # 8](I1Dept))

IQuery =

4.2 Non-Materialized Joins, Access Paths

The algebraically optimized query is suitable for direct execution
by the kernel, if all joins in the query are materialized. However,
this is only the best case. Usually, some joins are left which mmst
be computed on top of the kernel by repeated calls and according
to a strategy which must be determined carefully. Notice, that
references (addresses) to join partners may only be materialized
instead of the partners. As an example consider a query

x{ename](Emp M ¢[dname = 'Computer Science’](Dept))

and assume an internal representation that contains materialized
references to IEmp in I Dept:

IDept (dno, dname,...,I Emprefs(QI Emp))
Idnameindez (dname, I Deptrefs(QIDept))
IEmp (eno,ename, dno, ...)

In addition we may have separate access paths (Idnameindex) or
join indices which have been generated to support joins. Even if
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the algebraic optimization could eliminate all joins there is still
the problem of how to process the resulting single-relation and
single-scan operation by the kernel if one or several access paths
exist on that relation!

Thus we still have to select access paths to process queries, i.e.
to generate access plans. We have not yet found exciting new
ideas to solve this old problem. Our strategy is the following:
every scan of a kernel relation can be restricted to a subset of
records by a predetermined set of addresses (as an input for the
address selection). The worst case is a (full) relation scan, i.c.
we never need a segment scan. However, we can spend some ef-
fort in obtaining a smaller set of addresses by considering access
paths. Obviously, the amount of I/O for the construction of such
- address sets should be smali compared to a full scan. In our ex-

ample above the strategy would be to use the index on dname
first to find the references to IDept. Then a (direct access) query
fetches the corresponding Idept tnple(s) The materialized refer-
ences contained therein can be used to retrieve the IEmp tuples
in a third step (again a direct access query, but now set-oriented,
i.e. all matching I Emp tuples are obtained by one kernel call):

1. Use access path:
DREFS := o[dname = 'Computer Science’](/dnameindez)

2. Get department tuple with embedded references:
EREFS := x[IEmprefs|(¢|DREF S|(IDept))

3. Retrieve employee tuples:
RESULT := x|ename](¥[EREF S)(IEmp))

In contrast to the approach of System/R and SQL/DS, where only
one index could be selected to open an “index scan” or nose to
open a “segment scan”, our system performs merging operations
on sets of addresses from various sources (embedded references,
references in join indices, access paths) to construct minimal sets
for the address selection.

One negative result of our investigations should also be reported
here: When we started our project in this direction [SS83] we saw
a chance to combine the execution plan generation with the alge-
braic optimization in one step. The motivation was that all data
including indices are represented as nested relations and the oper-
ations (including direct access via addresses) are described by the
(nested) relational algebra. The result of such a combined step
therefore could have been an optimized sequence of nested rela-
tional algebra expressions to be executed directly by the kernel.
Obviously, this has not been achieved by the optimizer described
in the previous section. The reason is that the algebraic optimizer
eliminates redundani operations, whereas the access path selection
afterwards infrodsces additional operations, namely those on the
indices. From an algebraic point of view, these additional opera-
tions are redundant. Therefore, a combined optimizer must con-
sider sequences of algebraic expressions that are dependent from
each other. A single cost fanction has to be found that combines
the costs of algebraic operations and the transfer of data between
subsequent operations in a unique fashion. While there is still a
hope that an elegant combined solution can be found, we have
decided to follow the classical separate approach.

Thaus, the architecture of the flat relational DBMS front-end for
the DASDBS kernel consists of three main modules (cf. figure 6):
an algebraic Transformation and Optimization Processor (TOP),
a Multi Pass query (and update) Processor (MPP). Here access
path selection is performed and join processing is realized by re-
peatedly calling the underlying Single Pass Processor (SPP). The
difference between the SPP and the kernel is, that access paths
can be evaluated and maintained by the SPP, while access paths
are just ordinary internal relations for the kernel interface. Hence,
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TOP

MPP

SPP

Figure 6: Architecture of the DASDBS relational front-end

query processing using access paths is separated in a part located
at the MPP module, namely finding the strategy, and the opera-
tional part within the SPP for single pass queries. In the case of
multi pass operations, the SPP is used by the MPP in a nested
loop like manner.

5 Evaluation

As the very first version of our nested relational DASDBS kernel
came up running just a few days ago, we are currently unable to
report on performance evaluations of our own system. However,
previous practical experiments can be taken as strong indications
that the direction we chose is a promising one: previous work on
join elimination for relational DBMSs (System/R) was reported in
[SS80, SS81]. Results achieved there indicate performance gains of
factor 3 with a transaction mix containing not only those queries
that benefit from denormalization, but also some that perform
worse and updates [SS81]. The evaluations were based on the
cost estimates of the System/R optimizer [ASK80]. These eval-
uations did not include the algebraic optimization step as the
denormalized relations were visible in the logical schema. Join
elimination (algebraic optimization) and execution of the queries
was investigated in [OH85]. The figures obtained there are very
drastical: factors of 500 to 1000 were achieved in elapsed time for
single queries involving joins as opposed to optimized queries with
2 redundant joins removed.

In order to interpret and understand these previous results we
started a series of own evaluations, also based on SQL/DS. The
objective of our experiments was to gain insight into the impor-
tance of clustering and/or access paths for join support. To a
certain extent we tried to simulate the effect of a nested relational
join materialization by a suitable loading sequence of tuples from
the involved relations and by creating indices. The following ob-
servations, however, must be kept in mind:

o Even if an owner and its member tuples are clustered within a
page in the SQL/DS sense, we still have to create appropriate
access paths in order to get direct access to the members in
a join. Otherwise the system would not know that the join
partners are already there and would search for them.

o The optimizer decides whether an index scan or segment scan
is opened. If two indices are available, at most one is used.

One might think of a more sophisticated access plan generation,
but our approach would move some of these problems into the
algebraic optimization step.

For the flat relational schema from figure 3 we generated three
SQL/DS databases each with 25,000 employees, 1,000 depart-
ments, 200 courses and 75,000 attended courses. The physical
layout of these databases was differing in the clustering strategy
achieved by the loading sequences:
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4NF-DB: Emp, Dept and Course were loaded in ascending key
sequence, i.e. clustered, unique indices were available on eno,
dno and cno respectively. Att was loaded in a random se-
quence with a unique index on eno,cno. Relations were loaded
one after the other. An additional index to Emp on dno was
created to support joins.

Sort-dno-DB: Similar to 4NF-DB, except the fact that Emp tu-
ples are loaded in ascending dno sequence, i.e. now the dno-
index is the clustered index.

“NF2»-DB: Utilizing the fact that tuples from several relations
are stored in the same page, if they are inserted in the corre-
sponding sequence, an internal layout was established, that
simulates our NF2 database structure as closely as possible.
For each Dept tuple the corresponding Emp tuples and their
Att tuples were loaded in sequence. This simulates the NF2
schema shown in figure 3.

A series of queries was run against the three databases, perfor-
mance of SQL /DS was evaluated in terms of I/Os and DBSS-Calls.
Sample queries reported in table 2 are (in algebra notation):

Q1: oleno = 4242]( Emp) W Dept
Q2: o[dno = 42](Dept) M Emp

Q3: olename = 'Jones’)(Emp) Myy, ¢lename = *Smith’}(Emp)
X Dept

Q4: oldno = 42)( Dept) M Emp W Att

Moreover, query 1 was evaluated with the indices mentioned above
and without any inder in order to get a quantitive measure of
the influence of indices on join processing costs. The results are
contained in table 2. The following observations can be drawn:

o The join without any index support (segment scan) is by a
factor of 300-400 slower than the one with index (index scan).
Obviously, this factor depends on the size of the segment.
Query 1 without index perform equal on the 4NF and Sort-
dno databases,

o Clustering employees according to department numbers
makes query 2 run faster, because all accessed employees
share a (small set of) page(s). The “NF2" structure is even
better, because the Dept tuple is also on this (set of) page(s).
A factor of 2 can be observed compared to the 4NF schema
(unclustered). For the DASDBS kernel, we expect even more
performance enhancements, because the pages containing em-
ployees of a department are fetched into the buffer by one
chained I/0.

e In query 3 the SORT-dno database performs better than
“NF2", because of the superior clustering for this particular
query. In the NF? structure, also the Att tuples are clustered

4NF Sort-dno “NF2»

I/Os Calls | I/Os Calls | 1/Os Calls
Qlw/oind. [ 5528 39| —  — | 4305 39
Ql w. ind. 14 42 16 42 13 42
Q2 35 61| 17 61| 14 6l
Q3 3537 550 | 1306 514 | 2189 514
Q4 131 193] 96 193| 46 193

Table 2: Performance of selected queries

Proceedings of the 13th VLDB Conference, Brighton 1987

with the departments, but this is not needed in query 2. In
the “NF2” database the employee relation spans 2,140 pages,
while in the other two databases 1,250 pages are enough to
keep all Emp tuples. Nevertheless, “NF2" performs better
than 4NF. As indicated in query 2, without the Att tuples a
two-level “NF2" structure would be superior to Sort-dno.

o Query 4 takes full advantage of the “NF2" three-level cluster-
ing strategy, thus this structure outperforms all of the others.
In particular, a factor of 2 is achieved compared to the “usual”
clustering approach (Sort-dno).

6 Summary and Outlook

We discussed the issue of physical database design expressed in
terms of the nested relational model. As an example for a logical
schema we considered flat relations. Emphasis was put on tech-
niques that efficiently support join processing, Common struc-
tures like indices, join indices or link fields have been presented
as well as more unusual ones, namely denormalization. All of
these techniques can be described formally by Complex Records
of the DASDBS kernel, i.e. as nested relations. Moreover, the
substantial problems introduced by the most effective join sup-
port mechanism, denormalization, namely redundancy and loss of
information can easily be avoided by using nested join relations.

Besides the formal description, which is an advantage on its
own, we could benefit from the fact, that the front-end data model
(flat relations) is a subset of the internal one: the transformation
of operations issued to the database from the logical schema view
to the internal representation can be performed easily. The map-
pings between internal and logical relations are defined as (nested
relational) algebra expressions. Thus, simple substitution of these
expressions into the user queries yields internal equivalents. How-
ever, similar to the usual view optimization problem, there is the
need for algebraic optimization in order to avoid computing re-
dundant operations. Our aproach to this problem was to find
transformations of the nested algebra operations that allow ap-
plication of known join elimination techniques. To establish this
goal, null values were introduced to achieve information preserv-
ing mappings, the algebraic operators were extended accordingly
and a special reduction operation was introduced to eliminate null
values when necessary. .

The kernel interface allows to generate access paths on top of
it, as addresses of internal records can be given outside. Such
addresses can later be used to formulate direct access queries.
While our aim at the beginning of research in this direction was,
to include access path selection at query execution time in the
algebraic optimizer, our current solution pursues the classical two
step approach of a separate “access plan generation” after the
algebraic optimization. ]

Physical database design has been discussed systematically by
relaxing the paradigm of avoiding redundancy in the database. A
distinction between primary data (contained in the logical rela-
tions) and derived, auxiliary data (e.g. references, access paths)
was useful in the discussion of system controlled redundancy intro-
duced to enhance performance. This way, we could also show that
non-hierarchically related data can be represented by our kernel.
We presented several alternatives for many-to-many relationships
mapped to the kernel data structures. These included all struc-
tures found in, e.g. network database systems. Therefore, other
front-ends for the DASDBS kernel, including those that support
some notion of “shared subobjects” [Ro86], “Complex Objects”
[LKMPMS85] or other types of structures [BB84, Mi87] will also
find the kernel an appropriate storage system as far as structur-
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ing is concerned. In contrast to the relational front-end, however,
operations of such models cannot mapped to kernel operations so
easily by simply substituting algebraic expressions.

The advanced modelling facilities of those data models include
features like recursive structures or attribute inheritance that may
introduce additional complexity to the physical design problem.
However, the alternatives will also be characterized by either in-

troducing redundancy or references. Thus, we think that our ap-

proach will also be appropriate for these applications.
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