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abstract 
In this paper, we propose new classes of 
Inclusion Dependencies as an extension of 
“Generalization” based on the Entity-Association 
model. Various kinds of extensions are 
discussed, and four classes (IND, IXC, UXG and 
co-EXD) are evaluated from the viewpoint of 
database design. We present the complete 
inference axioms for each class and the 
polynomial complexity of inference problems. 

1. BACKGROUND 

One of the most important issues in database 
design is certainly the specification of 
integrity constraints. Since databases must be 
kept consistent, and some external checking 
mechanisms must be provided. The constraints 
detected at database design should be embedded in 
the database schemes by some way such as “normal” 
forms so that the consistency is preserved. 
Those constraints could be also used for query 
optimization. 

A typical example is found in the relational 
database theory. That theory [23] has been 
considerably developed, with the help of 
functional dependency or join dependency which 
have been much discussed by many investigators. 
However, the theory is heavily based on the 
mathematical properties of the dependencies and 
it is doubtful for database designers to 
construct their databases in accordance with the 
theory, since those properties are neither 
intuitive nor easily understandable. 

Originally information model is considered 
to allow us to capture “real world”, and the 
design methodology based on the model must be 
intuitive enough to reflect the world, powerful 
to describe this world and easy to construct on 
it information structure. In this sense, 
database designers must start their work with the 
initial image and they are encouraged to capture 
the information structure. Naturally, designing 
database means structuring information. More 
precisely, designing databases consists. of two 
phases [4]; information modelling to construct 
information structure and data modelling to 
change the information structure into the ones 
adaptable for computer processing. Entity 
Relationship (E-R) model [lo], Entity Association 
(E-A) model [ 181 and Navathe-Schkolnick model 
[17] are well-known information models. As data 
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models, relational model, network model or 
hierarchical model are the examples. We believe 
that both modellings should be closely related so 
that no concept translation is required. 

Despite of these proposals, the enumeration 
of design problems still comes to us [14]. For 
example, in the first stage of database design, 
both of predicates (or schemes) and constraints 
among attributes should be simultaniously 
detected, but the design methodology to reflect 
them is not fully developed [24]. 

In this paper, we will pay. attention on the 
structures among sets (or “types”) of entities, 
because they are sometimes regarded as design 
primitives, or sometimes as constraints. Some 
investigators also discussed this problem; 
Generalization c221 concerns inclusion 
relationship among entity sets. Cl 01 proposes 
the notion of existency dependency which 
considers generalizations as constraints. And 
[71 discusses this topic from the viewpo.int of 
relational model. Here we regard Generalization 
as constraints over sets of entities, and 
subsequent sections discuss the extension and the 
properties of the constraints. 

Section 2 gives the definition of databases 
and the data model AIS. In section 3, we 
introduce Inclusion Dependency (IND) and develop - 
the straightforward extension with the polynomial 
membership algorithms. Section 4 states the 
other kind of extension, Exclusion Dependency 
(El, and the interaction with INDs. However, 
the EXD class will be shown to be rather 
inappropriate since many %nrelatedt’ entity types 
exist in the database. Alternatively we will 
propose, in section 5, the notion of co-Exclusion 
Dependency (CO-EXD) and its interaction with 
INDs. Also the polynomial time membership 
algorithms will be stated. 

In any model, rigorous treatment should be 
provided, for we believe that the theory has the 
expressive power only when unambiguous concepts 
and effective operations are provided. This 
brings us to discuss database theory on 
mathematical framework. Especially 
axiomatization combines the intuitive correctness 
and the conceptual derivability. Sound and 
complete axioms for interesting universe are the 
ones we want. Also, testing membership algorithm 
and its (time) complexity is another importance 
since our aim is to decide wether a particular 
member can be derived or not. 

Throughout the paper, we assume the basic 
concepts in mathematical logic [16]. For 
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example, propositional logic and the first-order 
predicate logic are referred without explanation. 

2 AIS data model and the database 

In this section, we present the definition 
of Associative information structure (AIS) and 
the databses on which we will state our theory. 
The model stands on five ormitives: entitv. 

A’ 

entity type, association, predicate and 
constraint. 

Informally, an entity is a logical object in 
the database which corresponds to a 
distinguishable thing in the real world. For 
example, a manager or a secretary is an entity. 

Collections of entities can be often grouped 
together to perform a semantic unit, in turn, 
this must be corresponded to an entity called 
entity type. Each entitiy type is denoted by a 
spelling such as Manager or Secretary. 

On the other hand, the set of entitties 
itself is called an entity-set or E-set. 
Conceptually entity type represents V’intension” 
and E-sets “extension”. For a type, the E-set 
means “active” domain [ll] because of extension. 

E-sets may be mutually overlapped, that is, 
an entity can be included in two or more entity 
sets. For instance, an office-worker may be both 
a manager and a secretary. 

A predicate expresses n-ary relationship 
among entity sets. In other words, the predicate 
corresponds to a .“relationship type”. This is 
explicitly specified by the designers. The 
occurrence of the predicate describes a 
particular information among entities which are 
in the corresponding sets. Each occurrence is 
being called an association; 

To keep all the information consistent, the 
designers must specify constraints over types 
explicitly. For example, “active” domain 
property is a constraint such that every entity 
in associations of a predicate must be in the 
appropriate entity sets and that no other entity 
exists in the entity sets. As another example, 
in this paper, we discuss Inclusion Dependencies 
which says “an entity set A is always a subset of 
another entity set B” (i.e. if an entity e is an 
element of A, then e must be an element of B). 

As stated before, AIS data model represents 
the information model and the data model: the 
actual collection of entities, entity types. 
predicates and associations constitute the AIS 
database. The materialization of the database 
scheme is provided by an AIS diagram. An Entity- 
set is represented by ovals, a predicate by l 
linked to entity sets, an entity by o and an 
association by 4. In the following, lower case 
letters a,b,c mean entities; upper case letters 
A,B,C mean entity types; x(A),1(B),x(C) mean 
entity sets of type A,B,C respectively. [El . . 
En] represents the predicate defined on entity 
types El,..,E,. As shown in this paper, INDs and 
the extensions can be captured in the diagram by 
set inclusion notation. For more detail, see 
Cll,CZl and C41. 

[Example] Throughout this paper we refer the 

same example, modified version of [61. We assume 
there are three predicates and eight entity types 
like: 

[O Worker Floor] says Office Worker w is 
located on Floor f. 
[Manager Secretary Day] says Manager m works on 
Day d with Secretary s. 
[Director Limousine Driver] says Director r 
uses Limousine 1 drived by Driver e. 

All these are drawn by Fig.l,(a)-(c). 

(b) (cl 

Fig. 1 AIS diagram 

3 EXTENDED GENERALIZATION CONSTRAINTS 

3.1 Inclusion Dependency 

To each object in the real world one and 
only one entity is associated in the database so 
that several entity sets may share entities. 
Moreover, very often there are several inclusion 
relationship among entity sets, and they must be 
considered as constraints. 

Given two entity types A and B, A is called 
inclusive to B, denoted A<B, if ,4(A) is always a 
subset of h(B). Such kind of constraints is said 
Inclusion Dependency (IND). 

On the other hanzGeneralization [22] is a 
constraint such that every entity in A(T1) has 
the same relationship involved by T2 if T2 is a 
generalization of Tl. Tl is sometimes said 
“subtype” of T2. This is naturally embedded in 
AIS databses; if an entity in X(Tl) is in A(T2), 
then the entity has to be related to an 
association on T2, for, all entity sets are 
active in AIS. 

Semantically IND is based on this concept. 
In fact, as we show later, extended INDs can 
describe more sophisticated classes of Generali- 
zation. [4] discusses the design methodology 
using extended INDs. [7] discusses INDs in the 
framework of relational model. [25] presents the 
similar discuss ion from the viewpoint of 
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knowledge representation. Also, [21] shows that 
“classical” relational model plus allowable INDs 
is equivalent to a subclass of Universal Instance 
model. Note that the inference problem of INDs 
is PSPACE complete and we need powerful 
subclasses. (PSPACE complete problems are 
problems that can be solved using only polynomial 
space and are hard as any problem that can be 
solved using plynomial space. It’s believed that 
this problem cannot be solved in polynomial time 
c151.1 In this paper, our major concern is to 
give new subclasses of INDs and to characterize 
them. 

[Example] In our example, we assume the 
following INDs: 

Manager<O-Worker 
Secretary<0 Worker 
Director<Ma<ager 
Director<0 Worker - 

Figure 2 shows the AIS diagram which visualizes 
our database environment. 

Fig. 2 AIS diagram with Inclusion Dependencies 

Note that there may be an office worker who is 
both secretary and manager. 

According to 171, INDs have the following 
inference axioms: 

[Ill A<A for every entity type A 
[I21 A<0 and B<C imply A<C 

Note INDs in Cl31 are more general than ours so 
that some computing intractabilty happens. Our 
axioms are restricted to entity sets and 
therefore much simpler. Similar approach is in 
Cl31 which discusses. “unary” INDs and the 
interaction with FDs. Intuitively, these are the 
axioms on set inclusion and they can be 
illustrated using AIS diagram. Here we have our 
first result. 

[Theorem 11 [Ill and [I21 are sound and 
complete with respect to INDs. 

(Proof) We show here the theorem by propositional 
logic, that is, by relating IND A<B to a logical 

formula A=>B(“=>‘l means implication); such 
technique is in [20]. We denote A=>B by p if p 
is A<B and the set by X if X is a set of 
formulas. For logical formula A->B, we can 
assign “Usual” boolean truth values; A=>B is 
defined true if A is false or B is true. 
We have similar propositional axioms for [II] and 
[I21 corresponded. 
Suppose that X 19 a set of INDs and p an IND A<B. 
To prove the theorem, it is enough to show: 
(i) p is a logical consequence of X iff p is a 

logical consequence of X (Equivalence Theorem) 
(ii) p is a logical consequence of X iff p is 

derived from X 
(iii) p is derived from X iff p is derived from X 
Proof of (i): If p is not a logical consequence 
of x, there can be an entity x of type A but not 
of type B while X holds in the database. Now 
consider the truth assignment: 
C is true if the entity is in a(C), false 
otherwise. Clearly A=>B is false. Assume some 
C=>D in X is false. C is true and D is false. 
The entity x is in A(C) by definition. But X 
holds in the database, then x must be in A(D), or 
D is true. Or, p is not the logical consequence. 
Conversely, assume p is false, or A is true and 
B is false. Now we consider the database whose 
entity types appear exactly in X and p such that: 

Given one entity x, for every entity type W, x 
is in A(W) if W is true under the assignment. 
For each C<D in X, if x is in X(C), it must be in 
A(D) since C=>D is true and C is true. By 
assumption, x is in ,4(A) and not in A(B). That 
means p is not the logical consequence. 
Proof of (ii): If-part (soundness) is’ clear, and 
we show the converse. It is sufficient to show 
the assignment which satisfies X but not p, when 
p is not derived from X. 
Consider the assignment as follows: 
* Assign false to C if A->C is not derived from 
x. 
. Assign true otherwise. 

A=>B is false since A is true (A=>A is always 
obtained by [Ill) and B is false by assumption. 
Suppose C=>D in X is false. C is true and D is 
false. That is, A=>C can be derived. As C=>D is 
in X, by CI21, A=>D can be also derived, or D 
must be true, contradiction. 
Proof of (iii): Syntactical translation of the 
proof procedure shows the correctness. 0 
Note that [25] presents another proof. 

[Example] In the above example, Director 
<0 Worker is redundant since it can be induced. - 

3.2 Extended Generalization 

Consider the constraint [A*B<C]. This means 
that each entity both in X(A) and i(B) must be in 
r?(C). Note this cannot be expressed by INDs in 
section 3.1. Similarly, {A<B+C) presents a new 
type of constraint which says that every entity 
in A(A) must be in A(B) or A(C). As this example 
shows, more than two types participate in new 
classes of the constraints. In this section, we 
give the rigorous definitions and the 
characterization [2]. 

INDs or Generalization may concern the 
“vertical” relationship, IS-A hierarchy, between 
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two types. On the other hand, t’horizontal” 
relationship may interact with vertical ones. 
For example, in our example, every one who is a 
secretary 0 or 11 a manager, must be an office 
worker. 

First, the notion of expression is to define 
the above “her izontal” relationship. The 
expression of Intersection (Union respectively) 
is defined recursively: 

+ For entity type A, A is the expression. 
. If Wl and W2 are both expressions, Wl*W2 ( 

Wl+W2 ) is also an expression. 
. There is no other expression except those 

using the above rules. 
Using these expressions, two kinds of 

constraints are defined; 
Intersection Extended Generalization (IXC) is a 
class of INDs which can involve the in=section 
expression instead of single types, 
Union Extended Generalization (UXG) is similarly 
defined usina the union excressiz 

We - that say IXC ‘A,* , .*A,,<Bl*. .*B, (UXG 
Al+.. +A,<Bl+..+B, respectively) holds if the 
intersection (union) of A(Al),..,i(A,) is always 
a subset of the intersection (union) of 
A(Bl),--BA(Bm)e 

For example, the comment above is specified 
by 

Manager+Secretary<O Worker. 
Note Cl91 discusses updating on IXG and UXG 
framework, but doesn’t show the characterization 
of these constraints. In this section we prove 
the existence of sound and complete inference 
axioms of IXC and UXG. 

Now let us turn to consider some properties. 
[1X1] Al’ ..*A,<Ai for every i=l...,n 
cm21 A<B1*..*Bm if and only if A<Bi for 

every i=l,..,m 
[UXl]~~Ai<Al+..+An for every i=l,..,n 
Cm21 A,+ ..+A,<0 if and only if Ai<B for 

every i=l , . . , n 

Also we extend the meaning of [Ill and [I21 to 
allow the introduction of expressions. 

[lemma 11 Every formula of IXG (UXC 
respectively) can be transformed into a form such 
that the intersection appears only on left side 
(the union appears only on right side). In fact, 
[IX21 cux.21 can be applied for this 
renormalization”. This can be done using one pass 
compiling technique, the space complexity is 
O(n2) where n is the description length. [I 

For example, {Manager+Secretary<O_Worker] is 
equivalent to (Manager<O-Worker, 
Secretary<0 Worker). For another example, the 
set (A*B<C) 2nd {A<B+C) are already normal. 

[Theorem 21 
(1) [11][12][IXl][IX2] are sound and complete 

with respect to IXGs. 
(2) [Il][I2][UXl][UX2] are sound and complete 

with respect to UXGs. 
(Proof) see Appendix 0. 

The membership complexity problem consists 
of determining how fast a member can be derived 
from the given set of formulas. We have the 

following. 

[Theorem 31 Testing membership of INDs, IXCs and 
UXCs takes time O(k), O(k) and O(k4) respectively 
where k is the description length of the given 
set. 

(Proof) see Appendix 0. 

[Example] We add more constraints; Every one who 
is a Manager and a Secretary, should be a project 
leader. Leader may be an office worker or a 
driver. The new predicate is : 

[Leader Project] says Leader a is affected to 
Project p. 
The constraints are: 

Manager*Secretary<Leader 
Leader<0 Worker+Driver 

Here we calculate non-redundant set of the 
constraints in our example (Fig. 3). 

Manager<0 Worker 
Secretary70 Worker 
Leader<0 Worker+Driver 
Director<Manager 
Manager*Secretary<Leader 

-O-Worker.-- 

mSecretY I Director 

Leader I \ I 

-Driver- 

Fig. 3 AIS diagram with IXGs 

4 EXCLUSION DEPEDENCIES 

Natural extension of INDs covers the 
exclusion relationship. Here we address this 
problem. 

We. sometimes find exclusive relationship 
during the database design phase. Partitioning 
and categorizing entity sets [17]’ can treat this 
kind of relationships. On the other hand, in E- 
R model, this is out of conceren. Substantially, 
the problem here is, at best, to produce several 
design alternatives depending on how such 
constraints are captured. Moreover, redundancy 
or exclusion management is required. Unlike 
them, our initial approach is to model this kind 
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of relationships and to give mathematical 
framework. 

Exclusive relationship among entity types 
says that the entity sets never intersect. It 
is on the opposite side of INDs, and explicit 
specification is necessary. 

Formally, given two entity types A and B, A 
is called exclusive to B, denoted by A 1 18, if and 
only if no common entity can exist in both A and 
0. This sort of constraints is called Exclusive 
Dependency or EXD [a]. - cl21 presents the 
detection mechanism for invalidity of a query 
using an exclusive relationship graph, but no 
characterization is found. (181 gives the 
axiomatization.) Also [25] presents IND and EXD 
with the complete axioms. 

Here we go back to the initial problem: 
consider how effective the EXD class is at 
database design. The following example shows the 
class is useless. 

[Example] In our example (Figure 2), implicitly 
we assume that 0 Worker, Driver, Day, Floor and 
Limousine are mut<ally exclusive. However, as we 
have the tool for the specification of these 
facts, following constraints must be stated 
explicitly: 

0 Worker Driver 
O-Worker Floor 
O-Worker Day 
O-Worker Limousine 
DFiver Floor 
Driver Day 
Driver Limousine 
Floor Day 
Floor Limousine 
Day ) Limousine 

In addition, we assume that a secretary can 
also be a manager;however no secretary is a 
director. This fact is expressed by: 

Secretary 11 Director 

Note the above set of descriptions are non- 
redundant. 

[Example] In the case of Figure 3, descriptions 
about Project are added to the above: 

Project 0 Worker 
Project Driver 
Project Limousine 
Project Day 
Project Floor 

As easily seen, even by the help of the 
complete axioms, the designers must be annoyed to 
specify EXDs, not only because there are a lot of 
“unrelated” entity types, but also because they 
should look for vain relationship. 

We find one more problem about EXD. Unlike 
the constraints discussed so far, there exists a 
set of EXDs which is unstatisfiable by any entity 
sets. For example, (AIIB, A<B]. C81 calls this 
class of EXD “vacuous” EXDs. This means testing 
satisfiability should be performed. 

We will stop to investigate EXDs any more, 
for, by the reasons above, the database designers 
must prefer co-EXDs to EXDs as shown in the next 
section. 

5 CO-EXCLUSIVE DEPENDENCIES AND 
INTERACTION HITH IXG/UXG 

5.1 Co-Exclusive Dependencies 

We introduced and discussed several classes 
of extended INDs so far, and evaluated them from 
the view point of database design. Practically 
EXDs are less intuitive and e.ffective than 
others, and are hard to be detected easily and 
naturally. 

Here we propose as an extension of INDS 
which designers can get familiarized more easily 
with. We simply consider the negation of EXD as 
a constraint, and we call it co-EXD; that is, two 
entity sets “can” share entities. Such 
constraints are, in fact, extension of.INDs. We 
assume that two entity sets must be exclusive if 
and only if the co-EXD cannot be implied. This 
idea is similar to Closed World Assumption in 
mathematical logic. 

Given two entity types A and B. A is said to 
be coexclusive to B, denoted A#B, if not(AllB) 
holds, or i.e., two sets A(A) and A(B) can 
intersect. 

We have to remark on co-EXD. In the case of 
INDs (IXGs, UXGs), they constrain databases in 
such a way that the only databases satisfying the 
constraints are said consistent. As for co-EXDs, 
they mean there can be databases satisfying the 
constraints and do not mean the entity sets must 
intersect. What co-EXDs mean is to constrain 
database when updating and sharing entities. 

Let us compare co-EXD with EXD. The set 
IA<B, AlIBl is never satisfied for any 
assignment, that is, there is no set assignment 
by which both formulas are “true”. On the other 
hand, (A<B,A#B) is satisfiable, that is, there 
exists a set assignment by which both are true; 
A(A) and A(B) are not exclusive and A(A) is a 
subset of X(B). In this sense, we want to put an 
emphasis on the fact that local satisfaction of 
co-EXDs is always reflected to global view. 

Note A//B is said true under the assignment 
if and only if there exists an element both in 
X(A) and A(B). Then A#B holds if and only if AIlB 
can be true for some assignment. A#B is said to 
be a logical consequence of a set of co-EXDs and 
(extended) INDs, X, if and only if for every 
assignment which makes every formula of X true, 
AIB is true. 

[Example] Again we show our example. In Figure 
2, only the following description must be 
specified: 

Manager#Secretary 
Note that there is no need to describe 
“unrelated” relationship, compared to section 4. 

Informative description is that there is no 
intersection between 0 Worker and Driver. Here 
we don’t describe this fact with certainty. In 
general, the more constraints exist, the’ more 
descriptions are required. 

Some properties are easily proved (note 
A,B,C are all entity types): 

[Cl] ACA for every A 
CC21 A#B implies B#A 
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CC33 Ail0 and B<C imply AK 
Using them we have: 

[lemma 23 
(i) A<B implies AIB. In fact, since AtA holds 

([Cl]), we have AI/B by [C3]. 
(ii) A<B and A<C imply B/K. In fact, A<B implies 

AIB by (i), and by CC31 BK holds. 0 

[Theorem 41 [Il][I2][Cl][C2][Cj] are sound and 
complete with respect to INDs and co-EXDs. 
(Proof) see Appendix Cl. 

5.2 Co-EXD and the interaction with intersection 
eltpression 

Co-EXD involving more than two entity types 
is not equal to a number of co-EXDs of two entity 
types. For instance, [A#B, BIIC. C//A) does not 
say there exists a common entity in A(A), A(B) 
and X(C). Now we extend co-EXD to multiple 
entity types environment, denoted C(AI,..,A,). 
which says the intersection of ,4(Al),.,,A(An) can 
not be empty. For example. I#(A,B,C)I says 
there can be an entity common in the three sets. 
Note that if t(A,B,C) then (AIIB, BtC, C/IA) holds 
but the reverse does not hold true. 

More precisely, entity types Al..,A, are 
mutually co-exclusive if the following recursive 
conditions hold: 

(i) AI//A2 if n=2 
(ii) #(AI,..,A,-1) ; and (AI*..*An-1, A,) when 

n>2. 

[Example] In the case of Figure 3, we change 
Manager*Secretary<Leader into the two cases as 
follows: 

X=(B(Manager.Secretary,Leader)] 
Y-[I(Manager,Secretary), #(Manager,Leader)] 

The former says that there can be a leader 
who is a manager and a secretary, the latter says 
that there is no such person, although there can 
be a leader who is a manager (see Fig.4). 
Hereafter we assume X. 

To avoid the notational complexity, we define 
"equivalence" symbol (I): we say EzF if and only 
if E<F and F<E. 

[lemma 31 Extended co-EXD can be expressed by 
binary co-EXDs and IXCs with an introduction of a 
new type. In fact, {#(A l,..,A,)] is equal to 
(BIA,, #(A~,..,A,-~). B=A~*..*A,-~]. As easily 
seen, the description length is still O(n). 0 

As for the above example, the additional 
constraint X is expressed as follows: 

MgrSecsManager*Secretary 
MgrSectLeader 
Manager//Secretary 

The following properties clearly hold: 
[Ml] t(E) for every E, E is non-empty 

(this is rather a definition) 
CM21 //(El p -. ,En) implies t(F1 r*.rFn) where 

(F l,..,F,j is a permutation of [Ei,..,E,). 
[M3] #(EI,..,En) implies #(El,..rEn,Ei) where 

i=l , . . ,n 
[M4] I(Ei,..,E,,Fl,..,F,) and FI*..*Fm<G imply 

B (E ,,..,E,,G) where n>=O, m>O 

[Example] In the Figure 4, we again change our 
environment such that 

(0 Worker+Driver)CLeader 
insTead of 
Leader<0 Worker+Driver. 

That meat% some other person, say Bob, may be a 
leader. The constraint is the above one. (Fig 5) 
Let us consider co-EXDs and UXGs. Following 
example shows us how hard to draw the difference 
on the diagram. 
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[Example] 
X=(A#(B+C)) 
Y={ACB, AK) 
Z=(A#B, A#(B+C)) 

Clearly X and Y are not equivalent though Y 
implies X. This is because every assignment 
satisfying Y makes all the elements of X, but the 
reverse direction is not. Also Z is redundant 
since the first implies the second in a sense 
that every assignment satisfying the first 
formula should satisfy the second. Note X cannot 
be expressed straightforward by the diagram 
though Y can. 

[lemma 41 An extended co-EXD (A1+..+An) 

Driver 

X={#(Manager,Secretary, 
Leader)} 

-o-Worker 
--I 

Driver 

y={#(Manager,SecretarY). 
#(Manager,Leader)} 

Fig. 4 AIS diagram with co-EXDs 

CM51 IICE, s**sEn) implies i~(Fle-.pFm) where 
(F l,..F,] is a subset of {E1,..En] where all 
the symbols are intersection expressions. 

Note CM21 corresponds to [C2], CM41 to CC31 and 
CM1 lCM31CM51 to Ccl I. 

[Theorem 51 [Ml]-[M5][11][12][IXl][IX2] are 
sound and complete with respect to IXGs and co- 
EXDs under intersection expressions. 
(Proof) see Appendix IJ. 

5.3 Interaction with union expression 

-. 
Now we go back to binary co-EXDs in order to 

discuss UXGs. Our extended co-EXDs can involve 
union expression. 



Leader 

Fig. 5 AIS diagram with co-EXDs 

#(B,+..+Bm) is equivalent to the set [A//B, 
A-Al +. .+A,. B-B1 + . . +Bm) . Also note the 
description length is still O(n+m).O 

For example, the above constraint is 
GDmO Worker+Driver 
Lead&#OD 

One more definition is needed. A normal UXG 
A<B1 
and 

+..+Bm is called minimal if ahd only if m=l 
A&B 1, 

(B, , 
or any proper subset IBj, ,..,Bjk) of 

..,Bm) does not satisfy A<Bj,+..+B.. . 
i” 

Note 
that a given UXG may have several minima forms. 

[Theorem 61 Allowing union expression, 
[Ill[I2lEUXllCUX2l cc1 l-CC31 are sound and 
complete with respect to co-EXDs and UXGs. 
(Proof) see C21.0 

[Example] The constraints in the figure 5 are 
non-redundant. 

[Theorem 71 
(1 ) Testing membership of INDs and co-EXDs takes 
time O(n2) where n is the description length of 
the given set and the candidate. 
(2) Testing membership of IXGs and co-EXDs takes 
time O(n2) 
(3) Testing membership of UXGs and co-EXDs takes 
time O(n5) 
(Proof) see C21.0 

6 CONCLUSION 

In this paper, we proposed new classes of 
Inclusion Dependent ies as extension of 
Generalization based on entity and association 
concept. Various kinds of extensions were 
discussed, and four classes (IND, IXG, UXG and 
co-EXD) were evaluated from the viewpoint of 
database design. We presented the complete 
inference axioms for each class and the 

polynomial complexity of inference problems. 
In order to construct databases according to 

a given scheme, it is helpful to consider the 
data structure on logical data storage as well as 
abstract data model1 ing. For, redundancy 
reduction of entity sets or association sets, and 
query optimization generally require fairly 
uniform and logical treatment on data storage. 
We call this level of database abstraction 
“realization structure”. Non-First normal form 
Relation (NFR) [3], for ‘example, is addressed for 
this purpose. Using the theory, domain can be 
organized systematically from more than one 
entity set using inter entity sets structure. 

Several problems remain unsolved. First, we 
must relate IXGs, UXGs and co-EXDs to predicates 
in AIS and to compound value association [2][4]. 
Second, decomposing domains helps us to 
distribute data onto several sites in order to 
achieve parallel processing as in database 
machines. The new criteria for design may be 
presented; 

Cl1 

c.21 

c31 

[41 

151 

C61 

c71 

Cal 

c91 
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APPENDIX 

Proof of [Theorem 21 
By [lemma 11 we assume every formula is normal. 

The proof strategy is similar to [Theorem 11. 
Moreover, we outline the proof of (1) and a 
similar proof holds for the case of union. 
Care should be taken that we extend [Ill [I23 to 
the ones involving expressions. Relating 
A1*..*An<B to A1*..*An=>B, we have the 
corresponding set -of. logical formulas. The 
logical formula above is defined true if some Ai 
is false or B is true. Assume X is the given set 
of IXGs and p an IXG. Equivalence Theorem is 
proved similarly in [Theorem 11. In order to 
prove completeness, we assume p is not derived 
from X. and show that there is an assignment 
which satisfies all X but not p. 
Assign false to every C if Al*..*A,,<C cannot be 
derived from X. By [1X11, Al,..,A, are all true 
and B is false by assumption. 
When Cl*.. *C,=>D is false, Cl,..,& are true and 
D false, that is, Al* ..*An<Ci can be derived for 
i=l,..,m. By [1X21, Ai*.. *A,<D is proved from X 
since Cl*..*C,<D is b-i x, D must be true, 
contradicti0n.O 

Proof of [Theorem 31 
INDs and IXGs are much similar to functional 

dependencies, and [51 can be applied to our 
problem. In the case of UXGs, when deriving 
Al+.. +An<Bl+..+Bm, we want to calculate all the 
unioh expressions of the UXG which have B1+..+Bm 
on the right side. Then we will test whether the 

set contains Al+..+An. 

(1) Y:={B,,..,B,] 

I:', repeat for each Cl+..+Cl<Dl+..+Dh in X 
(4) if all Of Dj,..,Dh are in Y 

then add Cl,..,Cl to Y 
(5) until (Y is not modified) or (Y contains all 
the elements of 

Alt.-eAn) 
(6) if Y is not modified then return(FALSE) else 
return(TRUE) 

The above algorithm calculates the set 
desired, since (1) represents [Ill, (4) 
represents [I21 and CUX.21, the latter of (5) 
means [UXl]. Also this halts in finite steps 
because the set Y is increasing monotonously and 
X is finite. (3) and (5) take O(k), and (4) takes 
O(k2). The loop (2)-(5) halts in O(k) times, 
for, Y has the limit length. 
takes time O(k4). 0 

In total, this 

Proof of [Theorem 41 
Soundness holds clearly and we show the 

completeness. Assume X is a set of INDs and co- 
EXDs, p an IND or co-EXD. In order to prove the 
completeness, we construct the set assignment 
which satisfies all of X but not p if p is not 
derived from X. 
When p is an IND, [Cl]-CC31 cannot derive new 
INDs and the theorem is reduced to [Theorem 11. 
Assume p is a co-EXD A#B where A,B are both 
entity types. 
Let Cl,..,C, be entity types in X and p. 
Consider the assignment as follows: 

(i) Add Xij to Cit Cj if Ci#Cj can be derived 
from X. 

(ii) Add Xij to Ck if Ci#Cj, Ci<Ck are derived 
from X. 

(iii)' Repeat (i) and (ii) as many times as 
possible. 
where Xij are all distinct and i&j. 

[i] The assignment is well-defined: The number of 
IXijJ are O(n2), and every Ci is increased 
monotonously. Then generating procedure halts in 
finite steps. It is easy to show the assignment 
is Finite Church Rosser, that is, there is the 
finite length procedure and the result is unique, 
not dependent on the applying sequence. 
[ii] p is not satisfied: By (i), X(A) and A(B) 
are both nonempty. Since p is not derived from 
X, rule (i) cannot applied directly to A and B. 
Assume there is an element xij both in A and B; 
Then certainly we have Ci#Cj, Ci<A and Cj<B (or 
Ci<B) derived from X. Then, we must have A#B 
by [C3] or [lemma 21. 
[iii] Every formula in X holds: Co-EXD in X must 
hold because of (i). Assume Ci<Cj is in X. 
Every element xik in Ci mUSt be in Cj by (ii); 
Element xpq in Ci y;; b;yCe 
Cp<Ci (or C,<Ci). 
adds xpq to C(j) by (ii;. 0 

and Cq with CE#Cq; 
121, Cp<Cj and pICq 
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