Knowledge Bases and Database Engineering

D. Stott Parker (chairperson)
Dept. of Computer Science, UCLA,
Los Angeles CA 90024, USA

Stefano Ceri
Politecnico di Milano, Piazza Leonardo Da Vinci 32,
20133 Milano, ITALIA

Robert Demolombe
ONERA-CERT-DERI, 2, Ave. Edouard Belin,
B.P. 4025, 31055 Toulouse CEDEX, FRANCE

Koichi Furukawa
Institute for New Generation Compurer Technology,
4-28, Mita 1-Chome, Minato-ku, Tokyo 108, JAPAN

Masanobu Matsuo
Sumitomo Electric Industries, Ltd.
1-3, Shimaya 1-Chome, Konohana-ku, Osaka 554 JAPAN

Gio Wiederhold
Dept. of Computer Science, Stanford University,
Stanford CA 94305, USA

Economic pressures now encourage the engineering of
comprehensive information management systems to control
large volumes of heterogeneous information or ‘knowledge’.
These systems interface conventional database management
systems with spreadsheets, documents, and rule bases. Stor-
ing large bases of knowledge, modeling the knowledge accu-
rately, and accessing the knowledge conveniently become in-
creasingly important when the information managed by an en-
terprise is a model of that enterprise.

The fields of Data Engineering, Knowledge Engineering, and
Software Engineering overlap in the development of systems
combining large volumes of data and knowledge. This panel
is concemed with key issues in developing such systems.
Some major problems in this area are listed here.

Although fairly advanced knowledge engineering tools are
now available, knowledge-based systems are not well under-
stood, and there is very little experience with large knowledge
bases. What functions must knowledge-based systems pro-
vide? Current research papers suggest they should support ac-
cess to type hierarchies, integrity management, and set-
oriented recursive query processing, for example.

Knowledge and Data Engineering are fields of complex per-
formance tradeoffs. Increases in flexibility or accuracy of
knowledge representation can dramatically increase the com-
plexity of knowledge access. Adding one function to a sys-
tem can make other functions unacceptably slow, introduce
redundancy in storage, etc.

In a recent workshop on knowledge engineering, participants
from both industry and academe identified the lack of clear
design methodologies as a major obstacle to successful use of
the tools and development of systems, not to mention the edu-
cation of designers and end-users on what KBMS can offer.
What methodologies can be used for designing knowledge-
based systems? Good design methodologies come from ex-
perience, and experience comes from bad designs.

Information systems of the future will have to communicate
with information systems of the past, and different systems
rest on different conceptual models (knowledge representation
schemes). Integration requires some form of integration of
their models. Which kind of model — object-oriented, func-
tional, or logic-based — is (dis)advantageous under which
circumstances? ‘There is little consensus on how best to in-
tegrate models.

All conceptual models have weaknesses. For example, expert
system models do not seem to scale as well as database
models do. Why is it so difficult to expand expert systems
beyond a few hundred rules? Even the best-known systems
today are essentially prototypes with only a limited number of
rules or facts. Also, is there any difference at all between an
expert system and a decision tree?

Conceptual modeling schemes are evolving rapidly today to
capture more information. These schemes have expanded
from ‘shallow’ models of objects to ‘deep’ models of the
behaviors of and constraints on those objects as well. Are
current DBMS models sufficiently rich to be the basis for
knowledge-based systems, or are more elaborate models
needed? DBMS conceptual models seem shallow and not
very extensible.

Logic Programming and Prolog extend relational databases
with deduction and the ability to store complex objects such
as schema, metadata, and constraints with database facts. It
also provides an elegant and uniform way of implementing
views, query languages, and null values. When is Logic Pro-
gramming the best strategy for extending DBMS to KBMS?
Systems like Prolog lack responsive query interfaces, and lack
support for data processing concepts such as transactions, in-
dexing, and integrity.

What are general methodologies for connecting KBMS and
DBMS? General methods for binding these systems seem
necessary if the area is to avoid remaining underdeveloped.
Idiosyncracies of individual DBMS make such general in-
tegration challenging, but DBMS provide the technology for
dealing with large collections of data, and this should not be
re-invented.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDRB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of
the Very Large Data Base Endowment. To cop}y otherwise, or to republish, requires a fee and/or special permission from the Endowment.

e

Proceedings of the Twelfth International Conference on Very Large Data Bases

Kyoto, August, 1986

—315—



