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ABSTRACT

A theory of probabilistic databases is outlined. This
theory is one component of an integrated approach to
data-modelling that accomodates both probabilistic and
relational data. In fact, many of the results presented
here were developed in the context of a framework for
structural modelling of systems. Much that is funda-
mental to relational database theory was also developed
in this context, and previous to the introduction by
Codd of the relational model of data.

Probabilistic databases can store types of information
that cannot be represented using the relational model.
Probabilistic databases may also be viewed as generali-
gations of relational databases; any relational database
can be represented without loss of information by a pro-
babilistic database. A number of relational database
concepts are shown to have probabilistic counterparts.
In many cases, it is preferable to deal with the proba-
bilistic formulation of a concept even when applying it
to a relational database. For example, we define a new
project-join mapping for relational databases that is
based on transforming a relational to a probabilistic
database. This mapping is shown to have more fixed
points than the standard one.

INTRODUCTION

The initial presentation of ideas which led to the
development of the relational database model is gen-
erally accepted to have been made by Codd [1970]. In
the sense that some consideration is given to questions
of model-utilization in the design of actual databases,
this attribution seems to be justified. It is interesting
that a major advantage of the relational approach stems
from its generality and data-modelling power; in fact, it
is only since the presentation of the relational model
that a general agreement has evolved on distinguishing
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between data-modelling and actual database manage-
ment systems, whereby data models are seen as provid-
ing the “conceptual basis for thinking about data-
intensive applications” [Brodie, 1984]. But, in the sense
that this conceptual basis is important, relation theory
[Wiener, 1914; Bourbaki, 1954] and the relational
approach to data-modelling, including a large number of
specific concerns that have proven directly relevant to
the theory of relational databases [Ashby, 1956, 1965,
significantly predate Codd.

Since the main orientation of this paper is not histori-
cal, we only mention the priority of Ashby’s system-
theoretic consideration of concepts such as the lossless
join and project-join mapping [Ashby, 1965; Maier,
1983, pp. 146-148], functional dependencies [Ashby,
1956; Madden and Ashby, 1972), and the study of injec-
tive properties of decomposition maps [Madden and
Ashby, 1972; Maier, 1983] and also note the existence of
other developments in the system-theoretic context that
have reappeared in the context of relational database
theory (e.g., a certain class of system referred to and
studied as “v-structures” [Cavallo and Klir, 1979a] has
recently been introduced by Fagin [1983] as a database
scheme which is “y-acyclic”).

The foregoing is not intended to imply that there is
no difference between data-modelling concepte and their
development in the context of database theory, but
rather to motivate the development in what follows of a
more general approach to data-modelling that also has
roots in the work of Ashby. An integrated development
of some of the fundamental ideas of this approach —-
which, in particular, incorporates consideration of the
importance of information theoretic ideas — was given
by Cavallo and Klir [1979a, 1981]. Use of these general
modelling concepts to develop the data-modelling
aspects of database theory will serve to extend the
applicability of database theory beyond the relatively
simplistic data-processing type of applications that are
predominant. It should especially allow database
theoretic contribution to the study of classical problems
of science and engineering that involve experimentation
and other forms of data collection (e.g., process monitor-
ing, decision analysis, remote sensing, etc.).

Databases store information. The form of stored
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information has traditionally been considered to be sim-
ple facts such as “Supplier X supplies part Y”. From
the point of view of data-modelling, many situations
require more complex forms of information that can be
used to answer such queries as

“How reliable is part Y when supplied by sup-
plier X*

“Is the probability that a person of type X will
purchase product Y greater if that person has
also purchased product Z”

“If X is known, how much additional information
about Y is provided by knowledge of Z“.

Some aspects of the type of information referred to here
have been dealt with in the study of so-called statistical
databases [Denning, 1982, ch. 6] where the objective is
to allow queries of a statistical nature to be made
regarding a relational database.

Our objective is to provide a framework that general-
ises the relational database model and extends all the
concepts that have been developed to deal with collec-
tions of yes/no facts to apply also to facts about which
one is uncertain (probabilistic databases) or about
which one has vague or “fussy” information (fussy data-
bases). The three main aspects on which this generali-
gation are based are:

1) by considering a relational database to be
primarily a set of mappings from logically pos-
sible tuples to the set {true,false} (i.e., to be a
set of predicates) the extension to probabilistic
and fussy databases is imnmediate as a generali-
sation of the mappings;

2) the importance in the relational database
model of the concept of information and infor-
mation preservation; while the concept of com-
binatorial information [Kolmogorov, 1965] is
relevant to relational databases, there are
well-developed theories of information that can
be applied to probability or fugsy measures
and thus to probabilistic or fuzsy databases
(these are a little less well-developed in the
case of fuzzsy measures - we primarily discuss
probabilistic databases in this paper);

3) all the work done on relational database
schemes as opposed to relational databases is
immediately and directly applicable to schemes
for probabilistic and fussy databases, requiring
only that the appropriate information-theoretic
concepts be correctly adapted.

As we have stated, a number of the main ideas associ-
ated with a unified view of modelling relational, proba-
bilistic, and fussy systems have already been worked out
and we incorporate this work into our development here
of probabilistic database theory.
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1. RELATIONAL AND PROBABILISTIC DATA-
BASES

Usually a relational database (RDB) is defined as a
finite collection of relations where each relation is a sub-
set of the cartesian product of sets referred to as
domains. Each domain is considered to be associated
with an attribute symbol which has some significance in
the context of the particular database application. For
any relation, the set of attributes associated with the
domains of that relation is called a relation scheme and
the set of relation schemes is called a (relational) data-
base scheme.

Formally, we define a relational database to be a set
RD={B,,...,B,} where each element of RD is a rela-
tional system, B=(V;,A;,dom,,r;) where

e V; is a non-empty set of distinct symbols called

attributes;

e A; is a non-empty set of sets of values called

domains;

e dom,;:V;—A,; is a function that associates a

domain with each attribute; (The set of all

possible tuples of B;, deom,-(v), is referred
veV:

to as T;; the tuples in T; are often considered
to be functions from the set of attributes to
the union of the domains to avoid the need to
order the components of a tuple. For our pur-
poses we assume an ordering of the domains
and assume that where relevant all uses of a
tuple conform to this ordering.)

o r;:T;—{0,1} is a characteristic function that
identifies a subset of T;. This subset is a rela-
tion and we will often refer to this relation
rather than to the full relational system.

Thus, each relational system B; has an associated rela-
tion scheme V; and the set {V,,...,,V,} is the database
scheme on which RD is defined.

A probabilistic system, like a relational system, is a
four-tuple P=(V,A,dom,p) but with its fourth com-
ponent p a function of type T—[0,1] with the restriction

that Y p(t)=1. We refer to p as a distrsbution (over V)
teT
and use the term interchangeably with probabilistic sys-

tem. A probabilistic database (PDB) is a set PD of pro-
babilistic systems. Probabilistic databases provide a
means of representing types of information that cannot
be captured by a relational database, and in such a way
that all of the data-modelling concepts and mechanisms
of relational database theory are applicable to these
more complex modelling situations.

It is also the case that probabilistic databases general-
ize relational databases in the sense that any RDB can
be represented by a PDB in such a way that important
properties are preserved. A result of this is that useful
concepts derived in the context of probability distribu-
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tions may be applied in relational database theory. For
example, by using probabilistic information theory with
relational databases that have been transformed to pro-
babilistic databases, cambersome proofs of a number of
significant results in relational database theory are sim-
plified (see Section 3; Malvestuto, 1983).

2. INFORMATION AND CONSTRAINT

2.1 INFORMATION CONTENT. An important idea
associated with relations when used in databases is that
of information. Any relation, insofar as it is not the full
cartesian product of its domains, exhibits constraint
[Ashby, 1965]; it is in terms of this constraint that the
information content of a relation is defined. Similarly, a
distribution function exhibits constraint to the extent
that it diverges from the uniform distribution over the
set of tuples T.

Let H be the (Shannon) entropy of a discrete proba-
bility distribution,

H(q) = - Eq(t) log q(t)

(by convention, 0 log 0 is 0 obvxously, H>0). Given a
set of tuples T, H reaches its maximum value at u,
where u is the uniform distribution over T, ie.,
u(t)=1/|T| for all teT.

Definition: Given a set of tuples T associated with a
probabilistic system, the information content of a distri-
bution p over T is given by H(u)—H(p).

If p is a distribution associated with probabilistic sys-
tem P=(V,A,dom,p) we often write H(V) instead of
H(p). Similarly, (see section 3.2), given distributions, p;
and p, over schemes V; and V, we write H(V;|V;) for
the conditional entropy of V; given V;, defined as the
average of the entropy of V; for each tuple of
)E'domj(v), weighted by p,(t) [see Khinchin, 1957,
Vi
p.3,5].

Operations that are commonly performed on data-
bases (e.g, project-join) may result in the replacement of
a distribution p by a distribution q. To develop the
idea of approximate satisfaction of join dependencies
(database decompositions) we use a measure of the
information lost by such a replacement. On the other
hand we also want a measure of how accurately a PDB
determines a distribution over some set of attributes (e.
g., UV;) when such a distribution is not represented in a
single probabilistic system in the database. Before
describing this measure we describe the two operations
on databases and distributions that we use in this
paper: projection and (probabilistic) join.

2.2 PROJECTION. Let P be a system with distribu-
tion p and scheme V and let ZCV. The projection of p
onto Z results in the distribution
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L2(p):X dom(v) — [0,
where

Vz(p) (b)=23bp(a)
and

a.e')e(vdom(v) > be“)z(gvdom(v) if (a,) = (b,),

veZ

[Cavallo and Klir, 1979a]. We also refer to the result of
the projection operation, |z(p), as a projection. The
definition is justified by observing that any b can be
viewed as an event equivalent to the union of mutually
exclusive and exhaustive subevents a. (When dealing
with a relational system and characteristic function r,
the definition is the same as for probabilistic systems
except that the operator Y} is replaced by max. |z(r)
corresponds to the notation in the relational database
literature 7z(r), where, in the latter expression, r is the
set of tuples represented by the characteristic function.)
The system (Z,A,dom|Z,}z(p)) will be referred to as a
subsystem of P, and Z a subscheme of V (dom|Z is the
restriction of dom to Z). The projection of a distribu-
tion p onto a database scheme X={V},,...,V,} is the set
of subdistributions  (the  database instance)

{1v,(p)s-rdy (P)}-

Ezample: The projection of the distribution

vi va vs p()
0 0.0
1 03
0 0.15
0.15
0.2
0.1
0.05
1 1 1 005

onto the database scheme {{v;,vo},{Vy,vs}} is the data-
base instance

- = O O O O
-0 O MmO O
O = O

vi va () va vs pa(’)
0 0 03 0 0 0.2
1 03 01 04
1 0 03 1 0 02
11 01 11 02

pi(vivz=00), for example, is obtained as
P1(v1v4=00)=p(v,v4v5=000)-+p(v,vavs=001), etc.

2.8 RECONSTRUCTION FAMILY AND JOIN. Let
Py-sP, be distributions with schemes V,,..,V,, and let

X={Vy.,V,}.

Definition: The reconstruction family of database
scheme X relative to distributions p,,..,p,, denoted Ry,
is the set of distributions over UV; whose projections
onto the schemes V,,..,V, equal p,,..,p, [Cavallo and
Klir, 1981].

(=]
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Any reconstruction family is the set of solutions p of a
set of linear equations (which imply the equation
Y p(-)=1), subject to p>0, and is therefore a bounded
polyhedral set. For the database instance above, its
reconstruction family, R{{,p,z}'{,m,a}), is the set of all
distributions satisfying the set of equations (subject to
p=0):
P (v192v5=000)+p (v,v5v5=001)=0.3

P (v,9295=010)+p (v v5v5=011)=0.3

p (v,1v2v5=011)+p (v,v5v5=111)=0.2

Definition: The operation probabilistic join applied to
{p;} results in the maximum entropy distribution from
among the members of the reconstruction family.

We denote the result of the join operation by *{p;}, and
refer to it also as a join. Thus,

H(*{p;})=max{H(p)|p is over UV; and |y(p)=p;}.
(Note that for relational systems the definition of
(natural) join is the same as that for probabilistic sys-
tems except that maximum entropy is replaced by max-
imum cardinality; any other member of the reconstruc-
tion family is a subset of the join [Ashby, 1965].) When
*{p;} exists, it is unique, and its existence implies that
1‘5‘“‘4 (P,‘)=lv,-nv,, (ps) for all j, k. Procedures for calcu-
lating *{p;} have been developed and studied in a
number of contexts [Brown, 1959; Lewis, 1959; Bishop et
al, 1975). In the Appendix we use the computational
definition to prove certain equivalences between rela-
tional and probabilistic data dependencies.

Ezample: The maximum entropy element of the recon-
struction family in our running example is the distribu-
tion

\7) vs p(.)
0.1
0.2
0.15
0.15
0.1
0.2
0.05

1 0.05

and is easily calculated using techniques described in
[Cavallo and Klir, 1981].

There are a number of information-theoretic argu-
ments that can be made for choosing, as the result of
the join, the maximum entropy distribution from among
the set of distributions that project onto the V; [see
Jaynes, 1979; Cavallo and Klir, 1981]. In addition to
these, if the conversion to probabilities, as described
below, is made, the natural join of a set of relations,

- - -0 0 00
O O~ 0 3
O = O = O = O

1
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when transformed to a probability distribution, gives
the maximum entropy among all the (transformed) rela-
tions that project onto the given set of relations.

2.4 DATABASE TRANSFORMATION. A relational
system is converted to a probabilistic system, and con-
versely, by means of two mappings, trans and trans™,
defined as

trans:[T—{0,1}] — [T—[0,1]]
where

trana(r) () = r(t)/ S xla)

(it is assumed that for some a€T, r(a) > 0; i.e., the rela-
tion is not empty) and

trans~%:[T—|0,1]]—[T—{0,1}]
where
trans~(p)(0)= (0 .

It is easily proved that trans~(trans(r))=r, i.e., that
trans™! is a left inverse of trans. Demonstrations that
the probabilistic characterization of a relational system
preserves important properties are found in section 3
and in the appendix. Here we use trans to define a new
relational project-join mapping that has more fixed

points than the standard one.

2.5 PROJECT-JOIN. It is convenient to separately
define the project-join mapping for both probabilistic
and relational systems.

Definition: Let X be a database scheme. The project-
join mapping defined by X, applied to p, is
PPI(X,p) = * {tv(p)}-

We abbreviate the result of project-join as p* when X is
clear from the context. Likewise, for a relational system,
RPJ (X,r)=3°“{lv(p)}, abbreviated r™®

We may define another project-join mapping for a
relational system as trans~)(PPJ(Xtrans(r))). It is
sometimes the case that, although r=r™ , ie,,
r = RPJ(X,r), r does equal trans™}(PPJ(X,trans(r))).
Thus, the transformation described above allows lossless
decompoesitions of relational databases over a larger set
of database schemes.

Ezample: For the system represented by the table

vi vz vs P()
000 O
001 1
010 1
011 1
1 00 1
1 01 1
110 1
111 0
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if X= {{thﬁ} s{Vz"s},{VnVs}}» RPJ (X,r) =1, but
r = trans~}(PPJ(X,trans(r))). In fact, since X is the
least refined element in the lattice of database schemes
Y over V={v,vyvs} such that Y = {V} (see section
3.1), there is no nontrivial lossless decomposition of r, if
we are restricted to the standard relational project-join
mapping (this follows immediately from results in
[Ashby, 1965]; see also [Cavallo, 1980]). However, r is a
fixed point of the project-join mapping defined as the
composition of the mappings trans, PPJ, and trans..

This situation cannot arise when X is a y-structure (is
not v-acyclic) [Cavallo and Klir, 1979a; Fagin, 1983].
When X is a y-structure,

RPJ(X,r) = trans}(PPJ(X,trans(r))),
that is, the diagram below commutes:

RPJ
r— X

trans J trans™!

trans(r)—___jtrans(r)*
PPJ

The proof follows easily from the computational defini-
tion of p* for y-structures.

2.6 INFORMATION LOSS. When replacing one dis-
tribution with another, as for example by using PPJ,
the resulting information loss can be measured by the
directed divergence from p to q [Kullback, 1959; Acszel
and Daroczy, 1975],

d(p.q)=‘ZTp(t)1°s(p(t)/q(t))-

In the case that q is the uniform distribution u, then
d(p,u) is easily shown to be equal to H(u)—H(p), (i.e.,
the directed divergence from p to u in fact measures the
information content of p). We also have the result that,
denoting PPJ(X,p) by p* d(p,p*)=H(p*)-H(p)
[Higashi, 1984]. The difference in the amount of infor-
mation contained in p and that contained in p* is
£H(“)—H(p))-(H(u)-H(p‘)) = H(p*)-H(p). Thus we
ave:

Pact 1: Given a probabilistic system P with distribu-
tion p and a database scheme X, the difference in infor-
mation content when P is replaced by the database with
scheme X and distributions the appropriate projections
of p, is equal to the directed divergence from p to
PPJ(X,p), i.e., H(PPJ(X,p))—H(p).

In addition to this, for a large class of database schemes,
if p* results from applying a project-join mapping to p,
the quantity H(p*) can be calculated and the strength
of the join dependency (see section 3.1) evaluated,
without determining p* (that is, without performing the
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relatively expensive probabilistic join for a PDB or
natural join for an RDB, if the transformation described
above is carried out). For the most simple of such data-
base schemes, for example, (denote XUY by XY) when
XNY=XNZ=YNZ=Q, if q is the join of XY and XZ
then H(q)=H(XY)+H(XZ)-H(X).

3. PROBABILISTIC DATA DEPENDENCIES

In standard simple relational database applications,
data dependencies can often be inferred from the mean-
ing of the attributes, as determined by the application.
In complex situations associated with scientific data-
bases, it is often the case that dependencies are not
known beforehand, and an important analogue of data-
base design is the determination of which dependencies
exist or of the relative strength of various dependencies
when they do not exist in an absolute sense. Three of
the most commonly dealt with are: join, functional, and
multivalued dependencies. Here we define corresponding
data dependencies for probabilistic databases. They
generalize the relational concepts in two senses:

1) they apply to relational databases, as well as to
probabilistic databases (if the simple transforma-
tion described in section 2 is carried out)
2) it is straightforward, by application of results
from information theory, to speak of approximate
satisfaction of probabilistic dependencies.

Both relational and probabilistic dependencies, in
their exact or approximate forms, may be viewed as con-
straints that restrict the set of allowable functions r or p
of systems in a database. Since information can be
identified with constraint, the concepts of (probabilistic)
information theory are fundamental to a theory of (pro-
babilistic) data dependencies. As will be seen, they also
provide a natural way to characterize and reason about
relational dependencies.

3.1JOIN DEPENDENCIES. A join dependency
holds when a relational or probabilistic system can be
decomposed into a collection of (sub)systems such that
the system is equal to the join of its subsystems.

Definition: A probabilistic system P=(V,A,dom,p)
satisfies the join dependency *[V.,V,] iff
P='{lv,-(P)}- If X={V,,..., V,}, then *[V,,..,V ] may
be abbreviated *[X]. :

For any particular database instance over a scheme
X, the join dependency *[X] is satisfied only by the
maximum entropy element of the reconstruction family
Ryx. For any other element, p, of Ry, some error will
result when it is replaced by the maximum entropy ele-
ment, PPJ(X,p). The maximum error (information
loss) that could result by applying the project-join map-
ping to any pERx we call the snformation radius of Ry,
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3 — *

ir(Rx) = max d(p,p*).
This maximum is achieved for a vertex of Ry, and
therefore is easily calculated (see appendix). For the
example of section 2, ir(R x)=0.400.

For any database application, accuracy of the facts
that are represented is important. The problem of meas-
urement error is obviously more severe for probabilistic
data than it is for relational data. The statement "tuple
t is sometimes observed” is more trustworthy, by virtue
of its being less informative, than the statement “the
probability of observing tuple t is x”. If, as is the case
when values p{t) are determined by sampling, p is an
approximation to the probabilities of qccurrence of
tuples, a dependency may hold among the attributes of
the system (if one accepts that the notion of “true” pro-
babilities makes any sense), and yet the definition as
given above will not be satisfied. Regardless, it is often
meaningful and useful to speak of a dependency holding
approximately. (A notion of approximate satisfaction of
dependency constraints could also be developed for
(strictly) relational databases, although this seems not
to have been done; for example, a join is considered to
be either “lossless” or “lossy”. What is being lost via a
lossy join is constraint, i.e., the information that certain
tuples cannot be observed.) With probabilistic data-
bases, the amount of information lost can be quantified
in terms of entropy.

Information-theoretic definitions of join dependencies
and approximate join dependencies follow.

Definition: p satisfies *[V,,...,V,] iff d(p, p*)=0 (recall
that we use p* for *{]y;(p)} when the context makes
clear what the distributions are, and d is the measure of
information loes introduced in section 2).

Definition: Database scheme X={V,,...,V,} is a refine-
ment of scheme Y={V,,..,V;}, denoted X<Y, iff for
each V_ €X there exists a V, €Y such that V,CV,
[Cavallo and Klir, 1979a}.

Ezample: {{vy,v3},{vavsv}} is a refinement of
{{vyvavs}{vsv20d,{vavard}).

In the following we restrict our attention to database
schemes X={V,,...,V,,} which satisfy the following two
properties: (i) UV;=V; (ii) i = j implies V; is not a sub-
set of V;. The second property ensures that no infor-
mation i8 included that can be obtained by a single
application of the project operation. Such schemes are
known as reduced hypergraphs and have been studied
by Cavallo and Klir [1979a] and Fagin [1983]. The
refinement relation on database schemes defines a lattice
with the universal scheme {V} as universal upper bound
and the most refined scheme {{v},...,{v,}} as universal
lower bound.
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Fact 22 X<Y = d(p, v’:x{lv(p)})Zd(P, v:Y{lv(P)})-

In words, if X is a refinement of Y (i.e., X is more
“decomposed” than Y), the information loss when a dis-
tribution p is projected onto scheme X and the resulting
systems are joined is greater than or equal to that pro-
duced by the project-join onto scheme Y (this obviously
implies that, if p satisfies the join dependency *(X], then
p satisfies *[Y]). The proof of Fact 2 follows immediately
from:
1) | v(p) represents a set of linear equalities and ine-
qualities;
2) Ry represents the set of all solutions to the linear
system determined by the projection onto X;
3) if X<Y, then each equation determined by the pro-
jection of p onto X is a linear combination of equa-
tions in the system determined by the projection of p
onto Y; thus, all solutions to the latter system are
also solutions to the first, i.e., RyCRy, and the max-
imum entropy member of Ry must have entropy at
least as large as the maximum entropy member of
Ry.
Analogously, we note for relational systems,

Fact 3: X<Y = RPJ(Y,r)CRPJ(X).

Let M denote the most refined scheme over V. It fol-
lows from Fact 2 that d(p,v’:x{lv(p)}) reaches its max-

imum when X=M, and from Fact 3 that
RPJ(M,r)2RPJ(X,r), where X satisfies UV;=V.

Definition:

1, if d(p,u)=0

d(p,u) — d(p,p*)
d(p,u)

JD(P,X) is a normalized measure of approximate join
dependency satisfaction for a probabilistic system P.
The value of JD(P,X) is the proportion of the informa-
tion content of P preserved by the project-join mapping
of p onto X. JD(P,X)=1 iff p satisfies *[X]|. We say
that P satisfies the join dependency *[X] to degree & if
JD(P,X)>6. The value of JD(P,X) indicates the degree
to which P may be viewed as decomposable into scheme
X. Clearly, X<Y implies JD(P,X)<JD(P,Y).

Fact 4: X<Y => ir(Ry)<ir(Ry). (Proof in appendix.)
Given ir(Ry) and H(p*), megx JD(p,X) is easily calcu-
PCRY

JD(P,X) =

, otherwise,

lated. Of course, max JD(p,X) = 1, for any Ry.
Peﬂx

The ability to detect the most refined scheme for
which a join dependency or approximate join depen-
dency of acceptable strength exists is of obvious value to
the scientific user of a database interested in performing
an “exploratory” analysis to detect relationships among
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attributes that might suggest scientific hypotheses
[Good, 1983]. This capability would also be useful in
database design when faced with a large and/or unfami-
liar set of attributes. A join dependency detected
empirically, for a particular database instance, might
hold for all instances; and the database designer, once
the dependency is discovered, might be able to deduce
that it holds [see Fagin et al, 1982]. On the other hand,
the ability to mechanically detect the presence of depen-
dencies can also be used to detect their absence, provid-
ing a check against erroneous assumptions that they
exist,

Algorithms for detecting such dependencies in both
relational and probabilistic data have been developed in
context of a framework for structural modelling of sys-
tems [Cavallo and Klir, 1979a, 1981].

3.2 FUNCTIONAL DEPENDENCIES. Functional
dependencies are also extremely easily dealt with in the
probabilistic context [see also Nambiar, 1980; Malves-
tuto, 1983]. For relational databases , a set of attributes
Y is funciionally dependent on a set of attributes X,
denoted X—Y, iff it is the case that if tuples agree on
attributes X, then they also agree on attributes Y.

Definition: For a probabilistic system P=(V,A,dom,p),
with X,YCV, and with the distributions over X and Y
the appropriate projections of p,

X—,Y iff H(Y[X)=0
where H(Y|X) is the conditional entropy of Y, given X
(see section 2.1), which may also be defined as
H(Y|X)=H(YUX)-H(X).

(In the following, let YX denote YUX.) Intuitively,
H(Y|X)=0 means that once the tuple values for attri-
butes X are known, there is no uncertainty regarding
possible tuple values for attributes Y: if a set of tuples
AC &(Uydom(v) agree on attributes X, then for at most

one'tEA is | xy(p)(t) > O.

Ezample: {1,2,4}—,{1,3} in the system represented by
the table

vi va va va P(-)

0 0 0 0 00
0.0
0.0
0.25
0.10
0.0
0.0
0.35
0 0.30
1 00

The value of H(Y|X) can be used to define approxi-

ok pd ek et et e pm O .
-t et e O OO O
OO OO .

O O O .

[
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mate functional dependencies. The farther H(Y|X) is
from sero, the weaker the dependency. The maximum
value attainable by H(Y|X) is H(Y), when X gives no
information about attributes Y. Hence, a reasonable
measure, relative to a given system P, is

Definition:
1, if H(Y)=0
—(!)—-(—I—)-H ) , otherwise.

If a relation is represented as a probability distribu-
tion (Section 2.4), the probabilistic definition of func-
tional dependency applies (see Appendix for proof).
Furthermore, any of the commonly encountered infer-
ence rules for functional dependencies, loosely referred
to as Armstrong’s Axioms, can easily be proven sound,
if formulated probabilistically, using the algebra of
entropy [Malvestuto, 1983]. As an example, consider
the augmentation rule: X-—Y implies XZ—Y. The
proof is simple: Suppose X—,Y. Then H(Y|X)=0.
Since H(Y|X)>H(Y|XZ) [Khinchin, 1957, pp. 37-39],
H(Y|XZ)=0, i.e., XZ—,Y.

3.3 MULTIVALUED DEPENDENCIES. Advantages
of the probabilistic view of databases as presented here
are especially apparent when discussing multivalued
dependencies. Consider two textbook definitions for
relational databases:

Let R be a relation scheme, let X and Y be disjoint
subsets of R, and let Z=R-(XUY). A relation r(R)
satisfies the multivalued dependency (MVD)
X——Y if, for any two tuples t; and t; in r with
t3(X)=t5(X), there exists a tuple t3 in r with
WO=6(X),  to(Y)=t(Y), and ts(Z)=t(Z)
[Maier, 1983, p. 124).

Suppose we are given a relation scheme R and X
and Y are subsets of R. Intuitively, we say that
X——Y, read "X multidetermines Y* ... if given
values for the attributes of X there is a set of sero
or more associated values for the attributes of Y,
and this set of Y-values is not connected in any
way to values of the attributes in R-X-Y (sic) [Ul-
man, 1982, p. 243].

After meditating for a while, one realises that what is
meant is that X——Y if knowledge of R—(Y—X) gives
us no more information about Y than does knowledge of
X alone. In terms of entropy, the statement is simple:
X——,Y iff H(Y|X)=H(Y|R—(Y-X)).

(As shown in the appendix, the relational and proba-
bilistic formulations are equivalent.)
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It is also possible to define multivalued dependencies
in terms of join dependencies:
X——, Y iff *|[R—(Y-X),XY];

ie, X—— Y iff the decomposition into the two com-

ponents R—(Y—X) and XY, which are “coupled” by the

set of attributes X, is lossless. In the paper that intro-

duced multivalued dependencies, Fagin presented this

alternate definition and proved it for disjoint X and Y

[Fagin, 1977, p. 266]. For probabilistic databases, the

general case is easily proved. If p is a distribution over

any scheme R and X and Y are subsets of R with associ-

ated distributions |x(p) and |y(p) then
H(R)=H(R-(Y-X))+H(Y-X|R-(Y-X))

=H(R—(Y-X))+H(Y |R—(Y-X)).

In case p over R satisfies *[R-(Y-X),XY], then
H(R)=H(R-(Y-X))+H(Y|X)

So, H(Y|X)=H(Y|R—(Y-X))}, i.e,, X—— Y.

(The converse is proved similarly.)

As with inference rules for functional dependencies,
soundness of probabilistic versions of MVD inference
rules is easily proved. For example, the complementa-
tion rule states that X——Y and Z=R-X-Y imply
X—r—7Z.

Fact 5: X——,Y => X——,Z where Z=R-X-Y.
Proof: Suppose X——,Y. Then H(Y|X)=H(Y|XZ).
Therefore, since H(XYZ)=H(XZ)+H(Y | XZ)
and H(Y | X)=H(XY)-H(X),
then H(XY)-H(X)=H(Y | XZ)=H(XYZ)-H(XZ)
=H(XY)+H(Z | XY)-H(XZ).
So, —H(X)=H(Z | XY)-H(XZ)
= H(XZ)-H(X)=H(Z | XY)
= H(Z |X)=H(Z | XY),
ie, X——,Z.

The degree of strength of an approximate MVD is
reflected by the difference H(Y|X)—H(Y|XZ), which is
sero when X——_Y. This is actually the information
loss when the original distribution p is replaced by the

distribution p*=(lxy(p)) * (lxz(p)):
d(p,p*)=H(XZ)+H(Y | X)-H(XYZ)[Lewis, 1959
=H(Y | X)-(H(XY2)-H(XZ))
=H(Y|X)-H(Y|XZ).

This is what one would expect, given Fagin’s theorem.
A reasonable normalised measure of approximate MVD
satisfaction follows.
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Definition:
MVD(PXyY) = | FBY|X)=0
a1 = H(Y|XZ .
_H((Tlll—X)l’ otherwise.

$.4 PROBABILISTIC DATA DEPENDENCIES AS
CONSTRAINTS. Usually, data dependencies are
viewed as pre-existing constraints restricting admissible
database instances to those satisfying the dependencies.
Our main emphasis here has been on the discovery that
dependenciee do or do not exist for a particular
instance, or of the degree to which they hold for an
instance. However, if a dependency does not hold to an
acceptable degree for a particular instance, it cannot
hold to that degree for all possible instances; and, if a
dependency is found to hold for a particular instance, it
may be possible to demonstrate (on other grounds) that
it holds for all instances.

This, of course, is not to say that approximate, proba-
bilistic dependencies (APD) cannot be used, e.g., as
integrity constraints. As shown, a full-strength APD is
equivalent to its corresponding relational dependency.
Further, an APD of less than full strength may also be
useful as a constraint.

For example, it may be standard practice for a partic-
ular application to maintain a level of JD satisfaction of
at least 0.85. This could arise in a setting in which a
distributed monitoring scheme is in place for a set of
attributes V (e.g., hardware monitoring, various types of
surveillance, etc.) all of which it is not feasible to
observe simultaneously for long periods of time, but for
which observation over a scheme X is feasible. At the
same time, as reflected by the JD constraint, it is
desired to limit the resulting information loss to an
acceptable amount. Periodic observation over the entire
set V, and application of the project-join mapping
PPJ(X,p) to the sampled distribution p, may be neces-
sary to determine whether the JD constraint is satisfied
by the current scheme. If not, an alternate scheme
satisfying the JD constraint (but also satisfying the
additional feasibility constraints) could be found using
the data~-modelling techniques referred to previously.

CONCLUSION

Some aspects of a theory of probabilistic databases,
applicable also to relational data, have been outlined.
This theory is part of a unified approach to data model-
ling that integrates relational database theory, system
theory, and multivariate statistical modelling tech-
niques.

Two areas for further investigation are: the use of pro-
babilistic dependencies as constraints, and the way in
which they interact; and the concept of the degree to
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which a distribution or relation is identifiable from a
given database instance (to which the notion of the
"information radius” of a reconstruction family is
relevant). Developments in the latter area would be
particularly useful for problems of inference and
decision-making from the information contained in a
database.

APPENDIX

A0. In this appendix, if X and Y are sets, [X—Y]
denotes the set of all functions from X to Y. Also, if a
tuple t is an element of &(Uydom(v) we may denote it

L

by xy where x represents elements of )&dom(v) and y
L ]
those of Xydom(v). Note that X and Y need not be dis-
ve
joint. For example, if X={v,v} and Y={v,vg}, then
for a tuple te 3{( Ydom(v), t=(t;,t5ts)=xy, where
veXU

x=(ty,t5) and y=(tats).

Al If p satisfies X—,Y, then trans~!(p) satisfies
X-—Y.
Proof: Suppose p satisfies X—,Y. Then

0 =H(Y|X)
=— Y (pIXY)(xy)log((p!XY)(xy)/ 2 (plXY)(xy))

3g€ X dom(v) y€ xumv
vEXY
MM:’E X dom(v)
(1594

=> (plXY)(xy)=0or (pLXY)(xy)=3] (PIXY)(xy), for all xy.

This implies that for every set of tuples AC e>§n,¢:lom(v)
A4

that agree on attributes X, at most one t€A is such

that |xy(p)(t)>0. Since trans~*(p)(t)=0 iff p(t)=0, it

follows that |yy(trans~(p))(t)>0 for at most one tEA,

where 1z(r)(t)=m:.:c r(t). Therefore, trans™!(p) satisfies
a

X—Y.
(The proof that r satisfies X—Y implies trans(r) satis-
fies X—,Y is similar.)

A2. In section 2.3, for clarity, we defined the proba-
bilistic join in terms of its essential property: it maxim-
izes entropy among the set of distributions that project
onto the joined distributions. Alternatively, we could
have given a computational definition of p* and proved
that it was the maximum entropy distribution [Brown,
1959; Lewis, 1959]. In the computational definition, pro-
babilities of the join are determined by multiplying pro-
babilities or conditional probabilities associated with
tuples of the operand distributions. A basic fact that
can be derived from this is that if |z(p)(b)=0, then for
any database scheme X where ZeX, PPJ(X,p)(t)=0, for
any t>b. The converse of this statement is not true in
general, but does hold, e.g., when |[X| = 2. The proof of

Proceedings of the 13th VLDB Conference, Brighton 1987

the statement in A3 takes advantage of the computa-
tional definition, since the maximum entropy member of
the reconstruction family is unique, regardless of the
way it is determined.
AS3. p satisfies X——,Y implies trans~(p) satisfies
XY,
Proof: Suppose p satisfies X——,Y. Then p satisfies
*[R—-(Y-X),XY] (section 3.3); ie.,
=p*=|p_(v-x)(P)*ixy(p), which means that
p*(t)=p(t), for all tuples t.
Case I: p(t)=0. Then p*(t)=0 and, as discussed in
reference to the computational definition of a two com-
ponent probabilistic join, this implies that for some a<t,
where € X dom(v), lrp—(y-x)(P)(a)=0 or for

€R-~(Y~X)
some b<t, where be'zxydom(v), Ixy(p)(b)=0; then
(since 1z(r)(c) = max{r(t)} and

p(t)=0 => trans™}(p)(t)=0), we  must  have

Ir—(y—x)(trans™ Y(p))(a)=0 or | xy(trans~!(p))(b)=0,
since 2 n=0 => ma.x{ [n]}=0, if 0<n<1 for all neS.

But thls implies that rN(t)—O where r™= | r—(y-x)(r) K
Ixv(r).

Case I: p(t)=0. p(t)>0 => p*(t)>0 => for all a<t and
b<t, lp_(v-x)(P)(a)>0 and lyy(p)(b)>0.  Let
rmtrans(p).  barso@)()>0 sd |er(p)(b)>0
imply that |p_(y_x)(r)(a)=1 and |xy(r)(b)=1, which
imply that r’(t)=1=r(t).

So, from (1) and (II), p*=p => trans~(p)"trans~3(p);
i.e., if p satisfies *[R—(Y—X),XY], then trans~(p) satis-
fies MR—(Y-X),XY]. By Fagin’s theorem (section
3.3), this is equivalent to: p satisfies X——,Y implies
trans~(p) satisfies X——Y.

(r satisfies X——Y implies trans(r) satisfies X——,Y is
easily proved.)

AL, r satisfies M{X] implies trans(r) satisfies *[X].
Proof: Suppoee r satisfies MX]. Then r = r in particu-
lar, r(t)=0 => rX(t)=0. But this means that seros are
preserved by the project-join mapping on trans(r), i.e.,
trans(r)(t)=0 => trans(r}*(t)=0. By  definition,
trans(r)* is the distribution with maximum entropy
among the set D of distributions whose projections onto
sets of attributes in X equal those of trans(r). Let
W={plp is a distribution over T and
trans(r) (t)=0 => p(t)=0}. Then
H(trans(r)) = max{H(p)|peW}. This follows from the
fact that all non-sero components of trans(r) are equal
to each other, for any r, and the following three proper-
ties of entropy:

1) the ordering of the components of a probability dis-
tribution does not affect its entropy

2) the entropy of an n+l-component distribution, q,
whose n+1th component is sero is equal to that of an
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n-component distribution whose components are equal
to components 1,...,n of q
3) the distribution with maximum entropy among the
set of all n-component distributions is the distribution
whose components are all equal to 1/n [Acsel and
Darocsy, 1975).
Since trans(r)*€W, H(trans(r)*)<H(trans(r)). But,
since trans(r)€D, H(trans(r))<H(trans(r)*). Therefore,
H(trans(r))=H(trans(r)*). But this implies that
trans(r)=trans(r)*, since trans(r)€D and the maximum
entropy element of D is unique.
It follows immediately from this that
r=r¥ = > trans~}(trans(r)*)=r™

As we observed in section 2.5, it is not in general true
that p satisfies *[X] implies trans~(p) satisfies ™ [X].

AE, Definition: The information radius of a recon-

struction family Ry, ir(Ry), is
ir(Rx)=max d(p,px*),
PGRX

where d is directed divergence and py* is the maximum

entropy element of Ry; ie., px*=PPJ(X,p), for any

PERy.

Fact: max d(p,px*) is achieved when p is a vertex of
PERY

Ry.

Proof: For fixed q, d(p,q) is a convex function of p,
over the set P* [Kumar et al, 1986]. Therefore, since
RxCP®, d(p,px*) is a convex function of p over Ry.
The maximum value of any convex function defined on
a bounded polyhedral set is achieved for one or more
vertices of the set.

Fact: RyCRy implies ir(Ry)<ir(Ry).

Proof: Assume RyCRy. Let vy and vy denote,
respectively, the maximising distributions p for
d(ppx*) and  d(ppy*) Since  RxCRy,
H(py*)2H(px*). For any reconstruction family Rj,
d(p,pz*)=H(pz*)-H(p) [Higashi, 1984]. Therefore,

d(vy,py*)<d(vx,py*)  [vx€Ry; def. vy]
=H(py*)-H(vx) [vx€Ry]
2H(px *)-H(vx) [H(py*)2H(px*)]
=d(vx,px*)-

So, d(vy,py*)2 d(vx,Px*); ie., ir(Rx)<ir(Ry).

Corollary: X<Y implies ir(Rx)>ir(Ry).
Proof: st implies Rngx,
ir(Ry)2ir(Ry).

which implies
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