
OPTIMIZATION OF SYSTEMS OF ALGEBRAIC EQUATIONS
FOR EVALUATING DATALOG QUERIES

S. Ceri O,"), L. Tanca (",^)

(I) Dipartimento di Matematica, Universita' di Modena, Italy
("1 Dipartimento di Elettronica, Politecnico di Milano, Italy

(-1 Dipartimento di Matematica e Applicazioni, Universita' di Napoli, Italy

ABSTRACT

A Datalog program can be translated into a
system of fixpoint equations of relational
algebra; this paper studies how such a system
can be solved and optimized for a particular
query. The paper presents a structured approach
to optimization, by identifying several
optimization steps and by studying solution
methods for each step.

.I.- INTRODUCTION

The optimization of Datalog programs is gaining
increasing interest in several recent papers
[Ban 86a, Ban 86b, HeN 84, KiL 86, Gar 861. In
particular, one approach to optimization is
based on the equivalence between Datalog
programs and fixpoint equations of relational
algebra CAhU 79, DeA 86, CGL 86, KiL 861. In
CCGL 861 it has been shown how a
syntax-directed translation can be applied to
Data log clauses to generate corresponding
algebraic equations. Such equations have the
following features:

a. They are of the genera 1 form
Xi=Ei(X,..Xn,C,..Cm), where

'i
are

relational variables and Ci are constant

relations from an extensional database EDB.
We denote such eauations as "simple"
(because the left hand side is a relatibnal
variable) and "recursive" (because Xi can
occur within Ei).

b. Expressions E. contain the following
relational oper&tions: selection Cd),

Permission to copy without fee all of part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

projection (TT), Cartesian product(x),
union(U). These operations correspond to
positive relationel algebra (RAG); all
wons in RA+ are monotone.-

Datalog queries are, without loss of
generality, translated into selections over one
relational variable Xi; the evaluation of a
query corresponds to producing all the tuples
of X. that satisfy the selection condition and
can de deduced from the Datalog program and the
EDB. The optimization of a query evaluation
consists of determining an efficient strategy j
for evaluating those tuples; efficiency is
measured in terms of the required interaction
with the underlying EDB.

In this paper, we present a structured approach
to the optimization of queries for a given
system of si.mpte, recursive, algebraic
equations. In Section 2 we introduce our
terminology; in Section 3 we present our
approach as a set of independent optimization
steps; in Section 4 we compare our approach to
previous work.

2. TERMINOLOGY

A system S is a set of n equations Xi =
Ei(X,..Xn,C,..Cm); Xi are variables, C. are

I
constants. Let
variables of S. xS

denote the set of all
A query on S is a selection

qo; we denote Xo, the variable involved in
I~

the query, as principal variable of the system.
We restrict the query predicate p to be the
conjunction of simple-predicates (i.e., column
equal value), with at most one simple predicate
for each column of X ; this is the algebraic
translation of Data108 queries, where some of
the places of the query clause are bound to
constant values.

The syntax-directed translation from Datalog
clauses to fixpoint algebraic equations CCGL

Proceedings of the 13th VLDB Conference, Brighton 1987 31

863 produces equations of the following form:

xi = EiCX,..Xn,C,..Cm) = U. T
l=l..ni ij

with T

L
ij

is a list of column numbers; P
ij

is the

conjunction of simple predicates corresponding
to selection and join conditions; each CP.. is
a Cartesian product involving variable&' or
constants.

We associate to each system S a directed
dependency grqph GCS)=<N,R> CCCL 863, defined
as follows:

- N = Xs

-E= CtXi,Xj> C=> Xj occurs in Eil

In many examples, we wi 11 make use for brevity
of the composition operation: obtained by
projecting out the join columns from the join
of two relations. For two binary relations R
and S:

RoS=‘rr 1,4R9=1 s

Example 1. Throughout this paper we consider
the syste-m:

x1 = Cl u (X1 0 X3) u x*

x2
= (X1 0 X3) u c3

x3
= (X3 0 C2) u c4

This system is obtained as the syntax-directed
translation CCGL 863 of the Datalog program:

Xl (Y,Z) :- Cl (Y,Z).
Xl (Y,Z) :- XlCY,T),X3CT,Z).
Xl (Y,Z) :- XZCY,Z).
X2CY,Z) :- Xl(Y,T),X3CT,Z).
XZCY,Z) :- C3CY,Z).
X3CY,Z) :- X3CY,T),CZCT,Z).
X3CY,Z) :- C4CY,Z).

We will always assume binary relations for our
examples.

19 STRUCTURED APPROACH TO SYSTEM OPTIMIZATION --

In this section we propose a structured
approach to system optimization, based on
several progressive optimization steps.

3.1 Reduction To Union-Join Normal Form -- -----

Let n. > 1 in E.; then, for each subterm T.. we
introduce a new'variable N.. and we rewritA'the
equation E. as follows: "

xi =U.' N J=l..ni ij

N * . =T

Thu:;

ij =r,.. C$. CP.., V j=l..ni
'3

we reduce %ur g'mations to either of the
two following types:

a. Union (U) Equations, which are fully
charactezted by a tuple: <X.,U.>, where X.
is the left side variable, IJ: iA the set 04
variables which appear in the union.

b. Join CJ) Equations, which are fully
characterized by a quadruple:
<X.,L.,P:,J.>, where X. is the left side
variaate, L1 is a projelction list, P. is a
predicate, &nd J, is the set of var'iables
and constants apbearing in the right side
Cartesian product.

The resulting system S is in Union-Join Normal
Form CUJNF).,

Example 2. The UJNF of the system of Example 1
r .

x1
x2

= Cl U N1 U X2

x3

= N, U C3

N1

= N2 U C4

N2

= x1 0 x3
= x3 0 c2

The corresponding dependency graph is shown in

--
Fig.1

3.2. Determination Of Common Subexpressions -- --

Determining common subexpressions allows
reducing the computation by factoring
operations [Fin 823; common subexpressions can
be searched on the two sets of U and J
equations separately.

a. A common subexpression of two U-equations
for X. and X. corresponds to any subset U
of b&h Ui 'and U.. We replace CCXi,lJi>:

CXj,Uj>l with c:x.,u.-u >, <x.,u.-u >,

<Xc,Uc>), where Xc ib a'ne\ variable: TEis

construction can be iterated until it
cannot be further applied; it generates the

same final set of U-equations, where
equality is intended after a renaming of

32 Proceedings of the 13th VLDB Conference, Brighton 1987

variables.

b. A common subexpression of two J-equations
for X. and X. corresponds to any subset J
of both Ji hd Jj; however, we are real19

interested to isolate common subexpressions
if relations of J
conditions both inCE.

have the same join
and E . this makes

the search for comm&n sube&ressions of
J-equations much more difficult.
Consider two join equations <Xi,Li,Pi,Ji>

and CXj,Lj,Pj,Jj>. Let Ji=CJ. ,..Jim)
11

and

Jj=CJ. ,..
11

Jjn> be such that J. lkzJjk for

k 5 r 5 minCm,n); let Pi=pi,Api2~..piu and

P.=p. np.
3 11 12

~..p jv be such that pih=pjh for h

5 s .s minCm,n). Then, the common
subexpression is:

d Pil""Pih
LIi,~..~Jik).

We introduce a new equation for X and
modify equations for X. and X.F the
construction is rather c:mbersome 'and is
omitted.

The problem of finding common subexpressions
among n 02) J-equations is quite complex, and
the iteration of this construction does not
necessarily generate a unique final set of
J-equations.

Example 3. Consider the system S2:

x1
x2

= c, u c2 u x3

x3

= c2 u x3 u c3

x4

= x, 0 x2 0 x4
= c4 0 x, 0 x2

After the determination of common expressions,
we have:

x1
x2

= c, u x5

x3

= x5 u c3
=x ox

x4
= c6 0 x4

x5
= c4 u x6

'6
= x; 0 x;

3.3. Query Subsetting -- -

This step depends on the variable upon which
the query is applied, but does not depend on
the particular query predicate. Consider a
query Q over X p, the principal variable of S.

We derive the set D(Xp) 5 XS as follows:

1. Xp belongs to DCXp).

2. If CXi,Xj> belongs to ECGCS)) and Xi

belongs to DCXp), then also Xj belongs to

DCXp).

Let Sp .C S be the system of equations for the

variables DCX 1;
evaluated on !i

then the query Q can be

P'
By construction, the graph

GCSp) is connected. Each strong component of

GCSp) corresponds to a subsystem of mutually

recursive equations. Let SCi and SC. be two
3

strong components of G(S) connected by some
edges from SCi to SC. (but not viceversa,

J
otheruise SCi and SC.

I
would not be strong

components); then, the strong component SCj

should be solved before SC i. This rule defines

a partial order among strong components:

scj < sci <=>

(tXi,Xj> GECGCS))) h (Xi eSCi) AtXj E.SCj))

By construction, the last strong component
according to this partial order includes the
variable X

P'

The reason for introducing this ordering in the
system resolution is that, after solving SC.,
the variables of SC. can be considered 4s
constants for SC.. ' In particular, it is
possible to reduci them in the context of
subsystem SC. with the method that will be
defined in Se'ction 3.6.

Example 5. Consider the system of Example 2. If
the query is applied on variables X1, X , or

N1t then query subsetting is uneffective (2 i.e.,

S=S 1. However, the system can be separed into
two'strongly connected subsystems:

Sl : x,

x2

= C, U N, U X2

N1

= N, U C3
= x, 0 x3

s2 : x
N3

= N2 U C4

2 = x3 0 c2

with S2 < Sl (see Fig.1). If the query
applied on X
effective and i

or N2, query subsetting
he original system S reduces

s2.

is
is
to

3.4. -- Marking

Marking and the subsequent optimizations depend
on the predicate p of the query but do not

depend on the particular values used in the
selection predicate; in other words, they apply
to initial Datalog queries with the same
"adornment" CU 11 853.

Markings of relations denote the propagation of

Proceedings of the 13th VLDB Conference, Brighton 1987 33

the query predicate to the various equations,
according to marking rules:

1. Propagation for g-equations: Let X. be
marked (Xi:m),and consider the equetion

<Xi,Ui>; then, give mark m to all variables

X and constants C of Ui.

2. Propagation for J-equations: Let X. be
marked (Xi:m),Tand consider the equation

<Xi, Li, P., Ji>; using L., transform m
1 1

into the corresponding column(s) n of
variable(s) Xl or constant(s) Cl in E., and
mark them with n (Xl:n or C1:n). Fu?ther,
if that column is involved in equi-joins
with column(s) q of different variable(s)
X2 or constant(s) C2, then mark them uith q
(X2:q or C2:q).

Marking rules are motivated by the general
equation:

dpXi=$,Ei.

Their correctness comes from distributivity of
select ions to unions, commutativity of
selections with selections and projections, and
distributivity of selections to Cartesian
products.

The Marking algorithm operates on the system S
of n equations and generates a new system S'.
Let ap be the arity of Xp; let the query

predicate be an equality predicate over the
column i of x

P P'
1 < ip s ap.

a. Initially, mark variable X with '
(denoted Xp:ip). P 'P

b. Use recursively the marking rules to mark
all possible variables of S; consider the
marked variables as new variables of S'.

c. Include recursively in S' all equations
X.=E. of S such that Xi is mentioned in
s;me' of the equations of S' previos ly
generated.

Example 2.

a. Let Ql:dlza X2 on the system S = Sl U S2 of

Example 4. We obtain:

(X,:1)
(X2:1)

= (Cl:') U (N,:l) U (X2:1)

(N,:l)
= (N,:l) u (c3:l)

N UC
= (X :I) 0 x3

x3 : ,2 o c4
N2 3 2

1 .e., marking is propagated to all
variables of Sl.

b. Let Q2:d2=a X3 on the system S2 of Ex. 4.

We obtain:

(X3:2) = (N2:2) U (C4:2)

(N2:2) = x3 0 K2:2)

x3
= N2 U C4

N2 = x3 0 c2

c. Consider the query b,,,Xl on the system:

x1
x2

= x2 0 c,

<X
= x3 u c2

3 = Cl 0 x2

The marking algorithm yields:

(X :I)
(X1:1)

= (X2:1) 0 c,

(X$:1)
= (X3:1) U(C2:l)

x2
= x3

= (C,:l) 0 x2

x3

u c2
= c, 0 x2

I
3.5. Push of Selection Conditions: Reduced , --
TaFiables

Let us compare the systems S and S' as obtained
after executing the marking. Given that the
initial system S is connected, each variable X
of S appears at least once in S', either marked
or unmarked; it is also possible that S'
contains several different markings for the
same variable X. In fact, each variable X of S
can correspond in S' to either:

1. One unmarked variable, and no marked
variable;

2. One or more marked variables, and no
unmarked variable;

3. One or more marked variables and one
unmarked variable.

We denote those variables for uhich condition
(2) holds as reduced variables.

After executing the marking algorithm, ue face
two alternatives: either we consider the
original system S, or the transformed system
S'. Examples 5a and b indicate two extreme
cases where it is rather clear how to behave:

a. In Example Sa, ISl=lS'l. Since 3 variables
of S' are reduced, S' is more efficient
than S. Notice that efficiency comes from
the propagation of selections to constant
relations appearing in the equations of the
reduced variables.

u_x.mp.le 5a (continued). The system of
Example?% reduces, uith a renaming of

34 Fbceedings of the 13th VLDB Conference, Brighton 1987

variables, to:

v, =
v2 =

;3 1
N3 =

2

and our query to: Q=V2

b. In Example 5b there are no reduced
variables, i.e. all variables of S are also
unmarked variables of S'. Hence S C S', and
S is more efficient than S' (there is no
advantage in adding equations to S).

However, Example 5c is more critical: X, is a
reduced variable, but the number of equations
of S' is larger than that of S. Here, deciding
whether to use S or S' leads to a difficult
trade-off. For making this choice, we propose a
simple heuristic criterion:

CRITERION: The transformation of a system S
into S' produced by the marking algorithm is
convenient if there is at least one reduced
variable in S'.

The rationale of the above criterion is that,
by evaluating system S', we omit computing at
least one "large" unmarked variable relation,
to the price of computing (possibly) several
"small" marked variable relations. Further, we
can in general rewrite S and St, by using
equivalence transformations of relational
algebra, so that the advantage of the
transformation of S to S' becomes evident.

3.6. Push of Selection Conditions: Reduced --
To&tants

We now consider constants which are marked in a
system S and belong to the equations of
unredwced variables. This situation can occur
both if selection to variables succeeds or
fails. Our aim is to reduce the size of the
constant relation before solving the system, by
using the information that the constant is
marked, i.e. somehow related to the selection
condition of the query Q. This reduction,
though rather complex to achieve, has a benefit
over multiple iterations required by the
solution methods of systems. The reduction
succeeds in some cases and fails in some other
cases; if the reduction succeeds, the constant
is said to be reducible; else, it is
irreducible.

Let constant C occur in the equation of
variable X in S, and let C be marked (possibly
by multiplg markings) in S'. We initially build
the reduced dependency graph CCC), as the
subgrmGG(S) which represents all equations
involved in the reduction of C. We then give an

algorithm for traversing CCC); if the algorithm
succeeds, then we build an equation EC' for a

new variable Vc' such that C and possibly other

constant relations appear in EC'. We then show

that Vc' can be evaluated independently of S,

yielding a result relation C' contained in C
(I). Finally, we consider the system S'
obtained by substituting C' to C in S and we
show that S and S' are equivalent (i.e. they
produce the same answer) w.r.t. the query Q.

3.6.1. Definitions

The C-dependency set X(C) 2 Xs is built as
follous:

a. Xc belongs to X(C).

b. If CXi,Xj> belongs to ECGCS)) and X.

belongs to X(C), then also Xi belongs ti
X(C).

The C-dependency raph G(C) is the projection
of F(S) over X C). By T--- construction. the
dependency graph includes-Xp and all paths from
xp to xc.

For each variable X, of X(C), let M, be the
marking set of X. obtained by collec'ting all
marks ofrdeterdined by the marking algorithm
of Sectiod 3.4. By construction, the marking
set of variable Xc is not empty, and at least

one mark is propagated to C. After this
construction, the remainder of this algorithm
uses just the graph G(C).

A C-dependency for the variable X of X(C) is a
paTr <h,k>, where h is a column of C and k is a
column of X. It indicates that the k-th column
of x is "influenced" by the h-th column of C,
i.e., that some of the values in the k-th
column of X are evaluated from some of the
values of the h-th column of C.

3.6.2. Reduction algorithm

INPUT: A marked constant C in the equation of

Cl) It is also possible that two or more
mutually recursive equations define the
reduction of two or more constant
relations; this happens if EeCt includes

the expression of a reduced constant CZ and
the expression ElC2 for the reduction of C2

includes the expression of the reduced
constant Cl. This case is covered by
solving the system for Vlc., Vlc2 and

obtaining the reduced relations Cl' and
CZ'.

Proceedings of the 13th VLDB Conference, Brighton 1987 35

an unreduced variable; the corresponding graph
G(C) and C-dependencies.

OUTPUT: Either "C is irreducible" or "C is
reducible", with a new equation VC'=EC' for
evaluating the reduced constant Cl.

The reduction algorithm is based on the
traversal of the graph G(C), which in turn is
based on a basic step. The algorithm requires
the use of timestamps associated to the events
at which nodes are examined; we assume that
timestamps are unique and progressive. A neu
timestamp is produced
"newtime".

3.6.3. t3asic step of the

Let tXi,Xj> e E(G(C));

operation from X. to Xi.
3

by the function

traversal algorithm

consider a traversal

Let IN.
It

be a set of

dependencies associated to X., called incoming
dependencies; t is the curred timestamp (to be
defined later). The basic step consists of
rules which dictate how to build the set of
C-dependencies OUTit, ca 1 led outcoming

dependencies, and the term A..
l]t'

which

contributes to the equation VC'=EC', while

traversing the edge from X. to Xi.
I

The basic step can fail, in which case the
entire constant reduction fails, and C is
irreducible. Rules of the basic step are as
follows:

1. Fi 2 a U-equation: --

a. OUTit = IN. .

b. Aiit =I.
It

2. E. is > J-equation Cuith at least one join
-Y&z l"o3; set initially A..

11t
= # and

OUTit =@. Several cases are possible:

a. The traversal fails if there exists one ,
occurrence of-n E, such that, for
all

1.

<h,k> e INit', '

The k-th position of X. is not
joined with a constant 'relation,
and

2.

b. The

k is not in the marking set of X..
3

traversal succeeds if for all
occurrences of X. in E i there exists

3
<h,k> c INit such that either:

1. The k-th position of X. is joined
with a constant relatioA, or:

2. k is in the marking set of X..
J

The two subcases above are kept

separated:

1. Consider one occurrence X. in Ei.
J

Let SJ..
'3

=C<hS,ks> s=l..ns> C INit -

be the set of dependencies such
that the occurrence of X. is joined
on column k with the cdlumn ws of
some constar% C s. Then:

A
ijt

:= A
ijt

u (..(C M
h,=w,

C,) M

I.
M hn =w 'ns J.

OUT:,
“S

is no? modified. We say that
theiL propagation of IN. ’
arrested.

Jt "

If any of the C. is a marked
constant and is als’o reducible for
a different application of this
algorithm, then it is possible to
substitute C. with the variable V.
introduced fdr reducing Ci to Cgi.'

2. For all occurrences X. such that
3

the above case (I) does not hold,
A

ijt
is not modified, while OUT.

1t
is modified as follows: let <h,k>e

38 and w be a column of X. which
esponds, through the projection

list L., to the column k of the
considelred occurrence of X. in E *
then, enter <h,u> in OUTit! We s&

that dependencies of INjt are
passed to OUTit.

3. Ei &a "Projection J-equation" (i.e. a

J-equation without join operations but with
just one projection):

a. OUTit is derived as in case 2.b.2.

3.6.4. Traversal algorithm

Let aC be the arity of C. The initial step of
the traversal algorithm is as follows:

a. If EC is a U-equation, then

OUTCO
=C<1,1>,<2,2>,...<aC,aC>).

b. If EC is a J-equation, set initially OUT
= .

@
Let k be a position of Xc whi%

corresponds, through the projection list

LC’ to a position h of C; then, include

<k,h> into OUTCO. Iterate this costruction

for all positions of Xc.

c. Let Mc=Ci,,.. in3 be the marking set of C;

initialize EC' to the expression:

36
Proceedings of the 13th VLDB Conference, Brighton 1987

EC' = U d. c=
j=l ..n I .="c"

= 6; ="C"l".~" j =ocIIc
1 n

where “c” is the query constant.

The dependency graph traversal algorithm is as
follous:

1. Perform the initial step; set D *=# for all
variables X. of G(C). Assume 'XC as the
current node:

2. visit the nodes of the graph in
breadth-first order. Let Xj be the current

node in the search. The node analysis
consists of the following ste=

a. Generate a new timestamp t: t=newtime.

b. Evaluate the set IN. ,as:

IN.
It

" ?UT
=bq<u<t ju

- IN.
39

where q is the timestamp of the latest
traversal operation at which node X.
was analyzed. In practice, IN.'

It
accumulates all dependencies which have
been produced for node X. since its
last visit. 3

C. Perform the termination test:
IN it C Di.

d. If the condit;on is not true, then,
set:

D.
J

:= Dj U IN. .
Jt

and for each edge CXi,Xj> perform the

basic step defined in the previous --

subsection; evaluate terms OUTit and

A
ijt

; accumulate terms A..
1Jt

into E C
':

EC' := EC' U Aijt.

e. The breadth-first traversal is
continued unti 1 one of the two
following conditions occur:

1. At all nodes of G(C), the

termination condition holds. Then,
the algorithm outputs "reducible"
and the equation EC'.

2. One of the basic steps fails. Then,
the algorithm outputs
"irreducible".

3.6.5. Termination

The different C-dependencies that can be
possibly added to D. at each node X. are a

3 3
finite number. At each traversal, the

C-dependencies of

the traversal

C-dependencies of

and these are

IN.
Jt

are accumulated in D.;
3

takes place iff some

IN.
Jt

are not present in D.,

accumulated in D.. Tie
3

termination condition imposes that, when all

the possible dependencies of IN.
Jt

have been

included in D.,
I

node Xj will not be the source

of additional traversal operations. This
ensures the termination of the algorithm in a
finite number of steps.

3.6.6. Application and correctness

Assume that the algorithm terminates
successfully. We have now an equation Vc' =

which by construction includes C, other
Ztant relations possibly V ' itself, and
possibly other vakable relatigns introduced
for reducing other constants. We then evaluate
the minimal fixpoint Cl of the equation VcO =

EC'
(possibly, by solving a system of

equations; see Section 3.8). By construction,
C' c c. Consider the system S' obtained by
substituting Cl to C in S; the following,
fundamental result holds.

Theorem 1. S and S' are equivalent with
respect to-the query Q, i.e. they produce the
same answer.

The proof of Theorem 1 is omitted, and can be
found in CCeT 861.

3.6.7. Computational complexity

The complexity of the method depends on the
following factors:

a. Complexity of the basic step.

b. Number of basic steps.

We use the following parameters:

a. NC = number of columns of C;

b. N. = number of columns of X..
3 I

C. N
ij

= number of occurrences of Xj in E..
1

a. The number of C-dependencies in D. is
3

O(Nc*Nj); each IN.
Jt

or OUT.
Jt

is bound by

D . .
3

b. The complexity of each basic step from X.
to x. is proportional to the number N.. o?
diffJrent occurrences of X. in E., a:d to
the number of C-dependenkies, 'hence is

O(Nc*Nj*NijL

Proceedings ofthe 13thVLDB Conference,Brighton 1987
37

c. The maximum number of traversals is bound
by the maximum Dj times the number of nodes

in G(C), hence is OCNc*Nj*IXCI).

The uorst-case complexity of the reduction
algorithm is given by the product of
complexities Cb) and Cc).

3.6.8. Queries with multiple selection
constants

We can apply the push mechanism for variables
and constants to the case in which the
selection is done over tuo positions of the
principal variable. The marking and reduction
algorithms are in this case applied tuice;
possibly, the same variables or constants may
be reduced tuice by effect of tuo applications
of the methods. The final result is independent
of the order of application of algorithms.

3.7. Examples --

Though the algorithm in Section 3.6 appears
very difficult, this is due to the intrinsic
difficulty of the problem in its most general
formulation; but the algorithm is easily
applied to many simple cases which correspond
to "reasonable" Datalog programs. This
subsection shows the results produced by the
algorithm on some examples of progressive
difficulty; Examples abc correspond to
uellknown problems (ancestor, same generation
cousin, unstable same generation cousin; see
CBan 86al).

Example 6.a. --

We nou use reduced constants to optimize the
system from example S.b, where no optimization
was possible with reduced variables.

Let Q2:fj2=a X3 on system S2. The marked system
is:

(X3:2)
(N2:2) = x 2.

= (N :2) U CC4:2)

N Uf
x3 : x2 o C4

CC2:2)

N2 3 2

We can reduce constants C4 ad C2:

"C4
=$za C4 u C4 w2=1 "c2

“C2= g2=a ‘2 ’ ‘2 w(2=1 “C2
.Examole A.&

Consider the system:

x1
x2

=LoX20R
=x,u c

and the query Q: d 2=a x ,producing the
2

38

marking:

(X2:2) = (X,:2) u CC:21

(X,:2) = L o X2 o CR:21

X,=LoX20R

x2
= x, u c

The reduction of variables fails, but the
reduction of constants is successful, yielding:

"R = ')2=a R u R M2=, "R

"C = $a c u (CC M2=, VR) y2 L)

The reduction of R corresponds to the "cone" of
the Magic Set method (CBan861>.

Example 6.c --

Consider the system:

x1
=LoX20R

x2 =Tr2, x3

x3
= x, u c

and the query Q: d2=a X3, producing the
marking:

The reduction of variables fails, but the
reduction of constants is successful, yielding:

"R = *2=a R U R “2=2 L

"C = e(2=a c u (CC M,=,VR) w2=2 L)

Example 6.d --

Consider:

x1
x2

= N, U X2

N1

=N2UK

N2

=X20R
= x, 0 c

and the query: Q=4=aX,, producing the marking:

Proceedings of the 13th VLDB Conference, Brighton 1987

N1
N2

=X2oR
= x, 0 c

Here the reduction of variables is not possible
either; ue obtain the reduced constants:

vK =dZzaK u K M24VR u K ~2=,‘5

‘C = d2zaC ’ C5& ’ ’ $,‘C
‘JR = d2=aR U RM2=,VC

3.8. Iterative Solution Methods --

After going through all transformations of
sections 3.1 to 3.7, we obtain a final system S
of equations which has to be solved. We can use
different iterative approaches; they apply to a
vector V of variables Xi, initially all set to

6 .Termination occurs at iteration f such that

Vf,Vf+'. termination is
finiten;ss of

ensured by the
the ED8 and monotonicity of

equations in RA+.

a. The Jacobi method iterates the evaluation
of XJ, using:

X j = EiCX{-'..Xnj-'1.

b. The Gauss-Seidel method is similar to the
Jacobi Met-however it uses in the

course of the evaluation of Xi the values

already produced for Xi, k<i:

.

The Gauss-Seidel method has in general
better convergence than the Jacobi method.

c. The Chaotic method is typically used for
parallel computation and consists in
evaluating equations in any order; subcases
of chaotic methods are the "lazy" or the
"data flow" evaluation, where each variable
is evaluated respectively at the latest or
at the earliest convenience.

3.9. Efficient Evaluation of Linear Equations. -- --

Efficient algorithms for evaluating single
linear equations, reviewed in CCGL 861, can
also be applied to systems of equations. We
consider the case of one equation E which is
linear uith respect to its own variab e XL; the '1
result is trivially extended to an arbitrary
number of linear equations within the same
system, and to equations of any fixed degree
(along the direction shown in CCGL 863 for a
single equation).

ELCX,,.,X'L U X"I...Xn) =

EL(X,,.,X'L...Xn) U EICX,,.,X"I..

Then the classical Jacobi algorithm:

ALGORITHM Al -

FOR i:=l TO n DO Xi+;
REPEAT

cond := true;
FOR i:=l TO n DO Si:=Xi;
FOR i:=l TO n DO

BEGIN
Xi:=EiCSl ,..... Sn);
IF Xi # Si THEN cond := false;
END;

UNTIL cond;
FOR i:=l TO n DO OUTPUT(

can be substituted by:

ALGORITHM A2 -

FOR i:=l TO n DO Xi=&
DC=&

REPEAT
cond := true;
FOR i:=l TO n DO Si:=Xi;
FOR i:=l TO n DO
BEGIN

IF i=l THEN
BEGIN
Dl:=EL(Sl..,Dl,..Sn)-St;
XL:=Dl U SL;
IF DL # #THEN cond := false;
END

ELSE
BEGIN
Xi:=EiCSl ,.....Sn);
IF Xi # Si THEN cond := false;
END;

END;
UNTIL cond;
FOR i:=l TO n DO OUTPUT(

Theorem 2. If equation X =EL is
respect tZ XL, then algor thms \ Al
equivalent.

The theorem is proved in CCeT 861.

.x,1

linear with
and A2 are

The advantage of algorithm A2 with respect to
Al is that the term Dl represents just the
"difference" tuples evaluated at each
iteration, while Sl represent the
"accumulation" of all tuples of the previous
iterations; given that 1011 <C bll, the
evaluation at each iteration is more efficient.

Suppose that the equation x =E is linear with
1 1

respect to its own variable: This final step has completed our structured

Proceedings of the 13th VLDB Conference, Brighton 1987 39

approach. Prior to the evaluation, we determine
common subexpressions and isolate the portion
of the system related to the query; then we
attempt reducing variables or constants as
effect of the propagation of selections; then
we order equations according to a partial order
between strong components; then we apply a
solution method (Jacobi, Gauss-Seidel, Chaotic)
to solve the system; we can improve solution
methods when the degree of some equations is
known.

4. COMPARISON WITH OTHER WORK ---

This paper is logically the follow-up of CCGL
863; we borrow from it the syntax-directed
translation from Datalog clauses to algebraic
equations.

Our push of selections to variables is in fact
an extension of the method of Aho and Ullman
CAhU 791 for a single equation. In our
approach, we push selection conditions to any
relational variable, and not just to the
"principal variable". Further, in CAhU 791, the
optimization was not possible for equations
having the variable X. appearing more than once
in E.; we do not have'such restriction.

1

The "static filtering" method by Kifer and
Lozinskii CKiL 861 achieves an analogous
simplification as our push of selections to
variables. In their method, the systems of
equations get translated into a unique
equation, which is sometimes cumbersome. Most
important, the static filtering method creates
a selection predicate which is "looser" than
the initial one, and applies it to the
principal variable; our method reaches the same
result by creating different equations for the
same variable marked in different ways. This
can be considered an improvement on Kifer and
Lozinskii's method if equations are evaluated
in parallel; awwfp our form is easily
reducibie to theirs: whenever S' contains two
equations for Xi as follows:

CXi:m)=EiCCX,:m,)....CXn:mn))

CXi:k)=EiCCX,:k,)...'(Xn:kn))

it is possible to substitute them with:

CXi:m or k)=EiCCX,:m, or k,)....CXn:mn or k,)).

As an example, consider the following
non-linear Datalog rules, that are also
proposed in CKiL 861:

RCx,y,z):-BCx,y,z).
RCx,y,z):-ACx,u,v),RCu,y,z,),RCv,z,y).

with the query QCx,y) = RCx,y,a). The above

40

rules are translated into:
R=BUn , ej 6((At-&)W6=2 5-3R)

, I I -

with the query Q=c&a R. Our push of selections

to variables succeeds, producing:

CR:Zv3>=CB:Zv3) U

which amounts to taking the selection of R over
the second or the third column.

It can be noticed that the reduction of
variables and constants includes some cases
which are also considered by the Magic Sets
method of [Ban 86al. This happens, for
instance, in the two cases of linear ancestor
query. In fact, in the case of binding of one
of the variables of the ANCESTOR relation, the
Magic Set method achieves a simplification that
is equivalent to the reduction of variables; in
case of binding on the other variable, the
Magic Set method reaches a reduction of the
constant relation PARENT to its relevant part,
which is the "cone" of the query constant, in
the same way as we do with the reduction of
constants (Example 6.a). However, in more
difficult cases the comparison between these
two methods is not so immediate. It is very
important to notice that our algorithms include
tests for deciding whether to accept or reject
simplifications; wh-ile the magic set approach
is applied "syntactically", without being able
to evaluate on its convenience.

Terms generated by iterative methods for a
single fixpoint equation can be efficiently
evaluated either by factoring techniques or by
parallelization CCoK 861; these techniques are
algebraic in nature and can be conveniently
extended to systems of equations.

Courcelle, Kahn and Vuillemin have studied
systems of simple recursive equations in the
context of the fixpoint semantics of
programming languages CCou 741. They study
equations of the general form X = T, where a
term T is recursively defined as either a
constant, or a variable, or a function F of a
given arity n, applied to n terms Tj. Thus,
X=FCX,GCY,Z)) is a valid equation. They
introduce a notion of uniform equation Can
eauation without nested functions), and they
show a construction C for transforming H
generic system S into an equivalent uniform
system S'. The uniform representation is the
basis for deciding whether two systems of
equations are equivalent, or whether any two
terms are equivalent; both problems are
decidable in polynomial time.
We could use the same formalism as in CCou 741

by interpreting every union or join expression

Proceedings ofthe 13thVLDB Conference, Brighton 1987

as a distinct function. The major limitation of
such interpretation is that ue cannot use the
semantics of join or union expressions, in
particular for deriving common subexpressions
and simplifying terms of equations. Thus, their
notion of equivalence is correct but weaker
than one that uses all the available knowledge
on the meaning of algebraic operations. On the
other hand, the latter is more difficult and
constitutes currently an open problem.

5. CONCLUSION

In the debate about whether optimization of
Datalog programs is better achieved at a high
(source programs) or low (algebraic machine)
level, this paper supports the latter thesis.
In fact, all our algorithms are systematic and
can be programmed into an algebraic machine.
Our approach makes extensive usage of classical
algebraic equivalence properties and of
algebraic optimization transformations.
Further, our algorithms produce solutions which
are subject to quantitative evaluation; each
step of our approach includes a trade-off
analysis. Thus, we can either accept or reject
the simplifications which are proposed at each
step.

Ongoing work in this area includes the
experimentation of the techniques discussed in
this paper through the development of a
prototype of the algebraic machine.

ACKNOWLEDGEMENT

We are grateful to Gill Kahn for indicating us
previous related work, to Robert Demolombe for
a general discussion on systems of equations,
and to Georg Gottlob for helping us in the
initial development of the method for pushing
selections to constants. This work is conducted
with the support of the Esprit Project
"Meteor", of the italian CNR, and of the MPI
40% Project.

REFERENCES

CAhU 793

[Ban 86al

[Ban 86bl

Aho. A. and J. Ullman, "Universality
of data retrieval languages", Proc.
6th ACM Symposium on Principlesof
- -.
Programming LanguagesC19fQ) -

Bancilhon, F., D.Maier, Y.Sagiv,
J.D.Ullman, "Magic sets and other
strange ways to implement logic
programs", Proc. ACM-PODS, Cambridge
(MA) (March=61198651

Bancilhon, F. and R. Ramakrishnan,
"An amateur's introduction to
recursive query processing
strategies", in Proc. of ACM SIGMOD, - ---

CCeT 861

CCoK 867

ccou 741

CCGL 861

CDeA 861

[Fin 821

CGar 861

CHeN 841

CKiL 861

Cull 851

ed. C.Zani 010, Washington D.C. USA
(May 28-30 1986)

Ceri, S. and L. Tanca, Optimization
of systems of algebraic equations for
evaluating Datalog queries, Int. Rep.
n.86034

Cosmadakis, S. and P. C. Kanellakis,
"Parallel evaluation of recursive
rule queries", Proc. ACM-~,
Cambridge (MA) (March-26 1986)

Courcelle, B -I G.Kahn and
J.Vuillemin, "Algorithmes
d'equivalence et de reduction a des
expressions minima les, dans une
classe d'eouations recursives
simples", 2nd Int. Coll. on Automata, --
Languages and ProgGinz vol. 14,
pp. 200-21rSpringer, Berlin, Lect.
Notes in Comp. Science, Saarbrucken
(1974)

Ceri, S., G. Gott lob and L.Lavazza,
"Translation and optimization of
logic queries: the algebraic
approach", Proc. of 12th Int. Conf.
on Very La- Dza%ec K-, ---
Japanugust 25-28 1986)

Devanbu, P. and R. Agrawal, Moving
selections into fixpoint quz
Internal Repoml9y

Finkelstein, S., "Common expression
analysis in database applications",
in Proc. of ACM SIGMOD, ed. M.
Schkmck,-Orxdo, Florida USA
(June, 2-4 1982)

Gardarin, G. and C. de Maindreville,
"Evaluation of database recursive
logic programs as recurrent function
series", in .Proc. of ACM SIGMOD, ed. --
C.Zaniolo, Washington D.C. (May 28-30
1986)

Henschen, L. and S. Naqvi, "On
compiling queries in recursive first
order databases", Journal of AC/,
vol. 31, pp. 47-85 (January lm4)

Kifer,M. and E. L. Lozinskii,
"Filtering data flow in deductive
databases", Proc. of Int. Conf. on
Database Theory %,RomaxtaF
CSeptember,m19m

Ullman, J ., Ymplementation of
logica 1 query languages for
databases", I c:z, PP. ACM-TODS
289-321 (1985)

Proceedings of the 13th VLDB Conference, Brighton 1987 41

