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Abstract 

The freedom to combine information stored in a database 
using the operators provided by its datamodel introduces 
many caveats, such as with view-updates and integrity 
preservation, for the database designer. To alleviate these 
problems we define a formal model that explicates the data- 
base semantics through entity definitions and limits their 
use along well-defined paths. Our approach is based on six 
design axioms and concepts borrowed topology. This way 
we achieve an unified description of both the database inten- 
sion and its extension. In particular, we show that generali- 
sation / specialisation hierarchies are naturally cast into 
proper subset hierarchies in the entity type topology. More- 
over, the limitations posed on the construction of entity 
types preserve the Armstrong axioms for functional depen- 
dencies. This way our mode1 captures much of the real- 
world semantic constraints and remains sound and com- 
plete. 
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1. Introduction 

Capturing the semantics of a database in a conceptual schema 
is the prime activity of database design. The focal point of con- 
ceptual schema design is how a particular piece of information 
should be categorised and how it is translated to the concepts 
provided by the conceptual model. Often it can not he resolved 
conclusively and uniquely, because the information gathered 
during the design process is ambiguous and imprecise. One of 
the most accepted empirical models for database design is the 
Entity-Relationship model [2] and its variations [5.3]. The 
important contribution of the EAR model over the relational 
data model [4] is the distinction between entities (or objects) 
and relationships among entities (or connections among 
objects). Relationships in the EAR model deal with semantic 
properties, such as relationship carclinalities (l:l,l:n,n:m) and 
existence dependencies, that distinguish them from entities. 
However, lack of formalisation of the EAR model makes the 
analysis of a concephlal schema cumbersome. 

A more formal approach to database design is pursued in the 
area of database theory where twd main streams can be dis- 
tinguished: deductive database theory and ‘classical’ relational 
database theory. In deductive database theory, logic is used to 
obtain a proper foundation for modelling database semantics 
[6,11,7]. The proof-theoretic approach of Reiter [12] shows 
that indeed many aspects of the relational database model can 
be formulated as a first-order theory. Jn particular, it provides a 
formal treatment of query evaluation in databases with incom- 
plete information (null values), the description and enforcement 
of integrity constraints, and how the relational model can be 
extended to incorporate more real world knowledge. It’s main 
weaknesses are the reliance on a given conceptual schema and 
the focus on syntactic aspects. The conceptual schema design 
process and the semantics being modelled are largely ignored. 

The second major stream in database theory is based on the 
universal relation scheme assumption. One of its main advo- 
cates has been Maier [8]. Under the Universal Relationship 
model the database is defined by a single relation. 
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Cansequenthl all actions on the database require a projection 
tirst. The prime weakness is its lack of rigidity or as Maier puts 
it: “It all makes sense, if you squint a little and don’t think too 
hard.” lMaier83 pg. 371 I Furthermore, there is no proper 
separation between semantics at the intensional level and 
semmtks at the extensional level. This leads to one approach 
where Maier introduces ‘placeholders’: members of a set that 
might not be members of that set after all (sic). In a variation 
on this approach he uses objects and window functions. 

In this paper we propose a new formal model for the descrip- 
tion of database semantics t. We start with a set of design 
axioms that describe the informal concepts attribute, entity, 
relationship, views and integrity constraints. These axioms are 
chosen such that the semantic properties recognised as being 
relevant to the database are named explicitly. Moreover, the 
axioms disallow the arbitrary manipulation of the attributes to 
construct user views. Instead, all views should be uniquely 
decomposable to the underlying semantic primitives. This way 
view update problems are avoided from the outset. However it 
this does not rule out that a user sees only part of a view object. 
It merely ensures that all information to interpret updates are 
retained by the application program. In addition, the axioms 
highlight assumptions underlying the older models. 

Following we present a formal definition of the database 
intension, i.e. the allowable entity types in the conceptual 
schema, using topology. In this approach we show that special- 
isation and generalisation hierarchies correspond naturally with 
proper subset hierarchies in the topological space constructed 
out of the attributes. Since a topological space includes the 
notion of a (sub) basis, it also provides hints to the database 
designer as to which entities are really essential and which enti- 
ties should be considered derivable. Choosing a basis then 
reflects the bias of the database designer towards the Universe- 
Of-Discourse. 

In the next section we follow the traditional route to define 
the database extension as a subset of the product space deriv- 
able from the attribute domains. The main result, however, is 
that the relation between database intension and extension can 
be described within the same formalism. That is, the extension 
of a database can be seen as a topological space built out of 
entities rather than entity types. The relationship between data- 
base intension and extension then is an injective mapping 
between two topological spaces. The main benefit is that 
changes in the database intension can be translated directly into 
information preserving properties of the database extension. 
This makes a formal analysis of an evolutionary database 
schema more tractable. 

In the last section we introduce integrity constraints. The 
focus of our attention is the formal description of functional 
dependencies. In particular, it is shown how they propagate in 
the generalisation/specialisation hierarchies, moreover it is 
shown that functional dependencies behave in a way analogous 
to extensions. Furthermore, the Armstrong Axioms are 

t Actually the model is introduced informally: proofs are ommitted. 

captured naturally in our model and we proof that our use of 
functional dependencies is sound and complete. We conclude 
with an indication of current and future directions of our 
research. 

2. Database modelling axioms 

In this section we present the axioms underlying our model 
and explain how they should be interpreted when mcdelling 
part of the real world. The starting point for semantic database 
modelling is the observation that any model needs a symbolic 
name space, the non-literals. and value space, the literals [9]. In 
the database area the symbolic name space is conventionally 
associated with properties, i.e. perceived distinguishing quali- 
ties belonging to an individual or thing. The value space con- 
sists of a family of atomic value sets. Moreover, each set of 
atomic values represents a single semantic concept. 

An association of a property name and a value is convention- 
ally called an attribute. It represents a single non-decomposable 
piece of information extracted from the Universe-Of-Discourse. 
The property name gives the value in the attribute a specific 
semantic role. To avoid mis-interpretation one should ensure 
that an attribute takes an element from a single atomic value 
set. This leads to the following axiom, present in most database 
models: 

Attribute Axiom: 
Each attribute has a single non-decomposable 

semantic interpretation. 

Customary an entity is introduced as a representative for an 
individual or thing in reality. The properties of the entity are 
described by attributes while part of the attributes are essential 
for its identification. We take an opposite position. Namely, we 
define an entity as nothing more than a name for a set of attri- 
butes. Thus the characteristic information of an individual or 
thing is fully described by its attributes. The entity name itself 
does not carry additional semantic information. 

If we abstract away the value part of attributes, that is we 
focus on the property set only, then we get an entity type. To 
simplify identification and manipulation, the designer defines 
symbolic names for the entity types. Part of the designers’ 
work is to provide all entity types for the database at hand. It is 
not uncommon that two entity types are defined with an identi- 
cal property set. Since we take the standpoint that the attributes 
alone are sufficient to represent an individual or thing, both 
entity type names should be considered synonyms. Hence one 
definition can be dropped. If they can not be considered 
synonyms for the same semantic unit then their attribute sets 
are underspecilied. In that case, the entity type names reveal 
additional information about the thing being represented. Yet, 
this information can always be made explicit by an attribute as 
well. Therefore, to avoid occurrence of semantic information 
both in the type name and the property list we proclaim that the 
following axiom should hold for any database design: 
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Entity Type Axiom: 
No two entity types can have the same set of pro- 

perty names. 

Since in the Universal Relation approach all its projections 
are potential entities our entity types form a subset of Maiers 
objects. More specifically, we ask the database designer to 
enumerate the semantic meaningful units explicitly to avoid 
loss of information when a user constructs a view type. 

In designing a conceptual model entities are not isolated con- 
cepts; rather they participate in relationships. This participation 
can take many forms. The entities may share a attributes, there 
may be a functional relationship between attributes, entities 
may represent components in entity structures, or the system 
may be informed by the user about a relationship explicitly. In 
all cases one can consider a relationship as a union of existing 
entities, augmented with attributes that represent the properties 
of the relationship. Thus in our view there is no need for a 
separate relation concept. This reduces the number of primitive 
concepts to formalise. Moreover, it avoids classification prob- 
lems encountered during the conceptual schema design. Hence 
we have the following relationship axiom: 

Relationship Axiom: 
A relationship is an entity type. 

In our model entity types are characterised by their attribute 
sets, it follows that when two entity types that participate in a 
relationship have an attribute in common, that attribute occurs 
only once in the resulting type. Moreover, in that situation a 
possible instantiation of the entity type is implicitly defined. If 
this does not comply with the observations from the Universe- 
of-discourse then it implies that the common attribute has a 
more complex structure than originally envisioned. For 
instance, it might be the point at which one discovers that an 
attribute plays multiple semantic roles or represents an aggrega- 
tion of smaller entities. But then the attribute axiom us forces 
to make this information explicit by using a different name for 
each role. 

As mentioned above, we see a relationship as a union of 
existing entities, augmented with attributes that represent the 
relationship information. The augmented attributes should play 
a fairly unimportant role in the relationship. The relationship is 
determined solely by its contributing entities. In fact, we can 
generalise this notion to entity types and derive a constraint on 
the extension of a relationship. Informally, a relationship can 
not represent information that is not represented by its contri- 
buting entities, where the contributing entity types are desig- 
nated as such by the database designer. This approach will be 
formalised in the course of this paper. It leads us to the follow- 
ing axiom: 

Extension Axiom: 
The extension of a compound entity type is fully 

determined by its contributers. 

It is often convenient to combine entity types into clusters 
and to give them a name for user convenience. Such a construct 
is called a entity view type. They provide a means to denote 
semantic units composed of many smaller semantic units. 
Unlike the older models we restrict view types to sets of entity 
types. The motivation for this radical step is that now each view 
is an simple aggregation and all information about its consti- 
tuents remains available. This limitation ensures that only 
those views can be constructed for which a unique translation 
exist for updates. These observations result in the view axiom 
for database design: 

View Axiom: 
An entity view type is a set of entity types. 

Limitations are often imposed on the actual database states in 
the form of integrity constraints. These constraints can take 
many forms, such as limitations on the values in an atomic 
value set, functional relationship between attributes in a single 
entity type, as dependencies among entities in the database. In 
accordance with the relationship axiom it is reasonable to 
assume that a constraint is defined over existing entity types 
only. Since they describe part of the real-world semantics, it is 
mandatory to explicate this information through an entity 
definition. Therefore, in our opinion dependencies among enti- 
ties are a generalisation of relationships. 

Integrity Axiom: 
An integrity constraint is a predicate over entity 

types and implies an entity type. 

Our approach to integrity differs from the older models by 
again shifting the focus to the entities as atoms of information 
rather than attributes. In this sense, an integrity constraint 
expresses a desirable property over the (smallest) semantic 
units, namely entities. 

To illustrate the model in the subsequent sections we use the 
well-known prototype employee database. The semantic dis- 
tinction between persons’ name and departments’ name has 
been made explicit. Integrity constraints such as that “each 
manager should be an employee”, i.e. subset dependencies are 
represented as subset hierarchies, other constraints are defined 
later in this paper. The employee database is graphically shown 
below. This picture visualises the notion that all entities in a 
database are fully determined by their attributes. In the picture, 
each attribute corresponds with a disk. Taking a single cut, as 
shown, results in an instance of an entity type. 

A = (name, depname, budget, age, location) 
E = (employee, person, department, manager, worksfor) 
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The axioms introduced so far can be used in the database 
design process to obtain a concise description of the database as 
follows: 

- Derive the property name set, the atomic value sets, and the 
envisioned attributes from the Universe-Of-Discourse. Use 
the attribute axiom to ensure that the atomic value set for 
each attribute is unambiguous. 

- Enumerate all entities types, i.e. the entities as found in the 
Universe-Of-Discourse. When two entity types are indistin- 
guishable from their properties, then they are either 
underspecified. i.e. additional properties exist, or they play 
multiple roles. However, the latter can always be resolved 
through the definition of an additional (role) attribute . The 
result is a conceptual schema that satisEes the entity axiom. 

- If an entity type is an relationship observed in the 
Universe-Of-Discourse then the common attributes of its 
contributers should have identical semantic interpretations. 
Moreover, the relationship axiom requires that relations are 
defined over entity types only. In particular, the occurrence 
of common attributes may indicate that the contributing 
entities are relationships themse1ves.t 

- If the additional attributes in a relationship are needed to 
identify the relationship occurrences then there should be 
entity types covering these attributes that have not been 
made explicit. As, the extension of a relationship is limited 
by the extension of its contributing entities. 

- Remove all entities that are entity views. They can also be 
constructed from the primitive entities. If, however, this 
results in loss of information then entity types were missing 

t Or a set of attributes not yet tecogniscd as an entity type. 

anyway. 

- Dependencies vary over entity types in the context of an 
entity type (the relation). Thus a dependency might help us 
in two ways. First we check whether the dependencies 
varies over entity types. If one of its variables ranges over 
an attribute only, then, once again, this attribute should be 
promoted to an entity type. Second we can check whether 
the implied entity type has been observed as an entity 
already. 

In the next section we will give a more format description of the 
database intension, i.e. the database schema, based on the 
design axioms introduced. 

3. Database intensions 

In this section, we impose a topological structure on the 
entity type space to model the required semantics. In our view 
the formal description of the database semantics, the conceptual 
model, starts with the complete list of property names and 
entity types. This information should come from the database 
designer; the process by which it is acquired is not of prime 
interest here. Furthermore, we assume that the above men- 
tioned database design axioms hold. Thus, we start our formali- 
sation process with a Enite set A = {ai)i of property names and 
a set of entity types E = {ej}j. In particular, each entity type e 
is a named subset of A: A,. 
In the subsequent sections we will give a formal description of 
the generalisation/specialisation hierarchy encountered in our 
conceptual model. Moreover, the role of entities contributing in 
a relationship is described in more detail. The result of this 
exercise is that within this framework alternative descriptions of 
the conceptual model can be formally analysed with respect to 
preservation of the database semantics. 

3.1. The formalisation of specialiiation 

The database designer may use attributes repeatedly in the 
description of entities. With each attribute a we can associate 
the set of entity types V, in which it is being used, formally 

V, = (ec E IacA,}. 
Let V be the family of sets V, and let L be the set that contains 
all Enite intersections of elements in V. Then for all eeE, L 
includes a minimal element S, : 

Alternatively for any Win L, with e as a member& is a subset 
of W. In the context of a database scheme S, denotes the set of 
entity types that are specialisations of e. In fact, e is the root of 
an ISA-type hierarchy. Conversely, it means that ISA- 
hierarchies correspond with proper sub-set hierarchies in L, as if 
YE S, and yfx then the Entity Type Axiom forces that x4 S,. 
These properties are graphically shown below using a projec- 
tion of the original disk structure to obtain the more concise 
ven-diagram. 
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Since E = u S, it follows that S = {S, I Ed E} forms an open 
eeE 

cover of E. Obviously, it is the subbase of a topology T and any 
ISA hierarchy corresponds with a subset hierarchy in this topol- 
ogy. Clearly, S doesn’t have to be the smallest subbase. Nor is 
the subbase per definition unique. It may happen that S con- 
tains ‘redundant’ information. That is, some entity types can be 
phrased in terms of other entity types using a finite 
union/intersection expression over elements from the subbase. 
This gives the freedom to choose a subbase for T which reflects 
the bias to the Universe of Discourse. Denote by RT the chosen 
subbase, the entity types not in the subbase are called con- 
structed types. In our example we have: 

RT = {person,department,employee,manager} 
worksfor is the only constructed element 

3.2. The formalisation of generalisation 

In the preceding section we have constructed a topology out 
of attribute sets. It is also possible to define a dual topology 
based on the attributes omitted in each entity type, and this will 
lead to a definition of generalisation. Since this will turn out to 
be an useful topology in its own right, we will actually define it 
here. 

Define i c =A-A, for each entity type and the family 7 of 
sets V, as: 

v,,={e~EIa&,}={e~Ela+?A,} 

Let L be the set that contains all finite intersections of elements 
of ?. For all eE E, i contains the set: 

G, = n i, = {fe E I&&$} = {fE E IAf&i,} 
UEA, 

G, is the minimal element of L that contains e. Interpreted in 
the context of a database schema G, denotes the generalisations 
of e. In particular, let YE G, and ye% then GYcGX. It is impor- 
tant to remember that S, and G, are not each others comple- 
ments. This would require that S,uG,=E and S,nGX =0. A 
counter example is: S personuGpcrsonfE and 
S pWO~nGfX**O~ =person. However, we do know the following: 
Corollary For all x,yc E :ye S,WXE GY 

Continuing our example, we see: 

E = u G, and thus the generalisation sets G, forms an open 
SE 

cover of E as well, denoted by G = {C, I eE E}. Again it gen- 
erates a topology ?, and once again the subbase used to define it 
may have redundant entity types and hence we can choose a 
subbase to reflect our bias. 

3.3. Contributers. 

Relationships have been recognised before as compound enti- 
ties, that is, a relationship is represented as union of existing 
entities and additional descriptive athibutes. In fact, every 
entity that has a generalisation can be seen as a compound 
entity. This leads to an arbitrary complex for entities and it 
becomes necessary to explicate the role of the component enti- 
ties. For this purpose we have introduced the extension axiom, 
which says that the information in a compound entity is deter- 
mined by its contributers. 
This can be formalised as follows: 
Denote by CO, the set of contributers of e. Then, it is obvious 
that we want the following property to hold for contributers: 
Property If fc CO,, then fE G, and f#x. 

Proceedings of the 13th VLDB Conference, Brighton 1987 55 



As noted in section two, it is up to the database designer to 
specify the set of contributers of an entity type. But by choosing 
the attributes carefully, the designer can achieve that the follow- 
ing definition captures exactly the contributers: 
Definition 

CO, = {fe G, I f#e, V,‘gc G, s.t. e;cg.f ,eakG,} 

In conclusion we observe that the contributers are the direct 
generalisations of an entity type. 

4. Database extensions 

In this section, we formally define the extension of the data- 
base. In particular, we show how entities and entity types can 
be related such that the structure of the entity type space is 
neatly mapped into the extension space. As a result, we obtain 
a topological order for the database extension. This provides 
the means to study alternative physical representations and to 
analyse the consequences of changes made in the conceptual 
schema. However, due to space limitation, we describe the 
intension to extension mapping only. 

4.1. Domains 

Earlier on we have defined an attribute as an association 
between a property name (a symbol) and a ‘value’ (an atomic 
value). Names are not of prime interest to us in this section. 
Moreover, we assume that the values are taken from a set of 
atomic values. In passing we note that when structure is 
attached to the value sets it becomes possible to introduce null 
values and incomplete information into the model in a natural 
way, a detailed discussion of this is beyond the scope of this 
paper. For the time being an attribute value is just a member of 
a finite set. 

Let da denote the domain, i.e the set of atomic values, of 
attribute a. Then the domain of an entity type eE E is defined as 
the product of its attribute domains, i.e. 

De = IJ 4,. 
* 

Furthermore, the set of instances of entity type e, denoted by 
R,, is a member of P (D,). An instance of entity type e, denoted 
by tc, is a member of R,; in the old terminology: R, is a relation 
over e and t, is a tuple in R,. 

The entity type axiom tells us that an entity type is fully 
determined by its attributes. Thus if we look at a specialisation 
s of an entity type e and forget about the extra attributes of s, s 
and e become identical. At the intensional level, this observa- 
tion is not of much used. But at the extensional level this 
results in a containment condition on entities. Moreover, it 
defines an extension mapping as follows: 
Definition 

Let eeE and SE&, denote by rC: the projection 
a::R,+P (D,). 

The mapping it: projects every trc R, on D,. Note that the con- 
tainment is a direct consequence of the entity axiom; the enti- 
ties are determined by their properties only. The containment 
condition on entities is formally defined by: 

Containment Condition: Ve,sc E such that SE S,:$(R,) z; R, 

4.2. Entity type extension 

We are now in the position to relate an entity type with the 
set of allowable instances. Since each extension is a subset of 
the underlying domain it requires a family of mappings for each 
entity type. Thus, the extension of an entity type is defined as 
follows: 

Definition 
The mapping E,:S,+P (D,), maps SE S, to z:(R,). 

Observe that with this definition we take care of the situation 
that information about entity type instances might be ‘stored’ 
within its specialisations only. Moreover, the mapping from 
database intension to extension functions as an integrity con- 
straint on the allowable database states, i.e. the mappings only 
allow extensions within the appropriate domains. Furthermore, 
they allow us to define the extension as a topological space, but, 
once again, this is beyond the scope of this paper. 
The definition of the E, allows us to give a formal description 
of the extension axiom. The axiom requires that the information 
contained in a relationship does not exceed the information 
obtainable from its conuibuters. Thus we need an operation 
with with we can combine the information in the various con- 
tributers, this operation is of cause the well known join, which 
we denote by * or lI if we lake the join of more than two sets. 
Now the extension axiom is rephrased as follows: 

Extension Axiom : 
i: E,(e) + n E,(e) if CO, is nonempty, where i is an 

csco, 
injective function. 

We defined their to be an injective mapping instead of requiring 
E,(e) to be a subset of Ihe above join because e might have 
extra attributes. The injectivity means that when we choose an 
entity ei for every entity type in CO,, this combination of enti- 
ties ((e; )) can form at most one entity of type e. For example, 
an employee can be a manager in at most one way. 
We’ll end this discussion with a definition and a useful corol- 
lary: 
Definition 

Denote by p(hJ,e) the mapping E,(h) + E,(f), for 
Sha$ se. 

The definitions and the containment condition immediately 
imply: 
Corollary 

. If Sh G.S,G&, then 
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b pCf,w)p(h,f,e) = p@,e,e) 

c dp(h.f.f) = p(kf.eti 
It should be noted that the containment condition translates the 
ordering of entity types reached at the intensional level to the 
extensional level. Now that we have formally defined exten- 
sions and their relation to the intensional level, we can continue 
with dependencies. 

5. Integrity constraints 

An essential part of a conceptual schema is the description of 
the relevant integrity constraints. Often, integrity constraints 
are the only means to model real-world semantics in the data- 
base in a concise and formal way. The unattractive alternative 
being dispersion of these checks over the application programs. 
Therefore, a vast amount of dependencies have been defined in 
database theory. In this section we study the role of functional 
dependencies in the context of our model. Studying functional 
dependencies suffices to capture the essence of dependencies in 
our model, moreover a treatment of other dependencies is far 
beyond the scope of this paper. 

Recall the integrity axiom, which states that integrity con- 
straints vary over existing entity types in the context of another 
entity type. This means that dependencies are not formulas over 
attributes but over entity types. Moreover, they are only mean- 
ingful if there exists a context, i.e. there exists an entity type 
which is a specialisation of all the entity types involved. Note 
that the context is necessary to disambiguate dependencies as 
well. Since entity types may be related in several ways. 

5.1. Functional Dependencies 

Functional dependencies are the most thoroughly studied 
dependencies in database theory. An entity B is functional 
dependent on A in a relation if in every tuple of the relation 
R (A,B ,.....) in which we encounter a specific value a 1 for A, we 
will always find the same value, say b , for B; thus an A can be 
associated with at most one B. The translation to our model is 
straight-forward: 
Definition 

Let e,f,he E such that e.fc Gh e functional defines fin the 
context of h, denoted fd(eJ’,h) if: VRh,Vr~,r~~lb: 
rcf(rl> = &r$ + $01) = q(rh) 

This definition can be visualised as follows: 
Theorem 

Let ef.gcE such that e,feG*, then fd(e.f,g) iff 
VR,3h:E,(g)+E,-(g) such that the following triangle com- 
mutes: 

/ \ 
E,(g) h E/Q) 

5.2. Armstrong Axioms 

The basis for most results obtained in the theory of functional 
dependencies is of course the Armstrong Axioms [l] One way 
to phrase them is: 

1 Vi-z {l..m} A ,A2 . . . . A,,, +Ai. 

2 A *AZ . . . . A,,, + B tB2 . . . . . B, iff ViE {l..r} A ,A2 . . . . A, + Bi. 
3 IfA,A2 . . . . A,,, -+B,Bz . . . . . B,andB,B2 . . . . S,+C,C2 . . . . . Cp 

thenA ,A2 . . . . A,,, + CLC2 . . . . . Cp 
We can rephrase these axioms in our model as follows: 
Armstrong Axioms 

1 Vgc G, : fd(e,g,e). 

2 fd (f,g,e) iff Vk G, fd (f,h,e). 

3 Iffd(f,g,e)andfd(g,h,e)thenfd(f,h,e) 
Note that 2 is sound because of the Extension Axiom. 
The Armstrong axioms give a locally sound and complete sys- 
tem, locally because dependencies extend via the ISA hierar- 
chies in a way that is not captured by the axioms: 
Theorem 

Let e,f,gcE such that e,fEGGB and fd(e,f,g), furthermore 
let heS, then fd(e,f,h) also holds. 

And now we have a global sound and complete system: 
Theorem 

The Armstrong Axioms, together with the propagation 
theorem are a sound and complete system. 

5.3. Dependency Mappings 

Above we have seen that functional dependencies propagate 
just as extensions. This similarity can be used to define a map- 
ping connecting entity types to functional dependencies. 
Before doing so we should define an appropriate domain for the 
resolving entity type. This domain should satisfy the 
Armstrong Axioms. Moreover, if the context e is known, 
fd (x,y,e) can be denoted by (x,y), i.e. the fd’s in the context of 
e are a subset of G,*G,. These requirements lead us to the fol- 
lowing approach. 
Denote by N,, the nucleus of e, those fd’s that should always 
hold in G,, i.e. N, is the smallest set such that: 
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Denote by F, the following set: 
F, =~Y~PG~*G)~NLYI. 

And finally denote by F:, the transitive closure of the elements 
of F, under the third Armstrong Axiom; i.e. let yeF, and 
(u,b),(b,c)Ey then y* contains also (a,~). 
Definition 

The domain for functional dependencies over e, DF, is: 
DF, = F: 

Denote by fde that element of DF, which we want to hold. 
Then the propagation theorem tells us that fd,cfdf for fc S,. 
But fd,nDFe might be a superset of fde as their may be ftmc- 
tional dependencies between elements of G, in the context off 
that are not valid in the context of e. 
This leads to the following detinition: 
Definition 

The mapping F,:S, + DF,, is defined by: 
Fe(f) = fd+‘Fe 

Note that in general F,(f) is not closed under the Armstrong 
Axioms because (f,e) is not an element. We can mimic the 
extensions even more, by defining: 
Definition 

Let S&s.L then 
1 pF(f,g,e) denotes the mapping: F,(f) + F,(g). 

2 rcF; denotes the mapping: F,(g) + F,(g). 
And this gives us the corollary: 
Corollary 

If S&d,, then 
a rr.F$r.F~=rcF~ 

b pF(f,g,e)pF(e,f,e) = pFkg,e). 

c ruFjpFVf,g9e) = pW,g,f )xF;. 
So again we translated the ordering reached at the intensional 
level to an ordering at a different level, the database extension. 

6. Summary and future research 

In this paper we have introduced a new formal model for the 
description and analysis of database semantics. Our approach 
differs from earlier attempts by presenting a concise set of 
design axioms and using mathematical well-established con- 
cepts. The main results are summarised as follows. It is shown 
that the database intension can be cast in a topological space 
constructed out of attributes. From this we can derive the 
extension, the possible database states, through well-defined 
mappings. 

Entities in this topological space are names for attribute sets. 
They do not bear any additional semantic information from the 
real-world being modelled. This approach is reminiscent of the 
approach taken by Maier, but, in contrast, semantics play a 
more fundamental role in our approach. The user is limited in 
the way entities can be composed to for views. We only allow a 
user to combine entities such that their is always a proper trans- 
lation back to its constituents. This way it avoids the view- 
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update problems encountered in other approaches where the 
projection operator can easily destroy the semantic bonds 
between attributes composing an entity. 

Currently we investigate more complex constraints, such as 
multi-valued dependencies, join-dependencies and domain con- 
straints. It can be shown that multi-valued dependencies are a 
special case of domain constraints. Imposing a structure on the 
domain, a boolean algebra structure [lo], results in a formal 
definition of null values and incomplete information. It differs 
from the method proposed by Reiter where the interpretation of 
the null is context dependent and affects the definition of func- 
tional dependencies. In our approach, the null interpretation 
can be defined independent of the entity type structure and it 
semantics carry over to functional dependencies. 

Since both extension and intension are cast into a single for- 
malism and their relationship can be formally described by 
functions. In particular, we use sheaf theory [ 131 to study the 
continuity problems in databases, i.e. updates of both intension 
and extension. Results on these issues will be published in 
forthcoming papers. 
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