
Using Design Axioms and To
Database Seman f

ology to Model
its

Am0 Siebes
Martin L. Kersten

Centre for Mathematics and Computer Science
P.O. Box 4079,1009 AB Amsterdam, The Netherlands

Abstract

The freedom to combine information stored in a database
using the operators provided by its datamodel introduces
many caveats, such as with view-updates and integrity
preservation, for the database designer. To alleviate these
problems we define a formal model that explicates the data-
base semantics through entity definitions and limits their
use along well-defined paths. Our approach is based on six
design axioms and concepts borrowed topology. This way
we achieve an unified description of both the database inten-
sion and its extension. In particular, we show that generali-
sation / specialisation hierarchies are naturally cast into
proper subset hierarchies in the entity type topology. More-
over, the limitations posed on the construction of entity
types preserve the Armstrong axioms for functional depen-
dencies. This way our mode1 captures much of the real-
world semantic constraints and remains sound and com-
plete.

Keywords &phrases: semantic data models, database theory.
1980 Mathematics Subject Classification: 69H21,22A26,69K14.
I985 CR Categories: H.2.1.1.2.4.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee. and/or spe.-
cial permission from the Endowment.

1. Introduction

Capturing the semantics of a database in a conceptual schema
is the prime activity of database design. The focal point of con-
ceptual schema design is how a particular piece of information
should be categorised and how it is translated to the concepts
provided by the conceptual model. Often it can not he resolved
conclusively and uniquely, because the information gathered
during the design process is ambiguous and imprecise. One of
the most accepted empirical models for database design is the
Entity-Relationship model [2] and its variations [5.3]. The
important contribution of the EAR model over the relational
data model [4] is the distinction between entities (or objects)
and relationships among entities (or connections among
objects). Relationships in the EAR model deal with semantic
properties, such as relationship carclinalities (l:l,l:n,n:m) and
existence dependencies, that distinguish them from entities.
However, lack of formalisation of the EAR model makes the
analysis of a concephlal schema cumbersome.

A more formal approach to database design is pursued in the
area of database theory where twd main streams can be dis-
tinguished: deductive database theory and ‘classical’ relational
database theory. In deductive database theory, logic is used to
obtain a proper foundation for modelling database semantics
[6,11,7]. The proof-theoretic approach of Reiter [12] shows
that indeed many aspects of the relational database model can
be formulated as a first-order theory. Jn particular, it provides a
formal treatment of query evaluation in databases with incom-
plete information (null values), the description and enforcement
of integrity constraints, and how the relational model can be
extended to incorporate more real world knowledge. It’s main
weaknesses are the reliance on a given conceptual schema and
the focus on syntactic aspects. The conceptual schema design
process and the semantics being modelled are largely ignored.

The second major stream in database theory is based on the
universal relation scheme assumption. One of its main advo-
cates has been Maier [8]. Under the Universal Relationship
model the database is defined by a single relation.

Proceedings of the 13th VLDB Conference, Brighton 1987 51

--

Cansequenthl all actions on the database require a projection
tirst. The prime weakness is its lack of rigidity or as Maier puts
it: “It all makes sense, if you squint a little and don’t think too
hard.” lMaier83 pg. 371 I Furthermore, there is no proper
separation between semantics at the intensional level and
semmtks at the extensional level. This leads to one approach
where Maier introduces ‘placeholders’: members of a set that
might not be members of that set after all (sic). In a variation
on this approach he uses objects and window functions.

In this paper we propose a new formal model for the descrip-
tion of database semantics t. We start with a set of design
axioms that describe the informal concepts attribute, entity,
relationship, views and integrity constraints. These axioms are
chosen such that the semantic properties recognised as being
relevant to the database are named explicitly. Moreover, the
axioms disallow the arbitrary manipulation of the attributes to
construct user views. Instead, all views should be uniquely
decomposable to the underlying semantic primitives. This way
view update problems are avoided from the outset. However it
this does not rule out that a user sees only part of a view object.
It merely ensures that all information to interpret updates are
retained by the application program. In addition, the axioms
highlight assumptions underlying the older models.

Following we present a formal definition of the database
intension, i.e. the allowable entity types in the conceptual
schema, using topology. In this approach we show that special-
isation and generalisation hierarchies correspond naturally with
proper subset hierarchies in the topological space constructed
out of the attributes. Since a topological space includes the
notion of a (sub) basis, it also provides hints to the database
designer as to which entities are really essential and which enti-
ties should be considered derivable. Choosing a basis then
reflects the bias of the database designer towards the Universe-
Of-Discourse.

In the next section we follow the traditional route to define
the database extension as a subset of the product space deriv-
able from the attribute domains. The main result, however, is
that the relation between database intension and extension can
be described within the same formalism. That is, the extension
of a database can be seen as a topological space built out of
entities rather than entity types. The relationship between data-
base intension and extension then is an injective mapping
between two topological spaces. The main benefit is that
changes in the database intension can be translated directly into
information preserving properties of the database extension.
This makes a formal analysis of an evolutionary database
schema more tractable.

In the last section we introduce integrity constraints. The
focus of our attention is the formal description of functional
dependencies. In particular, it is shown how they propagate in
the generalisation/specialisation hierarchies, moreover it is
shown that functional dependencies behave in a way analogous
to extensions. Furthermore, the Armstrong Axioms are

t Actually the model is introduced informally: proofs are ommitted.

captured naturally in our model and we proof that our use of
functional dependencies is sound and complete. We conclude
with an indication of current and future directions of our
research.

2. Database modelling axioms

In this section we present the axioms underlying our model
and explain how they should be interpreted when mcdelling
part of the real world. The starting point for semantic database
modelling is the observation that any model needs a symbolic
name space, the non-literals. and value space, the literals [9]. In
the database area the symbolic name space is conventionally
associated with properties, i.e. perceived distinguishing quali-
ties belonging to an individual or thing. The value space con-
sists of a family of atomic value sets. Moreover, each set of
atomic values represents a single semantic concept.

An association of a property name and a value is convention-
ally called an attribute. It represents a single non-decomposable
piece of information extracted from the Universe-Of-Discourse.
The property name gives the value in the attribute a specific
semantic role. To avoid mis-interpretation one should ensure
that an attribute takes an element from a single atomic value
set. This leads to the following axiom, present in most database
models:

Attribute Axiom:
Each attribute has a single non-decomposable

semantic interpretation.

Customary an entity is introduced as a representative for an
individual or thing in reality. The properties of the entity are
described by attributes while part of the attributes are essential
for its identification. We take an opposite position. Namely, we
define an entity as nothing more than a name for a set of attri-
butes. Thus the characteristic information of an individual or
thing is fully described by its attributes. The entity name itself
does not carry additional semantic information.

If we abstract away the value part of attributes, that is we
focus on the property set only, then we get an entity type. To
simplify identification and manipulation, the designer defines
symbolic names for the entity types. Part of the designers’
work is to provide all entity types for the database at hand. It is
not uncommon that two entity types are defined with an identi-
cal property set. Since we take the standpoint that the attributes
alone are sufficient to represent an individual or thing, both
entity type names should be considered synonyms. Hence one
definition can be dropped. If they can not be considered
synonyms for the same semantic unit then their attribute sets
are underspecilied. In that case, the entity type names reveal
additional information about the thing being represented. Yet,
this information can always be made explicit by an attribute as
well. Therefore, to avoid occurrence of semantic information
both in the type name and the property list we proclaim that the
following axiom should hold for any database design:

52 Proceedings of the 13th VLDB Conference, Brighton 1987

Entity Type Axiom:
No two entity types can have the same set of pro-

perty names.

Since in the Universal Relation approach all its projections
are potential entities our entity types form a subset of Maiers
objects. More specifically, we ask the database designer to
enumerate the semantic meaningful units explicitly to avoid
loss of information when a user constructs a view type.

In designing a conceptual model entities are not isolated con-
cepts; rather they participate in relationships. This participation
can take many forms. The entities may share a attributes, there
may be a functional relationship between attributes, entities
may represent components in entity structures, or the system
may be informed by the user about a relationship explicitly. In
all cases one can consider a relationship as a union of existing
entities, augmented with attributes that represent the properties
of the relationship. Thus in our view there is no need for a
separate relation concept. This reduces the number of primitive
concepts to formalise. Moreover, it avoids classification prob-
lems encountered during the conceptual schema design. Hence
we have the following relationship axiom:

Relationship Axiom:
A relationship is an entity type.

In our model entity types are characterised by their attribute
sets, it follows that when two entity types that participate in a
relationship have an attribute in common, that attribute occurs
only once in the resulting type. Moreover, in that situation a
possible instantiation of the entity type is implicitly defined. If
this does not comply with the observations from the Universe-
of-discourse then it implies that the common attribute has a
more complex structure than originally envisioned. For
instance, it might be the point at which one discovers that an
attribute plays multiple semantic roles or represents an aggrega-
tion of smaller entities. But then the attribute axiom us forces
to make this information explicit by using a different name for
each role.

As mentioned above, we see a relationship as a union of
existing entities, augmented with attributes that represent the
relationship information. The augmented attributes should play
a fairly unimportant role in the relationship. The relationship is
determined solely by its contributing entities. In fact, we can
generalise this notion to entity types and derive a constraint on
the extension of a relationship. Informally, a relationship can
not represent information that is not represented by its contri-
buting entities, where the contributing entity types are desig-
nated as such by the database designer. This approach will be
formalised in the course of this paper. It leads us to the follow-
ing axiom:

Extension Axiom:
The extension of a compound entity type is fully

determined by its contributers.

It is often convenient to combine entity types into clusters
and to give them a name for user convenience. Such a construct
is called a entity view type. They provide a means to denote
semantic units composed of many smaller semantic units.
Unlike the older models we restrict view types to sets of entity
types. The motivation for this radical step is that now each view
is an simple aggregation and all information about its consti-
tuents remains available. This limitation ensures that only
those views can be constructed for which a unique translation
exist for updates. These observations result in the view axiom
for database design:

View Axiom:
An entity view type is a set of entity types.

Limitations are often imposed on the actual database states in
the form of integrity constraints. These constraints can take
many forms, such as limitations on the values in an atomic
value set, functional relationship between attributes in a single
entity type, as dependencies among entities in the database. In
accordance with the relationship axiom it is reasonable to
assume that a constraint is defined over existing entity types
only. Since they describe part of the real-world semantics, it is
mandatory to explicate this information through an entity
definition. Therefore, in our opinion dependencies among enti-
ties are a generalisation of relationships.

Integrity Axiom:
An integrity constraint is a predicate over entity

types and implies an entity type.

Our approach to integrity differs from the older models by
again shifting the focus to the entities as atoms of information
rather than attributes. In this sense, an integrity constraint
expresses a desirable property over the (smallest) semantic
units, namely entities.

To illustrate the model in the subsequent sections we use the
well-known prototype employee database. The semantic dis-
tinction between persons’ name and departments’ name has
been made explicit. Integrity constraints such as that “each
manager should be an employee”, i.e. subset dependencies are
represented as subset hierarchies, other constraints are defined
later in this paper. The employee database is graphically shown
below. This picture visualises the notion that all entities in a
database are fully determined by their attributes. In the picture,
each attribute corresponds with a disk. Taking a single cut, as
shown, results in an instance of an entity type.

A = (name, depname, budget, age, location)
E = (employee, person, department, manager, worksfor)

Proceedings of the 13th VLDB Conference, Brighton 1987 53

depnamc

The axioms introduced so far can be used in the database
design process to obtain a concise description of the database as
follows:

- Derive the property name set, the atomic value sets, and the
envisioned attributes from the Universe-Of-Discourse. Use
the attribute axiom to ensure that the atomic value set for
each attribute is unambiguous.

- Enumerate all entities types, i.e. the entities as found in the
Universe-Of-Discourse. When two entity types are indistin-
guishable from their properties, then they are either
underspecified. i.e. additional properties exist, or they play
multiple roles. However, the latter can always be resolved
through the definition of an additional (role) attribute . The
result is a conceptual schema that satisEes the entity axiom.

- If an entity type is an relationship observed in the
Universe-Of-Discourse then the common attributes of its
contributers should have identical semantic interpretations.
Moreover, the relationship axiom requires that relations are
defined over entity types only. In particular, the occurrence
of common attributes may indicate that the contributing
entities are relationships themse1ves.t

- If the additional attributes in a relationship are needed to
identify the relationship occurrences then there should be
entity types covering these attributes that have not been
made explicit. As, the extension of a relationship is limited
by the extension of its contributing entities.

- Remove all entities that are entity views. They can also be
constructed from the primitive entities. If, however, this
results in loss of information then entity types were missing

t Or a set of attributes not yet tecogniscd as an entity type.

anyway.

- Dependencies vary over entity types in the context of an
entity type (the relation). Thus a dependency might help us
in two ways. First we check whether the dependencies
varies over entity types. If one of its variables ranges over
an attribute only, then, once again, this attribute should be
promoted to an entity type. Second we can check whether
the implied entity type has been observed as an entity
already.

In the next section we will give a more format description of the
database intension, i.e. the database schema, based on the
design axioms introduced.

3. Database intensions

In this section, we impose a topological structure on the
entity type space to model the required semantics. In our view
the formal description of the database semantics, the conceptual
model, starts with the complete list of property names and
entity types. This information should come from the database
designer; the process by which it is acquired is not of prime
interest here. Furthermore, we assume that the above men-
tioned database design axioms hold. Thus, we start our formali-
sation process with a Enite set A = {ai)i of property names and
a set of entity types E = {ej}j. In particular, each entity type e
is a named subset of A: A,.
In the subsequent sections we will give a formal description of
the generalisation/specialisation hierarchy encountered in our
conceptual model. Moreover, the role of entities contributing in
a relationship is described in more detail. The result of this
exercise is that within this framework alternative descriptions of
the conceptual model can be formally analysed with respect to
preservation of the database semantics.

3.1. The formalisation of specialiiation

The database designer may use attributes repeatedly in the
description of entities. With each attribute a we can associate
the set of entity types V, in which it is being used, formally

V, = (ec E IacA,}.
Let V be the family of sets V, and let L be the set that contains
all Enite intersections of elements in V. Then for all eeE, L
includes a minimal element S, :

Alternatively for any Win L, with e as a member& is a subset
of W. In the context of a database scheme S, denotes the set of
entity types that are specialisations of e. In fact, e is the root of
an ISA-type hierarchy. Conversely, it means that ISA-
hierarchies correspond with proper sub-set hierarchies in L, as if
YE S, and yfx then the Entity Type Axiom forces that x4 S,.
These properties are graphically shown below using a projec-
tion of the original disk structure to obtain the more concise
ven-diagram.

54 Proceedings of the 13th VLDB Conference, Brighton 1987

Since E = u S, it follows that S = {S, I Ed E} forms an open
eeE

cover of E. Obviously, it is the subbase of a topology T and any
ISA hierarchy corresponds with a subset hierarchy in this topol-
ogy. Clearly, S doesn’t have to be the smallest subbase. Nor is
the subbase per definition unique. It may happen that S con-
tains ‘redundant’ information. That is, some entity types can be
phrased in terms of other entity types using a finite
union/intersection expression over elements from the subbase.
This gives the freedom to choose a subbase for T which reflects
the bias to the Universe of Discourse. Denote by RT the chosen
subbase, the entity types not in the subbase are called con-
structed types. In our example we have:

RT = {person,department,employee,manager}
worksfor is the only constructed element

3.2. The formalisation of generalisation

In the preceding section we have constructed a topology out
of attribute sets. It is also possible to define a dual topology
based on the attributes omitted in each entity type, and this will
lead to a definition of generalisation. Since this will turn out to
be an useful topology in its own right, we will actually define it
here.

Define i c =A-A, for each entity type and the family 7 of
sets V, as:

v,,={e~EIa&,}={e~Ela+?A,}

Let L be the set that contains all finite intersections of elements
of ?. For all eE E, i contains the set:

G, = n i, = {fe E I&&$} = {fE E IAf&i,}
UEA,

G, is the minimal element of L that contains e. Interpreted in
the context of a database schema G, denotes the generalisations
of e. In particular, let YE G, and ye% then GYcGX. It is impor-
tant to remember that S, and G, are not each others comple-
ments. This would require that S,uG,=E and S,nGX =0. A
counter example is: S personuGpcrsonfE and
S pWO~nGfX**O~ =person. However, we do know the following:
Corollary For all x,yc E :ye S,WXE GY

Continuing our example, we see:

E = u G, and thus the generalisation sets G, forms an open
SE

cover of E as well, denoted by G = {C, I eE E}. Again it gen-
erates a topology ?, and once again the subbase used to define it
may have redundant entity types and hence we can choose a
subbase to reflect our bias.

3.3. Contributers.

Relationships have been recognised before as compound enti-
ties, that is, a relationship is represented as union of existing
entities and additional descriptive athibutes. In fact, every
entity that has a generalisation can be seen as a compound
entity. This leads to an arbitrary complex for entities and it
becomes necessary to explicate the role of the component enti-
ties. For this purpose we have introduced the extension axiom,
which says that the information in a compound entity is deter-
mined by its contributers.
This can be formalised as follows:
Denote by CO, the set of contributers of e. Then, it is obvious
that we want the following property to hold for contributers:
Property If fc CO,, then fE G, and f#x.

Proceedings of the 13th VLDB Conference, Brighton 1987 55

As noted in section two, it is up to the database designer to
specify the set of contributers of an entity type. But by choosing
the attributes carefully, the designer can achieve that the follow-
ing definition captures exactly the contributers:
Definition

CO, = {fe G, I f#e, V,‘gc G, s.t. e;cg.f ,eakG,}

In conclusion we observe that the contributers are the direct
generalisations of an entity type.

4. Database extensions

In this section, we formally define the extension of the data-
base. In particular, we show how entities and entity types can
be related such that the structure of the entity type space is
neatly mapped into the extension space. As a result, we obtain
a topological order for the database extension. This provides
the means to study alternative physical representations and to
analyse the consequences of changes made in the conceptual
schema. However, due to space limitation, we describe the
intension to extension mapping only.

4.1. Domains

Earlier on we have defined an attribute as an association
between a property name (a symbol) and a ‘value’ (an atomic
value). Names are not of prime interest to us in this section.
Moreover, we assume that the values are taken from a set of
atomic values. In passing we note that when structure is
attached to the value sets it becomes possible to introduce null
values and incomplete information into the model in a natural
way, a detailed discussion of this is beyond the scope of this
paper. For the time being an attribute value is just a member of
a finite set.

Let da denote the domain, i.e the set of atomic values, of
attribute a. Then the domain of an entity type eE E is defined as
the product of its attribute domains, i.e.

De = IJ 4,.
*

Furthermore, the set of instances of entity type e, denoted by
R,, is a member of P (D,). An instance of entity type e, denoted
by tc, is a member of R,; in the old terminology: R, is a relation
over e and t, is a tuple in R,.

The entity type axiom tells us that an entity type is fully
determined by its attributes. Thus if we look at a specialisation
s of an entity type e and forget about the extra attributes of s, s
and e become identical. At the intensional level, this observa-
tion is not of much used. But at the extensional level this
results in a containment condition on entities. Moreover, it
defines an extension mapping as follows:
Definition

Let eeE and SE&, denote by rC: the projection
a::R,+P (D,).

The mapping it: projects every trc R, on D,. Note that the con-
tainment is a direct consequence of the entity axiom; the enti-
ties are determined by their properties only. The containment
condition on entities is formally defined by:

Containment Condition: Ve,sc E such that SE S,:$(R,) z; R,

4.2. Entity type extension

We are now in the position to relate an entity type with the
set of allowable instances. Since each extension is a subset of
the underlying domain it requires a family of mappings for each
entity type. Thus, the extension of an entity type is defined as
follows:

Definition
The mapping E,:S,+P (D,), maps SE S, to z:(R,).

Observe that with this definition we take care of the situation
that information about entity type instances might be ‘stored’
within its specialisations only. Moreover, the mapping from
database intension to extension functions as an integrity con-
straint on the allowable database states, i.e. the mappings only
allow extensions within the appropriate domains. Furthermore,
they allow us to define the extension as a topological space, but,
once again, this is beyond the scope of this paper.
The definition of the E, allows us to give a formal description
of the extension axiom. The axiom requires that the information
contained in a relationship does not exceed the information
obtainable from its conuibuters. Thus we need an operation
with with we can combine the information in the various con-
tributers, this operation is of cause the well known join, which
we denote by * or lI if we lake the join of more than two sets.
Now the extension axiom is rephrased as follows:

Extension Axiom :
i: E,(e) + n E,(e) if CO, is nonempty, where i is an

csco,
injective function.

We defined their to be an injective mapping instead of requiring
E,(e) to be a subset of Ihe above join because e might have
extra attributes. The injectivity means that when we choose an
entity ei for every entity type in CO,, this combination of enti-
ties ((e;)) can form at most one entity of type e. For example,
an employee can be a manager in at most one way.
We’ll end this discussion with a definition and a useful corol-
lary:
Definition

Denote by p(hJ,e) the mapping E,(h) + E,(f), for
Sha$ se.

The definitions and the containment condition immediately
imply:
Corollary

. If Sh G.S,G&, then

56 Proceedings of the 13th VLDB Conference, Brighton 1987

b pCf,w)p(h,f,e) = p@,e,e)

c dp(h.f.f) = p(kf.eti
It should be noted that the containment condition translates the
ordering of entity types reached at the intensional level to the
extensional level. Now that we have formally defined exten-
sions and their relation to the intensional level, we can continue
with dependencies.

5. Integrity constraints

An essential part of a conceptual schema is the description of
the relevant integrity constraints. Often, integrity constraints
are the only means to model real-world semantics in the data-
base in a concise and formal way. The unattractive alternative
being dispersion of these checks over the application programs.
Therefore, a vast amount of dependencies have been defined in
database theory. In this section we study the role of functional
dependencies in the context of our model. Studying functional
dependencies suffices to capture the essence of dependencies in
our model, moreover a treatment of other dependencies is far
beyond the scope of this paper.

Recall the integrity axiom, which states that integrity con-
straints vary over existing entity types in the context of another
entity type. This means that dependencies are not formulas over
attributes but over entity types. Moreover, they are only mean-
ingful if there exists a context, i.e. there exists an entity type
which is a specialisation of all the entity types involved. Note
that the context is necessary to disambiguate dependencies as
well. Since entity types may be related in several ways.

5.1. Functional Dependencies

Functional dependencies are the most thoroughly studied
dependencies in database theory. An entity B is functional
dependent on A in a relation if in every tuple of the relation
R (A,B ,.....) in which we encounter a specific value a 1 for A, we
will always find the same value, say b , for B; thus an A can be
associated with at most one B. The translation to our model is
straight-forward:
Definition

Let e,f,he E such that e.fc Gh e functional defines fin the
context of h, denoted fd(eJ’,h) if: VRh,Vr~,r~~lb:
rcf(rl> = &r$ + $01) = q(rh)

This definition can be visualised as follows:
Theorem

Let ef.gcE such that e,feG*, then fd(e.f,g) iff
VR,3h:E,(g)+E,-(g) such that the following triangle com-
mutes:

/ \
E,(g) h E/Q)

5.2. Armstrong Axioms

The basis for most results obtained in the theory of functional
dependencies is of course the Armstrong Axioms [l] One way
to phrase them is:

1 Vi-z {l..m} A ,A2 A,,, +Ai.

2 A *AZ A,,, + B tB2 B, iff ViE {l..r} A ,A2 A, + Bi.
3 IfA,A2 A,,, -+B,Bz B,andB,B2 S,+C,C2 Cp

thenA ,A2 A,,, + CLC2 Cp
We can rephrase these axioms in our model as follows:
Armstrong Axioms

1 Vgc G, : fd(e,g,e).

2 fd (f,g,e) iff Vk G, fd (f,h,e).

3 Iffd(f,g,e)andfd(g,h,e)thenfd(f,h,e)
Note that 2 is sound because of the Extension Axiom.
The Armstrong axioms give a locally sound and complete sys-
tem, locally because dependencies extend via the ISA hierar-
chies in a way that is not captured by the axioms:
Theorem

Let e,f,gcE such that e,fEGGB and fd(e,f,g), furthermore
let heS, then fd(e,f,h) also holds.

And now we have a global sound and complete system:
Theorem

The Armstrong Axioms, together with the propagation
theorem are a sound and complete system.

5.3. Dependency Mappings

Above we have seen that functional dependencies propagate
just as extensions. This similarity can be used to define a map-
ping connecting entity types to functional dependencies.
Before doing so we should define an appropriate domain for the
resolving entity type. This domain should satisfy the
Armstrong Axioms. Moreover, if the context e is known,
fd (x,y,e) can be denoted by (x,y), i.e. the fd’s in the context of
e are a subset of G,*G,. These requirements lead us to the fol-
lowing approach.
Denote by N,, the nucleus of e, those fd’s that should always
hold in G,, i.e. N, is the smallest set such that:

Proceedings of the 13th VLDB Conference, Brighton 1987 57

Denote by F, the following set:
F, =~Y~PG~*G)~NLYI.

And finally denote by F:, the transitive closure of the elements
of F, under the third Armstrong Axiom; i.e. let yeF, and
(u,b),(b,c)Ey then y* contains also (a,~).
Definition

The domain for functional dependencies over e, DF, is:
DF, = F:

Denote by fde that element of DF, which we want to hold.
Then the propagation theorem tells us that fd,cfdf for fc S,.
But fd,nDFe might be a superset of fde as their may be ftmc-
tional dependencies between elements of G, in the context off
that are not valid in the context of e.
This leads to the following detinition:
Definition

The mapping F,:S, + DF,, is defined by:
Fe(f) = fd+‘Fe

Note that in general F,(f) is not closed under the Armstrong
Axioms because (f,e) is not an element. We can mimic the
extensions even more, by defining:
Definition

Let S&s.L then
1 pF(f,g,e) denotes the mapping: F,(f) + F,(g).

2 rcF; denotes the mapping: F,(g) + F,(g).
And this gives us the corollary:
Corollary

If S&d,, then
a rr.F$r.F~=rcF~

b pF(f,g,e)pF(e,f,e) = pFkg,e).

c ruFjpFVf,g9e) = pW,g,f)xF;.
So again we translated the ordering reached at the intensional
level to an ordering at a different level, the database extension.

6. Summary and future research

In this paper we have introduced a new formal model for the
description and analysis of database semantics. Our approach
differs from earlier attempts by presenting a concise set of
design axioms and using mathematical well-established con-
cepts. The main results are summarised as follows. It is shown
that the database intension can be cast in a topological space
constructed out of attributes. From this we can derive the
extension, the possible database states, through well-defined
mappings.

Entities in this topological space are names for attribute sets.
They do not bear any additional semantic information from the
real-world being modelled. This approach is reminiscent of the
approach taken by Maier, but, in contrast, semantics play a
more fundamental role in our approach. The user is limited in
the way entities can be composed to for views. We only allow a
user to combine entities such that their is always a proper trans-
lation back to its constituents. This way it avoids the view-

113

PI

[31

[41

PI

WI

t71

181

191

WI

illI

Armstrong, W. W., “Dependency Structures of Data
Base Relationships,” Proc. IFIP Congress 1974.

Chen, P.P., “The entity-relationship model: towards a
unified view of data,” ACM Transactions on Database
Systems, vol. 1, no. 1, pp.9-36, 1976.

Chen, P.P., Entity-Relationship Approach to Systems
Analysis and Design. AmsterdarmNorth-Holland, 1983.

Codd, E.F., “A Relational Model for Large Shared Data
Banks,” Comm. ACM, vol. 13, no. 6, pp.377-387, 1970.

Elmasri, R., Weeldreyer, J., and Hevner, A., “The
category concept: An extension to the entity-relationship
model,” Data & Knowledge Engineering, vol. 1, no. 1,
pp.751 16. 1985.

Gallaire, H. and Minkers), J., in Logic and Databases,
Plenum Press, New York (1978).
Gallaire, H., Miier, J., and Nicolas, J-M., “Logic and
Database: A Deductive Approach,” ACM Computing
Sumeys, vol. 16, no. 2, pp.153-185, June 1984.

Maier. David, “Null Values Partial Information and
Database Semantics,” pp. 371-438 in The Theory of
Relational Databases (1983).

Nijssen, G.M., “The binary relationship approach,” in
Concepts and Terminology for the Conceptual Schema
and the Information Base, ed. J.J. van Griethuysen
(1982).

Raisiowa, H. and Sikorski, R., Mathematics of
Metamathematics. Polish University Press.

Reiter, R.. “Databases: a Logical Perspective,” Proc.
Workshop on Data Abstraction, Databases, and Concep-
tual Modelling. SIGPLAN Notices, vol. 16, no. 1.

update problems encountered in other approaches where the
projection operator can easily destroy the semantic bonds
between attributes composing an entity.

Currently we investigate more complex constraints, such as
multi-valued dependencies, join-dependencies and domain con-
straints. It can be shown that multi-valued dependencies are a
special case of domain constraints. Imposing a structure on the
domain, a boolean algebra structure [lo], results in a formal
definition of null values and incomplete information. It differs
from the method proposed by Reiter where the interpretation of
the null is context dependent and affects the definition of func-
tional dependencies. In our approach, the null interpretation
can be defined independent of the entity type structure and it
semantics carry over to functional dependencies.

Since both extension and intension are cast into a single for-
malism and their relationship can be formally described by
functions. In particular, we use sheaf theory [131 to study the
continuity problems in databases, i.e. updates of both intension
and extension. Results on these issues will be published in
forthcoming papers.

References

58 proceedings of the 13th VLDB Conference, Brighton 1987

pp.174-176. Jan 1981.

[12] Reiter, R., “Towards a Logical Reconstruction of Rela-
tional Database Theory,” pp. 191-233 in On Conceptual
Modelling, ed. J.W. Schmidt (1984).

[13] Tennison, B. R., Sheaf Theory. Cambridge University
Press.

Proceedings of the 13th VLDB Conference, Brighton 1987 59

