
Constructing Database Systems in a Persistent Environment

R. L. Cooper’, M. P. Atklnso”’ , A. Dearle* and D. Abdertahmane’

’ - Dept of Computer Science, University of Glasgow, Lilybank Gdns, Glasgow, G12 8QQ

2 - Dept of Computational Science, University of St. Andrews, North Haugh, St. Andrews, KY1 8 9SS

Abstract

The goal of the Persistent Programming
Research Group is the provision of an environment
which incorporates the principle of orthogonal
persistence in order to facilitate the production of
large and complex software. A database
management system constitutes such software and in
this paper we show how a persistent store assists in
the construction of such a system. We show that a
small number of features in a simple persistent
programming language enable efficient
implementations of various data models to be built
quickly. The paper surveys three attempts to
provide database programs using PS-algol. In the
first, the implementation of a single interface
system is greatly aided by persistence. The second
shows how it is possible to provide software which
includes a multiplicity of interfaces and a
multiplicity of underlying data models. Finally we
present a novel approach which makes use of run-
time compilation to create efficient storage
structures tailored to the application. These
experiments represent the early development of a
methodology for choosing an appropriate mixture of
static and dynamic binding when using persistent
programming languages.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special Permission from the Endowment.

Introduction.

When producing database systems in
conventional programming environments, the
programmer faces many kinds of problem. Some of
these, such as organising data on backing store and
linking to library modules, should not be the main
concern. Instead, effort should be concentrated on
ensuring that the most efficient storage structure is
used and providing the interface best suited to the
task in hand. It is also difficult in conventional
environments to provide a flexible system. It is well
known that different applications require different
storage methods, while different interfaces suit
different users’ needs. However, providing more
than one storage method or user interface will
usually create a considerable increase in the
complexity of the system.

The provision of a persistent environment
[ATKI86a, ATKI86bl allows the programmer to
concentrate on important issues and to ignore
problems which should be handled automatically.
Persistence is defined as the length of time for
which an object exists. This may vary from short-
lived local variables, which are created and
deleted within a block, to data which are stored
and intended to outlast, the computer system on
which they are created. We believe that the way
in which the programmer refers to a data object
within a program should not be related to its
persistence. Essentially, this means that the
programmer will not have to refer to any
mechanisms extraneous to the programming
language (such as file managers) to handle the
storage of data. It should be possible to use the
structure used by the program to organise the data in
the backing store. For instance, if the data is
relational, to store all of the data in a relation the
program only needs to enter a pointer to the

117 Proceedings of the 13th VLDB Conference, Brighton 1987

relations’s header into the backing store and all of
the associated data (tuples, column names, etc.) will
be stored automatically.

This paper describes three database systems
which have been implemented using the persistent
language, PS-algol: a version of the Functional Data
Model; a relational system, supporting a number of
user interfaces; and a relational system utilising a
run-time compile facility to create structures of
greater efficiency. We will describe the benefits
accrued from using PS-algol, although this is not an
attempt to sell the language PSalgol, but rather to
apprise the database and programming language
researchers and practioners of the value of certain
constructs which could be present in other languages.

Features of PS-algol.

PS-algol [ATKI83, ATK185, PSAL861 is a block-
structured persistent programming language. It
incorporates the following features:

Orthogonal Persistence. All PS-algol data
objects are manipulated in the same way,
irrespective of their persistence. The PS-algol
environment includes a Persistent Object
Management System [CQCK84, CAMP861, which
handles all the details of data storage. Data to be
stored is organised into ‘databases’ and any object
reachable from the top level of a database will be
dragged into backing store as part of that database,
when a commit command is given. Data are copied
to active memory incrementally as references to data
objects are dereferenced.

The Universal Pointer Type. The PS-algol type
system contains a constructor for record-like objjts.
These may contain any number of fields, each of
which may have any PS-algol type. The references
to the union of objects that may be constructed in this
way have a common type, pntr. This allows the
programmer a degree of polymorphism, in that
values of type pntr may be tokens for instances of any
existing structure class and therefore objects of
different types can be passed along the same route,
or referenced from the same location. Type checking
is still rigorous, although it does not occur until a
pntr is dereferenced, prior to performing some
operation on the referend. All other type checking
is performed at compile time.

First-class procedures. Procedures are first-class
objects, in that they may be manipulated like any

other object. They may be: assigned to variables;
used as the arguments or produced as the result of
another procedure; and, most importantly, stored in
a database just like any other data value [ATKI86b].
The implication of the latter is that, having been
designed in a modular fashion, a program can be
developed incrementally. Each module can be coded
and tested separately and, as will be seen, different
versions of a module can be simultaneously
available. Experiments can be run which determine
the most effective version and more than one version
can be left in the system. This leads to flexibility.
It also permits the development of system libraries
of procedures and allows the access to data to be
limited to a set of procedures, forming an abstract
data type (ADTI and allows active data to be
modelled [COOP87].

A Callable Compiler. I?+algol contains, as a
library function, a call to the compiler. This means
that a program, during its run, can construct a
procedure as a string and then compile that string
and apply the resulting procedure. This is
extremely useful as, while the type system of PS
algol is strict (allowing early detection of data
misuse), the callable compiler enables a procedure
which is truly polymorphic to be written. The
structure of such a procedure is given an object of any
type, examine its type, build a procedure which
handles such a type, compile it and run it against
the input object. The cost of compilation can be
recovered if the procedure is stored and often re-used
when objects of the same type are encountered.

Indexed Objects. There exists in I%algol a data
structure in the form of a table - a set of pairs of
keys and associated structures, accessed through a
universal pointer. This provides instances of
adaptive index structures.

Graphics Facilities. The language has bit map,
multifont text and line drawing graphics facilities.
The implications of this for the production of good
user interfaces will not be discussed in this paper,
but machine independence is derived from having
good tools for producing interfaces within the
language. Furthermore, graphical data can be
modelled with the same ease as textual and
numerical data. [MORR86] describes the graphics
facilities in more detail.

A Uniform Portable System. PS-algol aims to
provide a uniform environment within a number of
systems. At present, implementations exist for the
UNIX systems on VAX, ICL PERQ and SUN

118 Proceedings of the 13th VLDB Conference, Brighton 1987

computers, as well as for the Apple Macintosh and
within VME on the ICL 3900 series machines. In
each of these implementations, the program
developer needs only to know PS-algol and has no
need to understand the details of the underlying
system.

Binding in PS Algol

To sum up, PS-algol gives the programmer a
uniform view of data objects. Long-term and short-
term objects are handled in the same way, as are
numerical, textual and graphical data and program
modules. On the other hand, the availability of
the universal pointer type and the callable compiler
lets the programmer choose when binding should
take place. Arguments for the desirability of a
range of options on binding time are given in
[ATKIWI - here we show how that range of options
may be exploited.

In languages such as Poly and Galileo, the
program is completely and statically bound at
compile time. In PS-algal, there are a number of
times when binding could take place:

l The program can be written so that
everything is bound statically at compile-
time.

l Using the universal pointer, the binding
may be deferred until an object is actually
dereferenced. The program may pass an object
about and check its type only when fields of
that object are manipulated. Thus the
program is still strictly type-checked, but the
type-checking occurs at run-time. In this case,
the binding will occur every time a field of
the object is dereferenced.

l Using the callable compiler, the binding
of data to program may be made any time
between the receipt by the program of a
description of the type of a data object and
the first use of such an object. It will then be
bound once and for all to structures which are
specific to data of this type. For instance, a
database management system could organise
the binding at any time between receiving the
database schema and the first attempt to
populate the database. This opens up the
attractive alternative of supplying the
schema one day and having the compilation
of efficient storage and retrieval modules

Procee&gs of the 13th VLDB Conference, Brighton 1987

performed automatically overnight by a
daemon process which checks the persistent
store to find any object types waiting to be
bound to the program.

The choice made between these alternatives
will depend upon the application. In some cases, it
is necessary to choose to defer the binding and by use
of the universal pointer. Usually, however the
preferred method would be to factor out the binding
process by binding as soon as possible, using the
callable compiler.

EFDM: Extended Functional Data Model.

EFDM is an implementation of the Functional
Data Model (FDM) as described by
Shipman[SHIPSl] constructed by Krishna Kulkarni
([KULK83], [KULK86], [KULK87]). The FDM
models data as sets of entities and functions relating
the entities. Kulkarni’s initial attempt at
implementation used the PASCAL language.
However, this required interfacing the system to a
low-level data management system and when ES-
algol became available, he re-implemented EFDM
entirely in PS-algol. There was a reduction in the
amount of source code to about a third compared
with the earlier PASCAL version.

Among the benefits identified by Kulkami were:

l the organisation of data movement being
handled by the system;

l the reduction in data misuse due to type
security;

l the ability to organise the data in a
uniform way through PS-algol’s universal
pointer type;

l and an increase in speed of access to
database items due to efficient heap
management.

The construction of the system is much
simplified by having user data and meta-data
stored in the sarne way, thus allowing the functions
of the database handler to be used for both. There is
a ES-algol structure for storing the information about
each function and another universal structure for the
data for each entity and these are used for system
and user-defined functions alike. The base function
data are explicitly stored in container structures,

119

which are referred to via pointer fields in the entity
structures. This simple mechanism permits a degree
of polymorphism, in that the result of an EFDM
function may be referenced in a uniform way
whatever its type. If the function is a single valued
function whose result is a string, the pointer will
point to a string container. If the function is multi-
valued, the pointer will point to a list of values.

There is also a saving in storage space since
there is no need to store a key with each object in PS
algol. The pointer to the the object is unique and
consistent and therefore may be used as the internal
identifier for the entity. Wherever the data
resides, it will always be referred to by the same
pointer value. All objects and sub-objects of the
system are referred to via PS-algol pointers.
Preservation of all of the data for an object merely
requires that a pointer to the object be placed in a
database - all the sub-objects follow it into the
database automatically.

Derived functions, queries and programs are
stored in the form of the tree returned from the
Syntax Analyser. The Interpreter then uses this tree
any time the function is called.

Kulkarni could have made yet more gains by
using two more facilities offered by the PS-algol
system. Firstly, the program as it stands is a single
unit of about 3000 lines of code. ES-algol offers the
ability to break the program into small modules,
compile them separately and store them in the
database. This means that the program could be
developed incrementally, with consequent savings in
compilation time and debugging time. Secondly, the
code for queries, programs and derived functions is
stored as a parsed tree and is then executed by the
interpreter. This is an example of deferred binding,
but the speed of the system is reduced by this. Using
the callable compiler, EFDM could factor out the
binding by compiling the code instead. It could
transform the tree into a PS-algol program and then
compile it and store it in a form which would have a
much greater execution speed.

A Database Architecture With Several
Query Languages and Data Models.

Another database system was implemented at
the University of Edinburgh by Pedro Hepp
[HEPP83a, I-IEPPSSb, NORR851. The goal of this
research was the creation of a system which
provided a multiplicity of user interfaces to a

120

uniform internal data model. In the system
produced by Hepp, the Query Languages provided
were: TABLES, a screen oriented query and update
language for a relational database; RAQUEL, a
relational algebra language, also for querying and
updating a relational database; FQL IBUNE821; and
a Report Generator.

In his arguments for using IS-algol, Hepp puts
forward many of the same reasons as Kulkami, but
his main benefit from using PS-algol is not stated
directly, but is implicit in every section of his
thesis: the ability to create a program
incrementally. He made use of this in four ways
(apart from the reduction in compilation time
obtained by breaking down source code into small
modules). Firstly, he started with a very small
system consisting of crude versions of the modules
and replaced these with more sophisticated
versions, using the persistent store to hold the most
recent. This enabled him to develop each module
separately. As the database access implicitly
provided by ES-algol is based on lazy fetching from
disc and strict type checking, program construction is
performed as necessary by an incremental type-
checked linker - the persistent system itself. It is
possible for the programmer to arrange to use
permanently one particular implementation of the
module, or to use the latest version, or one chosen by
any other algorithm.

Secondly, once the internal model was put into
the persistent store, as many user interfaces as were
required could be added, one at a time. In fact,
having got the RAQUEL interface working (with
all of the modification and debugging of the internal
system implied by this), Hepp got the TABLES
interface working “in less than a week” and the FQL
interface “in approximately one week of work”.

Thirdly, in making the decision on which
underlying storage structures to use, he could
independently try a number of different options
before selecting the best one. This was done by
replacing the storage handler with a number of
variants and testing the resulting system for speed of
access, storage requirements and ease of
programming. He tested whether to represent a
relation by lists or vectors and whether to represent
tuples as strings, vectors of strings, vectors of
pointers or as a list of pointers. His analysis led
him to a different choice than Kulkarni: he
represented his tuples as a vector of strings, which
requires a set of procedures to translate between
strings and other types. The application of these
translation procedures is equivalent to dereferencing

procc&ings of the 13th VLDB Conference, Brighton 1987

the fields of a structure and so is another technique
for deferring binding in that most of the program can
manipulate the data without knowing its type.

Finally, he used the persistent store to record
patterns of usage of the various interfaces and
modified them to overcome users’ problems with the
system. Furthermore, an analysis of the frequency of
usage of objects in the system revealed that “a small
set of columns and relations are used more frequently
in query composition than the rest.” Clearly this
fact could be used to provide more efficient storage
and retrieval methods.

simplified form in Figure 1. The header for the
relation consists of four fields: the relation name; a
pointer to the body, which is a doubly linked list of
tuples; a pointer to the primary key header (here
shown to be a single column, but in general a list of
columns); and a pointer to the rest of the column
headers of the relation (also pointed to by the
primary key). The column headers are organised
into a linked list of structures each containing the
column’s name and a pointer to an instance of an
Abstract Data Type defined on domains. In our
initial scheme, each tuple consists of a vector of
pointers to value containers.

The availability of the compiler as a system
procedure in PS-algol would permit the system to be
improved in two ways. Firstly, the storage
structures for the data, currently chosen by analysis
to be a static structure, could be created
dynamically, according to the nature of the data.
The next section carries this proposal further.
Secondly, the analysis of usage, also at present
performed off-line, could be performed regularly by
the system itself. For example, a demon, activated
at times of low system usage, would carry out some
analysis of the usage of each data object, refer to
some normative data on usage, and change to a more
appropriate structure for the pattern of usage found.
The user would not notice the change in underlying
structure, except in that his response times would be
improved. These ideas are similar to those put
forward by Stocker [STOC73], but the freedom to
devise and manipulate any data structure would
facilitate experiment and implementation.

A Polymorphic Architecture for Relations.

We present here a new internal model for a
database engine, on top of which multiple user
interfaces are provided. We take as our starting
point a data storage model similar to that used by
Hepp, using the universal pointer type to provide a
polymorphic storage scheme for the tuples of a
relation. We amend the interface to take advantage
of PS-algal’s facility for producing Abstract Data
Types. In the next section we will show how the
storage of tuple structures may be tailored to the
form of the relation using the compiler function.
Thus we show how PSalgol permits polymorphic
schemes by use of late or early binding.

After some investigation, we produced a storage
scheme for a relation structured as shown in a

c
Figure 1 - Storage Structure for a Relation

The interfaces provided to both relations and
domains are in the form of Abstract Data Types.
Domains are represented by an ADT that contains at
least the following operations:

proc(string-> pntr) putDomVa2 !package a value
proc(pntr-> string) getDomVd !unpack a value
proctpntr, pntr -> boo1 1 compDomVa1

!compare two values

Domains are created by calls to a creation procedure
by the user interface programs and stored in a table
in the persistent store.

Relations are created similarly, using the
following procedure -

MakeRel = proc(string description -> pntr)

which is given a description of the relation in the
form of a string (containing attribute names,
attribute domain types and which attributes are
used as the key) and returns a packaged set of
procedures, which contain all of the operations
permitted on this relation, such as adding a tuple,
looking up a tuple from the key, traversing the

121 Proceedings of the 13th VLDB Conference, Brighton 1987

tuples, checking whether or not the relation is
empty, etc. Each call of MakeReZ binds the same
code bodies to a new instance of data structures with
the same definition.

Take as an example the relation

ADDR(string name I int house, string street)

in which the field nume is to be used as the
primary key. The construction of a simplified
polymorphic representation in PS-algol
(corresponding to Figure 1) of the tuple “R. Cooper,
73, Bow Rd.” would be

structure tuple (pntr last, next; *pntr values)
structure StringContainer(string stringVuZue)
structurelntContainer(int intVaZuc)
let RC = tuple (. 8 1 of pntr

[StringContainer(“R. Cooper” 1,
ZntContainer(73 1,
StringContainer(‘Bow Rd.“)])

This creates an instance of the tuple structure, RC,
consisting of pointers to the adjacent tuples in the
list and a vector of pointers to the three field
values. The 73 would be de-referenced by

RC(values)(2)(intVulue 1

which first takes the values field of RC, takes the
second element of the vector and then unpacks it

The original version of MakeReZ is shown
simplified in Figure 2. The procedure constructs all
the information it needs from description (looking
up the domain information from the domain table).
It then creates an empty instance of the relation
structure as ThisReZ. Then it defines operations on
ThisReZ, of which only the AddTupZe operation,
which adds a new tuple to the relation from values
input from the calling program, is shown. Finally, it
packages the operation procedures as an ADT for
export to the calling program. AddTupZe merely
looks in the body of the relation to find where it
should put the tuple, constructs the tuple from the
values input and then inserts it. Note that
MakeReI creates a new relation structure and then
binds a copy of the operation procedures to it.

This version of MukeReZ can be written once to
handle any kind of relation since all of the values
are stored via pointers. It achieves polymorphism
by using the pntt type to defer binding. The calling
program handles all the packaging and
dereferencing of the data allowing MakeReZ to be
general purpose.

122

StructureRefHead (stringmame;
pntr body, pkey , columns)

structureColHead (string cname;
pntr domType, nextCol)

structurefuple (pntr last , next; *pntr values 1
1etMnkeReZ = proc(string description -> pntr)

begin
let RelName = 1 et these from
let PkeyName = ig
let PkeyType = I
let CoWames = ! the description
let PkADT= s.lookup(PkeyType , DomainTable)
let ColTypes =
let CoZADTs =
let PkeyComp = PkADT (compDomVa1)

let TheseCoZs := nil
for i = 1 to upb(ColNames) do

Thesexols := ColHead (ColNames(i 1,
ColADTs(i),
TheseCoZs)

let ThisPkey := CoIHead (PkeyName,
PkADT, TheseCoZs)

let ThisRel = ReZHead (ReZNume; nil,
ThisPkey , TheseCols)

let AddTupZe=proc(pntr pkVal ; *pntr COW&)
begin

let before: = ThisRel (body)
while before -= ThisRel and

PkeyComp (before(values Xl), PkVal)
do be ore

let after I
:= before(nexf)

= be ore(next)
let NewVals = ! code to construct a vector of

! pointers to the input values
let NewTupZe:= tuple (

before, after , NewVals 1
before(next) := NewTuple
after (last) := NewTuple
end

. ! other operations of the ADT

StructurereZationADT (
prc(pntr,*pntr) addTupZe;

. . . . 1 ! other procedure holders
relationADT (AddTuple,)

end

Figure 2 The First Form of the MakeRel
Procedure.

A New Architecture which Tailors Tuple
Structures to Suit the Relation Type

-In the above model, the operation to dereference
the “73” field of RC required three levels of
indirection. The new model proposes to replace the
tuple structure given above with one that is more
appropriate to the particular relation. We would
prefer to create RC by

mmings of the 13th VLDB Conference, Brighton 1987

structureAddrTupZe(string name; int house;
string sfreet)

let RC = AddrTuple(“R.Cooper”, 73, “Bow Rd.”)

and de-reference the 73 by

RC(house)

but to do this, we must bind the MdrTuple structure
into the program. When writing the system, we do
not know that the user is going to create this relation
and we certainly do not want to restrict the relations
that can be created. A mechanism is needed which
operates dynamically (as does our original structure)
and produces the more efficient structure above. The
MakeReZ procedure therefore has to use a new
strategy.

To use the more efficient second structure and
still retain polymorphism, we use a technique
introduced in the PS-algol Database Browser
([DEAR87J). This is to construct all those procedures
which make use of the tuple structure at run-time.
The browser allows the traversal of objects in the
persistent store by following pointers. Each time a
pointer is followed, the resulting structure is
examined and, from it, code to display such a
structure is constructed during the run of the program.

In the database system, procedures like the one
which checks whether a relation is empty can be
statically determined, as they only reference the
relation header which is the same for all relations.
In contrast, procedures which use the tuple structure,
like AddTupZe, cannot be specified in advance.
Thus we rewrite the parts of MakeReZ which are
concerned with these procedures, as shown in Figure
3.

In this second version, AddTupZe cannot be
directly specified. Nor can it be specified simply as
a string, since this would not permit the specific
instance of the relation structure to be bound into the
procedure. Just adding references to an object called
ThisRel into the string defining AddTupZe will
note make them refer to the required object as
AddTupZe must be compiled separately. Instead a
procedure generating procedure, MakeAdTup, itself
constructed as a string, takes in a pointer to ThisReZ
and produces a version of AddTupZe which operates
on ThisRel.

letTuple.Class = . . . ! get these from
letField.types = . . .
1etMakeAdTup =

! the description

” proc(pntr TheRel -> proc(pntr, *pna))
begin

structure RelHead(. . . . ! as above
structure ” ++ TupJeCZass ++ *
let NewAddTuple= proc(pntr pkVal; *pntr ColVals)

begin
let before= . ..! as before using TheRel(body)
let after = before(next)
let NewTuple := tuple(before, after, KeyVal(”

MakeAdTup:= MakeAdTup ++ FieldType (1) ++ ” Val)”
for i = 1 to upb(FieldName) do

MakeAdTup :=MakeAdTup ++” ,ColVals(” ++
FieldType (i+l) ++ ” Val)”

MakeAdTup := MakeAdTup ++ “)
before(next) := NewTuple
after(last) := NewTuple

end
NewAddTuple

end’
structureProcBox(

pro4 pntr-> proc(pntr,*pntr) 1 Makeproc)
let EmptyBox :=ProcBox(

pro4 pntr-> proc(pntr, l pntr)); nullproc
letCompiledForm= compile(MakeAdTup,EmptyBox)
1etAddTupZe = CompiZedForm(Makeproc)(ThisReZ)

Figure 3. MukeReZ Using the Callable Compiler.

MakeReZ takes in the current relation and
generates the string containing the tuple structure,
TupZeCZass, and the vector of field types,
FieZdType, from the input description. Then it
constructs the MakeAdTup procedure as a string
which varies only in the tuple structure and the line
of code constructing the tuple. In this line, the
values of the fields are unpacked from their
containers by dereferencing the field of the
container. If the field is an integer field, for
instance, it is contained in an IntConfuiner, whose
field name is intVu2. Conventionally the fields of
a container structure are always of the form type
++“Val”, and so can be created by MakeAdTup
simply. In the case of the address structure above,
MukeAdTup would be as shown in Figure 4.

MakeAdTup is then compiled and run with
ThisReZ as its argument. It returns the appropriate
AddTupZe procedure as its result. It is at this point
that the relation structure is bound to the AddTupZe
code to return a procedure which adds a tuple to this
relation. This procedure is then packaged as part of
the ADT returned by MukeReZ.

proc(pntrTheRel -> proc(pntr, l pntr))

Proceedings of the 13th VLDB Conference, Brighton 1987 123

begin
structure RelHead (. . . . ! as above
structure tllple (pntr last ,next; string name;

int house; int value 1
let NewAddTuple = pro4 pntr KeyVal ;

*pntrCoZVals)
begin

let before=
let after = beforet next 1
let NewTuple := tuple (before, after ,

KeyVaZ (StringVal 1,
CoZVaZs (1 X lntVal 1,
CoZVaZs (2XStringVal 1 1

before(next) := NewTuple
after (last) := NewTuple

end
NewAddTuple

end

Figure 4. AddTupZe generated for the
ADDR structure.

Further Speeding By Memo-ising.

There are some overheads when using this
method. Relation creation is a more expensive
operation as it involves compilation. Although this
should be offset by more efficient access to the
relation once it has been created, we can do
something to cut down on the need to compile every
time a relation is created. Again we utilise a
technique introduced in the PA-algol browser,
which is to transform the tuple structure definition
into a canonical form involving only the types of the
columns. Thus the address structure would be
referred to as a string.int.string structure and the
structure defined in MukzAdTup above, would be:

structure tuple (string& 1; int id2 ; string&3 1

When the address structure is encountered,
MakeReZ refers to a table in the database to find if
it has already encountered a structure keyed by
“string.int.string”. If it has, compiled forms of the
procedure generating procedures, like MakeAdTup
in the example above, are retrieved from the
database and re-used. Otherwise, it will compile
new versions and enter them into the table, ready for
any other structure, for instance:

structure student (stringsname; int sno; string class)

which will be mapped onto the same canonical form
and will look up and use the same procedures.
Further savings still, are achieved by permuting the
column types into a canonical order. This method of

“memo-ising” a structure is supported by PS-algol
tables.

Conclusions.

We have examined three database systems
programmed in IS-algol. EFDM is a single program
providing an implementation of the Functional Data
Model. The persistent environment frees the
programmer from the chores involved in organising
backing store. The development of EFDM shows how
this speeds program development and coherence.
Moreover, the provision of a universal pointer type
allowed the bindings to data objects to be deferred
and greatly simplified the storage structures
involved.

An examination of Pedro Hepp’s work showed
how he used the persistent store to develop his
system incrementally. The program was divided
into manageable modules, each of which was
implemented separately. Not only did this make
program development faster by reducing compilation
time, but it allowed him to experiment on the
internal model of the data by trying different
versions. It also allowed him to provide a number of
user interfaces which operate independently of each
other. He used the persistent store to record
information about system usage, an analysis of
which enabled him to make improvements to it. He
transformed all of his data types to strings to defer
data binding.

Our own work has centred around attempts to
increase system efficiency by using a callable version
of the compiler to factor out these bindings. We
have shown how the “database engine” could be
programmed to provide a relation as an Abstract
Data Type. Our motive for this was an enforced and
formal definition of module boundaries,
guaranteeing that module replacement was feasible.
We have shown how access to a compiler at run-time
has enabled us to generate the ADT, using a more
efficient representation as its internal model.
Finally, we have shown how the cost of creating a
relation can be reduced by a canonical representation
of relations, which enable those with the same
types to share code.

In summary, we have shown that programming a
DBMS in a persistent environment frees the
programmer from the time consuming issues involved
in organising backing store and allows concentration
on more important problems, such as a more efficient

124 Proceedings of the 13th VLDB Conference, Brighton 1987

access to data and a more ergonomic user interface.
We have also shown that the programmer should be
provided with a range of options on when the
binding of data to the program occurs. In particular,
we have shown how the availability of run-time
compilation within the implementation language
permits storage schemes which are both efficient
and type-secure.

Acknowledgements.

The work reported here was funded partly by an
ICL URC grant, partly by Alvey/SERC grant
GR/D43259 and partly by sponsorship from the
Algerian Official Authority. We would also like to
thank Professor Tim Merritt and MS Rosemary
McLeish for advice and helpful comments on earlier
drafts of this paper and for the useful comments of
our colleagues in the Persistent Programming
Research Group and of Dr. John Jeacocke during the
initial stages of this work.

Bibliography.

ATK183 Atkinson, MP, Bailey PJ, Chisholm, KJ,
Cockshott, WP and Morrison R - “An Approach to
Persistent -Programming”,The Computer jdurnal26.
4, (1983), 360-365.

ATKI85 Atkinson, MP and Morrison R - “Procedures as
Persistent Data Objects”,ACM TOPLAS 2,4,539-559,
act 1985).

ATKI86a Atkinson, MP and Morrison R - “Integrated
Persistent Programming Systems”, Proc 29th Annual
Hawaii Conference on System Sciences, Jan 7-10, 1986
fed. B.D. Shriver), Vol IIA, Software, 842-854.

ATKI86b Atkinson, MP, Morrison R and Pratten, GD -
“Designing a Persistent Information Space
Architecture”, Proc Information Processing 1986 ,
North Holland Press (Sept 1986) 115-119.

ATK187 Atkinson, MP and Morrison R - “Binding anflype
Checking in Database Programming Languages”, in
Persistent Programming Report 34, Universities of
Glasgow and St. Andrews, 1987.

BUNE82 Buneman, OP, Frankel, RE and Nikhil, R - “An
Implementation Technique for Database Query
Languages”, ACM TODS, 2,2, June 1982

CAMP86 Campin, J and Atkinson, MP - “A Persistent
Store Garbage Collector with Statistical Facilities”,
Persistent Programming Report 29, Universities of
Glasgow and St. Andrews, 1986.

COCK84 Cockshott, WP, Atkinson, MP, Chisholm, KJ,

Proceedings of the 13th VLDB Conference, Brighton 1987

Bailey, PJ and Morrison, R. -“POMS:
Object Mangement System”,Software
Experience, l& 1,49-71, Jan 1984.

A Persistent
Practice and

CODD79 Codd, EF - “Extending the Realtional Model of
Data to Capture More Meaning”,ACM TODS, $ 4,
Dee 1979.

COOP87 Cooper, RL -
Algal”,

“Applications Programming inPS
Persistent Programming Report 25,

Universities of Glasgow and St. Andrews, 1987.

DEAR87 Dearle, A. and Brown, A.L. - “Safe Browsing in
a Strongly Typed Persistent Environment”, Persistent
Programming Report 33, Universities of Glasgow and
St. Andrews, 1987 - to appear in The Computer
Journal, 1988.

HEPP83a Hepp PE -
Coexisting

“A DBS Architecture Supporting
Query Langua es and Data Models”,

Ph.D. Thesis , University of l& mburgh, 1983.

HEPP83b Hepp PE - “A DBS Architecture Supporting
Coexisting User Interfaces: Description and
Examples”, Persistent Programming Report 6 ,
Universities of Glasgow and St. Andrews, 1983.

KULK83 Kulkarni, KG - “Evaluation of Functional Data
Models for Database DesigIland Use”, Ph. D. Thesis ,
University of Edinburgh, 1983.

KULK86 Kulkarni, KG and Atkinson, MP - “EFDM:
Extended Functional Data Model”, The Computer
]ournaz, a 1, (1986) 38-45.

KULK87 Kulkarni, KG and Atkinson, MP -
“Implementing an ExtendedFunctional Data Model
Using P!+algal”, Software Practice and Experience,
Z 3, (March 1987) 171-185.

MORR86 Morrison R, Dearle, A, Brown, AL, and
Atkinson, MP - “An Integrated Graphics Programming
Environment”, Computer Graphics Forum, 5, 2, June
1986,147-157.

NORR85 Norrie, M - “The Edinburgh Node of the Proteus
Distributed Database System”, University of
Edinburgh Internal Reporf CSR-191-85.

PSAL86 “The PS-algol Reference Manual - Third
Edition”, Persistent Programming Report 12 ,
Universities of Glasgow and St. Andrews, 1987.

SHIP81 Shipman, DW - ‘The Functional Data Model and
the Data Language DAPLEX”, ACM TODS, 5 1, 140-
173, MaFch, 1981.

STOC73 Stocker P. and Dearnley, PA - “Self Organising
Data Management Systems”,The Computer Journal,
& 2, (1973), 1%105.

125

