
Page 1 of 8.

Framework for the Security Component of an Ada* DBMS
(Extended Abstract)

David Spooner Arthur M. Keller Gio Wiederhold
Rensselaer Polytechnic Inst. University of Texas Stanford University

Troy, NY Austin, TX Stanford, CA

John Salasin Deborah Heystek
Institute for Defense Analyses

Alexandria, VA

ABSTRACT. This paper discusses a framework for the
design of a security component for a secure Ada data-
base management system (DBMS). It is part of a de-
velopment effort to produce prototype technologies for
the World Wide Military Command and Control Sys-
tem (WWMCCS) Information System (WIS). In this
paper we present a series of criteria for evaluating data-
base security approaches. We develop the high-level
framework for the’security component of a DBMS and
illustrate how it can support several alternative security
models, which we compare using these criteria. The se-
curity enforced by the DBMS relies an appropriate se-
curity mechanisms enforced by the operating systems
for operating system objects, such as files, used by the
DBMS. We also present the security barrier or filter
as an alternative or adjunct to the notion of a trusted
computer base.

1 Introduction

Under sponsorship of the Department of Defense is a
project to develop prototype foundation technologies for

* Ada is a registered trademark of the US Government, Ada
Joint Program Office.

The work reported in this document was conducted a.~ part
of Institute for Defense Analyses Project T-4-206 under Contract
MDA-903-84-C-0031 for the Department of Defense. The publi-
cation of this paper doea not indicate endomement by the Depart-
ment of Defense or IDA, nor should the contents be construed aa
reflecting the official poritionr of these organisationr.

the World Wide Military Command and Control Sys-
tem (WWMCCS) Information System (WIS) using the
programming language Ada. The purpose for develop
ing these prototypes is to produce software components
that demonstrate the functionality required’by WIS; use
the programming language Ada to provide high-levels
of portability, reliability, and maintainability as well as
efficient operation; and to be consistent with current
and expected software standards [WIS84].

One of the foundation areas of interest to this proj-
ect is database management, and an important require-
ment of the resulting DBMS is that it be secure. Secu-
rity of the DBMS is influenced by such issues as oper-
ating system security (reuse of objects, garbage collec-
tion), hardware controls (privileged user modes), oper-
ational policy (password protection) and security policy
(which users have access to which objects).

Of particular interest is the need for support of
mandatory and discretionary access controls. Access
control determines both access to information and flow
of information. Mandatory controls partition objects
into classification levels with a strict ordering from least
secure to most secure. Users are assigned to clearance
levels. Retrieval of an object by a user requires him to
belong to a class at least as secure as the object he is re-
trieving. Within a classification level, non-hierarchical
categories may be defined. For example, a classifica-
tion level may contain the categories: Army, Navy, Air
Force, Marines, NATO. Discretionary controls are used
within a level to provide a finer granularity of control.
Discretionary controls can be used to restrict a user’s
access to only part of an object (e.g., relation or at-,
tribute) based on the value of the information contained
in the object. For example, a user might be restricted
to access only those tuples of a relation with a specific
value in a certain attribute of the relation. Thus, dis-
cretionary controls are used to implement access on a
“need to know” basis.

This paper assumes that mandatory access con-
trol will be provided by the operating system (another

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copyi is by permission of
the Very Large Data Base Endowment. To co
Proceedings of the Twelfth International Con erence on Very Large Data Bases 9

x otherwise, or to republish, requires a fee an&or special permission from t e Endowment.
Kyoto, August, 1986

-347-

foundation technology in the project) [Che88]. This
leaves only discretionary controls to be implemented in
the DBMS (although an extension of the framework
reported here could be used to implement mandatory
controls as well on top of a secure operating system).
We assume that the computing environment contains a
trusted computer base (TCB). This TCB includes the
parts of the operating system which implement manda-
tory controls and other security related functions, and
also includes the parts of the DBMS directly responsible
for discretionary controls.

The design of a security system depends on the
choice of a security approach. We explain a series of
criteria for evaluating security approaches. By explic-
itly considering these criteria and their ramifications,
we can better understand the consequences of using a
particular security approach.

We discuss the design of a security component for
an Ada DBMS. We show how this design can be used
to implement several alternative security approaches.

Before proceeding, it is necessary to identify sev-
eral assumptions. We assume that the DBMS is imple-
mented on top of a secure operating system providing
mandatory access control. We assume that the DBMS
is correct, for the most part. By this we mean that
we expect that it will correctly respond to queries most
of the time. We do not assume, however, that it has
been validated (except for the parts implementing dis-
cretionary controls), that is, it has not been verified
that it operates correctly nor that the design or imple-
mentation does not allow for security breaches. We do
not attempt to provide inference controls for the DBMS
because we see no adequate solution available to han-
dle this type of problem [Den82]. This is an area that
requires further research.

The DBMS is too large to be verified and hence
cannot be part of the TCB. Instead we propose the use
of a security barrier and filter to limit access without
requiring that all components within the barrier have
to be trusted.

2 Evaluating Security Approaches

IA this section, we present several evaluative criteria
for security approaches. These criteria are open ver-
sus closed system architecture, granularity of protected
objects, monotonicity, specification of security controls,
actions when there are multiple predicates that apply
to a request, response to security violations, and the
location of security checking.

A fundamental consideration of a security approach
is whether it is open or closed. An open system allows
access unless it is explicitly prohibited, while a closed

Page 2 of 8.

system denies access unless it is explicited permitted.
For a military system where security is a primary con-
cern, a closed system model seems more appropriate.

Granularity of protected objects describes the unit
of object being protected. Mandatory controls provide
security on data objects at the file level. Discretionary
controls must provide security at smaller levels of gran-
ularity. For a relational database, this implies that dis-
cretionary controls should be defined for relations, tu-
ples, and attributes of relations.

Monotonicity of the discretionary controls concerns
combinations of objects. If a user has access to A and B
individually, should he have access to A and B together?
While it is not always desirable to allow this, it is diffi-
cult to prevent since A and B can be combined outside
the system. Thus, we have made no attempt in the de-
sign of the Ada DBMS to prevent aggregating of data
when access is allowed to the individual components of
the aggregation. However, a stored aggregation of data
may be given its own security classification independent
of the classification of the data aggregated.

Specification of security controls means how we de-
scribe what is and what is not permitted. Discretionary
controls are specified with a predicate describing au-
thorisations. These predicates can take several forms.
They may represent authorised queries so that every
query issued by a user is a combination of one or more
of the predicates. They may take the form of restric-
tions on particular database objects such as relations
and attributes. In this case, each predicate specifies
which tuples and which attributes of a relation a user
is allowed to access. The predicates may take the form
of a view over the database authoriring access to some
arbitrary subset of the database. The choice of which
form to use depends on the method of implementation
for the discretionary controls. For the Ada DBMS, we
have chosen to use predicates that specify operations
that may be applied to subsets of relation tuples and
attributes. Note that the number of predicates required
to specify discretionary controls varies for the different
forms of predicates.

When there are multiple predicates that apply to
a query, the question of whether the operation is per-
mitted needs to be decided. Firstly, we consider that
multiple predicates may be needed when no single pred-
icate applies to all the data affected by an operation.
We may therefore consider separately each component
of data and the relevant predicates. If all the individual
operations on the components of data are permitted,
then under a monotonic security approach, the entire
operation is permitted. If there are multiple predicates
that apply to a particular operation on a component of

-348-

data (relation, tuple, attribute triple), it is reasonable
(but not necessary) to allow the operation if permit-
ted by at least one predicate for a closed system or if
permitted by all relevant predicates for an open system.

Response to a security violation is an important
part of a security approach. When a security violation
occurs, the offending query may be rejected with a se-
curity violation error message, or the remainder of the
operation may be performed omitting actions on data
that would violate security. Neither approach works in
all cases. Both approaches can allow the user to make
inferences about the nature of protected data. In the
first case, by adjusting the scope of the operation, a
user can determine the existence of protected data. In
the latter case, the user is not explicitly made aware
of the security violation. However, by judicious use of
counting, a user may be able to infer some details of
protected data. We choose the latter alternative as it
better fits our security framework, which uses a filter-
ing technique. A naive user may inadvertantly include
secure data in the scope of a query, and the user proba-
bly wants such data excluded were it possible to specify
that explicitly. (In that case, a security error message
might make the user newly aware of the existence of
secure data.) Additional options include notification of
a security officer upon security violation, logging of the
offending user, and invalidating the user’s account to
preclude future violations.

Location of security checking within the system is
an important architecture question that affects what
types of security controls can be implemented. Secu-
rity checking can be done on queries as entered, during
the parsing and decomposition of a query, by filtering
the data retrieved by a query, or by any combination of
these methods. Because of the importance of security in
military systems, we feel that security checking should
be done both during the process of parsing and decom-
posing a query and by filtering the data returned by the
query. The first security check produces the added ad-
vantage of reducing the amount of data retrieved by the
query to a small superset of the data which will make
it through the filter. This improves the overall perfor-
mance of the system. Data filtering has the advantage
of being simple enough to be made part of the TCB.

3 Mandatory Controls

Mandatory access control is also known as level B multi-
level access control as defined in the guidelines of NSA’s
Computer Security Center [DOD83]. Mandatory access
controls provide a method for restricting access to ob-
jects based on the sensitivity of the information con-
tained in the object. They also provide a means for

Page 3 of 8.

the formal authorisation of users to access information.
The degree of access control depends on the granularity
of objects and users. For example, objects may be de-
fined to be such things as records, blocks, pages, files,
words or fields. The term, users, may include processes
and transactions in addition to people.

Each entity in the system (e.g., objects and users)
has a classification level assigned to it. Users can access
objects at a level no higher than their own. In addition,
they can write objects at a level no lower than their
own, thus preventing the flow of information from a
higher security level to a lower level. This introduces the
conflict between preventing unauthorised disclosure of
secure information versus inhibiting official orders sent
from a secure source to a less secure recipient.

The mandatory access controls will be provided by
the operating system being developed concurrently with
the DBMS [Che85]. Since all processes, including the
DBMS processes, run under control of the operating
system, mandatory controls will be enforced automat-
ically with no circumvention possible. In particular, a
user query to the DBMS will be executed by the DBMS
on behalf of the user at the security level of the user
process. This is guaranteed by the operating system
which would prevent the required interprocess commu-
nications between the DBMS and the user process if
they were not operating at the same security level. An
authentication server in the TCB is used to verify the
identity of each user including clearance level. Thus,
it is unnecessary to consider mandatory controls within
the DBMS.

A result of the fact that interaction between pro-
cesses at different security levels is prohibited, is that
it will be necessary to have multiple instances of the
DBMS, one for each security level. This is required by
the requirement of a strict flrewall between mandatory
security levels that cannot make assumptions based on
the applications including the database running on the
operating system. A user process interacts with the
instance of the DBMS at its security level. Logs and
other data collected by the DBMS as it operates must
be maintained separately for each instance of the DBMS
at the different security levels.

We also make the restriction that relations contain
data from only one security level. While this is not
an absolute requirement, it significantly simplifies the
DBMS. Relations which require violating this restric-
tion must be broken into two or more separate rela-
tions, one for each level. This partitioning of a relation
is similar to the notion of relation fragments used in
distributed systems [Rot80). Algorithms are available
to reconstruct a relation from its fragments [Day78).

- 349-

4 Discretionary Controls

Discretionary controls are needed within a mandatory
security level to specify that a user may access only a
subset of the objects at that security level. For pur-
poses of the DBMS, this amounts to enforcing content-
dependent access control on the DBMS relations. This
is done by defining predicates which describe the sub
sets of objects accessible to the user. These predicates
are evaluated when a user enters a query to verify that
the query responds only with data authorised for access
by that user ([Sto75], [Gri76], [Spo84]). Access to rela-
tions that do not require content-dependent access con-
trols should suffer minimal performance penalty from
the discretionary control mechanism.

Discretionary access controls can be defined over
entire relations as well as over specific attributes of a
relation. The predicates can be expressed in SQL, if
the DBMS supports an SQL interface, or as a relational
algebra program or Ada program with embedded calls
to the DBMS. The choice depends on which interfaces
are supported by the DBMS and the level at which the
security component interfaces to the rest of the DBMS.

Discretionary controls can be defined for individual
users as well as for cliques (groups) of users. If cliques
are used, then it is possible for a user to be a member
of more than one clique simultaneously. This makes en-
forcement of discretionary controls more difficult since
a user may have conflicting privileges in the cliques in
which he is a member. Therefore, we require that a
user identify a particular clique when he logs into the
DBMS, and he then has the access privileges of that
clique only. A module in the TCB is responsible for
verifying that the user is a valid member of a clique.

Figure 1 gives a logical architecture for the DBMS
[FYi80, Wie86]. Th e security component is one block
in this architecture. The conceptual architecture for
the security component itself is presented in Figure 2.
Logically, it consists of three parts: an autborisration
table [Gra72] which records the predicates which de-
fine the content-dependent access controls for those re-
lations with discretionary controls, an interpreter for
the predicates in the authoriration table, and the mech-
anism to enforce the discretionary controls by consult-
ing the table and invoking predicate evaluations when
needed. The details of these three components vary de-
pending on the approach used to implement the security
component. This is discussed further below.

The security component can interact with the rest
of the DBMS at several levels. For example, it might be
part of the interface between the Query Execution Plan-
ner and the Executor, or between this Executor and the

Page 4 of 8.

AdaSPL

I

Query
Execution

Planner

I

Schema
Interpreter

Transaction
Manager

Operating System

Figure 1: Logical DBMS Architecture

AUTHORIZATION
TABLE

I request

CONTROL

INTERPRETER data/violation

Figure 2: Logical Structure of the Security Component

IFAP. It might also be included as part of the Executor
or even as part of the Query Execution Planner. Again,
this depends on the detailed design.

5 Security Component Framework

In this section we describe a security component frame-
work based on our modularization design of a Ada data-
base system [WieSS]. Our security component frame-
work permits the enforcement of a variety of security
approaches. For example, both open and closed ap
proaches may be implemented using our framework. We
want the security component’s interface with the rest of
the DBMS to be below all user interfaces to preclude
circumvention of security checking. This implies that
the security component can be no higher than the top
interface to the Executor [Wie86]. However, it cannot
be much below the Executor for logging purposes.

We have chosen to support granularity at the tu-
ple and attribute level. This implies that the security

-350-

Page 5 of 8.

query date

1 T
Multi-Relation Multi-Relation

Operations
and Project

t

r-l Security
Filter

Select Lx Operation

to from
IFAP IFAP

Figure 3: Architecture for the Executor

component processing must precede multi-relation op-
erations such as join and cross product. It should fol-
low single relation selections to reduce the volume of
data considered by the security component. The secu-
rity component requires access to tuplea before under-
going projection so that attributes needed for security
decisions are available. This presents a problem when
some but not all attributes may be returned to the user.
In this case the protected attributes are replaced with
standard format nulls, which are presumably removed
by a subsequent projection. The protected attributes
are not removed so that the security component can
operate transparently; other components need not be
aware that the security component has taken any ac-
tion. This approach, shown in Figure 3, most easily
implements monotonic security approaches.

The security predicates may be arbitrarily com-
plex, including Ada packages if need be. Alternatively,
were a sufficiently powerful non-procedural security lan-
guage to be defined, the security component could in-
terpret this language. As our security framework oper-
ates on a tuple-by-tuple basis, multiple predicates are
only relevant when they apply to the same tuple and
attributes; the actions taken when a multiple relevant
predicates do not agree may be programmed as the
predicates are.

We have chosen to omit protected tuples and to
“blank out” protected attributes. Other actions may
also be taken at the discretion of the security predicate.
This is reasonable as the security component is placed

-351

at a low level of the DBMS.
Given this architecture, the Security Filter works

as follows. For any tuple passing through the filter, the
Security Filter will first evaluate security predicates de-
fined for the relation containing the tuple. If no pred-
icate is satisfied, the tuple is passed no higher in the
system, and hence is never seen by the user. If the
tuple passes the predicates for the relation, then secu-
rity predicates for attributes of the tuple are checked.
If these predicates are not satisfied for an attribute in
the tuple, that attribute is converted to a null. Thus,
the value of that attribute is never seen by the user.
By using a null, no knowledge about the deleted value
remains, such as its length. However, the existence of
even a standardized null may itself convey information.

For efficiency, it makes sense to include a query
modification module for use by the Query Execution
Planner (Wie86]. This module is called by the Planner
when generating a plan for processing a query to modify
the plan to retrieve only data which will satisfy the
discretionary controls. This should reduce the volume
of data retrieved by a query, and will allow the Planner
to remove by projection columns of a relation which will
be ‘blanked out” by the Security Filter in the Executor.

To complete the security component we need two
additional modules. (See Figure 4.) The first of these
is a module to manage the Authorization Table. Ae de-
scribed above, the Authorization Table includes pred-
icates defined for each clique/object/operation triple.
It must be readable by the DBMS and writable only
by the security officer. Logically, it might be part of
the Data Dictionary/Directory [Ber85], however, phys-
ically, it should be stored and managed separately by a
module in the TCB.

The second module needed is the Security Inter-
preter, which is the intermediary between the Security
Filter and the Authorization Table. It accepts com-
mands from the Security Filter and returns the set of
predicates which define the relevant discretionary con-
trols. Specifically, given the name of a clique, object,
and operation type, the Interpreter consults the Au-
thorization Table for the names of all predicates which
must be satisfied. It then retrieves these predicates and
returns them to the Security Filter. If the object is a”
relation, the interpreter returns all predicates defined
for the relation as well as any defined for attributes of
the relation.

We assume that these predicates take the form of
functionals. These functionals, when evaluated, filter
a tuple by blanking out attributes of the tuple or sup-
pressing the entire tuple. The functionals may be ar-
bitrarily complex, and may be specified by the security

Query
Execution

Planner

restrict Security
Transform

I 1 I I

filtertuple
I

getpreds

IFAP Security Officer

Figure 4:Modules and Operations for the Security Component

officer using any language developed for this purpose.
Once compiled, they are stored in a library and their
names used as privileges in the Authorisation Table.

These functionals can be used to address inference
problems which arise from blanking out attributes. In
particular, the functionals provide a capability for mak-
ing complex decisions based on the sensitivity of data.
For data from lower security levels, blanking out one
or more attributes in a tuple may pose no significant
security problem. For more sensitive data, blanked out
attributes may allow undesirable inference of informa-
tion. The functionals can be defined to make this de-
termination and suppress an entire tuple if appropriate
when some of the fields are blanked out.

In summary, it is necessary for the Security Fil-
ter in the Executor, the Authorisation Table and the
Security Interpreter to be part of the TCB. It is not
necessary for the Security Transform module that does
the query modification to be part of the TCB since it
is included for performance reasons and is not directly
responsible for enforcement of discretionary controls.

6.1 Interfaces for the Security Component

The required interfaces for the security component of
the DBMS can be derived from the discussion above

Page 6 of 8.

along with Figure 4. The getpreds operation provides
the list of predicates that define the relevant discre-
tionary controls. The authorize operation interprets
these predicates to perform the filterquery and filter-
tuple operations. The filterquery operation determines
whether a query or update request violates discretionary
controls. The filtertuple operation decides which re-
trieved tuples are to be passed through the security
barrier and which attributes are to be obliterated. The
modplan operation supplies information for modifying
the query processing plan to take into account the se-
curity restrictions. The restrict operation implements
query modification based on the results of modplan.
Abstractly, these interfaces are listed below.

getpreds(clique, object, access type) +

predicate name

authorire(object, operation, clique) +

set of predicates

filterquery(query, clique) + filtered query

filtertuple(tuple, clique) -t fikred tuple

modplan(object, operation, clique) 4

modification instructions

restrict (query, clique) + modified query

Finally,. an interface is needed to the Authorisation
Table to allow the security officer to define the discre-
tionary controls. The details of this interface are not
defined here since the interface may be part of the Data
Dictionary/Directory mechanism [Ber85].

6.2 Efficacy of Using a Security Barrier

The architecture we have described for the security com-
ponent of an Ada DBMS uses the notion of a security
barrier, which encapsulates everything within it and fil-
ters all communication across the barrier. As such, it
operates also as a security filter for data across the inter-
face. A security barrier enforces the controlled release of
information across the barrier. An obvious application
of such a notion is on the communications interface out
of an otherwise self contained computer. In our case,
the security barrier is a software barrier.

The notion of a TCB usually provides for a secure
layer on top of which uneecure layers may be impl+
mented. In our case, there is a trusted operating sys-
tern below that provides a secure layer. However, the
DBMS is much too large to be part of the TCB. Even
IFAP, the indexed file access package, which is a major
component of the DBMS below the security barrier, is

-352-

likely to be too complex to verify. However, the secu-
rity barrier is considerably simpler than the layer below,
and thus more capable of being part of the TCB. This is
especially true because the interface across the barrier
is one of the simpler interfaces of the DBMS.

There are several problems with the security bar-
rier approach. Because it operates as a filter between
unsecure components, it is subject to penetration by
covert communication channels. The difficulty of pre-
cluding convert channels even in software verified as
conforming to functional specifications indicates that
this is an issue that also affects modules to be included
in the TCB. Nonetheless, strict control of access to the
modules below the barrier, especially of their modifica-
tion, will tend to limit the implantation of covert chan-
nel mechanisms. Another problem is that the system
architecture must allow the barrier to control all access
to the components below down to the next secure layer
(in this case, down to the operating system layer).

We observe that a security barrier can be used
to supplement other security measures, such as secure
components, as it provides yet another method to verify
that the system is secure, and it is another mechanism
that must be defeated to violate system security. As in-
terfaces are usually simpler than the components using
the interface, security barriers at the interface level can
be added to an already secure system at little cost to
provide greater confidence in the security of the system.
But where components are too complex to be trusted,
security barriers provide a useful measure of security.

6 Other Isauee

There are several other issues related to security of the
DBMS which need to be addressed. The 6rst of these
concerns the security of logs created by the DBMS to
allow recovery or to support an audit trail. These logs
contain data from the database, and hence must be pre
tected just as the database is protected [Ke185b]. The
logs are segregated by mandatory access controls. The
logs must contain sufficient information to support full
discretionary controls comparable to those of the data-
base. The question of the relative authority between
the security officer and the database administrator is
particularly apparent for the log. If sensitive data must
be kept from the database administrator while allow-
ing him to maintain the database and logs, it may be
necessary to encrypt them.

The inclusion of a facility to maintain an audit trail
should be considered. Audit trails are a significant de-
terrent to fraud [Dat83]. An audit trail allows examina-
tion of information contained in the database to deter-
mine how reliable it is. Audit trails can also be used to

Page 7 of 8.

evaluate the effectiveness of access control mechanisms,
and to confirm that policies are being followed. Audit
trails must include such information as the sequence of
actions taken, who initiated them, where the action was
initiated, the time the action was initiated and the re-
sults of the action. Audit trails are typically generated
from logs and hence place requirements on the form and
content of the logs. The degree of detail maintained in
an audit trail is dependent on the granularity of ob-
jects. As the granularity increases, the complexity and
expense of generating the audit trail increases.

The possibility of ‘Dojan Horse attacks is another
security consideration. A ‘Dojan Horse attack is de-
signed to introduce flaws into the software deliberately.
Two conceivable solutions are to verify that all software
accessing the database are correct and to verify that the
system checks all access by untrusted programs. In the
case of the Ada DBMS, there are three classes of soft-
ware which need to be considered: 1) the trusted parts
of the DBMS, 2) the untrusted parts of the DBMS,
and 3) application programs. The trusted parts of the
DBMS do not present a Trojan Horse problem nor do
the application programs since they must go through
the trusted components of the DBMS to access and al-
ter data. Thus, only the untrusted parts of the DBMS
present a Trojan Horse problem. However, they too
must go through the trusted components-the security
barriwto access data and are therefore largely pre-
vented from doing significant damage.

An additional area for concern is the (possible) ex-
istence of covert channels. Covert channels are a means
by which information may be transferred via directly
observable phenomenon produced by an executing prc+
gram. Covert channels in the DBMS itself are less likely
than in general because no direct user code in executed.
The DBMS cannot protect against covert channels im-
plemented in application programs.

The method by which objects are reused must be
addressed. Of concern is the method by which records
are deleted. Records may be physically deleted imme-
diately when a delete command is received or they may
be flagged as deleted but left intact until garbage collec-
tion is done. If the latter is the case, there are security
risks involved. A possible solution is to rewrite deleted
records with random data.

Steps must be taken to guarantee that the DBMS
cannot be circumvented by a user who accesses the
database files directly. We will have the DBMS own
the files and allow no one else privileges to the files.
The operating system must then enforce these access
restrictions on the files by providing discretionary ac-
cess controls to operating system objects, such as files

-353-

and program modules. The authoriration table we de-
fined to be part of the TCB to support database dis-
cretionary access controls can also be used by the op

erating system to protect its objects, or by any other
layer to protect the objects defined at that layer (such
as by an application program on top of the DBMS to
protect application layer objects). Since they depend
on the nature of the objects protected, the interpreter
and control mechanisms, however, are specific to the
particular component, although they too could be part
of the TCB if desired.

An additional level of security can be provided with
cryptographic techniques [Den82]. We have chosen not
to include these techniques because we are primarily
concerned with controlling access to data. However, if
additional security is needed, or if the operating sys-
tem cannot be trusted, cryptographic techniques may
become necessary.

We do not attempt to implement history-dependent
access controls [Har76] as these techniques are inher-
ently non-monotonic. While it may be possible to sur-
vey the DBMS log and use heuristics and expert sys-
tems techniques to implement this type of access con-
trol, these techniques require an understanding of all
prior knowledge from this or other sources, as well as all
possible inference rules, in order to determine whether
allowing access to the data in question will compromise
security. In the absence of any assumptions about prior
knowledge and possible inference rules, this problem is
potentially undecidable.

7 Conclusion8

We have presented the framework of a security compo-
nent for an Ada DBMS. Data filters first check discre-
tionary controls defined for relations, then tuples, and
then attributes. These data filters are implemented as
part of a security barrier that controls all access to the
module that retrieves and updates selected tuples for a
relation. We also include a module to perform query
modification to improve performance by reducing the
amount of filtering required by the security barrier.

We measured our framework by evaluating accord-
ing to several criteria the range of security models that
our framework can support. These criteria are open ver-
sus closed system architecture, granularity of protected
objects, monotonicity, specification of security controls,
actions when there are multiple predicates that apply
to a request, response to security violations, and the
location of security checking.

The resulting architecture for the security compo-
nent is simple and clean. Three of the four modules
must be trusted. Each has a simple well-defined func-

Page 8 of 8.

tion so that this is not an unreasonable assumption.
These modules along with the mandatory controls im-
plemented in the operating system provide the required
security enforcement capabilities for the Ada DBMS
without requiring large components of the DBMS to be
trusted. In a commercial environment, security is mea-
sured by the worth of the data protected. In a military
environment, the value of data can be quite high.

8 Acknowledgemente

We wish to thank Sham Navathe, Murray Berkowits,
Bill Brykcsynski, Chet Coates, Mike Hale, and Terry
Mayfield for their contributions to the ideas presented
in this paper.

9 References

IBer85] Berlcowite, M. and S. Navathe, “WIS Data
Dictionary/Directory,” Tech. Report, IDA; Dec. 1985.

[Che85] Cheriton, D., et. al.. “Operating Systems Task Force
Document, Tech. Report, IDA, Dec. 1985.

[Dat83] Date, C., An Introduction to Database Syetenq
Addison- Wesley, 1983.

[Day781 Dayal, Ul and P. Bernstein, “The Fragmentation
Problem: Lossless Decomposition of Relations into Files,”
Tech Report. CCA-78i3, Computer Corporation of
America, Cambridge, MA, November, 1978.

[Den821 Denning, D., Cryptograpb and Data Security,
Addison-Wesley, Reading, Mass., 1982.

_

[DOD831 Department of Defense Trusted Cornouter Svstem
Evhuatibn Criteria, CSC-STD-001-83, August -1983,
available through GPO.

[Fri86] Friedman, F., et. al. “Reference Model for Ada
Interfaces to Database Management Systems,” Proc. IEEE
2nd Znt. Conf. on Data Engineering, February 1986.

[Fri86a] Friedman, F. and B. Brykceynski, “Ada/SQL: A
Standard, Portable Ada-DBMS Interface,” Proc. IEEE
2nd Znt. Conf. on Data Engineering, February 1986.

[Gra72] Graham, G. and P. Denning, “Protection-Principles
and Practice,” Proc. AFIPS 40, 1972.

[Gri76] GriSlths, P. and G. Wade, “An Authorication
Mechanism for a Relational Database System,’ ACM
‘Darns. on Database Systems, 1:3, September 1976.

[Har76] Hartson, R. and D. Hsiao, “Full Protection
Specitlcations in the Semantic Model for Database
Protection Languages,” Proc. ACM Ann. Co&, Oct.
1976.

[Kel85] Keller, A., “Updating Relational Databases Through
Views,” Ph.D. Thesis, Stanford University, 1985.

[KelBSa] Keller, A., “Indexed File Access for Ada,” Tech.
Report, IDA, Nov. 1985.

[KelBSb] Keller, A., “Logs and ‘Diggers,” Tech. Memo, IDA,
Sept. 1985.

[Rot801 Rothnie, J., et. al., “Introduction to a System
for Distributed Databases (SDD-l),” ACM Thns. on
Databane Systems, 5:1, March 1980.

[Spo84] Spooner, D. and E. Gudes, “A Unifying Approach
to the Design of a Secure Database Operating System.”
IEEE l’kans~ of Soft. Eng., SE-10:3, May 1984: -

lSto751 Stonebralrer. M. and R. Rubinstein. “The INGRES
Protection System,” Proc ACM SZGMOD Conf., 1975.

[Wie86] Wiederhold, G., et. al., “Modularication of an Ada
Database,” Tech. Report, IDA, December 1985.

[WIS84] WIS Project Definition, Tech. Report, IDA, 1984.

-354-

