
THE REMIT SYSTEM FOR PARAPHRASING RELATIONAL QUERY EXPRESSIONS

INTO NATURAL LANGUAGE.

B.G.T. LOWDEN and A.N. DE ROECK

University of Essex - Department of Computer Science
COLCHESTER - ENGLAND

1. ARsTRAm. -
REMIT - Relational Model Interpreter and
Translator - is a formal query language to natural
language interpreter designed to aid query
verification in a relational database environment.
The system has been developed to work in
conjunction with the ICL natural language query
interface, NEL, which translates English query
expressions into the formal query language
QUERYMASTER. Funding for this research project has
been provided by International Computers Limited.

2. INTRODUCTION. -
Of the many problems facing the casual user of a
database enquiry system probably the most
difficult is gaining a competent understanding of
the query language the system expects him to use.
Even if he manages to formulate a syntactically
correct query expression, there is no guarantee
that it will reflect the question he intended to
ask. In a study of Query by Example (Thomas and
Gould 1975), it was found that 27% of the queries
analysed were syntactically correct but they did
not correspond to the questions the users thought
they had asked.

Natural language (NL) processing is seen by some
as a promising solution to these difficulties.
However, NL interfaces, allowing users to ask
questions in their own language, can create
problems of their own. They encourage the user's
often inflated ideas about what is a reasonable
question to ask. Furthermore, NLs are typically
ambiguous and, although transparent to the
querent, they are opaque to the machine. The
interpretation which the interface must place on a
NL query in order to allow for its evaluation may
therefore itself be misleading, especially if it
js established outside the user's control.

We can improve this situation by producing a NL
paraphrase of what the system has taken the query
to mean, allowing a user to check whether its
interpretation of his question coincides with what
he wants to ask and in the case of ambiguous input
to select the alternative that does.

This paper describes such a paraphraser designed
at the University of Essex and implemented in
Prolog. The system has been constructed to deliver
paraphrases for queries formulated in the formal
query language QUERYMASTER (ICL 1983, 1985) which
are used to retrieve data from an ICL example

database called SCOPE. Consequently, unlike most
NL feedback systems, it can also help those with
no access to NL input facilities and who must use
a formal language. Furthermore, the paraphraser
assumes an extended Relational Calculus (RC) as an
underlying representation, so it can quite easily
be made to work for most current query languages.

The system can also paraphrase NL questions
interpreted by the database query sytem NEL
(Natural Enquiry Language), an ongoing ICL
research project formerly known as QPROC (Wallace
and West 1983).NEL consl"sts of a front end which
maps NL text onto expressions in the ICL formal
query language QUERYMASTER.

2. DESIGN APPROACR. --
A paraphraser is a mechanism which maps an
underlying formal representation onto a NL text.
Both representation and text must be suited to
the task on hand. Given that our aim is to provide
casual database querents with a useful paraphrase
of their question, the representation must
capture how the system understands the input. This
understanding must then be translated into clear,
unambiguous and grammatical textual output.

2.1 Selection of the underlying representation. --
% can classify paraphrasers in two groups, based _. . - .
on the kind of underlying representation they
assume. One type will specifically work alongside
a NL front end (McKeown 1979). The user's question
is introduced in a NL and parsed into a structure
which makes linguistic facts explicit about the
input. This representation, which is motivated
linguistically, then serves as the starting point
for the paraphrase. The mapping between formal
representation and text established by this kind
of system is "close" as the synthethiser can
obtain most of the linguistic information needed
from the parse tree of an equivalent NL question.

Nevertheless, not all NL questions users may
formulate are evaluable against a database. Since
systems of this kind map the NL query into a
formalism which does not necessarily reflect the
limitations of the Database Management System, the
result may be a paraphrase of a question the
system cannot ultimately handle. Also,
paraphrasers working from linguistically motivated
representations cannot work independently from a
parser that will build the necessary structure.
They do not help the user who has no access to a
NL front end and must therefore use a formal query

Permission to copy without fee all or purl of this material is granted prooided that the copies are not made or distributed for direcf commercial
aduantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is giuen that copyin is by permission of
the Very Large Data Base Endowment. 2’0 copy otherwise, or to republish, requires a (ee a&or special permission from t R e Endowment.
Proceedings of the Twelfthlnternational Kyoto. August, 1986
Conference on Very Large Data Bases

-365-

language.

The other kind of system assumes representations
which capture exactly that information which can
be evaluated against a database, usually a formal
query expression. Used with a NL interface it can
report only on relevant ambiguities in the input,
ie. in so far as they correspond to alternative
evaluable formal queries. However, since these
expressions are linguistically underspecified, the
mapping it must establish is more difficult to
achieve. No useful linguistic facts for building
the paraphrase can be retrieved by reference to a
linguistically motivated parse of an equivalent
question. Although this approach is more
constrained than its alternative, and its results
probably less spectacular, it does allow for the
paraphraser to be used both with, and without, a
NL front end, and as such, is the one adopted for
this project.

2.2 Portability. -
The preceding discussion seems to suggest
QUERYMASTER as the obvious candidate for the
underlying representation. However, the choice of
QUERYMASTER expressions as the paraphraser's
starting point would restrict the system's use to
those Database Management Systems capable of
supporting that query language.

In order to retain all the advantages of a
paraphraser working from representations which
capture exactly the information present in a
formal query and, at the same time, to increase
its portability, the mapping process between
formal query and NL text has been split into two
stages using an intermediary formalism. Two
considerations have guided the choice of that
formalism. Firstly, it must be able to express
exactly what can be captured by any QUERYMASTER
expression. Secondly, it must be possible to
define an exact mapping from other query
languages into expressions of that formalism.

The "se of an applied relational calculus (RC) as
an intermediary representation satisfies these two
considerations. As defined by (Codd 1971, 1972),
the RC is well defined and relationally complete.
Extending it by a range of library functions (Date
1977), gives it at least the retrieval power of
most query languages currently available.
Furthermore, (Ullman 1980) has shown that an exact
mapping exists between an expression in any
relationally complete language and an expression
in the RC (and vice versa), provided that
expression defines a derivable relation.

Therefore, one part of the project involved the
development and implementation of a transducer
which maps QUERYMASTER statements into expressions
of the RC (Shephard 1985). The function of this
program (which is written in Prolog) is
independent of the main body of the paraphraser.
Any further reference to the latter will assume
that it works directly from the RC.

This modular concept means that the process of
adapting the paraphraser to work from other
relational query languages is relatively
straightforward.

2.3 Grammaticality.
ris important that the text produced by the
paraphraser should be wellformed according to the
grammar rules of the human language in which the
query is described (in this case English).
Generally speaking, grammaticality of a text can
best be ensured if the text generation process
refers to a linguistic theoretical framework which
can accomodate such grammar rules. However, many
such frameworks exist and some guidelines for
making a choice between them were drawn up. First
of all, the framework should be implementable.
This means that it should be formally specified to
a level where an equivalent program can be
written. Secondly, the syntax of the RC and the
syntax of English are very dissimilar. As a
consequence, the mapping between RC formulae and
English texts can be called "distant", and should,
as far as possible, be left to the linguistic part
of the implementation. In practical terms, this
means that a linguistic theory which assumes an
underlying representation that is poorly specified
with respect to NL syntax will be preferred.

The choice made was Lexical Functional Grammar
(LFG) (Kaplan & Bresnan 1983). LFG is a generative
linguistic theory allowing for the specification
of NL grammar rules. It has the advantage of being
highly implementable - in fact is was designed
from a computational linguistic point of view. As
extended by (Halvorsen 1983) it defines a mapping
between sentences of English and underlying,
syntactically poorly specified, predicate/argument
structures. For our purposes, it has an additional
advantage in that the mapping it defines is
stratified, using several intermediary
representations at different levels of linguistic
description. This gives an indication of which
linguistic information needs to be specified at a
given stage in the process.

2.4 Non-ambiguity. -
Whereas grammaticality can be ensured by reference
to a grammar, non-ambiguity cannot.The problem
arises from the fact that all human languages are
ambiguous. Grammars try to account for ambiguity
but do not seek to avoid it. In short, if the
definition of a paraphrase only requires it to be
a grammatical text in some human language, then it
follows that it is potentially ambiguous.

Ambiguity is a phenomenon that is difficult to
control. No measure for a degree of ambiguity
exists. One may attempt to parse the output text
and thus try to gain some such measure, but many
different sorts of ambiguity occur and it is not
clear whether any grammar can account for all of
them. Lexical ambiguity in particular is
problematic and, in the extreme case, words may
mean a variety of different things to different
users. This is often dependent upon the users'
backgrounds, and totally beyond the control of any
grammar formalism. The solution adopted by REMIT
was to concentrate on ambiguities which MUST be
avoided at all cost in order to render the formal
query's meaning accurately.

Since the aim of a paraphrase is query
verification, the ambiguities which must be
avoided are those significant with respect to

-366.

query evaluation. These mainly relate to the scope
of logical connectives and quantifiers occurring
in an expression of the unambiguous, formal query
language. For example, consider the following
sequence of logical conjunctions and disjunctions:

a A (br\ Cc v Cd Ae))>

"a and b and c or d and e" is not an adequate, nor
a helpful, rendering of the above bracketed
expression since all indication of scope is lost.
We found that the written form of a human
language, stripped of expressive devices such as
intonation and stress patterns is extremely ill-
suited to express scope relationships of this
kind. If one tries to describe the scope
information by means of punctuation and special
words (eg. either, both, all three of the
following) then the resulting linear text becomes
illegible and unhelpful as a paraphrase. REMIT
solved this problem by abandoning the idea of a
paraphrase as a linear text. It adopted the view
that scope is best represented hierarchically. As
a result, the paraphraser retains some degree of
expli.cit structure in the output text which is
then used to display the result on the screen
using indentation as a means of conveying scope.
The formal sequence above would for REMIT result
in a paraphrase displayed in the following
format:

a
and b
and either c

or d and e

2.5 Readability. -
The requirement that the uaraohrases delivered
must be "readable" has io part-been satisfied by
the solution adopted to avoid scoping ambiguity. A
side effect of structuring the output text has
been that it becomes indeed more readable and thus
more friendly as vital scoping information is
passed on visually to the user.

However, there is more to "readability" than
producing a grammatical text and displaying it in
a particular format. The text must also be
coherent, not just syntactically, but also
conceptually. What we mean by this is explained in
more detail in the next section.

3. A MODEL FOR TEE SCOPE DATABASE. ------
Paraphrasing expressions in a query language comes
down to selecting and organising the appropriate
lexical material for describing, in a human
language, what the query stands for in terms of
the information that must be retrieved. Query
languages and the RC are formal languages, i.e.
their semantics with respect to retrieval is
defined unambiguously on the basis of their
syntax. As a consequence, the syntactic structure
of a formal expression can be viewed as a
shorthand for what it "means" and can be used in
order to guide the paraphrasing process.

Nevertheless, paraphrasing expressions of these
formal languages can be problematic. Their syntax
bears no resemblance to the syntax of a human
language and a parphraser must perform more than a
simple syntactic transduction. Also, these formal

expressions are poor in conceptual information
about the domain or field a particular database
covers. Although one can produce literal
paraphrases relying solely on the information
present in a formal query, the result will be a
stunteled incoherent rephrasing of the formal
expression. In general, human language text is
rich in conceptual information. If a paraphraser
is to deliver texts that are acceptable and
helpful to naive users then it must be able to
produce output that is rich in conceptual terms.

This conceptual information cannot be collected
from the database itself. Databases are
implementations of formal objects that allow for
storing and manipulating large bodies of
knowledge. Although the administrative
organisation of a relational database will often,
to a large extent, be compatible with the
conceptual structure of the field it covers, this
is largely due to the "common sense" of database
engineers and such an organisational
correspondence cannot always be guaranteed.

In addition, formal query languages are totally
devoid of any such conceptual information.
Consider, for instance, the following RC formula:

{ (CUSTOMER.NAME, WAREHOUSE.CODE) : true }

as might be expressed over the example SCOPE
database, reproduced in Fig.1 from (ICL 1983).
This is a perfectly wellformed RC expression. It
has an equivalent in all relational query
languages and the result will be the Cartesian
product of all customer names with all warehouse
codes. Although this is certainly a legal query,
it is hard to see what it might "mean" in
conceptual terms and why anybody might want to
formulate it. Paraphrasing queries of this kind is
extremely difficult, even for people, short of
saying "Give me the Cartesian product of all
values for . ..I'

Still, most questions which users care to ask do
make sense and usually carry conceptual content.
They centre around a focal point or FOCUS which is
not explicitly marked as such in the original
formal expression, but which can be derived from
it given conceptual information about the field
the database covers.

This conceptual information will be contained
within a MODEL of the database in question. Such a
model must be constructed for any database with
which the paraphraser will operate. Note that
models designed for this particular application do
not seek to settle the conceptual structure of the
domain a database draws upon. They merely intend
to provide the linguistic/conceptual information
which is necessary for the delivery of coherent
and elegant paraphrases. The model for SCOPE in
the REMIT system contains three kinds of
information as described in the sections below.

3.1 Information for Focus selection. - --
For a auerv to be conceutuallv coherent in terms
relevant to this project means that all relations
involved in that query must be linked. At a
database level, these links can be pointers, or
value based relationships. In this sense, a
conceptually coherent query relates to a

-367-

1

DlD,“,

r -

FIGURE 1

consistent subset of the database. To give an
example for the SCOPE database: a query involving
the relations ORDERLINE and CUSTOMER is
conceptually coherent only in the case where it
also refers to the relation ORDER, otherwise it is
impossible to establish a link between ORDERLINE
and CUSTOMER. Intuitively this can be seen as
defining a notion of "paraphrasable query" over a
particular database. Note, however, that this
situation is not a consequence of what the formal
language will allow, since there are wellformed
formal expressions which are not conceptually
coherent in the sense described above.

The intuition behind the notion of a paraphrasable
query as expressed over a consistent subset of
database relations linked by relationships, is
that the subset corresponds to a "network" which
the query lifts off the database and which can be
used by the paraphraser to guide the building of a
coherent conceptual structure underlying the
output text. The system thus uses two different
control structures: the parse tree of the RC
expression for rendering the query's content and
the "network" the query defines over the database
for building a coherent conceptual structure
underlying the output.

However, structuring the output text on the basis
of a "network" of relations and relationships
raises a question about selecting an appropriate
starting point. That starting point will be the
FOCUS of the query.

Three assumptions underly the selection of an
appropriate focus:

1. Every paraphrasable query has a focus.
2. A focus is a single relation in the current

database which occurs in the query's
associated "network".

3. Every relation other than the focus, involved
in a particular query, must be linked
directly or indirectly to that focus. This

means that there is a path from the focus to
every other relation mentioned in the query
and such that none of the links (database
relationships) making up that path refers to
a relation which is not specified explicitly
in the query.

To be useful for focus selection, the third
assumption needs constraining. Since the query
defines a network of relations and relationships
over the database, and since database
relationships are not directed, every relation in
that network becomes a candidate for focus
according to the above criteria. The model
therefore makes the distinction between the
directions in which a relationship can be
traversed and associates lexical material (usually
an English predicate) for describing that
relationship with respect to the direction of
traversal. For example, the database relationship
between ORDER and CUSTOMER can be associated with
the English predicate "to place" in the following
way:

ORDER --------------e------w--> CUSTOMER

[to place: [argl: CUSTOMER]
[arg2: ORDER]]

where the specification of the arguments indicates
that the customers place the orders.

Under these circumstances, the network over the
database which is associated with a paraphrasable
query becomes a tree, and the third assumption
means that the focus relation is the root of the
tree (with relations as nodes and relationshi.ps as
arcs) which the query defines over the database.
This now leads us to formulate a paraphrasing
strategy which starts building a description of
the derived relation by first paraphrasing the
focus. Subsequently, it moves along the paths of
the tree, stepping through each of the links that
makes up such a path. The notion of focus, as
described above, thus enables us to specify a
recursive paraphrasing strategy.

Two practical points must be made here. The model
adopted by REMIT stands in an elementary form.
Only one flow of directionality has been imposed,
with two exceptions, as illustrated below.

ORDER ----->- CUSTOMER

I------ ORDERLINE ------I
+

PRODUCT

----- STOCK

As a consequence, a query involving only ORDER and
CUSTOMER will always have the ORDER relation as
focus. Furthermore, given the recursive
paraphrasing strategy, we predict that if two way
directionality is imposed on the database
relationships then, in order to avoid circularity,
the two flows of direction must be kept separate.

3.2 Information for describing database objects. -
%-addition to allowing for the selection of an
appropriate focus and for the description of

-368-

directed database relationships, the model also
provides for the description of other database
objects. Both relations and attributes are
associated with alternative descriptions (usually
English nouns or complex nouns). The paraphraser
will pick one of the alternatives thus specified
depending on what focus has been selected for the
query that is being paraphrased. FOK instance, the
attribute CUSTOMERXUST-NAME will be described as
"name" in a situation where the current focus is
CUSTOMER and as "customer name" when another focus
has been picked.

3.3 Information for describing RC constructs.
The model also contains lineuiseic information for
describing elements of trhe RC syntax. Boolean
operators, for instance, will be associated with
English descriptions relative to the conceptual
type of the attributes they are used to compare.
For example, the operator n<n will be paraphrased
as "cheaper than" when it compares prices,
"alphabetically classified before" for names,
"smaller than" for numbers, "before" for dates,
etc. The conceptual type of the attributes
compared is derived from the NEL "End User View"
which has been inCOKpOKated into the REMIT model.

4. PARAPHNAsERoVERvIwI. -
Given an RC expression, the paraphraser will
perform its task in four steps.First of all, the
RC expression will be parsed into a structure
which makes the syntactic build-up of the formula
explicit. After completion of a basic parse, the
resulting structure is converted into a list and
some of its components are flattened out and
simplified so that they can be handled more easily
by the rest of the program. This is implemented as
a prolog DCG on the Essex Dee-10 based on a
context free grammar that specifies the calculus
syntax and whose rules are applied top down depth
first.

Secondly, the focus of the input query is
determined on the basis of the relations occurring
in that query, according to the stages described
in the previous section. As expected, the model
for the database plays an important role in this
part of the process.

In a third step, the parsed RC expression is
paraphrased relative to the focus discovered in
the previous step.This part of the paraphraser,
to be described in more detail in the next
section, produces the conceptual/linguistic
predicate/argument structure which underlies the
final paraphrasing text.

During the fourth step, the predicate/argument
structure is assembled into an English text which
retains some degree of explicit structure used to
determine the format of what will appear on the
screen. This small degree of structuring allows
for the output to reflect the scope of logical
operators. The original aim was to develop this
component as a full LFG generator. However,
although the predicate/argument structure which is
input to this module of the system is compatible
with LFG (as extended by (Halvorsen 1983)), it was
felt that the work should, in the short term,
concentrate on the third stage described above,

since completion of the latter was judged more
critical for the success of the project as a
whole. FOK these reasons, only a basic linguistic
component has been implemented, which concentrates
largely on agreement and word order. However, the
lack of a fully implemented theoretically sound
linguistic component, seems not to have impaired
the quality of the paraphrases delivered. This
suggests to us that, fOK synthesising human
language text from formal languages, the
implementation of a sophisticated syntactic
component is subsidiary to the development of a
mechanism that settles the conceptual structure
underlying the final text.

5.PARAPERASERSTEATEGY. -
The main body of the paraphraser utilises three
categories of information in order to guide its
actions.First of all, it analyses the syntactic
structure of the incoming formal expression.
Secondly, information is provided regarding the
focus relation of that expression.Thirdly, both
the previous items of information are used to
specify the tree of database relationships and
relations defined by the query.

The syntax of the RC expression is used to
determine the overall format of the PaKaphKaSing
text. First, those parts of the query which
specify a number of options open to the user, eg.
user defined functions, ordering requirements on
the retrieved information, etc., are singled out.
They are paraphrased as separate sentences which
either preceed OK follow the text describing the
main body of the formal query.

Then the main body of the query is described. A
wellformed query must have a left hand side,
specifying the information to be retrieved, and a
right hand side constraining that information. FOK
instance, in:

{ (CUSTOMER.CUST-NAME) :
/ ((CUSTOMER.ADD~RES;Z - 'LONDON')))

LHS

the left hand side specifies that customer names
must be retrieved. The right hand side restricts
that retrieval to the names of those customers who
live In London.

This basic syntactic structure is reflected In the
format of a standard paraphrase which Is the
following:

FOK <DERIVED RELATION) <ACTION VERB> <TARGET LIST)

<DERIVED RELATION> is the paraphrase of the right
hand side of the input query, and <TARGET LIST> of
the left hand side. <ACTION VERB> is some English
predicate selected on the basis of what items are
contained in the left hand side (eg. "show" for
attributes, "Calculate" fOK functions, etc.).

The description of <DERIVED RELATION> relies upon
the tree of database relationships and relations
which the model has assigned to the query as a
control structure to guarantee that the output
text will be conceptually coherent. The
paraphraser uses the syntactic structure of the RC
query to settle the content of the query
description. Overall, it distinguishes between

-369-

different kinds of comparisons that can occur on
the right hand side of the formal expression.
These include:

- ORDINARY comparisons, comparing the value of a
database attribute with a constant.

- LINKING comparisons, comparing by means of “=”
key attributes of relations between which a
relationship exists in the database. These
correspond to “links” along paths in the
conceptual tree as defined by the model.

- COMPLEX comparisons involving attributes of
different relations without being linking
comparisons.

- DISCONTINUOUS comparisons which are groups of
comparisons bundled together under a dif,ferent
logical operator from that of the previous
level.

The paraphraser star,ts by .describing the focus of
the query. This involves not only a paraphrase of
the focus relation itself, but also of ordinary
comparisons involving an attribute of that
relation. In the, next step, all linking
comparisons between the focus and other relations
one step along the paths in the conceptual tree
are paraphrased. When one such link is described,
the relation newly linked to the old focus is
propagated as a subsidiary focus. Thi.5 new focus
is described in turn, including links to other
relations along the path, which will in time also
become subsidiary foci.. When all links along a
path have been described, the old foci are
(recursively) restored. The lexical material used
to describe a particular database object or
relationship will depend upon what is ‘the current
(possibly subsidiary) focus at that stage of the
process. All partial paraphrases are linked
together by means of the appropriate logical
operators. Paraphrasing is: thus done recursively,
relative to the syntactic structure of formal
expression components, the focus of the query and
the conceptual tree delivered by the model.

For the top level focus, all four types of
comparison are described in turn. However, for
subsidiary foci, complex comparisons are omitted.
They typically involve two relations and it is
difficult to decide at which stage they should be
paraphrased. All complex comparisons are therefore
paraphrased relative to the overall, top level
focus.

The elements of the left hand side are described
by retrieving from the model the appropriate
lexical material with which they are associated
relative to the overall focus of the query. The
descriptions of similar objects are conjoined and
grouped with an appropriate verb. Such verb
phrases, if applicable, can also be conjoined.

6. AN EXAMPLE. --
To illustrate the operation of REMIT we give a
comprehensive query example, defined on the SCOPE
database, showing each stage of the transduction
and paraphrasing process. This is one of many such
examples compiled jointly by ICL and Essex to test
the different features of the software.

QUERYMASTER:
List stock.stock-whse, bin-id, stock-value is
qty-on-hand * unit-price sorted by ascending
warehouse.locn where warehouse.locn > ‘London’
and re-order-qty < 100 and product-stock and
product-in-whse starting stock

RELATIONAL CALCULUS:
{ 5 tack-value (s tock.qty-on-hand,

product.unit-price) :=
(‘stock.qty-on-hand * product.unit-price’)
w (stock.stock-whse, stock.bin-id,
stock-value (stock.qty-on-hand,

product.unit-price)) :
(3 wh e warehouse)
(((wh.locn > ‘London’) A

(stock.reorde’r-qty < 100)) A
((stock.whse = wh.code) A

(s tock.product4.d = product.product-id))))
up (wh.locn))

COMPUTED FOCUS:
PRODUCT (Note that PRODUCT’ is not referred to in
the target list)

PARAPHRASE :
For products

which are physically stocked
and whose reorder quantity is less than 100
and which are stored in warehouses

whose location is alphabetically
listed after ‘London’

(1) show
a. the warehouse codes
b. the bin numbers

and
(2) calculate .and display stock value

where stock value.is defined as stocked quantity
on hand * product unit price.

Sequence the result by ascending warehouse
location.

7. CONCLUSION. -
This paper has described a prototype paraphraser
developed as an ICL funded research project at the
University of Essex. It has been fully implemented
in Prolog on the University’s Dee-10. The
paraphrasing process, as described, has been split
into two steps using an extension of the
relational calculus as an intermediary
representation. This design feature enhances the
potential portability of the paraphraser over
relationally complete query languages. The system
has been successfully tested for a wide range of
sample queries and results have both justified the
extensive efforts spent in defining a suitable
model and also underlined the importance of
selecting an appropriate focus to guide the
paraphrasing process. Furthermore, it has been
shown that the provision of a sophisticated NL
grammar formalism is subsidiary to the development
of a mechanism for defining the underlying
coherent and unambiguous conceptual structure of
the output paraphrase. Overall, the system has
demonstrated that it is feasible to deliver
paraphrases of formal query language expressions
which are helpful to the user in verifying whether
his question reflects his intention.

-370-

ACKNOULEDGEHENT.

The authors are indebted to V. West of
International Computers Ltd for many helpful
discussions on this work.

Funding for this research has been provided by
International Computers Limited.

8. REFERENCES. -
CODD, E.F. (1971)

"A Database Sublanguage founded on the
Relational Calculus", in Proceedings of the ACM ---
SIGFIDET workshop on Data Description, Access --
and Control. -____

CODD, E.F. (1972)
"Relational Completeness of Database
Sublanguages in Database Systemsn in Courant
Computer Series, Vol 6, Prentice Hall, Englewood
Cliffs.

DATE, C.J. (1977)
An Introduction to Database Systems, Addison
Zsley,

-

HALVORSEN, P.K. (1983)
"Semantics for Lexical Functional Grammar", in
Linguistic Inquiry, Vol 14, No 4, pp 567-615.

INTERNATIONAL COMPUTERS LTD (1983)

INTERNATIONAL COMPUTERS LTD (1985)
Using Querymaster (QM.250). Publication
R00433/01.

KAPLAN, R. and J. BRESNAN (1982)
"Lexical Functional Grammar. A Formal System for
Grammatical Representation", in J. BRESNAN (ed),
The Mental Representation of Grammatical --
at-MIT Press, Cambridge (Mass.).

McKEOWN, K. (1979)
"Paraphrasing using Given and New Information in
a Question Answering System", in Proceedings of -
the 17th ACL, La Jolla.

SHEPHARD. I. (1985)
Implementation.of a Transduction Algorithm to --
Convert Querymaster Language Statements in=
Relational Calculus, MSc Dissertation,
University of Essex.

THOMAS, J.C. and J.D. GOULD (1975)
"A psychological Study of Query by Example", in
Proceedings NCC 44. --

ULLMAN, J.D. (1980)
Principles of Database Systems, Computer Science
Press. -

WALLACE, M. and V. WEST (1983)
"A Natural Language Database Enquiry System
Implemented in Prolog", in ICL Technical
Journal, November 1983.

-371-

