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Abstract

The set of resolvents generated by a recursive intension
in a first-order database is treated as a sct of concurrent data-
base queries. A strategy for efliciently evaluating .these con-
current queries in a multi-processor environment is presented.
The strategy combines three query processing techniques,
namely, query decomposition, intermediate result sharing and
data-llow and pipelined query execution to achieve a high
degree of parallelism. An analytical study uses the response
time for each resolvent and the execution time for a set of
resolvents as a performance measure to examine the perfor-
mance gain due to the data-flow and pipelined approach to
query processing. :

1. Introduction

Knowledge base management systems (KBMS) is a new
technology resulting from the integration of techniques from
database management systems (DBMS) and artificial intelli-
gence (Al) [BRO84, GAL83, JARS4, KEL82, KER84, RASSS,
SU85, WIE84]. A KBMS requires a powerful language for
defining various kinds of knowledge rules including integrity
and security constraints, deductive rules to generate new
information, rules for describing properties such as transi-
tivity, symmetry, etc., as well as domain specific expert rules.
To support this, query languages have to be enriched; one
such extension is to permit the use of general logical clauses in
the query languages of relational databases. As a result of
such an extension, queries may be defined recursively and
straightforward methods of query evaluation may fail. A
variety of strategics have been proposed to deal with recursive
queries {HANS6, NAQ84 and ULLS85}, and in section 2 we
examine schemes that generate a series of resolvents that pro-
vide answers to a recursive query.

Efficiency is a key lactor in the succesful integration of
Al and DBMS technology. In this paper, we present tech-
niques for the eflicient implementation of recursively defined
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queries in KBMS. More specifically, we treat the sequence of
resolvents generated by a recursive clause as a set of con-
current’ database queries and apply query processing tech-
niques to optimize the evaluation of these concurrent queries.

In section 3, we describe a strategy which combines three
known techniques, namely query decomposition, intermediate
result sharing, and pipelining and data-flow based approaches
to query execution. In section 4, we apply this strategy in the
evaluation of a simple recursive rule that defines the transi-
tive closure of a database relation. We identify operations
that are candidates for parallel evaluation as well as opera-
tions that can benefit [rom result sharing. We then study the
eflcct of pipelined execution on this evaluation strategy. In
section 5, we study the effect of pipelining on this evaluation
strategy, using the execution time for evaluating the set of
resolvents and the response time of each individual resolvent
as performance measures. In section 6, we discuss relevant
extensions to this work that involve general recursive clauses.

2. Methods for Evaluating Recursive Queries

It is assumed that the reader is familiar with the rela-
tionship between logic programming and relational databases
[BROS84, GALS3, JAR84, REI78a, REI78b] and the resolution
principle in theorem proving [ROB65). A first-order database
is a [unction-free first-order theory in which the extensional
database (EDB), corresponding to the data in relations, is a
set of ground (having no variables) positive unit clauses. If
we consider a Horn database, then the intensional database
(IDB) is a set of Horn definite clauses with exactly one posi-
tive literal. Each clause of the IDB represents a definition of
some of the tuples named in its positive literal, which could
also be an EDB predicate. For example,

P(x,z) - Q(x,y), R(y,2)
says that the appropriate join (over y) of Q and R is con-
tained in P. The set of tuples in P is the union of all tuples
provided by each intensional clause defining P as well as all
EDB tuples if P is an EDB predicate as well.

Straightforward methods for query evaluation are
insufficient in the presence of recursive definitions. Recent
research has focused on this problem [CHAS81, HANSS,
MIN81, NAQ84 and ULL85]. In [ULLS8S5], methods for imple-
menting queries that are expressed using first order logic as a
collection of Horn clauses are reported. A rule/goal tree is
built using the rules (Horn clauses) and goals (terms). A
rule/goal tree is equivalent to an expression in relational alge-
bra and, for a finite tree, a bottom up evaluation will build a
relation at each node until the root is evaluated. Recursive
rules result in potentially infinite rule/goal trees. The paper
presents a limit of trees process to evaluate infinite trees.

Kyoto, August, 1986
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Significant contributions of [ULL8S5| include the use of
capture rules which specify under what circumstances a node
(of a rule/goal graph constructed using the logical rules) can
be evaluated and provide an eflicient implementation strategy
for evaluating these trees. Two methods to terminate rules
that involve recursion are given; one takes advantage of the
finiteness of the domains and this is the method we adopt.

In (NAQ84], the problem of deriving a set of database
retrieval requests, which gives the correct answers to a query
involving a recursive statement and is guaranteed to ter-
minate, is addressed. In this work, the clauses of the IDB are
represented as a connection graph (CG) [SIC76]. A recursive
intension occurs in a CG as a special form of cycle called a
potential recursive loop (PRL). Only PRLs lead to database
retrievals containing recursive statements and algorithms for
detecting PRLs are well known [SIC76].

Consider an example database relation such as
LEdge(start_node, end_node) which has a tuple for each direct
edge between two nodes in a graph. Then, the transitive clo-
sure of the relation Edge would be a relation, Reach, which
has a tuple for any two nodes in the graph that has a path
between them. The following Horn definite clauses will define
the transitive closure, Reach, of the Edge relation:

Reach(x1,y1) - Edge(x!,y1) (1)
Reach(x1,z1) - Reach(xl,yl), Edge(y1,21) (2)

Using the CG and resolving around the PRL, a query
such as Reach(?,c), where ¢ is a constant, i.e, a query that
retrieves all nodes that have a path to node ¢, will generate
the following resolvents:

Edge(?,¢c) (3)
Edge(?,y1), Edge(y1,c) (4)
Edge(?,y2), Edge(y2,y1), Edge(yl,c) (5) etc.,

A general algorithm for retrieving answers from the
database, based on these resolvents is presented in {NAQS84].
The algorithm consists of an outer loop (corresponding to
each resolvent) and two inner loops. Initially, using selection
on the database relation Edge, values for y1 will be pushed on
a queue. Then, for each resolvent, all answers will be
extracted in the first inner loop (using appropriate join, selec-
tion and projection operations) and the corresponding set of
values for the next resolvent, eg., the values for y2, will be
queued in the second inner loop.

The time for serially evaluating several resolvents, on a
single processor system, will be very long. What we have stu-
dicd is a strategy for the parallel evaluation of these resol-
vents which are generated by the recursive intensions, on a
multi-processor system. Parallel evaluation of the resolvents
will eliminate the outer loop. In addition, identifying common
subexpressions in these resolvents will allow intermediate
result sharing among these parallel operations, thus simplify-
ing the operations in the inner loops and allowing the two
inner loops to be executed simultaneously. Further, the
evaluation strategy gains additional parallelism by using a
pipelining approach for executing database operations.

In [HANSG], the performance of several algorithms for
processing a recursive query are compared. The process of
applying a recursive rule and generating longer resolvents is
compared to a wavelront i.e., the saved result of an operation
is used to derive a new result. The algorithm DW (or double
wavefront) is similar to our strategy (descibed in section 4) in
the manner it shares results among resolvents. However, they
do not treat the resolvents as a set of concurrent queries nor

do they consider horizontal and vertical concurrency and
pipelining techniques to increase the degree of parallelism and
to improve the efliciency of execution.

3. The Impact of Query Processing Techniques

In the previous section, a query of the form Reach(?,c}
generated a sequence of resolvents that had to be evaluated to
provide answers to the query. Each of these resolvents can be
considered a query against the database and the set of resol-
vents can be treated as a set of concurrent queries; query pro-
cessing and optimization techniques can then be used to
optimize the execution of these concurrent queries.

Query decomposition is a process of translating a query
into a hierarchy of primitive operations; the result is a query
tree in which the nodes represent the primitive operations
[AST76, ROT80, STO76, WON76]. The advantage of query
decomposition is that it identifies primitive operations on
different branches of a query tree that can be executed in
parallel (i.e., ”horizontal” concurrency), thus increasing the
degree of parallelism. It also increases the probability of
finding an overlap among several query trees which facilitates
intermediate result sharing.

The sharing of intermediate results among concurrent
queries and the resulting elimination of redundant execution
of operations have been proposed in [FIN82 and JAR84]. In
[BOR84, CHOS85], it has been shown that as the degree of
sharing among concurrent queries increases, the query
throughput also increases. Most of this research studies the
eflect of eliminating low-level read operations by sharing
buffer space. More recent work [MIK85, SUS86|, shows the
advantage of sharing the output of high-level operations such
as select, join, etc.

Both query decomposition and intermediate result shar-
ing have an impact on the evaluation of the concurrent resol-
vents. Each resolvent is equivalent to a relational algebra
expression [ULLS8S5}; thus, the set of concurrent queries or
resolvents can be decomposed into a hierarchy of primitive
algebraic operations some of which can be evaluated in paral-
lel. The feature of a recursive intension is that each time the
recursive clause is applied it generates a longer resolvent
which is an extension of a previous resolvent [NAQ85]). Thus,
there is a potential for identifying common sub-expressions
and sharing intermediate results of high-level algebraic opera-
tions among the concurrent queries. For example, on examin-
ing the resolvents in expressions (3), (4) and (5), we see that
(3) is a sub-expression of (4), (4) is a sub-expression of (5), ete.

The third technique is the pipelining and data-flow
based processing approach proposed for several database
machines {BIC81, BORS0, F1S84, HON84, KIM84]. Using this
technique, each processor assigned to a node in a query tree
transmits a block of information as soon as it is produced.
This is in contrast to traditional distributed systems that
delay output until the operation assigned to the node is com-
pletely executed. The main advantage of this data-flow based
approach is the possibility of ”vertical” concurrency, where an
operation at one level that requires input from an operation
at a previous level can get its input data at an earlier instant,
before the operation at the previous level is completed. Pipe-
lining has a significant impact on the efliciency of concurrent
queries that share intermediate results (such as the resolvents
of a recursive intension), since the processors can get their
shared data earlier, and start execution sooner.
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4. Efficient Implementation of Recursive Queries

In this section, we describe a strategy which applies the
query processing techniques of section 3 to process a set of
concurrent queries (resolvents).

We first decompose each resolvent (query) into a hierar-
chy of primitive (algebraic) operations that can benefit from
pipelining. We identify possible parallelism in executing these
primitive operations as well as opportunities for intermediate
result sharing among the resolvents (queries). Next, we study
the effect of pipelining on this evaluation strategy. Finally,
we determine a termination condition to halt the evaluation
of these concurrent queries.

Although it is advantageous to maximize both the
number of primitive operations being executed in parallel as
well as intermediate result sharing among queries, the degree
of parallelism is limited by the availability of processors and
the amount of result sharing is limited by the bandwidth and
the structure of the interconnection network. As the resol-
vents become longer (by the repeated application of the recur-
sive rules), there is increasing opportunity for parallelism and
there are several ways to decompose each resolvent into prim-
itive operations. Ilowever, to maximize the opportunity for
result sharing, it is desirable to decompose each resolvent so
that it can share the greatest common sub-expression from a
previously evaluated resolvent. In addition, to improve execu-
tion elliciency, the decomposition must first process operations
on restricted relations, e.g., execute selection before join. To
avoid irregularity in the interconnection network and to sim-
plify the network structure, it is desirable to limit the sharing
of results only between adjacent resolvents.

We use the example of the transitive closure, T, of a
database relation A with two attributes of interest. T is
defined as follows:

T(x,y). ~ A{xy)
T(x,z) = T(xy), Aly,z)

For convenience, we represent the database relation as
A-T where each ”f” indicates an attribute that. is free
(unbound). We use ”b” to indicate a variable bound to a con-
stant value (i.e., a selection based on an attribute value).
Thus, A-bf is the result of selecting tuples from the database
relation A, based on the value of the first attribute.

Consider an example query which is a verification of the
form T(ac), where a and ¢ are constants. This would
correspond to finding all paths between two given points of a
graph. Then, to answer this query, a series of database queries
(resolvents) Ti-bb, as seen in Figure 4.1, will be generated,
where ”i” identifies the depth of the resolvent and ”b”
indicates each variable (or attribute of a relation) that is
bound to a constant. TI1-bb corresponds to the expression
Afa,c) and the corresponding query will be {A-bb), which is a
direct selection of tuples from the relation A. The second
resolvent, T2-bb, corresponds to the expression A(a, y1),
A(y1, ¢) where y1 is unbound and will be represented by

(A-bf JN A-fb)

which is identified as a primitive operation in our evaluation.
This primitive operation comprises initial selections, A-bf and
A-fb, from the relation A (corresponding to binding a variable
in a predicate to a constant), a subsequent join (JN) operation
over the appropriate attribute, here yl, (corresponding to
variable binding between clauses) followed by a projection
operation to produce answers corresponding to T2-bb of the
form T(a,c). The primitive operation we have just described

is typical of the operations resulting from the decomposition
of resolvents. If the variables are not bound, then the initial
selection will be omitted.

Resolvent T3-bb will be hierarchically decomposed into

( (A-bf JN A-f) JN A-fb)
where (A-bl JN A-f) will be evaluated first. Resolvent T4-bb
will also be hierarchically decomposed into

( (A-bf JN A-l) JN (A-T JN A-fb) )

Figure 4.2 shows the hierarchical decomposition of the
resolvents into primitive operations. Several of these opera-
tions can be executed in parallel. The legend [m]-) in the
figure represents those primitive operations at level m that
can be executed in parallel. The level, m, of the operation is
different from the depth, i, of the resolvents and the value of
m is determined by the input requirements. For example,
operations at level 1, represented by {1]-j, are at the lowest
level in the tree and do not require input from any other
operation. However, operations at level 2, [2}-j, are those that
require input from a previous level, in this case, from opera-
tions at level 1, etc. The value of j serves to distinguish
between parallel operations at the same level.

Those expressions that are common sub-expressions are
labelled in the figure by "common.” For example, resolvents
T3-bb and T4-bb have (A-bf JN A-ff) in common. To maxim-
ize result sharing, each resolvent is decomposed so that it can
share the maximum common sub-expression from its immedi-
ate predecessor, i.e., the first resolvent is decomposed into its
primitives and then the next resolvent is decomposed so as to
share as many sub-expressions as possible from the previous
resolvent, etc. For example, the resolvent T6-bb is decom-
posed into

[1]-3 [2)-3 13]-2 12)-4 [1]-4
( ( (A-bI JN A-fT} JN A-f) JN (A-fT JN (A-fT JN A-[b) ))
rather than an alternative decomposition of

W3 ke 5 Blq (144
{ ( (A-bf JN A-l) N (A-T JN A-ff) ) IN (A-ff JN A-[b) )

The first decomposition is based on using the largest
sub-expressions, namely, the output of operations {2}-3 and
[2]-4. The second decomposition does not maximize result
sharing. It is also less efficient as it includes an operation
[1]-5 which computes the join of two unrestricted relations.

Figure 4.3 illustrates the advantages of maximizing
result sharing and maintaining a regular interconnection
structure; i.e. it results in an evaluation strategy that is regu-
lar with respect to primitive operations and interconnections.

This regularity is advantageous if special-purpose hardware is
to be built to execute recursive queries. In this figure, the
boxes at each level represents the primitive operations that
can be executed in parallel at that level. The level, m, does
not necessarily correspond to the depth, i, of the resolvent Ti
being evaluated at that level. For example, at level 2, opera-
tion [2]-1 and [2]-2 produce output for resolvents T3-bb and
T4-bb, respectively. All the operations do not produce
answers to the query; some operations evaluate sub-
expressions. For example, operations [2}-3 and [2]-4 evaluate
the sub-expressions T3-bf and T3-fb, respectively.

Next, we examine the termination condition, based on
the finiteness of domains. If the relation A is finite, then the
transitive closure T is also finite. Relerring to figure 4.3, if at
any level, m, the operation [m]-3 did not produce any output,
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ie, T, ,.1-bl was empty, then the processing can be ter-
minated at that level m, since answers cannot be produced at
subsequent levels (m-+1). This also holds for the operation
[m]-4 which evaluates Ty, —fb. However, in the case of cyclic
databases (databases that have cyclic relations, eg., {(a,b),
(b,a)} ), determining the termination condition is more com-
plex. Iere, the operations [m}-3 and |m]-4 could produce out-
put without necessarily producing new answers at subsequent
levels. The system must check the output of the operations
[m]-3 and |m]-4 and determine that there are tuples produced
in Tp,.-bl and T ,,—fb which will indeed produce answers,
ie., Tpy1-bl must be compared with the set {A-bf, T2-bf, ...
Tm-bf} to ensure that T, ,-bl is not a sub-set of this set. If
Tms1=bl is indeed a subset of this set, then no new answers
will be produced at subsequent levels. Exccution should ter-
minate at that level. The same holds for T, ;~fb.

5. Performance Evaluation

In this section, we evaluate the performance of the tran-
sitive closure algorithm. In our evaluation, we compare the
performance of this algorithm with and without pipelining.

We compare the "distributed” approach which uses only
horizontal concurrency, with the data-flow and pipelining
based approach which uses both horizontal and vertical con-
currency [MIK85, SU86a]. In both cases, we assume that
parallel execution of primitive operations by multiple proces-
sors and intermediate result sharing are exploited. With the
pipelined approach, a block of data is transmitted as soon.as
it is produced. A block is the operand granularity for input
and output (of results). Processing at level (m+1) commences
as soon as operations at this level have a block of data at
their input nodes. This results in vertical concurrency across
several levels. With respect to recursive intensions, this
implies that several resolvents Ti-bb, will be evaluated in
parallel.

The two performance measures used in this study are
the response time (or the time to produce the first block of
data) and the execution time (or the time to complete process-
ing an operation). We measure the response time of each
resolvent or query, Ti-bb, and the execution time for the set
of concurrent queries, for some depth, i, of these resolvents.
We expect that the pipelined approach will have better
response time and execution time since each level will com-
mence execution at a much earlier instant, as compared to the
distributed approach.

For our evaluation, we use the simple hash join to model
a primitive operation. The analysis of main memory resident
database systems, in [DEWB84), suggests that hash based
query processing strategies are advantageous. The same
result is reported in [MIK85, SU86a| for the data flow and
pipelined approach. We assume that the hash tables fit into
main memory.

Let the two relations to be joined be R1 and R2, and let
their sizes (number of tuples) be k1*B and k2*B, respectively,
where B is the block size expressed as the number of tuples in
a block. Assume k1>k2. Let Tbr be the time to input a
block, Th the time for hashing the value of an attribute over
which the join is to be performed, Tw the time to write a
tuple in memory, and Tc the time to compare a hashed value
with values in the stored hash table. Let j be the join selec-
tivity defined as
j = (number of join tuples output) / k1*k2*B*B

Using values in [DEWS84), we set values of 9, 20 and 3
microseconds for Th, Tw and Tc, respectively. The time for a
sequential 1/O operation was set at 10 milliseconds per page,
for a page size of 40 tuples. In our analysis, the block size, B,
is a parameter; thus, we vary the value of Tbr from 5 mil-
liseconds (B == 20) to 25 milliseconds (B = 100). For blocks
of shared results, the input time will be the transfer time
across the network. We assume the same values for the
transfer time as for the sequential I/O operation. We assume
a selectivity factor, s, for both A-bf and A-fb of 10 percent.
We do not vary s, as it only occurs at the first level and its
effect is negligible.

For the distributed approach, the smaller relation, R2,
will be read first, hashed and the hash table is stored in
memory. The larger relation, R1, will then be read, hashed
and compared with the stored hash table. Note that a 20
percent overhead accommodates the extra comparisons
required when comparing values using a hash table [DEW84].
If there is a match, then the two matching tuples will be out-
put. The selection only occurs at level 1 and will be con-
sidered as part of the input time. Any final projections will
be included in the time to move the join output tuples to the
buffer. The time spent to transmit the final result is also the
input time of the next level operation(s) that use this result.
However, we do not assume overlap in the I/O and processing
times of an operation. The execution time of the primitive
operation in the distributed case is the same as the response
time, since output is not transmitted until processing is com-
plete. It is the {ollowing:

time to read, hash and store tuples of R2 +
{ = Thbr*k2 + Th*k2*B + Tw*k2*B }
time to read, hash and compare tuples of R1 +
{ = Tbr*kl + Th*k1*B +Tc*k1*B*1.2 }
time to output tuples of join result
{ = Tw*2**B*B*k1*k2 }

In the pipelined approach, the first block of R2 will be
read, hashed and stored in memory. The first block of R1
will be read, hashed, compared with the current contents of
the hash table and the join output, i.e., the pairs of matching
tuples from both relations will be written into an output
bufler. R1 will also be stored in the hash table for further
comparison with subsequent blocks of R2. The subsequent
blocks of R1 and R2 will be treated in a similar {ashion. As
soon as the number of tuples in the output buffer exceeds B, a
block of output will be transmitted. After the last (k2-th)
block of R2 is processed, the remaining blocks of R1 need not
be stored in the hash table.

For each block i, where i = 1,..k1, Tin-Rl; and

Tin-R2; is the time to read, hash and store (optional) blocks,

respectively. Tcomp; is the time spent in comparing hashed
values with the hash table and Tout; is the time spent in out-
put of the join result. For i = 1 the following hold:
Tin—-R1, =Tbr + Th*B + Tw*B;
Tin—-R2; =Tbr + Th*B + Tw*B;
Tcompy; = Tc*B*1.2; Tout; = Tw*2*j*B*B
For subsequent blocks i = 2,3,..,k2, the following hold:
Tin-R}; = Tin-R1;; Tin-R2; = Tin-R2,
Tcomp; = Tc*2*B*1.2; Tout;, = Tw*2*j*(2*i - 1)*B*B
For blocks i = k2+1,..,k1, the following hold:
Tin-R1; = Tbr + Th*B; Tin-R2; =0
Tcomp; = Te*B*1.2; Tout; = Tw*2**k2*B*B
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In [MIK85, SU8Ga], the output rate of the pipelined join
was averaged over the execution time to obtain an average
rate of output. This is not very accurate since as more input
blocks are accumulated, a single block of input will be com-
pared against several blocks and the number of output tuples
produced will increase. We have modeled a varying output
rate for the join operation. The following discussion ela-
borates our model. In any data-flow based algorithm, the rate
of output blocks produced by an operation is determined by
the availability of input, as long as the i-th block of input can
be completely processed before the (i-+1)-th input block is
available, i.e., the output rate is determined by the input rate
(which is the output rate of the previous operation providing
the input). At some point, the input blocks are available at a
faster rate than they can be consumed. This is the critical
point and after this point, the output rate is determined by
the processing rate of the operation, itsell.

Figure 4.3 shows that a sequence of operations, [1]-3,

[2]-3, .. [m-1]-3, etc., controls the availability of input for
[m]-1 and can be considered a critical path for [m]-1. In Figure
5.1, we have a sample graph describing the rate of producing
output blocks as a function of the number of input blocks
consumed, for the critical path operation [2]-3. The relation-
ship between the number of input blocks consumed (bi) and
the number of output blocks produced (bo) is the following:

j*bi*bi*B*B = bo*B if j*k2*k2*B*B > bo*B --- 5.1

*bi*k2*B*B = bo*B  otherwise ‘ -~ 5.2
The time for operation P to consume (process) bi blocks of
input is defined as Tproc(P,bi) and the time to produce bo
blocks of output is defined as Tprod(P,bo). Figure 5.1 shows
plots for two values of N (the number of tuples in the data-
base relation A-fT) equal to 10000 and 200000 and different
block sizes (B = 20 and B = 40). Our results show that the
output rate increases gradually with increasing input being
consumed. Assuming that the processing speeds of the opera-
tions along the pipeline are matched, the critical point for an
operation, at level k, corresponds to the first block of input
(be) at level (k-1) that produces more than one block of out-
put. The critical point is the least value of be satislying the
following:

j*(2*bc.- 1)*B*B > B

The response time and execution time for operations at

level m will be defined recursively with respect to operations
at level m-1 which provide input. For level 1 operations,
these values can be obtained directly using the expressions for
Tcomp;, Tout;, ete.

The response time for any primitive operation P,
Tres(P;), will be a function of r1, the number of input blocks
needed to produce the first output block. By substituting
(bo=1) in either 5.1 or 5.2, the value of rl (=bi} can be
obtained. Tres(P;) is also a [unction of the response time of
the operation(s) providing input, P;_; and P,/ . Operation P;
requires rl blocks of input, each, from P,_; and P,/ , to pro-
duce the first block of output. 1In all our experiments, the rl
blocks of input were produced before the critical point; thus,
the response time is also determined by the output rates of
the operations P;_; and P;_;/ . The following holds:
Tres(P;) = maximum of the response times of P;_;, Pi_;

{ max | Tres(Py,), Tres(Pr{ )] }
+ maximum time for P;_;, P;.y' to produce rl blocks
{ max | Tprod(P;.;,r1), Tprod(P; (' ,r1)]}
Note that this time must be adjusted to account for
the fact that the first block is already available.

f

To determine the execution time of operation Pi,
Texec(P;), we first determine the critical point of operations,
Pi.; and Py’ , which provide input, and the corresponding
output block, pc or pe’, produced at the critical point. Before
the critical point the output rate will be controlled by P;_; (or
Pi' ), and after the critical point the output rate will be con-
trolled by operation P;. If operation Pi processes (consumes) a
maximum of k1 blocks, then the following holds:

Texec(P;) = maximum of the response times of P; ;, Pi_y/
{ max [ Tres(P;_;), Tres(P,_.{/ )]}
+ max. time for P_;, Pi.{/ to produce pe, pc’ blocks, resp.
{ max [ Tprod(P,_;,pc), Tprod(Piy’ ,pe’ )]}
+ time for P; to process a max. of (k1-pc) or (k1-pc’) blocks
{ Tproc(Pi,kl) - Tproc(P;,pemin) }; pemin is min [pc, pe))
This expression models the worst case situation for
evaluating Texec(P;).

The expression Tproc(P,,p) for any operation P;, is given
by the [ollowmg

E [ Tin-R1; + Tin-R2; + Tcomp; + Tout; |
i=1

The expression Tprod(P;,p), for any operation P; at level 1 is
given by

i=p’
3. [ Tin-Rl; + Tin-R2; + Tcomp; + Tout; |
i=1

where p’ is the number of input blocks consumed to produce
p blocks of output. For subsequent levels,
Tprod(P;,p) = max [ Tprod(P;_1,p' ), Tprod(P;;' ,p’ )]

We study the performance of this algorithm with and
without pipelining, with respect to three parameters. The
first parameter is the block size, B, which we vary from 20 to
100. The value of Tbr will also vary corrcspondmgly The
second parameter is the join selectivity, j, of the critical path
operations and the operations that produce answers. The join
selectivity is not an absolute value but is defined as a ratio;
thus we vary j in proportion to the sizes of the input relations
for each operation. The third parameter is the number of
tuples, N, of the initial database relation, noted A-fl. We
vary this parameter from 200000 to 800000.

Figure 5.2 shows the response time and the execution
time for both the pipelined and distributed cases as a function
of the depth i of the resolvents, Ti-bb. In this plot, the value
of N is 200000, B is 20 and j is 5*107®. This value of j
(==1/N) ensures that the size of the output produced by the
critical operations is roughly equal at different levels along the
pipeline. The figure shows that for small i, with pipelining,
the response time is much less than the execution time. As i
increases these two curves tend to move closer. The reason is
that for small i there are less operations (and delays) along
the critical path and thus, the response time is small. As i
increases, there are more operations (and delays) along the
critical path which tend to increase the delay in producing the
first block of output for Ti-bb. The figure also indicates that
for small i, the execution time for the distributed and pipe-
lined approaches are very close but these curves tend to
diverge with increasing i. This is because for small i, there
are fewer operations in the pipeline and the advantage of
pipelining on the execution time is limited. As i increases, the
number of operations in the pipeline increase and the perfor-
mance improvement increases correspondingly.
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In Figure 5.3, we show the ellect of the block size, B, (or
operand granularity) on the response time. We plot the ratio
of the response time in the distributed case to the response
time with pipelining, as a function of the block size. We
examine three resolvents, T4-bb, T6-bb and T8-bb. This
ratio, which is proportional to the performance improvement
due to pipelining, is largest for B=20, and gradually decreases
with increasing block size. This is true for all resolvents. The
reason is that the response time is closely related to the block
size. The number of tuples consumed to produce a small
block of output is less, and this rcduces the response time. As
the block size increases, more input tuples have to be con-
sumed to produce the first block and the response time
increases.

Figure 5.4 shows the effect of block size on the execution
time. For resolvents T24-bb and T32-bb, we plot the execu-
tion time of the distributed case and the pipelined case, as a
function of B. The execution time, which is the time to com-
plete processing all blocks, is not as sensitive to pipelining as
the response time. llowever, with increasing values for B, the
execution time reduces slightly. This is because the delays
along the critical path scem to be larger for smaller block size,
e, with smaller block sizes, the input rate controls (and
delays) the pipeline rate along the critical path for a longer
time. This delay has a corresponding effect on the execution
time and the execution time is slightly less with larger block
size. If we assumed a penalty for transmitting smaller blocks,
then the execution time for the distributed case would also
reduce slightly, with larger block size.

Figure 5.5 shows the effect of the join selectivity j, on
the response time, for various resolvents. The ratio of the
response time in the distributed case to the response time
with pipelining is plotted as a [unction of j. This ratio is seen
to increase with increasing. join selectivity for all resolvents.
The reason is that with increasing values of j, less input
blocks have to be consumed to produce the first block of out-
put. As a result, the response time for the pipelined case is
smaller.

Finally, in Figure 5.6, we show the effect of N, the
number of tuples of the database relation, A-ff, on the execu-
tion time for the distributed and pipelined cases. Note that
the value of join selectivity is varied correspondingly; this
ensures that the size of the answers produced for each resol-
vent is proportional to the size of the input relations and the
analysis is unbiased by arbitrary sizes of the output relations.
The execution time for two resolvents T24-bb and T32-bb are
shown. Each of these plots is linear in N, as is expected since
the execution time must be proportional to the size of input
relations being processed. However, the execution time for the
distributed case increases more rapidly with increasing N as
compared to the pipelined case, resulting in enhanced perfor-
mance due to pipelining. The reason is that after the initial
delays in setting up the pipeline, the longer the piepeline
operates under steady state, the greater the benefit of pipelin-
ing. With increasing N, bhe pipeline operates longer under
steady state, hence the improved performance.

6. Conclusions and Future Research

To summarize, we presented a strategy for the con-
current evaluation of the resolvents generated by a recursive
query using query processing and optimization techniques.
Analytical formulae were derived for the response times and
execution times of the concurrent queries and the performance

gain due to pipelining was examined.

To summarize the results of our analysis, the pipelined
approach with both vertical and horizontal concurrency
always performed better than the distributed approach, which
uses only horizontal concurrency; both approaches used inter-
mediate result sharing. The eflects of pipelining on the
response time is much more pronounced as compared to the
execution time; this is as expected since pipelining inherently
produces data at an earlier instant. The eflects of the block
size, B, and the join selectivity, j, on the response time are
similarly explained. The advantages of pipelining are more
marked with longer sequences of operations in the pipeline,
e.g., with increasing depth i, of the resolvents, Ti-bb. The
advantages of pipelining are also greater, the longer the pipe-
line operates under the steady state (after the initial delays),
e.g., with larger database relations.

.The example of transitive closure is a direct recursion.

In [NAQS84] an indirect recursion is described for S, as follows:

S(x1,21) - M(x1,y1), T(y1,21)

T(y1,21) - S(yl,wi)}, P(wl,z1}

T(y1,21) - F(y1,z1) :
where M, F and P are database relations. A query of the
form S(c,?), or S-bf, would generate the set of resolvents,
Si-bf, of Figure 6.1 and, by applying the method described in
Section 4, an evaluation strategy such as shown in Figure 6.2
can be obtained.

In general, any recursive intension can be reduced to the

form: v

S(.,,-) = M(.,.,2), S(ee)s PCeye)
where M and P are relational algebra expressions. We are
currently developing an algorithm, based on the method
described in section 4, to evaluate any general recursive inten-
sion S. Mutually recursive clauses may require further
research.
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Pigure 4.3 Architecture for Evaluating Transitive Closure:

parallel Operations, Interconnections and Data Flow

T1-bb Afasc)
" T2-bb Alay1), A(yl,c)
T3-bb Aa,y2), A(y2,y1), A(y1,¢)
T4-bb A(a,y3), A(y3,y2), A(y2,y1), A(yl,c)

T5-bb Afa,y4), A(y4,y3), A(y3,52), A(y2,y1), A(yl,c)

T6-bb  A(a,y5), A(y5,y4), A(y4,y3), A(y3,y2), A(y2,y1), A(y1,c)

Figure 4.1 Expressions Corresponding to Resolvents Ti-bb

(1]-1
Ti-bb A-bb
(1]-2

T2-bb (A-bf IN A-fb)

-3 (21
T3-bb ( (A-bf JN A-l) IN A-fb)

common  [2]-2 [1}-4
T4-bb ( (A-bF IN A-fT) IN (A-T IN A-b) )
common  [2]-3 [3]-1 common

T5-bb ( { (A-bI JN A-f) JN A-f) ) JN (A-ff JN A-fb) }
common common  [3]-2 [2]-4 common

T6-bb ( { (A-bf IN A-f) JN A-fl) ) JN (A-fT IN (A-T JN A-fb} ) )

N.ot,e: ”common” identilies a.sub-expression that has been evaluated

Figure 4.2 Identifying Parallel Primitive Operations and
Common Sub-expressions in Evaluating Resolvents Ti-bb

500 A - Block size B=40
Number of tuples of A-ff N=10000
Join selectivity 4

3=1¢10"
B - B=20, N=10000
j=1¢1072
400 C - B=20, N=200000

6

j=5%10"

w
<
(=]

200

Number of Output Blocks Produced (T3-bf)

100

100 200 300 400 500 600 700
Number of Input Blocks (T2-bf and A-ff) Consumec

Figure 5.1 Rate of Output Pipeline of Operation -3
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