
Supporting Flat Relations by a Nested Relational Kernel

M. H. Scholl, H.-B. Paul, H.-J. Schek
Tecbniul Unirersit~ of Dmrtadt, Computer Science Deputment

Alexandemtrafk 24, D-6100 D6ruwtadt, Wr& Germ6ny

Abstract

While a variety of sophisticated phy&al database design techni-
que6 ha6 been deviled in research, only very limited capabilitie6
are available in practice. Thir ie mostly due to the fact, that
designing intunal hsyoutr di!Tering from the loscal view b not

transparent to the user. We present a more general two-level rolu-
tion: Our databsse kernel offer6 hierarchical clnsteriug expmwed
as nested (NF2) relationa Flat relations, resulting from logical
database d&n, are then mapped to thir internal kernel inter-
face. We show, how the variour physical structuring approache6
cau be espre66ed in thi6 model. Phy6i’cd database de6ign for a
flat relational front-end can then be described formally within the
(NF2) relational model. The important sclpect of join 6upport h
pursued by materializing 6ome join6 in ne6ted relation6 without
any redundancy. S&&project-join quexiea on the logical rchema
can be transformed to efficiently proce66ible intemd queries by
applying algebraic optimization techniques, h~own e.g. from view
optimization. P&minary performau ce evaluation6 are reported
that were carried out on commerciay adable system6 and soli-
cited our expectation6.

1 Introduction & Problem Statement

Currently relationd database management system6 (RDBMS)
have reached wide acceptaua in commercial applications. One
of the rea6on6 certainly k that the logic41 design of a relational
database is mostly undemtood and often supported by additional
software tools. However, the physical databa6e design a6 the ma-
jor performma tuning tool t rtin a rtmggk agaiust a bunch of
interrelated parameter6 offered by the DBMS and/or the under-
lying file management 6J'SteIlL

Physicd database de&t techniques applicable in available
RDBMSs generally include acce66 path generation. The access
path selection problem [Schk75], i.e. the decision which 6et of ac-
ce66 path6 should be generated to establish the best performance
of querie6 and update transsctionr, ha6 to be solved intellectually.
The implicit a66umption to thir problem i that the relation6 found
by the logical database design are al6o stored a6 “ba6e” relations.
While thi6 particular design technique is available in all RDBMSs,
a variety of other, rophi6ticakd techniquea have been devi6ed and
are offered by 6ome system or the other. Example6 are “cl~tem”

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

in ORACLE [ORACLE], aiming at the tupk-tepage6 allocation
strategy, which allow to store tuple6 of different relation6 into one
page according to identical value6 in common attribute6. The
main application of this feature is the efficient support of joins.
Another facility for the 6ame purpose are the “lb& field” offe-
red by the Research Storage System (RSS)’ of Sy6tem/R [As76,
Ch81]-which, however are not utilized by the ReLational Data
sy6ta (RDS). shady, %OUph$ in ADABAS [ADABAS] SUP
ports access from one tuple to another rehbted by e.g. foreign keys.
The “general&d acce(u~ path” technique [Ha781 or the 6o-called
“join indices” [LC86] are rueareh propo6d6 providing join 6up
port.

A common ob6ervation for the variou6 approaches to physical
databa6.e design is the following: The mapping from logical (tu-
pier) to intemd (records) data structure6 i6 mostly t&id. ‘zhpkr
of the logicd database relation6 are mapped one-t-one to internal

records. Optimization issues like the +portant e&t of chric-
riry are deferred to the next deeper h@r, namely the mappiug of
internd record6 to the page6 (blocks). The overall objective of n-
ducing the number of I/O operations neccea6ary to compute query
re6ultr or perform update6 i6 pur6ued by specid technique6 for thi6
pag&evel database layout. ORACLE dustem, for instance, can
be defined to let the DBMS allocate space for “member” tupla
on the 6ame pa8x a6 their “owner” tuple (Tnple6 related by a key-
foreign key relationship will be called owner and member6 in the
sequel adopting these notion6 from the CODASn model). Ten-
tative TIDs can be given to the fxee place admi&tration module
to achieve the 6ame effect. The distinction between a clusteriug
and a non-clustering index is another example of 6uch teehniquu.

The problem with these approaches i6 that query optimieation,
which is performed on a high level to reduce processing co6t6, e6-

pecially algebraic optimization (cf. [ms2, Ma83, ASU79, Scho88])
is too far from this page-level to take advantage of the ehmtcring

information. However, incorporating the influence of a specific
clustering technique, e.g. in the selection of join algorithuq h au
important issue in query optimi6ation [ASK89, U182, WY76j.

One approach which ha6 not yet been mentioned M) lar b “de-
normalization” [SSSO, SS81]. The idea, that has also iufbenced
our direction, ba&ally consits in storing ma&abed joius. Hc+
wevcr, as oppo6ed to Schkoh&k, who stays within the ht rel&
tional model to describe the material&J join6, our approach b
con6iderably more general: we utilize (a subset of) the ncrfcl n-
lotional model (al60 called NF2 model) for the (intemd) record
level. we see the following advantage6: Fit, the variour tech&
quecl applied in the physicd database design cau be exprea6ed in
a unique, formal manner. Second, the underlyii NF2 databare
kernel system (cf. [DPS86, PSSWD87, SW88]) cau be exploited
to efficiently manage rektiond applications. An additional ad-
vantage i6 that flat relation6 of coume are a special ca6e of nested
ones, which allows to define the mapping between logical (flat)
aud internal (nested) relationd schemata by meaus of a (nerted)
relationd algebra. As a result, this formal tran6formation can be

bow called Data Base Storage System (DBSS) iu SQL/DS

137

utilked in the algebraic optimixation step, which then already ro-
iectr the phy&al database design. Thus, algebraically optimized
query formulationa alno rdect the clustering rtrategy.

Figure 1: Supporting a 4NF front-end by an NF2 hernel

Two related probknu have to be nolved when we follow this
idea of utilixing our nested rektiond kernel DBMS “DASDBS”
(Dumstadt Databare System). The first one b phyalcd data-
bane desiguz given a logical database schema and rtatistical data
about the frequenciu of certain typa of retrkval and update opt-
rationr (i.e. a %annac tion mix”), llnd a pbyrical database layout
that guarmtecs optimal overall DBMS performance. Usually the
number of I/Oe ir taken an the measure of oyrtem performance,
computing time in mostly neglected. Our specific approach to thk
probkm k to describe the physicd layout by a formal data model,
vk. NF2 relationr. Whik other project8 aim at an extensibility of
l tomge rtmctw (e.g. STARBURST [LMP8Q, i.e. rpecid im-
plementationa of a relatiin can be added to the system, we show
how different (rellhnown) storage rtructunw can be expressed by
using nated relations as the internal data modeL Defining au
NF2 relation for the intemd databane n&ma achiever a hiem
chical clustering rtmtegy. JU commonly used intemal structures
(or at least the important on-) can be represented in thir mo
deL Thaw, we can in fact mlve the physical design probkm on
thk abstract level without loosing important structuring alterna-
tives. Therefore, the second problem, to be solved at tramaction
processing time, vix. traudormation (and optimixatiin) of logical
database schema level operationa to the physical storage level, cau
be attached in au algebraic fa&ion. The tranformation k simply
performed by subrtituting algebraic deflnitionr cf the mapping
between the two views into user operatiorur. However, nimilar
to a more ckssical setting, some sort of view optimixation pro
bkm ariuu. Redundant fcrmulationr of operationr result from
thir substitution process, which cau be eliminated by algebraic
optimixatiou techniques.

Whik preliminary ideas of our approach were described in
[SS83] an a reaearch programme for the project, tbk paper de-
-ien the actud resulta based on au implemented debraic op
timiuer and on an implemented database hemeL Some of the
theoretical Mpectr have been discumed in [S&88].

The paper pro&a by giving a summary of our kernel system,
itr data stmcturen and operations in section 2. It ie also &own
how the kernel impkmentr these structures on the underlyii pa
gu. In section 3 we discusa important physicd atmcturing tech&
quea and how these cau be expressed in termn of nested relationa.
Section 4 describea the algebraic transformation and optimization
rtep. It ir shown that importaut typea of querier (including joinl)
at the logical level can be mapped to simple operations at the
iuternd 1eveL The rationale behind our approach, improving per-
formance by hierarchical clustering, is solicited by experimental
evaluations reported in 8ection 5.

2 DASDBS Kernel: Overview

2.1 Data Structures

DASDBS is a family of database systems based on a common her-
nel [SWSS, PSSWD871. Tbir kernel can be considered the rtorsC(e
mbsystem of the DBMS8 in the family (cf. figure 2). Nested re-
lations [AB&I, FI83, RKS85, SS83, SSSS] are the data stictn
available at the hemel interface. In contrast to traditional (flat,
first normal form) relations, where attribute values are restricted
to be atomic, i.e. undecomposable by the DBMS, nktioar are al-
lowed as attribute valuea (aubrelations) in thk “non tlrst normal
form” (=NF2) relational model. Thur, a hkmrchicd rtmcture,
viz. relations consisting of tupla with comport&r that are nLa-
tions in turn etc., is established.

Figure 2: The DASDBS family

In the kernel, tupla of NF2 relations--called Complex Record8
(CR) at thin level-are impkmented M “Stomgc Clrrter~”
[DPS88]. Thin meana, a CR b mapped to a.~ few pqpm M pomiile.
Particularly, if a CR spans pages, this ret of pw is exclusively
occupied by the CR. If, on the other hand, the CR ir tuualkr
than a page, severd CRn may share the page. However, only
CRa belonging to one (internal) relation may be stored on the
name page. Thur, the definition of internal relation is our mean8
of defining a (hierarchical) &&ring strategy in a twofold rense:
individual CEL are clustered on a minimal set of pages, and fur-
thermore, all CIb belonging to a relation are etored on adjacent
pages. Of course, the latter clurtering effect can be disturbed by
the databaae’r dynamic behaviour, but not the former one! In
contrast to GENESIS IBa86j, for inrtance, we apply one raiguc
rtoregc tcdaigre for Complex Records. Our argument for this
decision in that we want to express difkrent rtorage techniquea on
a higher level, namely by defining appropriate intemd relatious:
the implementor of a DASDBS front-end can express hip favourite
rtorage technique in terms of Compkx Recorda. In the sequel we
give exampka how this ir done for lome importaut rtmctw.

The iutra-record structure wan detdgned in ruch a way that ht
accum to compkte CRa M well aa to part8 of them (e.g. part8
rpecitled by a neated projection, see below) is acomplbhed. Thk
rtructure guaranteea getting the desired (part of the) CR into the
page b&r by two I/O operations on the average. The firat I/O
reads the tint page belongiug to the CR (the “root page”). Based
on the query and the information in the root page, the set of pages
in determined that is needed to complete the request. A second
(set-oriented, “chained”) I/O operation k rtarted to fetch this ret
into &he buffer (see [DGw85, WNPS’I] for detaik). Furthermore,
the structure applkd on the page level Watt desigued in such a way
that the trivial case of CR+ namely iat tupkn, ir handled without
overhead compared to existing relational DBMSI.

An example of an NF2 relational schema, together with a cor-
responding flat relational (4NF) achema is shown in figure 3. Da
partmentr and employea are de&bed an well m coaner and the

138 Proceedings of the 13th VLDB Conference, Brighton 1987

coume~ attended by employees. In the flat schema we marked the
key-teforeign key relationships by arrows. We will refer to this
example throughout the following sections of thin paper.

\
Emp (ero,dno,rname, . . .)

\ /
Ali (cao,cro,doie)

Nested Relations, Dapi COW**

dmo drone . . . Emp A

;‘. A
CIQ dale

Figure 3: Example of 4NF aud NF2 relations

2.2 Operations

Subset of the neated relational algebra

Similar to the nesting of data structures (relationa), n-ted oper-
ations in algebra/calc&s [AB84, RKS85, SW] or SQL [PA88,
RKB85] style have been proposed for this model. A subset of the
nerted rektiond *bra defined in [SSSS] ia implemented within
the kernel of DASDBS, the s+called “~iagle parr procerrible” op-

erations [Sche85, Scho88]. This term indicates the fact, that these
operation8 can be computed efficiently, in a single (hierarchicd)
scan (i.e. with a complexity linear in the size of the relation)
(pSSWD871.

The operations available at the kernel iuterface cau be described
M allowing application of relational selection and projections to
every hierarchicd level of a nested relation. Particuhuly, all single
psu queries are &g/e table (r&&on) queries. But additional
restrictiona have to be imposed to disallow eeiectiona with set
comparieo~ introducing join complexity, for instance. For the
achema above we can, for example, select department taplea with
dnome = ‘Computer Science’, project some of their attributes,
e.g. dno and Emp. Furthermore, we want only the namea (project
on enome) of programmen (select e&ill = ‘Programmer’). In the
neated relational algebra formulation this query would look like:

r[dno, r[ename)(a[ertill = ‘F’rogrammer’](Emp))]
(a[dnome = ‘Computer Science’](DepO)

Notice that this query would have required a join in the corre-
rpondiug fiat relationd achema, but b inexpensive in the nested
one because of the following facts. The query h au example of
a single-rcan operation: the join between employees aud depart-
mentr k~ material&d and the additiond conditionr are checked
during a single, hierarchicd scan. If no acce~ paths are ava&bie
(the wont case) every department CR haa to be inspected. Tb
meam, the root page of ouch a Complex Record haa to be fetched
and it ir determined, which other w have to be read ln order
to check the conditions. According to the storage rtrategy and to
the header orgauisation [DPS88] only the minimum possible num-
ber of page accessen (without accclls pathr) H required to execute
thin query. This observation h important, because it h- been
the driving force behind our idea of implementing a flat relational
view on top of au NF2 kernel system.

Another important observation, derived from the algebraicdly
defined interface, is that all operations of the kernel are e&et-
oriented. Thus retr of CRs are trau&red to the calling program
M the result of a query or given to the kernel for update operaticmr
(cf. the database port& approach of [SRM]).

Addreu selection

An we apply the NF2 model to the storage structure level of our
ryrtem, we extended the model by the notion of addrerrer of Cam-
piex Recorder. (On a higher level of abstraction we would w the
term murrogaten, i.e. a system provided, unique, stabk idenser.
On the kernel level it is known in addition that these identillen
allow very fast (diict) accew.) A virtual attribute OR L asao-
ciated with e& (internal) relational schema R. These ad&
mqy be given outside the kemeL Thus, front-end systems cau use
these addresses to formulate direct acceaa (eerier at the kerael
interface. We intmduc+ a special operation into the algebra to
describe thir kind of “query”, the addrerr releclior 16. For a given
set A of addreuses-obtained by previous retrieval operations-,
$[A](R) retrieves, via direct acce~, the set of Complex Recordr
addrumed by the ret A. This mechanism may be used to construct
and IJJX access paths on top of the kernel. If, in our case, an index
on dnome were available, the +-operation only fetch- the pagea
of those De@CRs that contain computer rcience departmentr.

Acceu cortr

Our addressing scheme [DPS88] b a hierarchicd one, namely a
combination of the tupie identifier (TID) concept and (sub) tu-
pie numbers. The beginning of a Complex Record (= Storage
Ciurter) is addressed by a TID and any mbrecord is identified by
a sequence number which, in turn, ir used to identify the corre-
sponding page number in the header of the Storage Cluster. The
discussion of thin technique is contained in [DPS88] and shall not
be repeated here. However, for the purpcae of phy&al deaigu the
access costs listed in table 1 cau be derived from the addressing
scheme, whatever the length aud nesting depth of a CR is.

Tabk 1: Number of page accesses for the begiuniug of a Complex
Record (CR) and additional page accesses for the beginning of
any subrecord (ASR)

(a) b the case of a Complex Record which is shorter than one
page. Here, a (0 < u < 1) accounts for the amount of extra ac-
ceu due to overflow-TIDE an in the usual TID concept. In (b) we
condder the case that a CR is larger than a page but the desired
subrecord ir asO stored on the header page whereae in (c) we need
one additional page acce~ for the aubrecord. In (d) we need two
additional page accest3e6 which are necesuwy for a very large Stor-
age Cluster whore header dacl no fit into the root page; In thk
case we need one additional page access for the part of the header
whirh containe the page number for the subrecord. A reasonable
physicd dedga of Storage &stem, however, should avoid a~
(d) and preferably produce casea (a), (b), and (c). Furtheron, if
not only the beginning of a whole Complex Subrecord in de&d,
i.e. if the whole ret of rrbncord8 k to be fetched, ASR in table 1
can be interpreted aa the number of additional page ret request8
to be supported by chaiued I/O if offered by the operatiug rystem.

Proceedings of the 13th VLDB Conference, Brighton 1987 139

3 Physical Database Design Using into the bnffer that are rarely used). On the other hand, retrieving

Nested Relations whole relations/tnples becomes less efficient, of course.
An important structuring alternative found in practice is “sort-

The overall objective of physical database design in general is to
fmd an optimal internal representation of the logicd schema r.r.t.
a given (or estimated) workload of transactions. The number of
I/O operations is used as the most importaut indicator of DBMS
performance. Thus the generd guideline of physical design is:
data that is needed together should be stored together on one
page if possible or on neighbouring pages (i.e. chlerirg). In the
first case we are quite sure that the result of the query is obtained
by one block access. The latter is only useful, if the mapping
from database pages to blocks preserves neighbourhood and when
chained I/O is exploited. Then, in both cases one I/O opus-
tion fetches the necessary data into the bnffer without the need
for further I/OS. An optimal performance w.r.t. queries would be
achieved if all query results are internally chtstered on one or 8 few
neighbouring pages. This, however, is impossible in general with-
out introducing redundancy, which in the case of updates causes
overhead due to the maintenance of consistency among the mul-
tiple copies. Thus query and update ratios have to be considered
carefully to find au optimal compromise. As commercial RDBMSs
apply dmoet trivial mappings from logical to internal structures,
the only DBMS co~iwlled ndrndancy that can be introduced are
the generated access paths. Additiond redundancy cau only be
introduced on the logical level, which, however, gives responsibil-
ity for consistency to the user. In contrast to this, our approach
allows for redundancy in the mapping to intemd representations.
Therefore, the DBMS can take the necessary actions to preserve
consistency among the replicated data.

In the seqnel we will show how to use the hierarchicd stmctures
of NF2 relations in the physical design for a flat relationd logical
database schema Because data have to be mapped to a linear
(block structured) storage space of the physical device, u&g hi-
erarchies for the description of the clusteriug strategy does not
impose any restrictions. This is because hierarchies are the most
generd structures that can be linearized without introducing re-
dundaucy or references. Obviously, by using references to subob-
jects instead of subobjects themselves, non-hierarchical structures
can be stored without redundancy in primary data Only the ref-
erences are redundaut in some sense (cf. “key redundancy” in the
relationd model). III our discussion we will iutroduce redundant
auxiliary data to represent non-hierarchical structures stepwise
by using references first, and replicated data in a subsequent step.
Emphasis is put on support for join operations, dthough we start
with an easier case. We assume that the ilat relations from figure 3
are given as the logical datdbase schema. Several dtematives of
intemd representations for parts of this schema will be presented.

3.1 Alternatives for Single Relations

Already for the simple case of a single relation a variety of storage
structures can be considered: The trivid structure, of course, is
to apply au identity mapping. One tuple of the logicd relation be-
comes one Complex Record (the speci.+ case of a “non-complex”
one is included in the model). This is the usual techuique applied
in commercid systems. Horixontd or verticd partitioning (with
or without redundancy) can be expres&l’by generating more than
one internal relation obtained by selections or projections of the
logical relation, respectively [CNW83, MS77, NCWD84]. These
techniqnes aim at efficient support for selections (mostly in dis-
tributed database environments, where tuples of a relation get
partitioned on severd sites according to frequent accesses) or prc+
jections on frequently used attributes (to avoid reading attributes

ing” a relation w.r.t. cert& attribute values. The sort order is
preserved by an appropriate indexing structure (“clurtend imfer”
[SQL, ORACLE]). Sequential access in sort order as well as se+
lections on the ordering attribute(s) are supported by this mech-
anism. We can model this technique by creating one Complex
Record for the set of logical tuples having identical values in the
ordering attribute (or values in a certain range, to be more gen-
erd). The indexing part, however, is managed by the front-end
not by the kernel itself. ,’

For instance, if employee tuples shall’be clustered according to
identicd department numbers (clustered index on dno), we use
a nesting opemtion which yields one tuple for each department
number having all employees as subtuples:

Emp (w, dno, ename, . . .)

1 ZEmp := v[Dcmpe = (eso, emame,. . .)](Emp)

ZEmp (&g, Dempd(eno. ename, . . .))

mm

1 tuple per employee 1 cluster per department

Figure 4: Clustering employees w.r.t. departments

While in a trivial representation (with unclustered index) a
query like “u[dno = 42](Emp)” would require (roughly) one I/O
per matching tuple (i.e. height(indez) + N), a clustered index
needs height(in&z) + n, where n is the number of pages neces-
aary to store all Emp tuples (the number of which is N) for this
particular department. Obviously, n < N, thus a clustered index
performs better. On the other hand, in case of updates on &to,
tuples would have to be moved between pagea to maintain the
clwtering. (Most systems do not move and thus clustering is not
kept iu a strict sense.) With our nested representation the above
query performs even better, because we need the same number
of I/OS for the index and the data, but the kernel can fetch the
whole Complex Record in 2 I/O operations: one for the root page
of the record, and one (set-oriented, chained I/O) for the rest,
cf. section 2.1. Given that the operating system allows chained
I/O ([PSSWD87, WNP81) we perform better, but never worse.
However, in case of updates on dno, we are forced to maintain
clustering by deleting the empolyee subtuple in the old depart-
ment’s CR and insert it into the new one.

Another difference exists since we maintain the clusters: assume
an index is generated on employee names which provides us with
add. Then, in the flat storage structure 1 + Q page accents
would be necessary to fetch the required page. If we store em-
ployees according to the ZEmp schema above, the address of an
emplope (also obtained by an index) is a hierarchicd one: it con-
sists of the TID of the Storage Cluster and of a (relative) subtuple
number for the employee. Therefore the number of page accesses
for one specific employee may vary between 1 and 3 (table 1).

140 proe&ings of the 13th VLDB Conference, Brighton 1987

Without redundancy we can only create one clustered index.
Therefore, support for other selections can only be established by
unclnstered indices.

3.2 Non-Clustered Indices

Like all available DBMSs, we can use non-clustered indices in the
relational frontend to the DASDBS kemeL Addresses of tnples are
known outside the kernel and can be used to build access paths on
top. The address attributes, however, can also be used to build
“link fields” (RSS of System/R [As76, Ch81]), see below. From
a systematic point of view our approach can be characterized as
clustering references to Complex Records instead of the records
themselves. This allows for mnltiple clnsteriug strategies at little
costs due to redundancy. Only the references sre kept iu redun-
dant representation. In our example, we can have an index on dno
as well as on enome, both having references to IEmp tuples (here
the address attribute OZEmp is stored like ordinary attributes in
the index entries):

IEmp (eno. ename, dno, . . .)

Idnoindex (& IEmprefs(OZEmp))

Ienomeindez (ename, IEmprefs(@ZEmp))

The influence on performauce of this type of indices is known from
traditional systems. Again we can profit from the set-orientation
of the kemeh given a reference list IEmprefr obtained from ei-
ther index, a single set-oriented I/O request (using the address
selection operation (b) cau be used to fetch the addressed IEmp
records. While chained I/O may be not profitable in the caxe of
non-clustered IEmp records, it certainly is not worse thau multi-
ple single I/Os, thus we can only gain and not loose.

As for the drawbacks of these indices, it is clear that mainte-
nance costs arise during updates on inverted attributes. There is
no difference of our solution and the classical ones.

3.3 Join Materialieation: l:n-Relationships

Join index

Now we discuss the support of joins, notably the most expen-
sive operation. In practical applications, access paths are gm-
erated that support all important join operations, because this
is the only possibility. A special kind of “join index” has been
proposed in [Hii78, LC86] and implemented in ADABAS for the
“Coupling” (ADABAS] of relations related by key-foreign key ro
lationships. There, in a single index structure (B+-tree) on the
join attribute(s), the leaf-nodes contain two kinds of references.
If in our example IDept and ZEmp were stored as two internal
tables, a join index on these two could be

IDE(rJgo- OZDept, IEmpref s(BIEmp))

Obviously, using the internal addresses stored in IDE, we can
easily find a department record and all correspondii employee
records.

Dcnormalllation

In research, another technique has been proposed that influ-
enced our project very much. “Denormalization” was proposed
by Schkomick and Sorenson [SSSO, SSSl] as a meaus of (inter-
nally) materialixing joins. In addition to the logical relations, the
most frequent join results are stored internally. Thus, these joins
become inexpensive operations at the cost of redundancy which

causes overhead for updates. Nevertheless, performance gains by
factors of 3 to 4 were reported in [SS81]. This technique hm al-
ready migrated into practice: the database sdminirtrator’s guldt
of SQL/DS [SQL] recommends “storing the join of tables” aa a
very effective performance tuning tooL However, as the user aud
application programs are not shielded against such optimidions,
i.e. they are performed on the lo+d schema level, all operations
on the database have to be reformulated accordiugly! In par-
ticular, update transactions have to take care of updating the
redundant representation.

The problem of loosing “daugling tuples” in the join wan the
reason for storing joins pier the original relations and not using
the join iartead of the l+cal relations in [SSSO, SSSl]. This
problem, however, cau easily be solved by usiug outer joiu, which
introduce null values for daugliug tuples. A second problem, and
a more substautid one, is the redundancy in the join relation. A
tuple from the one relation is repeated for every matching tuple
iu the other one. Both problems can be solved by uslug a neded
relation for the join result. Furthermore, as the join relation is
au irfenrl one in our approach and the logical schema is not
chauged, the user and application programs are not affected, as
opposed to the SQL/DS recommendation.

Fit consider two relations related through a foreign key (Dept
and Emp in our example). Without auy redundancy, we can inter-
nally store the nested relation IDept with ZEmp as a subrelation.

IDept(&, dnome, . . . , IEmp&,enome, . . .))

Departments without employees result in a Complex Record with
au empty subrelation. This quite naturally indicates that there
are no employees. A slight problem occurs, if rug employee is
not yet as&red to any department. l$r all these employees we
internally introduce a special null-valued department.

This stucture closely corresponds to the intention of ORACLE
clnstem [ORACLE], were Emp tuples cau be stored on the same
page as their Dept tuple. However, ORACLE neither guarantees
this clustering, nor is a page+spauning neighbourship established.
In SQL/DS a similar eiTect can only be achieved by au appropriate
initial loading sequence of tuples from the owner and member
relations. However, the join between Emp and Dept hw to be
executed if required, which results in requesting the same page
several times. So, join queriu benefit from this structure, because
the required page is already in the bnfier with a high probability.

In our approach, however, the system knoor that all join part-
ners (Emp subtuples) are contained in the Storage Cluster (Dept
tuple). Thus, the correspondiug pages are requested only once.
Access paths on dno can be applied in addition to support selective
access. On the other hand, let us consider the kind of operations
that become more expensive. Sequentid processing of Dept tu-
plea is more costly, because only one tuple can be found on a page
as opposed to clustexing severd of them on a page in a separate
IDept relation without IEmp subrelation. If an employee is as-
signed to another department, this update is also more expensive
as it must be implemented as (subtuple) delete phrs (subtuple)
insert in the new department as opposed to simply changing au
attribute value (dno in Emp). Sequential processing of employees
b only slightly worse than in a separate IEmp relation, because
one Dept tuple shares a (set of) page(s) with a mtmber of Emp
tuples, which would be clustered on fewer pages otherwise.

3.4 Join Materialization: mm-Relationships

Similar to the consideration of clustered indices vs. non-clustered
ones, materialixii joins cau only be performed in one direction

Proceedings of the 13th VLDB Conference, Brighton 1987 141

without iutroducing redundancy. For example, consider our rela-
tiona Emp, Att and Courrer. Att k related to both Emp and
Cowrer by a foreigu key. This is because au mm (mauy-to-
II+ r&ion&p exists between employees and courses, a uoa-
hienrchid (network) structure is contained in our logical dats-
hue rrhaM So, what k our solution to thin problem? At first
sight, au hiemrchicd kemd interface seems to be overstrained.
However, let us inspect the sohttions that other systems found
fbr the repraentation of many-t*nmny relationships. Relational
systems uw lo&n keys and three separate relations, hierar&cal
rysteuts like IMS pa] offer several dtemativa based on two or
three “&&al databarer” with additional “viiod pointers” (in
“lo&d databad) or have to introduce two redundant hierarc!ii-
cd views. Network database systems according to the CODASYL
DBTG proposal [Olfi use three recmd;typen (relations) and two
set typa (key-foreign key relationshipb) and allow several chm-
t&g dtamativu (SET MODDs).

Sumu&uiug, we can state that no storage structure can be
fouud that dlows symmetricd treatment of many-tomany reb~-
tlodlps l J clustering without redundancy. So, our choices are
either introducing redundaucy to allow clustering in both hierar-
chical views or use r&rences instead of objecta for the clustering
(which is dso a restricted kind, of redundancy).

As we could expect form the above andysis, no new structures
um be fouud for the representation of many-temauy relation-
ships. b&ad, we am apply any of the alternatives discussed for
the simple case iu section 3.3, but now the representations of both
hkarchical views (from Emp to Aft and from Courrer to Att)
are interrelated and have to be evahrated iu parallel. Dekrmmiug
au optima lntemd rtmcture has to take into account both views
with their corresponding operational characteristics.

Thus we have a variety of dtematives, some of which are
sketched iu Sgure 5. The intemd representations which are sorted
ht order of ascending degree of redundancy. (Symmetricd alterna-
tives are mu&d.) As for the discussion of operations that benefit
&om these structures and those that become more expensive, the
same arguments apply as in the simple case in section 3.3. Aa
l general guideline we cau state: the more frequent update op-
erations on the foreign keys are, the more likely are references
iutead of subobjects. If both diitions are frequently updated,
the soh~tioms (2) or (3) iu Egure 5 may be good choices, because
there is little overhead, but nevertheless, queries are well sup-
ported. The subrelations containing the referencea in (3) am be
ausidered “declustered” access paths. A join index (2) wonld be
clustered on its own, while here the references are clustered with
the oue relation. Therefore, maintenance costs in case of updates
(on the foreign key) are comparable to access paths. A reference
mmt be elimiuated from one list and appended to auother. Ad-
dititmd references may be introduced in any of the alternatives,
polutlltg hill %embem” to “owners” (in addition to the “logicd
pointed, vis. foreign keys). This possibility is sketched in the
Att mbrelation of Emp in (5). Whenewr one hierarchical view
of the relationship is more important (i.e. frequently used) thau
the other dtemative (4) can be selected (perhaps combined with
materislised refereltcu (5)).

Clearly, if updates are very infrequent or not critical w.r.t. per-
brmance, redunclaut representations (6,7) are the best, becanse
they support quesia most efficiently. In practice, those many-t+
-y relationships are often not subject to updates. In our exam-
ple the fnct that an employee attended a certain course would not
be updated lateron. Therefore, redundancy as au internal means
of amelioratiug performance should be considered carefully, not
only in the specid appearence of access paths.

0 cnwmc . . . All cm* cm.nc .., Ail

e*e cr.ne dmo . . .

Figure 5: Some storage alternatives for m:n-relationships

Summarising we see the need for a physical design optimixation
supported by some piece of software. An dgorlthm that solves the
whole problem (with rmsonable eflort) is not in sight, but heuris-
tics will help in finding b&id physical database layouts to start
with. Currently, we are workiug on such he&tic approaches.
Considering spanniug forests of the logicd schema network (r+
l&on schemata connected by key-foreign key rektionships in au
acyclic graph) is a starting point for these physicd deeitpr aids.

If we waut to support more general joius, the generalized acceu
path te&nique of [H&76] cau be applied. While we only con-
sidered key-foreign key joins until now, suppose that a join on
other common attriiutes is a frequent operation. Par instance we
cau think of employees and departments beiug joined on locatious
(&c is the location of departments and efoc describes where em-
ployeee live, lot is declared on the union of both domains). Now,
every index entry for a specific location would contain too retr of
mfcmncc~, one for departments and one for employees:

GAP~(&, ZEmpref n(QsZEmp), ZDeptref4@ZDpet))

142 Proceedings of the 13th VLDB Conference, Brighton 1987

4 Query Optimization

4.1 Algebraic Optimization

The problem discussed so far, physical database design, has to be
solved offline, i.e. before the database is installed, or when a reor-
ganization is planed. Our second problem, however, is a dynamic
one in the sense that it must be solved during query (and update)
erecrlioa time. Operations issued by the user against the logi-
cd schema of the database have to be optimized and trausformed
to the internal schema, which has been determined by physical
datak design and can be quite different. The advantage of
describii the internal database layout by meas of our nested re-
lational model turns out to be that the transformations between
the two schemata can be defined formally using the (nested) rok-
tional algebra

Let us reconsider the example given in figure 3 and let us assame
the 4NF view as the logical (L) and the NFz relations a the
intemd (I) database schemaa respectively. Then the mapping
from L to Z is defined by the following algebraic expressions (using
the notation from [SS86], Y means nestiug):

ICoarse := Courre
ZDept := u[ZEmp = (eno, ename, . . .)](u[ZAtt = (cno, date)]

(Dept IXI Emp •XI AH))

Notice that we used the outer join operation (8) to avoid loosing
“dangling tnples”. In generd, to preserve information during the
transformation, we have to guarautee “losslessness” of the map-
ping. This notion, initially used in [ABU79] for project-join se-
quencea only, has to be extended to apply to other operations too.
We rather use the term “invertibility” [S!%3, Schog6] to empb
&e the fact that the information content has to be reprodaced if
we apply the inverse transformation from Z back to L. Obviously,
dl physicd design techniques have to guarauta invatibiity.

For our example, the inverse transformation is ddined by (p
denotes unnesting):

Course = ZCourre

Defl = z[dno, dname, . . .](ZDept)

Emp = s[dno, eno,ename,. . .](p[ZEmpl(ZDept))

Att = s[eno, cno, date](~[ZAtt](~[ZEmp](ZDept)))

These eqaations can now be used by the relationd front-end to
transform a user query from logical to internal relations by sim-
ply substituting the right-hand sides for the logical relations men-
tioned in the query. For our example consider a query asking for
the name of Smith’s department:

LQuery = r[dname](Dept W alename = ‘Smith’](Emp))

1
IQuery = r[dname](*[dno, dname,. . .](ZDept) W

a[ename = ‘Smith’](r[dno, eno, ename, . . .]

WEwlWer4))
The need for algebraic optimization techniques is obvious, as sim-
ple formal substitation yields a formulation, where the join op-
eration is still present! However, intuitively it is clear that the
join in IQuery is redundant, because two projections of ZDept
are joined on dno, the key attribute. Nevertheless, from a formal
point of view, join elimination criteria like those of [ASU79] UC
not applicable, because the unnest operation p is not included in
their criteris III fact, we have developed a theory of algebraic

optimization in this new context that proves our intaitloni the
join can be eliminated.

The idea of our approach is the followingz the exprasions
obtained by the substitution of equations de&&g the inverse
transformation are “almost flat relationd”, which meanstheonly
nested relational operstion k c. If we now apply a totd unntrt
operation p’ (cf. [F’T83]) to the intemd rehions in dl exprea-
sions defming the mapping Z + L we obtdn kkatical iat (!)
relstionr in the espreaaionr (#(ZDept) in our example) defining
C-relations contdned in the same Z-relation.

ZQaery = r[dname](s[dno, dname, . . .]($(ZDept)) W
u[ename = ‘Smith’](r[dno,eno, ename,. . .]

b*Wepf)))

Then iat relationd optimization technlqua become applicable.
However, we have to solve another problem before: a specid type
of n14 vdue is introduced by the outer join operation to guaraatee
invertibility. The nest and unnat operations had to be reddined
in order to map null valaes to empty sets (sub&ions) and vice
versa Farthermore, we must be able to drop tuphx of the totally
unnested relation that contain mall vdua in specitk attributes
(because the null values were not present in the logical relations):
a reduction operation “p” wz~ introduced for this purpose.

ZQuery = r[dname](r[dno,dname, . . .](p[dno,dname, . . .]

(ND@))) W
a[ename = ‘Smith’](r[dno, eno,ename, . . .]

b[em enam,. . .Ib*(~Dept))N
Some additional dgebraic equivalences incorporating this reduc-
tion operation p were necessary to alh3w afiplication of traditional
relationd join elimination techniques, e.g. tableaux [ASU79]. Par-
ticularly, we can prove that select-project-join queries on the log-
ical 4NF schema (with conjunctive selection form&e) can efli-
ciently be optimized and transformed to the intend nested re-
lational schema Moreover, the queries remlting from thh tmns-
formation are single pan processible (see above), ifT all joins con-
tained in the logicd query are &ady material&d in the internd
database [Sch&] (the “superselection” of VERSO [Ab8B] can also
expras sach materialized join queries):

ZQuery = s[dname](o[u[ename = ‘Smith’](ZEmp) # S](ZDept))

4.2 Non-Materialized Joins, Access Paths

The algebraically optimined query is suitable for direct execution
by the kernel, if all joins in the query are materiali4. However,
this is only the best case. Usually, some joins are left which mast
be computed on top of the kernel by repeated cdla and according
to a strategy which must be determined camfully. Notice, that
referemca (ddresses) to join partners mqy only be maMalised
instead of the partners. As an example consider a query

*[ename](Emp W a[dname = ‘Computa Science’](Dept))

and assame au internal representation that contains materid&ed
refumca to ZEmp in ZDept:

ZDept (Qna dname, . . . , ZEmprefr(OZEmp))
Zdnameindez ($na~,ZDeptrefr(QZDept))

ZEmp (m ename, dno, . . .)

In addition we may have separate access paths (Zdnameindet) or
join indll which have been generated to support joins. Em if

143
Proceedings of the 13th VLDB Conference, Brighton 1987

tke algebraic optimization could eliminate all joins there is still
th problem of how to process the resulting single-relation and
siuglescan operation by the kernel if one or several access paths
exist on that relation!

Thus we still have to select access paths to process queries, i.e.
to generate access plans. We have not yet found exciting new
ideas to solve this old problem. Our strategy is the following:
every scau of a kernel relation cau be restricted to a subset of
records by a predetermined set of addresses (as au input for the
addreas selection). The worst case is a (full) r&ion seaa, i.e.
we never need a segment scan. However, we can spend some ef-
fort in obtaiuing a smaller set of addresses by considering access
paths. Obviously, the amouut of I/O for the construction of such
address sets should be small compared to a full scan. In our ex-
ample above the strategy would be to use the index on home
&rst to find the references to ZDept. Th& a (direct access) query
fetches the correspomling Zdept tuple(s). The makdized refer-
encea contained therein can be used to/retrieve the ZEmp tuples
h a third step (a& a direct access query, but now set-oriented,
i.e. dl matching ZEmp tuples are obtained by one kernel call):

Use access path:
DREFS := a[dname = ‘Computer Science’](Zdnameindez)

Get department tuple with embedded references:
EREFS := r[ZEmprej~]($[DREFfl(ZDept))

Retrieve employee tuples:
RESULT := z[ename]($[EREFS](ZEmp))

In contrast to the approach of System/R and SQL/DS, where only
one index could be selected to open au “index scau” or nose to
open a %egment scan”, our system performs merging operations
on sets of addresses from various sources (embedded references,
references in join indices, access paths) to construct miuimal sets
for the address selection.

One negative result of our investigations should also be reported
here: When we started our project in this direction [SS83] we saw
a chance to combine the execution plau generation with the alge-
braic optimization in one step. The motivation wes that all data
including indices are represented as nested relations and the oper-
ations (including direct access via addresses) are described by the
(nested) relationd algebra. The result of such a combined step
therefore could have been an optimized sequence of nested rela-
tional algebra expressions to be executed directly by the kernel.
Obviously, this has not been achieved by the optimizer described
in the previous section. The reason is that the algebraic optimizer
chinafer redundant operations, whereas the access path selection
afterwards irfrodscer additional operations, nrunely those on the
indices. From au algebraic point of view, these additional opera-
tions are redumlaut. Therefore, a combined optimizer must con-
sider re6rercer of algebraic expressions that are dependent from
each other. A single cost function has to be found that combines
the costs of dgebraic operations and the transfer of data between
subsequent operations in a unique fashion. While there is still a
hope that an elegaut combined solution cau be found, we have
decided to follow the classical separate approach.

Thus, the architecture of the flat relational DBMS front-end for
the DASDBS kernel consists of three main modules (cf. figure 6):
au algebraic ‘Transformation and Optimization Processor (TOP),
a Multi Pass query (and update) Processor (MPP). Here access
path selection is performed and join processing is realized by re-
peatedly calling the underlying Single Pass Processor (SPP). The
difference between the SPP and the kernel is, that access paths
can be evaluated aud maintained by the SPP, while access paths
are just ordinary internal relations for the kernel interface. Hence,

144

TOP

q MPP

SPP

Figure 6: Architecture of the DASDBS relational front-end

query processing using access paths is separakd iu a part located
at the MPP module, namely finding the strategy, and the opera
tional part within the SPP for single pass queries. In the case of
multi pass operations, the SPP is used by the MPP in a nested
loop like manner.

5 Evaluation

As the very first version of our nested relational DASDBS kernel
came up running just a few days ago, we are currently unabk to
report on performance evaluations of our own system. However,
previous practical experiments can be taken as strong indications
that the direction we chose is a promising one: previous work on
join elimination for relational DBMSs (System/R) was reported in
[SSSO, SSSl]. Results achieved there indicate performance gains of
factor 3 with a transaction mix containing not only those queries
that benefit from denormalization, but also some that perform
worse and updates [SSSl]. The evaluations were based on the
cost estimates of the System/R optimizer [ASK86]. These eval-
uations did not include the algebraic optimization step as the
denommlixed relations were visible in the logicd schema, Join
elimination (algebraic optimization) aad execution of the queries
was investigated in [OH85]. The figures obtained there are very
drasticah factors of 566 to loo0 were achieved in elapsed time for
single queries involving joins as opposed to optimized queries with
2 redundant joins removed.

In order to interpret and understand these previous results we
started a series of own evaluations, sbo based on SQL/DS. The
objective of our experiments was to gain insight into the impor-
tance of clustering and/or access paths for join support. To a
certain extent we tried to simulate the &ect of a nested relational
join materialixation by a suitable loadiug sequence of tuples from
the involved relations and by creating indices. The following ob-
servations, however, must be kept in mind:

l Even if an owner and its member tuples are cluskred within a
page in the SQL/DS sense, we still have to create appropriate
access paths in order to get direct access to the members in
a join. Otherwise the system would not know that the join
partners are already there and would search for them.

l The optimizer decides whether an index scan or segment scan
is opened. If two indices are availabk, at most one is used.

One might think of a more sophisticated access plau generation,
but our approach would move some of these problems into the
algebraic optimization step.

For the flat relational schema from figure 3 we generated three
SQL/DS databases each with 25,000 employees, 1,006 depart-
ments, 206 courses and 75,666 attended courses. The physical
layout of these databases was differing in the clustering strategy
achieved by the loading sequences:

Proceedings of the 13th VLDB Conference, Brighton 1987

4NF-DB: Emp, Dept and Course were loaded in ascending key
sequence, i.e. clustered, unique indices were available on eno,
dno and cno respectively. Att was loaded in a random I)O
quence with a unique index on eno,cno. Relations were loaded
one after the other. An additional index to Emp on dno was
created to support joins.

Sort-dn*DB: Similar to INF-DB, except the fact that Emp tu-
plea are loaded in ascending dno sequence, i.e. now the dn+
index is the clustered index.

‘WF2”-DB: Utilizing the fact that tnples from several relations
are stored in the same page, if they are inserted in the corre-
sponding sequence, au internal layout was established, that
simulates our NF2 database structure as closely as possible.
For each Dept tuple the corresponding Emp tuples and their
Att tuples were loaded in sequence. This simulates the NF2
schema shown in figure 3.

A series of queries was run against the three databases, perfor-
mance of SQL/DS was evaluated in terms of I/OS and DBSS-Calls.
Sample queries reported in table 2 are (ln algebra notation):

Qlr u[eno = 4242](Emp) W Dept

Q2: a[dno = 42](Dept) W Emp

Q2: a[ename = ‘Jones’](Emp) W&o a[ename = ‘Smith’](Emp)
M Dept

Q4r a[dno = 42](Dept) W Emp W Att

Moreover, query 1 was evaluated with the indices mentioned above
and without any index in order to get a quantitive measure of
the influence of indices on join processing costs. The results are
contained in table 2. The following observations can be drawn:

l The join without any index support (segment scan) is by a
factor of 300-400 slower than the one with index (index scan).
Obviously, this factor depends on the size of the segment.
Query 1 without index perform equal on the 4NF and Sort-
dno databases.

l Clustering employees according to department numbers
makes query 2 run faster, because all accessed employees
share a (small set of) page(s). The ‘NF2” structure is even
better, because the Dept tuple is also on this (set of) page(s).
A factor of 2 can be observed compared to the 4NF schema
(unclustered). For the DASDBS kernel, we expect even more
performance enhancements, because the pages containing em-
ployees of a department are fetched into the buffer by one
chained Z/O.

l In query 3 the SORT-dno database performs better than
VJF2”, because of the superior clustering for this particular
query. In the NF2 structure, also the Att tuples are clustered

cdla 1 I/OS calls] I/OS calls

Table 2: Performance of selected queries

with the departments, but this is not needed in query 2. In
the ‘NF2” database the employee relation spans 2,140 pages,
while in the other two databases 1,250 pages are enough to
keep all Emp tuples. Nevertheless, “NF2” performs better
than 4NF. As indicated iu query 2, without the Att tuples a
twolevel “NF2” stmcture would be superior to Sort-dno.

l Query 4 takes full advantage of the VF2” three-level cluster-
ing strategy, thus this stmcture outperforms all of the others.
In particular, a factor of 2 is achieved compared to the “usual”
clustering approach (Sort-dno).

6 Summary and Outlook

We discussed the issue of physical database dasiga expressed in
terms of the nested relational model. Asan example for a logical
schema we considered flat relations. Emphasis was put on tech-
niques that efficiently support joia processing. Common rtruc-
turea like indices, join indices or link fields have bem presented
as well as more unusual ones, namely denormabmtion. All of
these techniques can be described formally by Complex Recorda
of the DASDBS kernel, i.e. as nested relations. Moreover, the
substantial problems introduced by the most effective joiu sup-
port mechanism, denormalization, namely redundancy and loss of
information can ervrily be avoided by using nerted join relations.

Besides the formal description, which is an advantage on its
own, we could benefit from the fact, that the front-end data model
@at relations) is a subset of the internal one: the transformation
of operations issued to the database from the logical schema view
to the internal representation cau be performed easily. The map-
pingx between internal and logical relations are defined as (nested
relationd) dgebra expressions. Thus, simple substitution of these
expressions into the user queries yields intemd equivalents. How-
ever, similar to the usual view optimization problem, there is the
need for algebraic optimization in order to avoid computing m-
dundaut operations. Our aproach to this problem was to find
transformations of the nested algebra operations that allow ap-
plication of known joiu elimination techniques. To establish this
goal, null values were introduced to achieve information preserv-
ing mappings, the dgebraic operators were extended accordingly
and a special reduction operation was introduced to elimlnate null
values when necessary.

The kernel interface allows to generate access paths on top of
it, as addresses of intemd records can be given outside. Such
addreasea cau later be used to formalate dii access queries.
While our aim at the beginning of research in this direction was,
to include access path selection at query execution time in the
algebraic optimizer, our current solution pursues the claesicd two
step approach of a separate “access plan generation” after the
algebraic optimization.

Physical database design has been discussed systematically by
relaxing the paradigm of avoiding redundancy iu the database. A
distinction between primary data (contained in the logical rela-
tions) and derived, auxiliary data (e.g. references, access paths)
was useful in the discussion of ryrtem controlled rednndaucy intro
duced to enhance performance. This way, we could also show that
non-hierarchically related data can be represented by our kernel.
We presented several alternatives for many-to-many relationships
mapped to the kernel data stmctures. These included all stmc-
trues found in, e.g. network database systems. Therefore, other
front-ends for the DASDBS kernel, including those that support
some notion of “shared subobjects” (Ro88], “Complex Objects”
(LKMPM85] or other types of stmcturea [BB84, Mi87] will abo
find the kernel an appropriate storage system as far as stmctur-

Proceedings of the 13th VLDB Conference, Brighton 1987 145

ing k concerned, In contrast to the rclationd front-end, howevar,
. opemtmm of lada m&k aumot mapped to kesnel opemtionr Y)

edly by aimply mbatitutiag dgebraic erpresaionn.
The udvaaced moddliug faditka of thooe data mod& includa

faaturae razulsive atructure# a attribute inheritaaa that mq
introduce additiond complexity to the physical da problem.
However, the dtanativa will &o be chamctcrizcd by either h-
troduciag radun&cy a referencea. Thus, we think that our ap
prod wiR ti be aPPropxiate fa thus applications.

7 References

[ABUY

* [ADABAS]
W61

[ASKW]

[ASU’S]

[Cb61]

[COW

P-1

pGW85]

mw

P-=1

piIi’8)

[QaSl
P-w

Abitebod, S., et AI.: VBRSO, a DBMS Bared on Nor-
INF Relatiorr, TR 359, INIUA, 1986
AbItebo& S., BIdoit, N.: Non first Normal Form Rcle-
iion# :o Repneert Eiemrehieally Ovanized Data, ACM
PODS, Waterba, 1964
A.V. Aho, C. Beri, J.D. ullmu: The Theory oj Joiar in
lekiiond Databarer, ACM TODS (4&), 1979
S&rue AC: ADABAS: DBA Refenncc Marral
Aatrahm, MM., et d.: Sydcm R: Relational Approach (0
D&r Monopncnt, ACM TODS (l), 1976
Aatmbu, MM., Scbkakkk, M., Kim, W.: Perjormance
aj the S@cm/R Aueu Path Selection Meehaniem, IPIP
c=lF-, lw6
Aho, A.V., SqIr, Y., UIImu, J.D.: E@alerece Amon#
Ilelational Bspnmtionr, SIAM J. Comp. (Ocf), 1979
Batwry, D.S.: GBNBSIS: A Pmject to Develop an Elrnri-
ble Databarr Manqemsnt Sp&m, Proc. ht. Workakop on
Object-OrIemted DJabue Sy$cme, PtiSc Grove, 1996
Batoq, D.S., Bmckmun, A.P.: Molcerlar Objecte, A5-
rtnut Dato !f’pper, and Da?. Models: A timework,
VLDB, sh(lqOrC, 1984
Ckuae, D.D., et &: Hirtory and Eealsation oj Sye-
tern/R, CACW, 1901
Cai, S., Nwhe, S., WIederhold, G.: Dietribmtioa De+
oj &gieol Datobare SeAem01, IEEE TOSE (ol4), 1983
D&, P., et AI.Z A DBMS Pwtotppe to Sspport Gotended
& Relatione: An Intqmted View on Flat Tabler and
liiemonhier, ACM SIGMOD, Wuk@ton, 1996
DeppIeck, U., Giname?, J., W&k, G.: Storage Strsctrrar
and Addnreing Techniqree jor the Compler Objecte of the
NF6 Relational Model, Proc. GI ConI. Database Sptwm
far o&c Awtom&on, EnSI~eerIng, md Sdcntifc Apple-
utiou, Kuismhe, 1985
Deppbck, U., Pad, E.-B., Schek, H.-J.: A Stomgc Spe-
tern jor Compler Objectr, Proc. Iat. Workshop on Object-
OrIe&d Dbt&ue Syeteme, P&c Grove, 1986
Fkher, P.C., Thomu, S.J.: Opemtorr for Non-Firat-
NonnaEFonn Relationr, Proc IEEE COMPSAC, 1985
Hhrder, T.: Implementing a Gcncmlired Aearr Path
Strrctrn for a Relatioral Databare System, ACM TODS
(k8), 19’6
IBM Corp.: IAfS/VS: Data Bare Adminietmtion Gside
Lakmam, T.J., Carey, I&J.: A Study oj Indet Straetsn~
for Main Memory Databare hfaragement Sprtemr, VLDB,
Kyoto, 1986

[LKMPM85] Lade, R, Kim, W., McNabb, D., PIorrffe, W., M&r, A.:
hpporiing Compler Objcctr in a Relational System for
Ba2ineering Databarer, ix Kim, W., Reiner, D.S., b-
tory, D.S. (eda.): Query ProceuinS im Dat&ue Syatemr,
spEiIl(lGC, 1986

FMP87] LIthy, B., McPbereon, J., Pir&sh, H.: A Data Mar-
agement Estenrion Arrhitectrn, ACM SIGMOD, San
Fnnfhal, 192’

fMaW] Ma&r, D.: l%e Thoq oj Relational Dateburr, Pltum
hhmaMo6 Id., Ledn, 196s

w67l Mitechug, B.: The Mole&e-Atom Data Model (ii Ger-
mu), Proc. GI Cont. D&a Baee Syetema for O&e, En-
&erIng ud Scientific Applicatione, Dumrtult, 1987

@S77) Much, S.T., Severuce, D.S.: The Determiration oj Ej-
fieiert Ruonl Sepmentatiosr and Blocking Fedora for
Shared Data Filer, ACM TODS (216). 1977

mCWD84] Navathe, S., CcrI, S., Wiederhold, G., Don, J.: Verti-
cal Partitioning Algorithmr for Databare Dcrign, ACM
TODS (9:4), 1984

[OlI26] Ott, N., HorEnder, K.: Rcmovirg Redwrdart Join Opcr-
atiorr ia @e&r Inaolwing Viewr, Information Sy&ow
(lO:tl), 1985

[0178] Olle, T.W.: The CODASYL 4pprooeA to Data Bare Man-
agemnet, J. Wiley 0 Sane, ChIcheeter, 1978

PKACLE] Onde Corp.: ORACLE U~ct Mansal
fPA86] PI&or, P., Andenen, F.: Derigning a Generlized &

Model with an SQL-type Langrage Irterjace, VLDB, KY-
oto, 1986

m6WD8fl PanI, H.-B., Schek, H.-J., S&o& M.H., Weikum, G., Deg
pIeck, U.: Arehiteetrn and Imp/ementation oj the Darm-
rtadt Databare Kernel System, ACM SIGMOD, Su Ehn-
ciBco, 198’

@KB85] Both, M.A., Korth, H.F., Batory, D.S.: SQL/NF: A
Qrery Language jot +NF Relatiord Databarer, T&a.
Kep. TR-85-19, UaIrereIty of Tuu at Aurtin, 1965

fKKS85l Both. M.A.. Korth. H.F.. SiIbere&tr. A.: Etierdcd ACe- .
- bm aid Cahr ior -fkF Relationi Databarer, Te&.

Bep. TR-M-36, UnIversIty of Text at Au&n, 1985
[ROW] I&we, L.A.: A Shared Object Eiemnhg, Proc Int.

Workehop on ObjectOrIented Dat&aee Syatema, Pdfc
Grove, 1986

[SckeSS] Schek, H.-J.: Towardr a Boric Relational M& Algebm
Processor, Cant Found. Data Or(l. (M)DO), Kloto, 1985

pk75] Sdrkolnick, M.: The Optimal Selection of Secordary In-
dicer for Filer, I&rmutiou Sylterm (1:4), 1975

mo86] Scholl. M.H.: Theoretical Fosndatior of Abebmie Opti- . -
mization Utilizing Unnormalized Relatiomr, ht. Co&on
Dat&ue Tkeory, How, 1996, LNCS 243, SprI.6a
IBM Corp.: SQL/Data Sprtem: Planning and Adminir-
tration for VM/Sy~tem Ptvdset, Releore S
Stonebnker, M., Howe, LA.: Databe Portalr: A New
Applieotion Progmm Iuterfoee, VLDB, Singapore, 1984
Schkahik, M., Sorenson, P.: Derormalizatior: A Perjor-
mance Oriented Databare Deriga Teehniqre, Proc. AICA
Cod., Bolop~, IhI& 1980

[SS81]

tsw

PWW

t”W

FNW

lm’61

S&kddk, M., Soremmn, P.: TAe Efieetr oj Derormalito-
lion on Databare Performance, Rer. Rep. RJ308t (38128),
IBM Bee. hb. San Jose, Cr, 1981
Sckek, H.-J., Sckoll, M.H.: The h?‘g Relational Algebm for
a Unijorm Manipulation of the Bzternal, Corceptral, and
Internal Data Stmctsnr (m Germ@, in: J.W. Schmidt
(ed.), Sprachen Tar Datedanken, IFB 73, Springer, 1983
Scbek, H.-J., S&II, M.H.: The Relational Model with
Relation-Vahed Attributer, Information Sylteme (ll:f),
1966
Sclek, H.-J., Weiknm, 0.: DASDBS: Conceptr and Anhi-
tectrn oj a Databare Sqdem for Advanced Applicatiorr,
TRDVS&lsBbTl, Tshn. UnIr. Dumrt&, Germu Vep
aion to l ppcrr in: Informatik Fomchuy mnd Emtwickiang
UIInun, J.D.: Prireipler of Databore Sy~tenr (2nd cd.),
Compnta Sdence Prae, HockvIIIe, MD, 19Sa
Weikam, G., Neumum, B., Pad, H.-B.: Coreept aad Re-
alization of a Set-Oriented Page-Lover for Bgieient Acceri
to Complet Objectr, Proc. GI Conf. D&&w Syrtema for
OtRco Amtonution, En@mecing, and ScIentiSe AppIia-
tionr, DumrtuIt, 1987
WonS, E., Yount6, K.: Decomposition-A Strategy for
Qaerp Procerring, ACM TODS (l), 1976

Promdings of the 13th VLDB Conferencq Brighton 1987 146

