
Recursive Strategies for Answering Recursive Queries - 
The RQA/FQI Strategy 

Wolfgang Nejdl 

Technische Universitat Wien 
Institut fiir Angewandte Informatik und Systemanalyse 

A-1040 Vienna, Paniglg.16, Austria 
nejdl@tuhold.uucp 

ABSTRACT 
In this paper we will discuss several methods 
for recursive query processing using a recur- 
sive control structure. We will describe the 
QSQR method, introduced in [Vie861 and show 
that it fails to produce all answers in certain 
cases. After analyzing the causes of this fail- 
ure we propose an improved algorithm - the 
RQA/FQI Strategy - which is complete over the 
domain of function-free Horn clauses. The new 
method uses a two step approach - recursive ex- 
pansion + an efficient variant of LFP iteration 
- to evaluate recursive queries. A short com- 
parison of these methods shows the efficiency 
of RQA/FQI. 

1. INTRODUCXION 

Recursive query processing has been an area 
of active research for the last five years. 
Many strategies for this problem have been de- 
veloped ([Hen84], [Ban86a], [McK81], [Smi86], 
[U1185], [Vie86], [Loz85], [Cer86], [Ion86], 
[Ras86], for comparisons of existing algorithms 
see also [Ban86], [Han86]). 

Many methods have been proposed in these 
strategies: interpreted and compiled ap- 
proaches, optimization and evaluation strate- 
gies, top down and bottom up, recursive and 
iterative. Application areas range from linear 
rules to the whole area of function free Horn 
clauses. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and the 
title of the publication and its date appear, and notice is given that 
copying is by permission of the Very Large Data Base Endow- 
ment. To copy otherwise, or to republish, require.s a fee and/or spe- 
cial permission from the Endowment. 

Proceedings of the 13th VLDB Conference, Brighton 1987 

Our aim was to find a strategy which.should 
be both efficient and general (applicable to a 
large area of recursive rules). 

As shown by [Ban86], strategies using re- 
cursive control (for the main part of the eval- 
uation) show a superior behaviour to iterative 
strategies by cutting down the set of facts to 
be searched and avoiding much duplicate work. 
We will therefore discuss briefly the proper- 
ties of PROLOG being the main prototype of a 
recursive top down evaluation strategy. 

Then we turn to QSQR which has recently 
been introduced for handling recursive axioms 
in deductive databases by [Vie86]. The ap- 
plication domain of this strategy (according to 
[Vie86]) are all kinds of recursion defined by 
means of function free Horn clauses. We will 
discuss QSQR in more detail since it is claimed 
both in [Vie861 and in [Boc86] to be complete 
over its application domain. Moreover, in a 
survey and comparison of strategies for hand- 
ling recursive queries in [Ban861 QSQR is said 
to be one of the best methods available. 

Unfortunately QSQR fails to find all an- 
swers in certain cases. After a short descrip- 
tion of QSQR we will give such an example and 
discuss the causes for this failure. 

Using the insights gained through this 
analysis, in the second part of this paper we 
propose an improved recursive strategy - the 
Recursive Question Answering / Frozen Query 
Iteration (RQA/FQI) Strategy - which is com- 
plete over the domain of function free Horn 
clauses. 

A short comparison with the existing 
strategies shows the efficiency of the new 
method. 

The RQA/FQI Strategy has been implemented 
in the PROLOG-DB System which is described in 
[Nej86a]. 

43 



2. PROLOG 

Actually PROLOG is a complete programming 
language rather than just a question answering 
strategy (see e.g. [Clo81]). However viewed as 
an answering strategy PROLOG uses a recursive 
top down strategy for the evaluation of queries 
over Horn clauses. The selection of rules is 
determined by the rule order, the selection of 
subgoals is depth first and left-to-right. 

Because of this simple strategy and its in- 
ability to recognize cycles its application do- 
main is strongly dependent on the available 
data (no cycles!). Its efficiency is high only 
in those cases when goals can be proved only 
once and constants can be properly propagated 
into the subgoals. In the other cases PROLOG 
has to do much duplicate work and uses too many 
non-relevant facts in its evaluation. 

A further problem arising when coupling 
PROLOG with a relational database is its tuple 
oriented approach which hinders some possible 
'improvements and optimizations used by a RDBMS. 

Thus, while giving a good prototype exam- 
ple, its use is limited to domains where rela- 
tively few data and not too complex recursions 
are needed. 

3. QSQR 

3.1. Description 

QSQR is a recursive top down strategy for 
handling (almost) all kinds of function free 
Horn clauses. An own selection function (sub- 
goal most instantiated) determines the evalua- 
tion order of subgoals and the propagation of 
values. It uses a set oriented approach and re- 
uses already evaluated queries (and their an- 
swers) to avoid duplicate work and to recognize 
cycles. 

We will briefly describe QSQR according to 
[Vie86]. For further details please refer to 
the descriptions in [Vie86], [Ban861 and 
[Boc86]. 

When answering a guery Ri on a set of func- 
tion free Horn clauses, the main principle of 
QSQR is the recursive expansion of the search 
tree for Ri. 

Additionally, certain set variables are as- 
sociated with each recursive predicate Ri: 

- a global set of tuples Ans-Ri which is 
used during evaluation to store the 
answers already found for queries on 
Ri, 

- global sets of instances Inst M Ri, for 
each query pattern M (or ado&sent, see 
[UllSS]) Of Ri, containing the 
instantiated arguments of queries al- 
ready executed on Ri, where M indicates 
which arguments these instances corres- 
pond to, 

- a local set of instances Lot M Ri for 
each subguery indicating the instanti- 
ated arguments of the subguery. 

Bindings for arguments are propagated in a 
set-oriented manner (generalized queries). 

The answers to recursive queries are found 
by the following procedures: 

Procedure ANSWER: 
/* main procedure for answering a guery Ri */ 
/* Input: local set of instances Lot M Ri 

- - 
*/ 

/* Output: answers to Ri */ 
(repeat 

for each clause Cj defining Ri: 
repeat 

choose the first/next predicate ac- 
cording to a selection function; 

generate the corresponding general- 
ized query 
arguments); 

Pj (propagation Of 

if P. is recursive 
thedapply AK32 t0 Pj 
else evaluate Pj by standard nonre- 

cursive methods 
until there are no more predicates in 

the body of Cj; 
infer new answers for Ri and add them 

to Ans-Ri 
until no new answers are added to AnS_Ri. 

I 

Procedure ANS2: 
/* Input: local set of instances Lot M Ri */ 
/* Output: set of answers for Ri yielded */ 
/* in step 1 and 3 */ 
{search the tuples in Ans-Ri matching an ele- 

ment of LOC M Ri; 
add LocMR. --1 co-the corresponding Inst M R. --1 

and retain those instances which are new; 
call ANSWER with the remaining set of new in- 

stances as input. 
? 

At the beginning, the AnS-Ri'S and 
Inst M Ri'S are empty, except one In& M Rj 
corresponding to the initial guery R.. At the 
end, the Ans-Ri's contain all derive a answers 
to queries on Ri. The set Ans-Rj corresponding 
to the original query predicate Rj should con- 
tain all answers to the initial guery. 

44 Proceedings of the 13th VLDB Conference, Brighton 1987 



3.2. Incompleteness of QSQR 

Proposition 1: QSQR is not complete on its 
supposed application domain (function free Horn 
clauses). 

Proof: by presenting the following counter 
example. The causes of QSQR's incompleteness 
will be discussed afterwards. 

Example 1: 

Axioms: 
(1) n(X,Y) :- r(X,Y). 
(2) n(X,Y) :- p(X,Z), n(S,W), g(W,Y). 

Facts: 
p(c,d). r(d,e). s(ela). 
p(b,c). s(a,i). 
p(c,b) - s(i,o). 

Query: ?- n(c,Y). 

Expected answers: {(c,a),(c,o)} 

The final sets produced by QSQR are: 

Inst-bf-n={c,d,b}, Ans-n={(d,e),(c,a)]. 

The answer (c,o) is not found. 

Due to space limitations we will not give a 
complete evaluation trace in this paper, it can 
be found together with a more detailed discus- 
sion in [Nej86b]. A short note on the in- 
completeness of QSQR can also be found in 
[Vie87]. 

What is more important in this context are 
the causes of QSQR's failure to produce all an- 
swers. So we state the following proposition: 

Proposition 2: The cases where QSQR does 
not find all answers to a guery can be charac- 
terized by the following properties: 

- the repeated guery occurs more than one 
step below the original guery in the 
derivation path, and 

- an answer needed for further iteration 
is not yielded by other (often nonre- 
cursive) clauses. 

Proof (informally): QSQR satisfies repeated 
queries just by searching the corresponding 
global set of answers. Therefore, iterating 
over a set of clauses (inside of ANSWER) for 
the second time does not expand the subgoals, 
but uses the set of answers to yield results. 

Therefore intermediate goals (direct sub- 
goals) of a guery often prevent deeper subgoals 
from being evaluated more than once. New an- 

swers produced for this guery by iterating on 
its clauses cannot be used in a repeating sub- 
guery unless it is a direct subgoal of this 
guery. To find answers which could maintain the. 
iteration process, QSQR must derive tuples from 
other sources, i.e. another (nonrecursive) 
clause (cf. the given example in [Vie86]). 

This is especially relevant, if cycles are 
present in the tuples controlling the recursion 
(cf. 'driver tuples' in [Hen84]) or in the case 
of mutual recursion. 

3.3. Stratwic Failures of QSQR 

If we analyze the QSQR strategy we can dif- 
ferentiate between two steps which are interwo- 
ven during the evaluation. 

The first step is the recursive expansion 
of the rule goal tree evaluating all non-recur- 
sive predicates as well as all predicates which 
contain no repeated subqueries in their body. 
Predicates containing repeated subgueries - 
queries which have occurred already earlier in 
the expansion - are answered as far as possi- 
ble, using the answers already found. 

The second step tries to complete the' re- 
peated s&queries by iterating on each recur- 
sion level by means of 'naive evaluation' (sim- 
ple least-fixed-point iteration). However, as 
the iteration takes place always only on one 
level, answers cannot properly be propagated 
more than one level. 

So, while the two steps are basically cor- 
rect, they must not be interwoven in order for 
the LFP iteration to iterate over more than one 
level. Another point is that by storing only 
the instantiated arguments of queries, queries 
like P(a,X,X) and P(a,X,Y) are treated as the 
same guery. This also leads to wrong results in 
some cases. 

4. RQA/E’QI STRATEGY 

4.1. Overview 

The RQA/FQI Strategy which we are present- 
ing in this paper uses a two step approach: 

In the first step .of the algorithm we use a 
recursive evaluation strategy similar to QSQR, 
expanding the search tree top down, but doing 
no LFP iteration in the recursive procedure 
EXPAND. Answers already deduced are re-used. 
The expansion stops when a Repeated Incomplete 
Query is encountered or after a subguery is an- 
swered completely using basic facts and nonre- 
cursive predicates. 

Proceedings of the 13th VLDB Conference, Brighton 1987 45 



In the second step we process all incom- 
plete branches of the search tree (Frozen 
Queries) using an efficient variant of LFP 
iteration over the incomplete goals caused by 
Repeated Incomplete Queries. 

We will describe the single steps in 
greater detail after some definitions in the 
next chapter. 

4.2. Definitions 

In order to describe the RQA/FQI Strategy 
we will define the new terms Repeated Incom- 
plete Query, Repeated Complete Query, Derived 
Incomplete Query, Frozen Query, Propagation 
Subgoal and Critical Path. 

3: A RIQ Def. RI 
is a query which is subsumed by a previous 
guery which has not yet been answered com- 
pletely. 

The RIQ's are the only nodes which cannot 
be expanded by the recursive strategy in the 
first step (in order to avoid cycles). However, 
cutting the execution path in the search tree 
at a RIQ may affect the completeness of any 
goal (even the initial goal) relying on this 
subgoal. If a RIQ is encountered only answers 
already produced can be used in the further ex- 
pansion of the search tree. 

Def. RCQ (Repeated Complete Query): A RCQ 
is a guery which is subsumed by a previous 
query which has already been answered com- 
pletely. If a RCQ is encountered all its an- 
swers can be taken from the global answer sets. 

Def. DIQ Derived Incomplete Query: A 
Derived Incomplete Query (DIP) is a guery con- 
taining a RIQ or another DIQ as a subguery. As 
with RIQ's, DIQ's cannot be answered completely 
during the expansion phase. 

Def. FQ Frozen Query: A Frozen Query (FQ) 
is a query containing a RIQ or a sub-query 
which is incomplete because of a RIQ on a 
deeper level (a DIQ). Together with a set of 
Propagation Subgoals it stores the current step 
of evaluation for a clause which cannot be 
evaluated completely in the first recursive 
step. 

A FQ consists of an uninstantiated rule of 
the form 

FQi(Qi :- PSGi, Pi, Si.) 
corresponding to an original rule 

(Qi :- Ei, Pi, Si.) 
where PSGi (a Propagation Subgoal) is used 

to propagate the arguments instantiated 
so far in the original rule (according 
to the different instantiations of the 
terms Qi and Ei) 

and Pi is a RIQ or a DIQ (i.e. Pi is on a 
Critical Path). 

Associated to each FQ is a set of Propaqa- 
tion Subgoals. 

Def. PSG Propagation Subgoal: A Propagation 
Subgoal (PSG) is a special artificial subgoal 
added in front of each recursive subgoal in a 
rule. This has to be done manually or - as in 
the PROLOG-DB system - by a pre-compiler. 

For each Frozen Query FQi a set of PSGi's 
is used to propagate the different instantia- 
tions of the guery Qi and the term Ei. The term 
Ei has already been completely answered and is 
thus fully instantiated. Only instantiations of 
those arguments have to be propagated which are 
needed later for the evaluation of the Frozen 
Query. 

Def. CP Critical Path: A Critical Path (a) 
is a path of the search tree which cannot be 
completely evaluated in the first recursive 
expansion of the search tree. It is represented 
by Frozen Queries and Propagation Subgoals and 
has to be further evaluated in the iteration 
step. 

A CP is generated on the current path from 
a RIQ up to the initial goal node or up to the 
intersection with an already existing CP. The 
part of a 8 above an intersection is automati- 
cally generated only once due to the recursive 
control structure of the expansion procedure. 

4.3. Algorithm 

The following sets are used in RQA/FQI: 

global sets of tuples ANS, ANSl, AN542 
which are used to store the answers al- 
ready found for queries on recursive 
predicates Ri, used to separate old, 
currently used and new answers 
a global set Query-Goals containing the 
instantiated heads of queries on recur- 
sive predicates Ri already executed, 
a global set of Frozen Queries FQ-SET 
which is used to store the Frozen 
Queries generated during the expansion, 
global sets of Propagation Subgoals 
PSGi-SET and NEW-PSGi-SET for each 
Frozen Query which are used to store 
the different instantiations for the 
FQ's (currently used and new instanti- 
ations). 

Bindings for arguments are propagated in a 
tuple-oriented manner. However, queries over 
database predicates or database views (database 
equivalent predicates - described by non-recur- 
sive predicates) are processed set-oriented 
against an underlying relational database and 

46 Proceedings of the 13th VLDB Conference, Brighton 1987 



stored in the PROLOG database. Retrieving these 
tuples from the PROLOG database is done tuple- 
oriented again. 

Additionally, the instantiations of the 
different FQ's are stored in a set-oriented 
manner (using the PSG facts). Thus each incom- 
plete branch of the search tree is stored only 
once and is completed by instantiating it with 
all appropriate PSG's in its PSG set. This is 
especially useful, if a lot of basic facts 
(stored in the RDBMS) has lead to many differ- 
ent instantiations. 

Therefore, the advantages of the set- 
oriented approach of RDBMS's for retrieval of 
non-recursive predicates (optimization of 
joins, selection first and storage of large 
amounts of data) as well as the tuple-oriented 
advantages of PROLOG (automatic constant propa- 
gation, unification, recursive control struc- 
ture and backtracking) can be used. 

We will describe the algorithm in a PROLOG 
like manner as its recursive control structure 
and backtracking lends itself more easily to 
the description of the recursive algorithm than 
an iterative description. However the algorithm 
could be implemented in a more procedural way 
using for each, repeat until and similar con- 
structs instead of depth-first search and back- 
tracking for iteration. 

In the algorithm described below iteration 
is done by backtracking (fail, when no more an- 
swers can be found for one subquery). The 
search tree is expanded depth-first, the sub- 
queries (subgoals) are ordered by a selection 
function (currently terms with less unin- 
stantiated variables are processed first). 
Argument propagation is done automatically by 
shared variables. 

The answers to recursive queries are found 
by the following recursively defined pro- 
cedures: 

RQA-FQI :- 
% main procedure for answering a query Ri 
% Input: a query Ri 
% Output: answers to Ri 

EXPAND Ri, 
ITERATE on the generated FQ's, 
RETURN answers to Ri (from ANS). 

EXPAND Ri :- 
% expanding the search tree for Ri 
% Input: an instantiated guery Ri 
% 1st part: produce all answers 

EXPAND-ONCE Ri, 
STORE-ANSWER Ri in ANS2 
FAIL. 

EXPAND Ri :- 
% 2nd part: return answers tuple-oriented 

RETURN answer to Ri. 

EXPAND-ONCE Ri :- 
% returns an answer to Ri 

ADD Ri to Query-Goals, 
% iteration over all clauses defining Ri (by 
% backtracking) 
% OR node in the rule/goal graph 

GET CLAUSE C. defining Ri, 
EXPAND ALL SUBGOALS from Cj 

-ins?anti&ed. 
and return Ri 

EXPAND-ALL-SUBGOALS in Cj for Ri :- 
% expands all subgoals and 
% returns Ri instantiated with an answer; 
% AND node in the rule/goal graph 
% 1st part: more than one SG 

EXPAND-SUBGOAL first SG in C., 
EXPAND-ALL-SUBGOALS rest of 2 G's in Cjs 

EXPAND-ALL-SUBGOALS :- 
% 2nd part: last subgoal 

EXPAND-SUBGOAL. 

EXPAND-SUBGOAL Si :- 
% expands subgoal Si and 
% returns answer resp. propagations for 
% further subgoals 

IS-PSG Sit 
% a PSG is not changed, but used later 
% for instantiating the appropriate FQ 

RETURN PSG. 

EXPAND-SUBGOAL Si :- 
IS-not-recursive Si, 
EVALUATE Si by standard non-recursive 

methods (first time set-oriented by 
database retrieval, but return 
answers tuple-oriented). 

EXPAND-SUBGOAL Si :- 
IS-RIQ Sit 
GENERATE-FQ, 
MARX next higher goal (Ri) incomplete, 
RETURN old answer (from earlier step). 

EXPAND-SUBGOAL Si :- 
IS-RCQ Sir 
RETURN answer. 

EXPAND-SUBGOAL Si :- 
% recursive expansion of search tree 

IS-recursive, not RCQ, not RIQ, 
EXPAND Si. 

EXPAND-SUBGOAL Si :- 
% end processing of DIQ 

IS-DIQ Sir 
GENERATE-FQ, 
MARX next higher goal (Ri) incomplete, 
FAIL. 

Proceedings of the 13th VLDB Conference, Brighton 1987 47 



GENERATE-FQ :- 
% stores the incomplete part of the 
% current rule (FQ) + the instantiation 
% in form of a PSG, 
% if the FQ is already stored, 
% only the new PSG has to be asserted. 

ITERATE :- ': i 
% 
% 
% 
% 
% 
% 
% 

% 
% 

% 
% 

% 

procedure for iteration on FQ's 
Input: a set of FQi'S (FQ-SET) + 
instantiations (PSGi-SET'S) + a set 
of answers (ANSl) generated during 
the preceding iteration resp. the first 
recursive expansion. 
iterate over Frozen Queries 

GET-FROZEN-QUERY FQi(Qi:-PSGi,Pi,Si), 
instantiate FQi using all PSGi'S from 
the appropriate set 

GET-INSTANTIATION for PSGi, 
iterate over all current answers for 
first subgoal 

GET-ANSWER for Pi from ANSl, 
expand rest of subgoals recursively 

EXPAND-ALL-SUBGOALS Si, 
STORE-ANSWER Qi into ANSZ, 
FAIL. 

ITERATE :- 
% iterate until no new answers are found 

NEW-ANSWERS-FOUND, 
PSGi-SET = PSGi-SET + NEW-PSGi-SET, 
ANS = ANS + ANSl, 
ANSl = ANSZ, 
ITERATE. 

ITERATE :- 
% iteration finished 
% all answers returned in AN.5 

ANS = ANS + ANSl. 

At the beginning of RQA-FQI, the sets ANS, 
AN.51 and ANS2 are empty. At the end, the ANS 
set contains all derived answers to recursive 
queries. The subset ANS-Rj corresponding to the 
original query predicate Rj contains all an- 
swers to the initial query. 

The first step expands (only) the necessary 
parts of the search tree and stores exactly 
those paths which cannot be evaluated com- 
pletely in the first step (Critical Paths) as 
Frozen Queries and Propagation Subgoals. It 
thus avoids duplicate work and processing of 
non-relevant facts. 

The second step - an efficient variant of 
LFP iteration - ensures the following two prop- 
erties: 

- Whenever new results are produced by a sub- 
query, those tuples can be used by a super- 
goal (propagation of sub-results up to the 
top of the derivation tree), and 

- New answers generated for a query can be 
used by any subquery (usage of new results 
by other (sub-) queries). 

Note: A variant of the algorithm described 
above uses new answers already in the same step 
during which they are generated. This leads to 
some duplicate work as they have to be used in 
the next iteration step in any case. However, 
the number of iteration steps decreases as new 
answers can be propagated through several FQ's 
in one iteration step. If the processed rela- 
tions are of only small size the amount of du- 
plicate work is less than the decrease in iter- 
ation overhead. In this case this variant (sim- 
ilar to a GauB-Seidel-iteration) is ad- 
vantageous. 

4.4. An Example Evaluation 

Example 2: 

Let us now consider the axioms and facts of 
example 1 and process the query 'I?-n(c,Xl)" ac- 
cording to the strategy just described. 

Step 1 : recursive expansion 

EXPAND : n(c,Xl) 
clause1 : n(c,Xl) :- r(c,Xl). 
non ret : r(c,Xl) . . . no answers found 
clause2 : n(c,Xl):-p(c,XZ), psg(idl,c,Xl,X2), 

n(X2,X3), q(X3,Xl). 
non-ret : P(C,XZ) 
answer : p(c,d) 
propag. : psg(idl,c,Xl,d) 
ret : n(dJ3) 

EXPAND : n(d,X3) 
clause1 : n(d,X3) :- r(d,X3). 
non-ret : r(d,X3) 
answer : r(d,e) 
answer : n(d,e) 
NEW-ANSWER stored 
clause2 : n(d,X3):-p(d,X4), 

psg(idl,d,X3,X4), 
n(X4,XS), q(X5,X3). 

non ret : p(d,x4) . . . no answers found 
answer : n(d,e) 
non-ret : q(e,Xl) 
answer : s(e,a) 
answer : n(c,a) 
NEW-ANSWER stored 
answer : p(c.b) 
props . : psg(idl,c,Xl,b) 
ret : n(b,X3) 

EXPAND : n(b,X3) 
clause1 : n(b,X3) :- r(b,X3). 
non-ret : r(b,X3) . . . no answers found 
clause2 : n(b,X3):-p(b,XI), 

psg(idl,b,X3,X4), 
n(X4,X5), q(XS,X3). 

non-ret : p(btX4) 
answer : p(b,c) 
prow57 - : psg(idl,b,X3,c) 

48 Proceedings of the 13th VLDB Conference, Brighton 1987 



RIQ : n(c,XS) 
storeFQ : FQ(n(X6,X7) :- 

psg(idl,XG,X7,X8), 
n(X8,X9), q(X9,X7). 

incompl : n(b,X3) 

recursive expansion finished . . . 

answers: n(c,a) 
n(d,e) 

frozen-query(qid3, n(Xl,X2), 
psg(idl,Xl,XZ,X3), 
n(X3,X4), dX4J2)). 

propagation facts: psg(idl,b,XS,c). 
psg(idl,c,X5,b). 

Step 2: iteration steps 

iteration step 1 . . . 
trying : FQ(n(Xl,X2):- 

psg(idl,Xl,X2,X3), 
n(X3,X4), q(X4,XZ). 

instant.: psg(idl,b,X2,c) 
ansl : n(c,a) 
non ret : q(a,X2) 
answer : q(a,i) 
answer : n(b,i) 
NEW-ANSWER stored 

iteration step 2 . . . 
trying : FQ(n(Xl,XZ):- 

psg(idl,Xl,X2,X3), 
n(X3,X4), q(X4,X2). 

instant.: psg(idl,c,X2,b) 
ansl : n(b,i) 
non-ret : q(i,X2) 
answer : q(i,o) 
answer : n(c,o) 
NEW-ANSWER stored 

iteration step 3 . . . 
trying : FQ(n(Xl,XZ):- 

psg(idl,Xl,X2,X3), 
n(X3,X4), q(X4,X2). 

instant.: psg(idl,b,X2,c) 
ansl : n(c,o) 
non ret : q(o,X2) . . . no answers found 

iteration phase finished . . . 

answers: n(c,a) 
n(d,e) 
n(b,i) 
n(c,o) 

All answers for n(c,Xl) are found, using 
the recursive expansion in the first step which 
produces one Frozen Query with two different 
instantiations (PSG's), and three iteration 
steps which produce the remaining answers. 

In the iteration step no new Frozen Queries 
have been generated in this example. No further 
recursive expansion is needed, as the Frozen 
Queries do not contain recursive predicates be- 
sides the RIQ's resp. DIQ's. However, both of 
these activities are needed when processing 
more complex recursions and are performed by 
the call of EXPAND-UL-SUBGOALS. 

5. coHPARIsoN WITH o!mER s!rRATEG1Es 

According to [Ban861 the performance of a 
recursive query processing strategy is greatly 
influenced by the following factors: 

- the amount of duplication of work 
- the size of the set of relevant facts 
- the use of unary vs. binary intermediate 

relations. 

Comparing our strategy with QSQR and the 
other strategies along these lines, we come to 
the following results: 
- less duplicate work than other methods 

- very goal oriented due to the recursive 
top down control structure 

- less iteration (only when necessary, on 
Frozen Queries - QSQR iterates on any 
level and any subquery)) 

- more efficient iteration (no answers 
are filled in twice - QSQR uses naive 
LFP iteration) 

- generalized repeated queries through 
subsumption 

- the size of relevant facts is minimal (only 
answers, which can be used for the original 
query are generated) 

- slightly larger administration overhead 
than other general strategies 

- larger overhead than more specialized query 
processing strategies (for linear queries 
etc.) 

Furthermore our strategy is complete for 
all kinds of recursive definitions and data. 

The idea of preserving the search tree to 
enable plugging in new results at a deeper 
level is also described in [Smi86] and [McK81]. 
As distinct from these methods, our strategy 
does not keep a branch (path) of the tree un- 
less it is involved in the derivation of a RIQ. 
Only the branches necessary for answer 
completeness are preserved. 

Furthermore, both methods are designed for 
a tuple-oriented transfer of facts, whereas our 
approach is also suitable for a set-oriented 
processing of facts during the retrieval from a 
database, which is especially efficient, if the 
deductive system is connected with a relational 
database management system. 

Proceedings of the 13th VLDB Conference, Brighton 1987 



Additionally, as shown by [Ban86], the re- 
cursive control strategy of QSQR and our method 
avoids much duplicate resp. useless work com- 
pared to the methods proposed by [McK81] and 
[Loz85]. 

[Smi86] presents a good theoretical discus- 
sion of the problem of repeating queries. He 
gives some completion results to certain 
classes of algorithms which also can be adapted 
to RQA/FQI and extensions thereof ([Nej87]). 

6. FURTBERWORK 

Although RQA/FQI is very efficient in most 
cases, its performance degrades when the answer 
to a Query can be generated using many differ- 
ent intermediate results (see example 6 in 
[Ban86a]). This redundancy can be removed if 
the algorithm can detect that the search tree 
is being expanded along a path which has been 
explored earlier. We are currently extending 
RQA/FQI in this direction. 

Another topic is the comparison of the set 
of methods used by existing strategies. We are 
currently trying to further analyze these opti- 
mization methods (use of relevant facts, avoid- 
ance of duplication for different reasons, 
etc.) in a common frame-work based on the defi- 
nitions used by RQA/FQI ([Nej87]). 

An interesting direction in the context of 
linear recursive queries is the connection to 
methods for traversing directed graphs, for a 
formal approach to this topic see [Mar86]. 

ACKNCBJLEDGEMENT 

I would like to thank Gerhard Fleischan- 
derl, Markus Stumptner and Erich J. Neuhold for 
their comments on an earlier version of this 
paper. Georg Gottlob was an important partner 
discussing various ideas later used in this 
paper. 

-CBS 

[Ban861 . . . F.Bancilhon, R.Ramakrishnan: An 
Amateur's Introduction to Recursive Query 
Processing Strategies, Proc. of SIGMOD'86, 
Washington, May 1986, pp.16-52. 

[Ban86a] . . . F.Bancilhon, et al.: Magic Sets 
and Other Strange Ways to Implement Logic 
Programs, Proc. of 5th ACM SIGMOD-SIGACT 
SymP. on Print. of Database Systems, 1986, 
pp.l-15. 

[Boc86] . . . J.Bocca, L.Vieille, et al.: Some 
steps towards a DBMS based KBMS, Proc. IFIP 
10th World Computer Congress, Dublin, Sept. 
1986, pp.1061.1067. 

[Cer86] . . . S.Ceri, G.Gottlob, L.Lavazza: 
Translation and Optimization of Logic 
Queries: The Algebraic Approach, Proc. VLDB 
'86, Kyoto, August 86, pp.395-402 

[Cl0811 . . . W.F.Clocksin, C.S.Mellish: Program- 
ming in Prolog, Springer, 1981 

[Han861 . . . J.Han, H.Lu: Some Performance Re- 
sults on Recursive Query Processing in Re- 
lational Database Systems, Proc. of Intl. 
Conf. on Data Engineering, Los Angeles, 
Feb.1986, pp.533-541. 

[Hen841 . . . L.J.Henschen, S.A.Nagvi: On Compil- 
ing Queries in Recursive First-Order 
Databases, JACM 31/l, Jan. 1984, pp.47.85. 

[Ion861 . . . Y.E.Ioannidis: On the Computation 
of the Transitive Closure of Relational 
Operators, Proc. VLDB '86, Kyoto, August 
86, pp.403-411 

[Loz85] . . . E.L.Lozinskii: Evaluating Queries 
in Deductive Databases by Generating, IJCAI 
85, Los Angeles, Aug. 1985, pp.173-177 

[Mar861 . . . A.Marchetti-Spaccamela, A.Pelaggi, 
D.Sacca: Worst-case Complexity Analysis of 
Methods for Logic Query Implementation, 
ESPRIT Report 1117, 1986 

[McK81] . . . D.P.McKay, S.C.Shapiro: Using Ac- 
tive Connection Graphs for Reasoning with 
Recursive Rules, Proc. of 7th IJCAI, 
Vancouver, Aug. 1981, pp.368-374. 

[Nej86a] . . . W.Nejdl, E.J.Neuhold: The PROLOG- 
DB System: Integrating Prolog and Rela- 
tional Databases, Technical Report, TU 
Vienna, and GGAI-Journal 5/l, June 1986 

[Nej86b] . . . W.Nejdl, G.Fleischanderl: QSQR Re- 
visited - Incompleteness, Causes and Im- 
provements, Technical Report, TU Vienna, 
December 1986 

[Nej87] . . . W.Nejdl: Describing Recursive Query 
Optimization in a Uniform Frame-Work, in 
preparation 

[Ras86] . . . L.Raschid, S.Y.W.Su: A Parallel 
Processing Strategy for Evaluating Recur- 
sive Queries, Proc. VLDB '86, Kyoto, August 
86, pp.412-419 

[Smi86] . . . D.E.Smith, M.R.Genesereth, 
M.L.Ginsberg: Controlling Recursive Infer- 
ence, Artificial Intelligence 30/3, Dec. 
1986, pp.343-389 

[U1185) . . . J.D.Ullman: Implementation of Logi- 
cal Query Languages for Databases, TODS 
10/3, 1985, pp.289-321. 

[Vie861 . . . L.Vieille: Recursive Axioms in De- 
ductive Databases: The Query/Subguery Ap- 
proach, Proc. of the 1st Intl. Conf. on 
Expert Database Systems, Charleston, S.C., 
April 1986, pp.179.193. 

[Vie871 . . . L.Vieille: Database-Complete Proof 
Procedures Based on SLD Resolution, Proc. 
of the 4th Intl. Conf. on Logic Program- 
ming, Melbourne, Australia, May 1987 

50 Proceedings of the 13th VLDB Conference, Brighton 1987 


