
Transposition Algorithms on 
Very Large Compressed Databases 

IInrry 1c.T. Wang ant1 J. Z. Li* 

T,n\vrcncc l3crl~elcy Laborator~~, 

IJniversit,y of California 
13crltcley, Cnlifornia 

Abstract 

Transposition is the dominant operation for very large 
srirnlifir and statistical databses. This paper presents four 

efficient transposilion algorithms for very large compressed 

scientific and statistical databases. These algorithms 
operate directly on compressrd data without the need to 

first drromprrss thrm. TI lc) arc applirablr 1.0 dnlabascs 
that are compressed using the general (and popular) class of 
methods rallrd run-length encoding scheme. The algorithms 

have difTrrent performance behavior as a function of the 

dat abasr paramct.ers, main memory availability, and the 

transposition request itseif. The algorithms are described 
and analyzed with respect to t.he I/O and cpu cost. A deci- 
sion procedure to select the most e!Ticient algorithm, given a 

transposition request, is also given. The algorithms have 

been implemented and the analysis results experimentally 

validated. 

1. introduction 

\Ye are interested in very large Scientific and Statistical 

Databases (SSDUs) ([Shoshani82], [Shoshani, Olden 65 

\\‘ong@lj). SSDBs are prevalent in scientific, socieeronomic, 

and business applications. Examples of SSDBs are experi- 

ments and simulat.ion for scientific applications, census, 
health, and environmental data for socioeconomic applica- 

tions, and inventory and transaction analysis for business 

applications. These databases typically contain large 

amount of data in summary form. The main characteristic 

of such databases is that they contain a combination of 

descriptive elements for each value of measured (counted, 

observed, or computed) data. 
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As an example, consider the database in Figure 1 which 
contains summary data of a multi-factor parametric experi- 
ment of corrosion of materials under direrent conditions 
such as temperature, acidity, salinity, and duration. The 
first five at,tributes (makrial, t.emperat.ure, acidity, salinity 

and time) represent parameter data, the last attribute (cor- 
rosion) represents the measured data. The attributes for the 
parameter data are often referred to as category attributes, 
since they contain category of the measured data. The 

attributes for the measured data are referred to as summary 
olfributes, since they contain data on which st.atistical sum- 

marization procedures are applied. 

Typical queries of a database such as Figure 1 involve 
the retrieval of summary attribute values given some specific 
combination of the category values (What is the corrosion 
level for steel in temperature 1500, acidity level of 200, salin- 
ity level of 5, and time of 10 units?). To facilitate searching, 
the database is typically sorted by the category attributes in 

row-wise fashion (i.e., the values of the rightmost attribute 
vary the fastest,). 

Two factors cause these SSDBs to be extremely large. 

First, they may contain hundreds of summary attributes. 

Secondly and more importantly, the cardinalities of the 

category attributes can themselves be quite large; and the 

number of tuplrs generated is the product of these cardinali- 

ties. For example, the mortality database from the National 

Institute of Health contains the cross product of four races, 

two sexes, 70 diseases, six age groups, and 3000 counties, 

amounting to over ten million tuples. 

2. Motivation 

The most common operations operating on summary 

databases (besides searching) are transposifion and aggrega- 
tion. The former requests an re-ordering of the category 
attributes for the purpose of presentation and analysis. An 

example from the database in Figure 1 is to transpose the 

database so that. now temperature and acidity are after 

material, salinky and time. Transposition operations are 

also required to obtain the popular file structure called tran- 

sposed fire ([Batory79]). Transposed files are the most 
efTicient file structure for many SSDB applications. The 
motivation of transposed files is that the access to SSDBs is 

typically long sweep, i.e., a long sequence of’ individual 
records is fetched and a small number or attributes 

extracted. By storing the records as a collection of contigu- 

ous at,tribute columns, i.e., all of the data for a field (attri- 
bute) is stored together, only those attribute columns which 
are needed for a query need be retrieved. We assume also, 

in this paper, that transposed files are used to store the data 
in the summary SSDBs. 
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Aggregation operations are used to “collapse” away 
some category attributes to obtain a more concise database 
to facilitate more e!Ticient analysis. An example of aggrega- 
tion is a request such as “What is the total corrosion level of 
steel in temperature 1000, acidity 100, and salinity l?” Since 
the dimension time is ignored in the request, the corrosion 
values is aggregated on the t,ime dimension. The answer to 
the above request, is obtained by summing the corrosion 
level values over all time values for each combinat,ion of the 
other category attributes. 

Efficient methods of perrorming transposition and 
aggregation are the keys to have an efficient SSDB system to 
support data analysis. Since most large summary SSDBs are 
typically compressed, efficient transposition and aggregation 
methods directly over compressed data without first 
drcompressing are important. 

Note that transposition and aggregation operations are 
closely related. An aggregation operation on attribute A can 
be realized by first transposing A from its original position 
to the right of the rightmost category attribute in the dat.a- 
base, then the corresponding summary attribute values are 
aggregated (typically by simple arithmetic operations such 
as sum, weighted average, etc.). For example, to collapse 
the temperature dimension from the database involves tran- 
sposing the attribute to the right of the time attribute, then 
the corrosion values are aggregated. In this paper, we 
describe several efficient techniques for performing transposi- 
tion on compressed summary SSDBs. The results obtained 
can be extended to the aggregation operation mentioned 
above. 

In section 2, the related area is surveyed and in section 
3, some background information about compression is given 
for the rest of the paper. In section 4, description and 
analysis of four transposition algorithms are given. In sec- 
tion 5, a decision procedure is developed that will select the 
most appropriate algorithm for a given transposition 
request. Section 6 describes our implementation effort and 
section 7 summarizes the paper and draws some conclusions. 

3. Related Work 

Almost all SSDB management systems (such as [Turner 
et a1.791, IhfcCarthy et al.82), ISAS79)) perform transposition 
over compressed data by first decompressing the data, then 
transposing the full (typically very sparse) cross-product, 
and finally recompressing the database. For very large 
SSDBs, the user may have to wait days or even weeks for 
the operation to finish. What is needed is algorithms which 
manipulate compressed data directly. 

Several researchers ([Epstein791 and [I<lug82]) have 
tackled the problems of processing aggregates in the rela- 
tional database context. The reported techniques are not 
apphcable to summary SSDBs since no compression is 
assumed on the databases and the emphasis is on query 
optimization. 

[Floyd721 gives a very interesting transposition alge 
rithm for dense square matrices residing on disk. Given a 
matrix or size P by P, the algorithm uses 2 buffers of size P 
each to transpose the columns ol the matrix to rows. Since 
the matrix is not compressed, a mathematical formula is 
given to decide where each data item should be moved. The 
algorithm requires I/O operations in the order of 
0 (P lo&g ). 

[Tsuda et al.831 extends Floyd’s algorithm to handle 
rectangular matrices (still Z-dimensional). The method is to 
divide the matrix into a. multiple of square matrices ( the 
last matrix may have to be padded with nulls to make it 
square) and Floyd’s algorithm can be applied on each. The 
algorithms presented in this paper have the same order of 
l/O performance as the algorithms presented in (Floyd72) 
and [Tsuda et a1.831. But our algorit.hms can work on 
compressed multi-dimensional databases. 

4. Compression of SSDBs 

In this section, the concepts and terms of the compres- 
sion methods we use are introduced. They formulate the 
background ror the algorithms in the next section. 

Summary SSDBs such as the one displayed in Figure 1 
have a great deal or redundancy in the values of the 
category attributes. In many databases all possible 
combinations of the category attributes (i.e., the full cross- 
product) exist. In such cases, each value of a category attri- 
bute repeats as many times aa the product of the cardinali- 
ties of the remaining category attributes. 

A method which eliminates the need to store category 
attributes is used. This method stores the list of distinct 
category attribute values of each attribute once. Then, each 
category attribute can be used to form one dimension of a 
multi-dimensional matrix. For each combination of values 
from the category attributes, one can compute the appropri- 
ate position in the matrix. A well-known algorithm (called 
array linearization ) provides such a mapping. This method 
transforms a query on the category attributes into a compu- 
tation or D logical position in a linearized matrix. Array 
linearization is reversible in the sense that given a position 
in the matrix, there is a unique combination of category 
attribute values identifying it (this process is called reverse 
array linearization ). 

Summary attribute values can be quite sparse. As an 
example, refer to Figure 1. Suppose that temperature does 
not have efl’ect on certain type of material. then in the cor- 
rosion column there would be the same value in consecutive 
positions for ali the acidity, salinity, and time. Here a 
compression method called header compression ((Eggers & 
Shoshan%O\) is used to remove the repeated values by a 
count and provide efficient access to the compressed data. 
This method makes use of a header which contains the 
counts of both compressed and uncompressed sequences in 
the data stream. The counts are organized in such a way as 
to permit a logarithmic search over them. A B-tree is built 
on top of the header to achieve a high radix for the loga- 
rithmic access. In addition to the header file, the output of 
the compression method consists of a file of compressed data 
items, called physical file (the original file, which is not 
stored, is called logical file ). Two mappings are provided 
by the compression method, one is called /orward mapping, 
which computes the location in the physical file given a posi- 
tion of the logical file. The other mapping (called backward 
mapping ) provides the physical to logical direction. These 
mappings can be performed in logarithmic time because of 
the existence of the header. For a more thorough discussion 
of the header compression method, refer to the original 
paper. 

To make the description or the algorithms more con- 
crete, we assume that each summary attribute or the data- 
base has been compressed using the header compression 
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scheme. But an important note is that the algorithms are 
general in the sense that they can be applied to databases 
that are compressed using the general class of methods 
called run-LengrA encoding scheme ([Aronson77]), where a 
repetit.ion or dat.a items is replaced by a count and a value 
of t,he data item. Header compression method is just. a vari- 
ation of the run-length encoding scheme. Also, we assume 
that the category attributes are compressed away by array 
linearization as mentioned before. 

5. Transposition Algorithms 

In this section the four transpositions algorithms will 
be described in detail. Below the main idea and the applica- 
bility of each algorithm will be briefly highlighted. The 
description sections below provide more details for each 
algorithm. 

The first algorithm is a “general” algorithm in the 
sense that it can be used in all situations. First, the physi- 
cal database is read, and for each data item, a “tag” is com- 
puted and stored with the data item on disk. A tag is the 
logical sequence number for the data item in the transposed 
space. The second step involves sorting the tag and data 
item pairs in ascending order of the tags. After the sorting 
is done, the tags associated with the data item are dis- 
carded. As the tags are stripped, the necessary headers for 
the data items are generated and these headers and the data 
items represent the result of the transposition. 

The second algorithm performs the operation in main 
memory in one pass. This is feasible in the event when the 
transposed subspace is small enough to fit into main 
memory. The main idea of the algorithm involves scanning 
the physical database once, and employing the reverse array 
linearization to find the proper slot for each data item in the 
memory buffer. A compression algorithm will then run over 
the data in memory and the result is stored in compressed 
form on disk. 

For the case that the transposed subspace is too large 
to fit in main memory, a third algorithm can be used. The 
algorithm takes advantage of the situation when there are a 
small number of large fragments or transposed subspace that 
are already in the right position. The algorithm involves the 
merging of these fragments, and compressing of the result. 
This algorithm is used instead of the first algorithm ir the 
number of fragments is small. A more quantitative treat- 
ment is given in a later section. 

A fourth algorithm takes advantage of the situation 
when the cross-product of the cardinalities of the transposed 
attributes are relatively small and they are moved as a 
group. In this situation, N buffers are used to store the 
temporary result of transposition where N is equal to the 
product of cardinalities of the transposed at.tributes. This 
algorithm is slower but not as memory intensive as the 
second algorithm. But when applicable, it offers better per- 
formance than the first and third algorithms. 

The algorithms are listed in the appendix. For the rest 
of the paper, we will use the following symbols for the 
relevant compressed database parameters: 

N: size of compressed summary data file 
M: number of category attributes. 
W: number of bu!Ters. 
B: size of buffers and blocks. 

5.1. Algorithm GENERAL 

5.1.1. Description 

This algorithm assumes W buffers each with size B are 
available, Datta from CSF are read into the bu8ers. For 
each data it.em in each buKcr, the rollowiug is donr: Bark- 
ward mapping is performed to obtain the logical position in 
rhe original category attribute space; a reverse array bneari- 
zation is computed to recover the values of the attributes; 
and finally a new logical number in the transposed space is 
computed using the array linearization operation. This new 
logical number (called a “tag”) is then stored with the data 
item in the bufier. An internal sort is performed on each of 
these buffers with respect to the tags of the data items. The 
sorted data items in these buffers are next merge-sorted into 
a single run and written out to disk along with the tags. 
This process is repeated for the rest of the blocks in CSF. 
The runs of data items and their tags are next merged 
using, again, W buffers. A new header file is constructed for 
the transposed file in the final pass of the merge sequence. 
Also, the tags associated with the data items are discarded 
in this pass. The file produced containing just the (shuffled) 
data items is the new transposed CSF file. 

5.1.2. Analysis 

5.1.2.1. Block Accesses 

Algorithm GTRANSPO has two major parts as far as 
I/O activities are concerned. The first part is where all the 
compressed data is read and sorted by the new logical posi- 
tions using W buffers. The result of this part is a set of 
sorted subruns. The second part of the algorithm merges 
these subruns and compresses them in the last pass of the 
merge using W buffers. The more precise I/O behavior of 
this algorithm is summarized as follows. 

The reading of the original compressed file and writing 
out of the sorted subruns require 2 [N/B1 block accesses. 
The second part of the algorithm requires the merging of the 
[N/B/11/1 subruns using W buffers. Hence there are 

logw [N/Bl-1 passes over the data. Here a buffering 
scheme is used so that in the odd (even) pass, block reading 
is done from the first (last) block to the last (first) block. 
One block can be saved from reading and writing by keeping 
the first or last block in memory to be used by the subse- 
quent pass. Therefore, there are 

2( rrv/~l-1)x( ~cwV+) 

blocks to read and write. 

Finally, the original header file has to be read to com- 
pute the logical number and new header file needs to be 
built, hence we have N. blocks to read and N. blocks to 
write. Therefore, the number of block accesses is 

2( iogw N/B X( [N/B]-l)+l)+ 1 
5.1.2.2. CPU Cost 

In the first part of the algorithm, for each value in the 
summary data file, we need to perform one reverse array 
linearization and one array linearization. There are also 
kV/Bi blocks, each with size B, to sort and [N/E/W1 

merges, each with W runs of size B, to merge. 

An array linearization operation requires 
2(M-1) 
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multiplications and additions. 

An reverse array linearization operation requires 
2(M -1) 

divisions and subtractions. 

To sort a block wit,h size B requires 
B log2B 

comparisons. 

To merge H’ runs each with size I? requires 
WB log, w 

comparisons. 

The total number of cpu operations, therefore, for the first 
part (steps 3 to 17) is 

4N(Af-I)+ [N/BlX plog,B]+ [N/B/Wjx [WBlog,w’1. 

In the second part of the algorithm, we need to perform 

I 
log,. N/B 

1 
-1 iterations where each iteration involves the 

merging of [N/B/w~ 1 runs each with size W’ B Thus, in 

the second part, 

( ~~gwN/B]-l)x IN/BIW~X [w~log,w] 

comparisons are needed. 

The total number of cpu operations or GTRANSPO is there- 
fore, 

N x(4(M-l)+ log,N I 1 ). 

5.2. Algorithm MTRANSPO 

5.2.1. Description 

This algorithm requires a buffer large enough to hold 
the subspace from RIO to Ry. The algorithm steps through 

the non-transposed portion of the database, i.e., the sub- 
space from R, to R,,,. For each “point” in this fixed space, 

transposition is performed as follows. Data is read in one 
block at a time. Tags are computed as described before. 
Each data item is stored into the burer using the 
corresponding tag as an index. When the subspace is 
exhausted, headers are generated and stored and the buffer 
is written out. This represents the result of partial transpo- 
sition under this fixed “point” of the non-transposed space. 
These partial results are accumulative in the sense that they 
can be concatenated to form the final transposition result 
without any more passes over them. The reason is that the 
non-transposed portion of the space is stepped through in 
the same order that the original data is stored, i.e., the 
rightmost index is varying the fastest. 

5.2.2. Analysis 

Algorithm MTRANSPO requires the reading of the ori- 
ginal summary data and writing of the resulting transposed 
summary dat,a file. Also, the reading of the original header 
file and writing of the new header file are needed. Jlence, 
the total J/O cost is 

The cpu cost of MTRANSPO is for each value in the sum- 
mary data file, the cost for performing an array linearizat.ion 
and a reverse array linearization. Hence, the number of cpu 

operations is simply 

4N(M-1). 

5.3. Algorithm STRANSPO 

5.3.1. Description 

This algorithm takes advantage or the situat.ion where 
there are a small number of large fragments of transposed 
subspace that are already in the right position. As a result, 
no sorting is required on the fragments and the merging is 
needed on a smaller number or sorted runs. 

As an example, consider Figure 2, where two examples 
or transpositions are shown on a file with four category 
attributes (called A, B, C, D). The LP columns represent 
the logical numbers or each row of the category attributes. 
The first example moves the attribute B from the second 
column to the right of D ((b) or Figure 2). Notice that the 
LP column of (b) contains 2 sorted runs (the cardinality of 
B) each with 6 (the product of the cardinalities of C and D) 
elements in it. The second example exchanges columns B 
and D. Again, notice that the LP column of (c) of Figure 2 
where there are 6 subruns (the product oJ’ cardinalities or A, 
C and D) each with 2 (the cardinality or D) elements. These 
phenomena are generalized into the lemmas below, and for 
space reason, the proofs are omitted. 

Lemma 1. 

IIR, ..’ R,-, Ri R,+, . Rj Ri+, . . RM+ 
R1 “. Ri-lRi+l ‘.. Ri Ri Rj+l ... RY, 

then 

(The symbol “d” is read as “is to be transposed to”) 
(1) The number of subruns = 1 Ri 1 ; 
(2) The length of each subrun = 1 R, 1 X 1 Ri_, 1 

XIR~+~~X.-.XIRMI. 
(3) The subscripts of the boundary or each subrun are 

r, . ri-,11 1 

r, q-,21 1 

r, ri-,ti 1 1 

where Ri = { 1, . . . . ki}, r,,, is in R, for m=l to i-l. 

This lemma summarizes the patterns or transposition 
involving the movement of attributes to the right. It 
presents the expected number or subruns, the length or the 
each subrun and the boundary of each subrun in terms or a 
single attribute being transposed to the right. Generalization 
or this lemma involving the transposition of a subspace or 
attributes is straightforward. 

Lemma 2 below presents the pattern of transposition 
when two attributes are exchanged in their category attri- 
bute space. Again, the generalization of this lemma to more 
than one attribute is used in our implementation. 

Lemma 2. 
If R 1 . Ri-1 Ri Ri+l . Rj-l Rj Rj+l RM -+ 

R, ... Ri-r Rj Ri+l Rj_1 R; Rj+l Ran, 
then 
(1) The number of subruns = I R, I x . x I Rj., I ; 
(2) The length of each subrun = ( Rj ( x x I R, ( ; 
(3) The subscripts of each subrun begins at 

r, rim11 1 
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where, r, is in R, for m=l to j-1. 

The key step of the algorithm STRANSPO is to use 
these two lemmas to compute the number of subruns and 
the boundary of each subrun. After that, it is basically a 
merge sort algorithm for SNUM subruns using W buEers. 
The first pass over the dat.abase involves construcling the 
tags for each data item as before. The final pass of the algo- 
rithm discards the Lags and header counts are generat,ed 
similar to the first. algorithm. 

5.3.2. Analyaia 

5.3.2.1. Block Accesses 

The I/O performance of STRANSI’O is based on the 
number of subruns (SKUM in the algorithm). Since there 
are SNUM subruns needed to be merged and there are W 
buffers, the number of passes required to go over the [N/B1 

blocks of data is 
1 
logw SNUM 

1 
This plus the reading and 

constructing of header files brings the total of blocks 
accesses to be: 

2( r log,,, SNUM x( [N/B l-1)+1)+ 1 
Note the same buflkring scheme mentioned in GTRAN- 

SPO is used to save one block of I/O per pass. 

5.3.2.2. Cpu Cost 

The cpu performance of the algorithm is similar to 
GTRANSPO except that there is no need to sort the data in 
the buffers and inst.ead of having [NIBI runs to merge, we 
have SNUM runs. The total number of cpu operations, 
therefore, is equal to: 

N x(4(M-I)+ 
r 
log,SNUAf 

1 
). 

5.4. Algorithm LTRANSPO 

5.4.1. Description 

This algorithm requires memory space to hold N 
buffers where N is the size of the transposed subspace. 
Unlike the algorithm M, where space is required to hold the 
entire subspace from the leftmost transposed attribute (RID) 

to the rightmost attribute of the database (R,), this algc- 
rithm requires bu!Ter space for subspace starting at Rio to 

Rjr the rightmost transposed attribute. Similar to the alge 
rithm M, the non-transposed subspace is stepped through in 
the row-wise fashion. For each data item, the reverse array 
linearization ,operation is performed to identify the correct 
buffer to which the data item belongs. This algorithm also 
requires N temporary files to store the overflowed buffers. 
These N temporary files are merged and header file gen- 
erat,ed when the original data file is exhausted. 

Two general cases of the algorithm are present.ed in the 
section below. These two cases are distinguished according 
to the transposition direction of the group of transposed 
attributes. The first and second cases represent respectively 
the left and right direction movement of a group of attri- 
bu tes. 

Assume the additional input parameter D, which 
represents the number or buffers needed in the algorithm. 
The value of D can be computed as below: 

D= 1 Rj 1 x x 1 Rj+i 1 or I Ri+,,, 1 x x I Rj I. 

Algorithm LTRANSPO recognizes the following t.wo situa- 
tions. 

(l)R, Rim, Ri (Rj Rj+k) Rith+, Rn, - 
R, “’ Ri_, (Ri Ri+,)R; R,_I Rj+~+l RY; 

(2)R,. ” R,.,(R, “. R,+k)R;,k,, ” R, Rjt, ” I?*, + 
R, .‘. L Ra,,,, R, (R; ...Ri+k)Rj+l ... RM; 

6.4.2. Analysis 

The number of l/O required is equal to 4 times the 
toral number of blocks of the dat,abase. The reason is that 
the temporafy files haye to be read and concatenated into a 
single file. Also, there may be up to kd more blocks to write 
to disk when the bulfers are not full but the data stream is 
exhausted, where k is equal to product of the non- 
transposed space (i.e., from R, to R;-,). This plus the read- 
ing and constructing of the header file bring the total of I/O 
operations to 

4 TN/B~+ T I 1 N”+Nn +kd. 

The number of cpu operations required is just 

2N(M-1) 

since only N reverse array linearization operations are 
needed. 

6. Comparing the Basic Algorithms 

In this section a partial order among the four algc+ 
rithms is constructed in terms of I/O and cpu cost. In the 
following observations, the symbol “>>” is defined as a 
short hand notation for “is more expensive than”. Also, the 
algorithms w,ill be referred to by their first letter. 

8.1. Observations 

Observation 1. G >> M, S >> M, and G >> L. 

Justification. 

(1) G >> M. 

The block access difference between G and M is 

2(( rN/Bl-1)x( ~wwNI+)). 

Since we are interested in very large databases, typically 
TN/B 1 > W, thus, IO(G) > IO(h4). 

The cpu time difference is 

N log,N 

which is > 0. Hence CPU(G) > CPU(M). Therefore we have 
G >> M. 

(2) S >> M. 
IO(S) - IO(M) = 2( rN/Bi-l)(logwSNCWI) 

Generally, SNUM > W and rN/Bl>l, thus IO(S) > 
IO(M). 

CPU(S) - cpu(h1) = N(log,SN(lM)>O 

CPU(S) > cpu(M). Hence (2) is justified. 
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(3) G >> L. 
IO(G) - IO(L)=S((logw [N/Bl-?)( [N/B+1)-(kd+2)) 

Since [W/B1 is typically murh larger than II’,k, and d, we 
ha\.? 

log,, [N/131> ‘d-l2 
r/\:lH1-12 Observation 3 L >> hl. 

Thus IO(G) > IO(L). 

cpu(G) - CPU(L) = N(?(Af -I)+ po,,N]>O 

IIenre we have (3) 

Observat.ion 1 gives a partial order of preference in 
terms of performance. But the memory requirements of hl 
and L should be import.ant considerat.ions. hl requires 
memory space equal to the entire full subspace from the left- 
most attribute to be transposed to the rightmost, attribute 
of the database. L requires memory space to hold D bufiers 
where D is equal to the size of the subspace bounded by the 
leftmost. and rightmost attributes to be transposed. In very 
large databases, hl or L may not be applicable for transposi- 
tion requests which exceed the available memory in the user 
environment. In such cases, either G or S should be used. 
A decision procedure will be described to choose the best 
possible algorithm for a given transposition request. 

Observation 2 

(1) If log,SNUM > .%+2 then S >> L 

else L >> S. 

G. 
(2) If [A~ /B ~>SNW~ then G >> S else S >> 

Justification. 

(1) We know ‘that 

IO(S) - IO(L) = 2((log, SNUAl-2)( [N/B]-1)-(kd +2)) 
and, 

cpu(S) - CPU(L) = N(2(A4-l)+log,SA’LIAf 

= 0 (N log,SA’UAf)>O 

If the condition of (I) is true, then S >> L. Otherwise, 
IO(S) - IO(L) is -O(NlogWSNLTA4). Since the diRercnces of 
I/O and cpu times are the same order, the I,!0 cost. should 
be the more dominant consideration, hence L >> S in this 
case. 

(2) \Z’e also know that 

IO(G) - IO(S) = 210gW $$ rh’ /B l-1). 

and, 

CPU(G) - CPU(S) = N log&&>O. 

IT [N/B] > SNClAf , then G >> S. Otherwise, the savings 
of cpu time of S over C arc not enough to offset the extra 
block arcrsses of S over G, hence we have S >> G in this 
situalion. 

Int,uitively, the perl’ormance of S depends very much on 
the value of SNUM. As a rule or thumb, algorithm S is 

attractive if the value of SI\‘Uhl is small. Since a small 
SI\‘\$l value will indicate long subruns, as a result, less 
passes will have to be done over the data. Observalion 2 
gives the formal criteria of choc&ng between S and G a.~ weI1 
w between S and L. 

Justifirat ion. 

IO(M) - IO(L) = --(? b’/Bi+kd)<O. 

cpu(hf) - CPU(L) = ZN(Af -l)>O. 

Similar to the justification of (2) of Observation 2, L << hl 
overall. 

6.2. A Select Procedure 

Below a decision procedure is given which is based on 
the three observations above to select the cheapest transpe 
sition algorithm. 

Algorithm DECIDE. 

IF available memory satisfies hf THEN select hl 
ELSE IF available memory satisfies L 

and log,, SNlmf > kd +2 
-lFp-Fl 

+2 THEN select L 

ELSE IF rN/B1>SNUAd THEN select S 
ELSE select G. 

7. Implementation 

All four transposition algorithms have been imple- 
ment.ed using C in a VAX/VhlS environment. The Obser- 
vations given above have all been experimentally validated. 
These algorithms and the above DECIDE program are now 
an integral part of our experimental SSDB management sys- 
tem AllCSUM (j\Vong 6c LiSG]). 

8. Summary and Conclusion 

Transposition is the dominant operation in many 
SSDBs. In this paper, a collection of eRicient transposilion 
algorithms have been described and analyzed. These algo- 
rithms operate directly on compressed data without the need 
to first decompress them. The methods proposed are appli- 
cable to databases that are compressed using the general 
method or run-length encoding. A decision procedure is also 
given to select the most efficient algorithm based on the 
transposition request, available memory, as well as the data- 
base parameters. Formulas have been developed which iden- 
tify the required memory space, the length of the subruns 
and the number of expected subruns. The algorithms have 
the same order of I/O performance as that of [Floyd721 and 
(Tsuda et al.831 where only dense 2-dimensional matrices are 
dealt with. The algorithms presented can operate on 
compressed multi-dimensional databases. Since aggregation 
operations can be developed on top of transposition opera- 
tions, the result of this paper can be applied directly to 
ef%ent aggregation algorithms on compressed data. 

In conclusion, direct manipulation over compressed 
data is an important concept where great efficiency can be 
achieved. Algorithm need to be developed and analyzed for 
operators on compressed data. Transposition is just one 
(and important) such operation in this direction, \+‘e are 
now researching on other operators such as searching, aggre- 
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gation, and other higher level statistical operators on 

compressed data. 
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Appendix 

Algorithms In this appendis, the algorithms are 

described in a pseudo programming language. 1Te will use 

the following noLations for the relevant compressed database 

parameters: 

CSF: Compressed summary data file. 

SIlF: Summary data header file. 

C[i]: Cardinality of the itA category attribute, i=l to 

M. 
N: size of compressed summary data file. 

M: number of category attributes. 

The following parameters are assumed to be available for 

each transposition request: 

Also, routines that perform the backward mapping 

from the compressed physical file to the logical file, array 
linearization, and reverse array linearization are referred to 
respectively BMAP, LIN, and REVJIN. 

W: number of buITers. 
B: size of buffers and blocks. 
A(i]: Transposition assignment for category attri- 

bu te i, i=l to M. 
E.g., A(51 = 3 implies that the 5’* category 

attribute is to be transposed to be the 3” 
category attribute. 

(I) FOR i=l TO hl DO 

1;; FF$l 7 WI4 
,=I TO rN/B/lYl DO 

;i; 
BEGIN 

FOR j=l TO W DO 

(6) BEGIN 

(7) read ((i-l)‘\\‘+j)th block ol CSF into bulTer[j); 

[ii 
FOR each value v in bullcrlj] DO 

BEGIN 

;r;; 
looh up v’s logical position using BMAP; 
compute subscripts using REVJJN 

and store to array I; 

03 reassign z according to array A; 

(13) compute new logical position using z and NC; 
and store with Y in butler/j]; 

I;:; 
END 

sort bufcrlj] in order of logical positions; 

(IG) END 

(17) mergr the W runs in buflerlll,....buflerI\\‘) into a single run, 
(il (h’/B1=\2’, ralcula~c header count5 and write to new header file) 

(18) END 

(IQ) FOR i=I TO 

(20) merge the N/B/l+” 

(Xi-[ ! 

““i-r~~“!,:.d~“.,e,,,,,, or (20), 

log N/Q 1. ,,romputr headers and wit? to new head?r file) 

Algorithm GTRANSPO 

Let I, denote the index of the leftmost attribute Lo 
be transposed. 

(1) FOR i-1 TO hI DO 
(2) NCilj=C(A/l]], 
(4) FOR each clement in crms product R,. , RJO-, in ascending ordrr D( 

(5) BEGIN 

w IF buflerin is empty THEN read B block of CSF CO buflerin, 

(9) FOR each value v in buflcrin DO 

(‘0 BEGIN 

(11 Id up v*s Iogiral pocilion using RfjAJ’, 
(I? compulr the subscripts using REVJIN 

03) 

and store ti array z, 
rea.wgn z according to array A; 

(14) rompute the new logical position p us,ng LIN 
with z and AC as parameters; 

(15) buflerjp I=\.; 

I::/ 
END 

wile values in bulier LO result file, and calculate the 
header counts and write to the new header file; 

(lg) END 

Algorithm hiTRANSP0 

(1) FOR i=l TO M DO 
(2) IXJ[il=C]Ali]]; 
(3) SNUAf=number of subruns using Lemmas I and 2; 
(4) FOR i=l TO rs~~~~f/fi’l DO 

BEGIN 
FOR j=l TO W DO 

compute the ((i-I)*W+ j)” subrun’s boundary 
and compute tbe boundary’s brew logical position; 

M’HlLE one of the ((i-1)‘,,‘+1)“,((i-l)~1V+Z)“, 
. . . . and ((i-l)*lV+H’)” subsuns is not at end DO 

BEGIN 
IF buUer[j] is empty and ((i-l)‘IV+ j)” subrun 

is not al end (for j=l (0 “1’) THEN 
BEGIN 

read B block of ((i-l)s\i’+ j )1’ run LO buflerjj]; 
FOR each value Y except boundary in bufIcr]j] DO 

BEGIN 
look up v’s logical position using BhikP; 
compute subscripts using RE\‘JIN 

and st.xe LO xrray z; 
reassign z according to array A; 
compute the new logical position using LINEAR 

and store with v in bufTer[j); 
END 

END 
merge the W runs in the bufTera into single run; 

E~DISNmf /WI==-1. compute beadera and wile to new header file.) 

END 

Algorithm STRANSI’O 
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(1) FOR each combination I,. I;-, 
in the cross product of R, I?.-, increuingly DO 

(2) BEGIN 

(3) rrnd onr blorl. of C?F into boflrrin; 

(4) FOR each value Y in bufferin DO 

(5) BEGIN 

(6) looL up v’s logical position using BAlAP; 

(7) compnk subscripts using RF\‘JJN 
and sport lo arre.y z; 

(6) bufkrl:, , ,I,+, ]=v 
(or buflrr;i..,,, z, j=v,; 

(9) IF rhis bullcr is full THEN 
write lo file 7SF Izi, , I, +, ] 

(or TSf-(4,,,,. , z,l); 

[::I Fz?i=I TO D DO 

(I?) IF buff:er[nl is not empty THEN 
write lo 79 Ii]; 

(13) FOR each ti xi+, (or I;,,+, zi) increasingly DO 
read TSF[ri. , I~+,] (or T.%=(I;+,+,. , z,]), 
write sequentially lo result file; 

compute header counts and write to new header file; 
(14) END 

Algorithm LTRANSPO 
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