
Transposition Algorithms on
Very Large Compressed Databases

IInrry 1c.T. Wang ant1 J. Z. Li*

T,n\vrcncc l3crl~elcy Laborator~~,

IJniversit,y of California
13crltcley, Cnlifornia

Abstract

Transposition is the dominant operation for very large
srirnlifir and statistical databses. This paper presents four

efficient transposilion algorithms for very large compressed

scientific and statistical databases. These algorithms
operate directly on compressrd data without the need to

first drromprrss thrm. TI lc) arc applirablr 1.0 dnlabascs
that are compressed using the general (and popular) class of
methods rallrd run-length encoding scheme. The algorithms

have difTrrent performance behavior as a function of the

dat abasr paramct.ers, main memory availability, and the

transposition request itseif. The algorithms are described
and analyzed with respect to t.he I/O and cpu cost. A deci-
sion procedure to select the most e!Ticient algorithm, given a

transposition request, is also given. The algorithms have

been implemented and the analysis results experimentally

validated.

1. introduction

\Ye are interested in very large Scientific and Statistical

Databases (SSDUs) ([Shoshani82], [Shoshani, Olden 65

\\‘ong@lj). SSDBs are prevalent in scientific, socieeronomic,

and business applications. Examples of SSDBs are experi-

ments and simulat.ion for scientific applications, census,
health, and environmental data for socioeconomic applica-

tions, and inventory and transaction analysis for business

applications. These databases typically contain large

amount of data in summary form. The main characteristic

of such databases is that they contain a combination of

descriptive elements for each value of measured (counted,

observed, or computed) data.

Supportrd by the Offire of Energy Research, U.S. DOE

under Contract. No. DE-AC03-76SF00098.
* On leave from Dept. or Comput.er Science,

Ilrilongjiang Univ., China.

Permission to copy tuithout fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and Its date appear, and notice is gioen
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

30

As an example, consider the database in Figure 1 which
contains summary data of a multi-factor parametric experi-
ment of corrosion of materials under direrent conditions
such as temperature, acidity, salinity, and duration. The
first five at,tributes (makrial, t.emperat.ure, acidity, salinity

and time) represent parameter data, the last attribute (cor-
rosion) represents the measured data. The attributes for the
parameter data are often referred to as category attributes,
since they contain category of the measured data. The

attributes for the measured data are referred to as summary
olfributes, since they contain data on which st.atistical sum-

marization procedures are applied.

Typical queries of a database such as Figure 1 involve
the retrieval of summary attribute values given some specific
combination of the category values (What is the corrosion
level for steel in temperature 1500, acidity level of 200, salin-
ity level of 5, and time of 10 units?). To facilitate searching,
the database is typically sorted by the category attributes in

row-wise fashion (i.e., the values of the rightmost attribute
vary the fastest,).

Two factors cause these SSDBs to be extremely large.

First, they may contain hundreds of summary attributes.

Secondly and more importantly, the cardinalities of the

category attributes can themselves be quite large; and the

number of tuplrs generated is the product of these cardinali-

ties. For example, the mortality database from the National

Institute of Health contains the cross product of four races,

two sexes, 70 diseases, six age groups, and 3000 counties,

amounting to over ten million tuples.

2. Motivation

The most common operations operating on summary

databases (besides searching) are transposifion and aggrega-
tion. The former requests an re-ordering of the category
attributes for the purpose of presentation and analysis. An

example from the database in Figure 1 is to transpose the

database so that. now temperature and acidity are after

material, salinky and time. Transposition operations are

also required to obtain the popular file structure called tran-

sposed fire ([Batory79]). Transposed files are the most
efTicient file structure for many SSDB applications. The
motivation of transposed files is that the access to SSDBs is

typically long sweep, i.e., a long sequence of’ individual
records is fetched and a small number or attributes

extracted. By storing the records as a collection of contigu-

ous at,tribute columns, i.e., all of the data for a field (attri-
bute) is stored together, only those attribute columns which
are needed for a query need be retrieved. We assume also,

in this paper, that transposed files are used to store the data
in the summary SSDBs.

Kyoto. August. 19%

Aggregation operations are used to “collapse” away
some category attributes to obtain a more concise database
to facilitate more e!Ticient analysis. An example of aggrega-
tion is a request such as “What is the total corrosion level of
steel in temperature 1000, acidity 100, and salinity l?” Since
the dimension time is ignored in the request, the corrosion
values is aggregated on the t,ime dimension. The answer to
the above request, is obtained by summing the corrosion
level values over all time values for each combinat,ion of the
other category attributes.

Efficient methods of perrorming transposition and
aggregation are the keys to have an efficient SSDB system to
support data analysis. Since most large summary SSDBs are
typically compressed, efficient transposition and aggregation
methods directly over compressed data without first
drcompressing are important.

Note that transposition and aggregation operations are
closely related. An aggregation operation on attribute A can
be realized by first transposing A from its original position
to the right of the rightmost category attribute in the dat.a-
base, then the corresponding summary attribute values are
aggregated (typically by simple arithmetic operations such
as sum, weighted average, etc.). For example, to collapse
the temperature dimension from the database involves tran-
sposing the attribute to the right of the time attribute, then
the corrosion values are aggregated. In this paper, we
describe several efficient techniques for performing transposi-
tion on compressed summary SSDBs. The results obtained
can be extended to the aggregation operation mentioned
above.

In section 2, the related area is surveyed and in section
3, some background information about compression is given
for the rest of the paper. In section 4, description and
analysis of four transposition algorithms are given. In sec-
tion 5, a decision procedure is developed that will select the
most appropriate algorithm for a given transposition
request. Section 6 describes our implementation effort and
section 7 summarizes the paper and draws some conclusions.

3. Related Work

Almost all SSDB management systems (such as [Turner
et a1.791, IhfcCarthy et al.82), ISAS79)) perform transposition
over compressed data by first decompressing the data, then
transposing the full (typically very sparse) cross-product,
and finally recompressing the database. For very large
SSDBs, the user may have to wait days or even weeks for
the operation to finish. What is needed is algorithms which
manipulate compressed data directly.

Several researchers ([Epstein791 and [I<lug82]) have
tackled the problems of processing aggregates in the rela-
tional database context. The reported techniques are not
apphcable to summary SSDBs since no compression is
assumed on the databases and the emphasis is on query
optimization.

[Floyd721 gives a very interesting transposition alge
rithm for dense square matrices residing on disk. Given a
matrix or size P by P, the algorithm uses 2 buffers of size P
each to transpose the columns ol the matrix to rows. Since
the matrix is not compressed, a mathematical formula is
given to decide where each data item should be moved. The
algorithm requires I/O operations in the order of
0 (P lo&g).

[Tsuda et al.831 extends Floyd’s algorithm to handle
rectangular matrices (still Z-dimensional). The method is to
divide the matrix into a. multiple of square matrices (the
last matrix may have to be padded with nulls to make it
square) and Floyd’s algorithm can be applied on each. The
algorithms presented in this paper have the same order of
l/O performance as the algorithms presented in (Floyd72)
and [Tsuda et a1.831. But our algorit.hms can work on
compressed multi-dimensional databases.

4. Compression of SSDBs

In this section, the concepts and terms of the compres-
sion methods we use are introduced. They formulate the
background ror the algorithms in the next section.

Summary SSDBs such as the one displayed in Figure 1
have a great deal or redundancy in the values of the
category attributes. In many databases all possible
combinations of the category attributes (i.e., the full cross-
product) exist. In such cases, each value of a category attri-
bute repeats as many times aa the product of the cardinali-
ties of the remaining category attributes.

A method which eliminates the need to store category
attributes is used. This method stores the list of distinct
category attribute values of each attribute once. Then, each
category attribute can be used to form one dimension of a
multi-dimensional matrix. For each combination of values
from the category attributes, one can compute the appropri-
ate position in the matrix. A well-known algorithm (called
array linearization) provides such a mapping. This method
transforms a query on the category attributes into a compu-
tation or D logical position in a linearized matrix. Array
linearization is reversible in the sense that given a position
in the matrix, there is a unique combination of category
attribute values identifying it (this process is called reverse
array linearization).

Summary attribute values can be quite sparse. As an
example, refer to Figure 1. Suppose that temperature does
not have efl’ect on certain type of material. then in the cor-
rosion column there would be the same value in consecutive
positions for ali the acidity, salinity, and time. Here a
compression method called header compression ((Eggers &
Shoshan%O\) is used to remove the repeated values by a
count and provide efficient access to the compressed data.
This method makes use of a header which contains the
counts of both compressed and uncompressed sequences in
the data stream. The counts are organized in such a way as
to permit a logarithmic search over them. A B-tree is built
on top of the header to achieve a high radix for the loga-
rithmic access. In addition to the header file, the output of
the compression method consists of a file of compressed data
items, called physical file (the original file, which is not
stored, is called logical file). Two mappings are provided
by the compression method, one is called /orward mapping,
which computes the location in the physical file given a posi-
tion of the logical file. The other mapping (called backward
mapping) provides the physical to logical direction. These
mappings can be performed in logarithmic time because of
the existence of the header. For a more thorough discussion
of the header compression method, refer to the original
paper.

To make the description or the algorithms more con-
crete, we assume that each summary attribute or the data-
base has been compressed using the header compression

-305-

scheme. But an important note is that the algorithms are
general in the sense that they can be applied to databases
that are compressed using the general class of methods
called run-LengrA encoding scheme ([Aronson77]), where a
repetit.ion or dat.a items is replaced by a count and a value
of t,he data item. Header compression method is just. a vari-
ation of the run-length encoding scheme. Also, we assume
that the category attributes are compressed away by array
linearization as mentioned before.

5. Transposition Algorithms

In this section the four transpositions algorithms will
be described in detail. Below the main idea and the applica-
bility of each algorithm will be briefly highlighted. The
description sections below provide more details for each
algorithm.

The first algorithm is a “general” algorithm in the
sense that it can be used in all situations. First, the physi-
cal database is read, and for each data item, a “tag” is com-
puted and stored with the data item on disk. A tag is the
logical sequence number for the data item in the transposed
space. The second step involves sorting the tag and data
item pairs in ascending order of the tags. After the sorting
is done, the tags associated with the data item are dis-
carded. As the tags are stripped, the necessary headers for
the data items are generated and these headers and the data
items represent the result of the transposition.

The second algorithm performs the operation in main
memory in one pass. This is feasible in the event when the
transposed subspace is small enough to fit into main
memory. The main idea of the algorithm involves scanning
the physical database once, and employing the reverse array
linearization to find the proper slot for each data item in the
memory buffer. A compression algorithm will then run over
the data in memory and the result is stored in compressed
form on disk.

For the case that the transposed subspace is too large
to fit in main memory, a third algorithm can be used. The
algorithm takes advantage of the situation when there are a
small number of large fragments or transposed subspace that
are already in the right position. The algorithm involves the
merging of these fragments, and compressing of the result.
This algorithm is used instead of the first algorithm ir the
number of fragments is small. A more quantitative treat-
ment is given in a later section.

A fourth algorithm takes advantage of the situation
when the cross-product of the cardinalities of the transposed
attributes are relatively small and they are moved as a
group. In this situation, N buffers are used to store the
temporary result of transposition where N is equal to the
product of cardinalities of the transposed at.tributes. This
algorithm is slower but not as memory intensive as the
second algorithm. But when applicable, it offers better per-
formance than the first and third algorithms.

The algorithms are listed in the appendix. For the rest
of the paper, we will use the following symbols for the
relevant compressed database parameters:

N: size of compressed summary data file
M: number of category attributes.
W: number of bu!Ters.
B: size of buffers and blocks.

5.1. Algorithm GENERAL

5.1.1. Description

This algorithm assumes W buffers each with size B are
available, Datta from CSF are read into the bu8ers. For
each data it.em in each buKcr, the rollowiug is donr: Bark-
ward mapping is performed to obtain the logical position in
rhe original category attribute space; a reverse array bneari-
zation is computed to recover the values of the attributes;
and finally a new logical number in the transposed space is
computed using the array linearization operation. This new
logical number (called a “tag”) is then stored with the data
item in the bufier. An internal sort is performed on each of
these buffers with respect to the tags of the data items. The
sorted data items in these buffers are next merge-sorted into
a single run and written out to disk along with the tags.
This process is repeated for the rest of the blocks in CSF.
The runs of data items and their tags are next merged
using, again, W buffers. A new header file is constructed for
the transposed file in the final pass of the merge sequence.
Also, the tags associated with the data items are discarded
in this pass. The file produced containing just the (shuffled)
data items is the new transposed CSF file.

5.1.2. Analysis

5.1.2.1. Block Accesses

Algorithm GTRANSPO has two major parts as far as
I/O activities are concerned. The first part is where all the
compressed data is read and sorted by the new logical posi-
tions using W buffers. The result of this part is a set of
sorted subruns. The second part of the algorithm merges
these subruns and compresses them in the last pass of the
merge using W buffers. The more precise I/O behavior of
this algorithm is summarized as follows.

The reading of the original compressed file and writing
out of the sorted subruns require 2 [N/B1 block accesses.
The second part of the algorithm requires the merging of the
[N/B/11/1 subruns using W buffers. Hence there are

logw [N/Bl-1 passes over the data. Here a buffering
scheme is used so that in the odd (even) pass, block reading
is done from the first (last) block to the last (first) block.
One block can be saved from reading and writing by keeping
the first or last block in memory to be used by the subse-
quent pass. Therefore, there are

2(rrv/~l-1)x(~cwV+)

blocks to read and write.

Finally, the original header file has to be read to com-
pute the logical number and new header file needs to be
built, hence we have N. blocks to read and N. blocks to
write. Therefore, the number of block accesses is

2(iogw N/B X([N/B]-l)+l)+ 1
5.1.2.2. CPU Cost

In the first part of the algorithm, for each value in the
summary data file, we need to perform one reverse array
linearization and one array linearization. There are also
kV/Bi blocks, each with size B, to sort and [N/E/W1

merges, each with W runs of size B, to merge.

An array linearization operation requires
2(M-1)

-306-

multiplications and additions.

An reverse array linearization operation requires
2(M -1)

divisions and subtractions.

To sort a block wit,h size B requires
B log2B

comparisons.

To merge H’ runs each with size I? requires
WB log, w

comparisons.

The total number of cpu operations, therefore, for the first
part (steps 3 to 17) is

4N(Af-I)+ [N/BlX plog,B]+ [N/B/Wjx [WBlog,w’1.

In the second part of the algorithm, we need to perform

I
log,. N/B

1
-1 iterations where each iteration involves the

merging of [N/B/w~ 1 runs each with size W’ B Thus, in

the second part,

(~~gwN/B]-l)x IN/BIW~X [w~log,w]

comparisons are needed.

The total number of cpu operations or GTRANSPO is there-
fore,

N x(4(M-l)+ log,N I 1).

5.2. Algorithm MTRANSPO

5.2.1. Description

This algorithm requires a buffer large enough to hold
the subspace from RIO to Ry. The algorithm steps through

the non-transposed portion of the database, i.e., the sub-
space from R, to R,,,. For each “point” in this fixed space,

transposition is performed as follows. Data is read in one
block at a time. Tags are computed as described before.
Each data item is stored into the burer using the
corresponding tag as an index. When the subspace is
exhausted, headers are generated and stored and the buffer
is written out. This represents the result of partial transpo-
sition under this fixed “point” of the non-transposed space.
These partial results are accumulative in the sense that they
can be concatenated to form the final transposition result
without any more passes over them. The reason is that the
non-transposed portion of the space is stepped through in
the same order that the original data is stored, i.e., the
rightmost index is varying the fastest.

5.2.2. Analysis

Algorithm MTRANSPO requires the reading of the ori-
ginal summary data and writing of the resulting transposed
summary dat,a file. Also, the reading of the original header
file and writing of the new header file are needed. Jlence,
the total J/O cost is

The cpu cost of MTRANSPO is for each value in the sum-
mary data file, the cost for performing an array linearizat.ion
and a reverse array linearization. Hence, the number of cpu

operations is simply

4N(M-1).

5.3. Algorithm STRANSPO

5.3.1. Description

This algorithm takes advantage or the situat.ion where
there are a small number of large fragments of transposed
subspace that are already in the right position. As a result,
no sorting is required on the fragments and the merging is
needed on a smaller number or sorted runs.

As an example, consider Figure 2, where two examples
or transpositions are shown on a file with four category
attributes (called A, B, C, D). The LP columns represent
the logical numbers or each row of the category attributes.
The first example moves the attribute B from the second
column to the right of D ((b) or Figure 2). Notice that the
LP column of (b) contains 2 sorted runs (the cardinality of
B) each with 6 (the product of the cardinalities of C and D)
elements in it. The second example exchanges columns B
and D. Again, notice that the LP column of (c) of Figure 2
where there are 6 subruns (the product oJ’ cardinalities or A,
C and D) each with 2 (the cardinality or D) elements. These
phenomena are generalized into the lemmas below, and for
space reason, the proofs are omitted.

Lemma 1.

IIR, ..’ R,-, Ri R,+, . Rj Ri+, . . RM+
R1 “. Ri-lRi+l ‘.. Ri Ri Rj+l ... RY,

then

(The symbol “d” is read as “is to be transposed to”)
(1) The number of subruns = 1 Ri 1 ;
(2) The length of each subrun = 1 R, 1 X 1 Ri_, 1

XIR~+~~X.-.XIRMI.
(3) The subscripts of the boundary or each subrun are

r, . ri-,11 1

r, q-,21 1

r, ri-,ti 1 1

where Ri = { 1, ki}, r,,, is in R, for m=l to i-l.

This lemma summarizes the patterns or transposition
involving the movement of attributes to the right. It
presents the expected number or subruns, the length or the
each subrun and the boundary of each subrun in terms or a
single attribute being transposed to the right. Generalization
or this lemma involving the transposition of a subspace or
attributes is straightforward.

Lemma 2 below presents the pattern of transposition
when two attributes are exchanged in their category attri-
bute space. Again, the generalization of this lemma to more
than one attribute is used in our implementation.

Lemma 2.
If R 1 . Ri-1 Ri Ri+l . Rj-l Rj Rj+l RM -+

R, ... Ri-r Rj Ri+l Rj_1 R; Rj+l Ran,
then
(1) The number of subruns = I R, I x . x I Rj., I ;
(2) The length of each subrun = (Rj (x x I R, (;
(3) The subscripts of each subrun begins at

r, rim11 1

-307-

where, r, is in R, for m=l to j-1.

The key step of the algorithm STRANSPO is to use
these two lemmas to compute the number of subruns and
the boundary of each subrun. After that, it is basically a
merge sort algorithm for SNUM subruns using W buEers.
The first pass over the dat.abase involves construcling the
tags for each data item as before. The final pass of the algo-
rithm discards the Lags and header counts are generat,ed
similar to the first. algorithm.

5.3.2. Analyaia

5.3.2.1. Block Accesses

The I/O performance of STRANSI’O is based on the
number of subruns (SKUM in the algorithm). Since there
are SNUM subruns needed to be merged and there are W
buffers, the number of passes required to go over the [N/B1

blocks of data is
1
logw SNUM

1
This plus the reading and

constructing of header files brings the total of blocks
accesses to be:

2(r log,,, SNUM x([N/B l-1)+1)+ 1
Note the same buflkring scheme mentioned in GTRAN-

SPO is used to save one block of I/O per pass.

5.3.2.2. Cpu Cost

The cpu performance of the algorithm is similar to
GTRANSPO except that there is no need to sort the data in
the buffers and inst.ead of having [NIBI runs to merge, we
have SNUM runs. The total number of cpu operations,
therefore, is equal to:

N x(4(M-I)+
r
log,SNUAf

1
).

5.4. Algorithm LTRANSPO

5.4.1. Description

This algorithm requires memory space to hold N
buffers where N is the size of the transposed subspace.
Unlike the algorithm M, where space is required to hold the
entire subspace from the leftmost transposed attribute (RID)

to the rightmost attribute of the database (R,), this algc-
rithm requires bu!Ter space for subspace starting at Rio to

Rjr the rightmost transposed attribute. Similar to the alge
rithm M, the non-transposed subspace is stepped through in
the row-wise fashion. For each data item, the reverse array
linearization ,operation is performed to identify the correct
buffer to which the data item belongs. This algorithm also
requires N temporary files to store the overflowed buffers.
These N temporary files are merged and header file gen-
erat,ed when the original data file is exhausted.

Two general cases of the algorithm are present.ed in the
section below. These two cases are distinguished according
to the transposition direction of the group of transposed
attributes. The first and second cases represent respectively
the left and right direction movement of a group of attri-
bu tes.

Assume the additional input parameter D, which
represents the number or buffers needed in the algorithm.
The value of D can be computed as below:

D= 1 Rj 1 x x 1 Rj+i 1 or I Ri+,,, 1 x x I Rj I.

Algorithm LTRANSPO recognizes the following t.wo situa-
tions.

(l)R, Rim, Ri (Rj Rj+k) Rith+, Rn, -
R, “’ Ri_, (Ri Ri+,)R; R,_I Rj+~+l RY;

(2)R,. ” R,.,(R, “. R,+k)R;,k,, ” R, Rjt, ” I?*, +
R, .‘. L Ra,,,, R, (R; ...Ri+k)Rj+l ... RM;

6.4.2. Analysis

The number of l/O required is equal to 4 times the
toral number of blocks of the dat,abase. The reason is that
the temporafy files haye to be read and concatenated into a
single file. Also, there may be up to kd more blocks to write
to disk when the bulfers are not full but the data stream is
exhausted, where k is equal to product of the non-
transposed space (i.e., from R, to R;-,). This plus the read-
ing and constructing of the header file bring the total of I/O
operations to

4 TN/B~+ T I 1 N”+Nn +kd.

The number of cpu operations required is just

2N(M-1)

since only N reverse array linearization operations are
needed.

6. Comparing the Basic Algorithms

In this section a partial order among the four algc+
rithms is constructed in terms of I/O and cpu cost. In the
following observations, the symbol “>>” is defined as a
short hand notation for “is more expensive than”. Also, the
algorithms w,ill be referred to by their first letter.

8.1. Observations

Observation 1. G >> M, S >> M, and G >> L.

Justification.

(1) G >> M.

The block access difference between G and M is

2((rN/Bl-1)x(~wwNI+)).

Since we are interested in very large databases, typically
TN/B 1 > W, thus, IO(G) > IO(h4).

The cpu time difference is

N log,N

which is > 0. Hence CPU(G) > CPU(M). Therefore we have
G >> M.

(2) S >> M.
IO(S) - IO(M) = 2(rN/Bi-l)(logwSNCWI)

Generally, SNUM > W and rN/Bl>l, thus IO(S) >
IO(M).

CPU(S) - cpu(h1) = N(log,SN(lM)>O

CPU(S) > cpu(M). Hence (2) is justified.

-308-

(3) G >> L.
IO(G) - IO(L)=S((logw [N/Bl-?)([N/B+1)-(kd+2))

Since [W/B1 is typically murh larger than II’,k, and d, we
ha\.?

log,, [N/131> ‘d-l2
r/\:lH1-12 Observation 3 L >> hl.

Thus IO(G) > IO(L).

cpu(G) - CPU(L) = N(?(Af -I)+ po,,N]>O

IIenre we have (3)

Observat.ion 1 gives a partial order of preference in
terms of performance. But the memory requirements of hl
and L should be import.ant considerat.ions. hl requires
memory space equal to the entire full subspace from the left-
most attribute to be transposed to the rightmost, attribute
of the database. L requires memory space to hold D bufiers
where D is equal to the size of the subspace bounded by the
leftmost. and rightmost attributes to be transposed. In very
large databases, hl or L may not be applicable for transposi-
tion requests which exceed the available memory in the user
environment. In such cases, either G or S should be used.
A decision procedure will be described to choose the best
possible algorithm for a given transposition request.

Observation 2

(1) If log,SNUM > .%+2 then S >> L

else L >> S.

G.
(2) If [A~ /B ~>SNW~ then G >> S else S >>

Justification.

(1) We know ‘that

IO(S) - IO(L) = 2((log, SNUAl-2)([N/B]-1)-(kd +2))
and,

cpu(S) - CPU(L) = N(2(A4-l)+log,SA’LIAf

= 0 (N log,SA’UAf)>O

If the condition of (I) is true, then S >> L. Otherwise,
IO(S) - IO(L) is -O(NlogWSNLTA4). Since the diRercnces of
I/O and cpu times are the same order, the I,!0 cost. should
be the more dominant consideration, hence L >> S in this
case.

(2) \Z’e also know that

IO(G) - IO(S) = 210gW $$ rh’ /B l-1).

and,

CPU(G) - CPU(S) = N log&&>O.

IT [N/B] > SNClAf , then G >> S. Otherwise, the savings
of cpu time of S over C arc not enough to offset the extra
block arcrsses of S over G, hence we have S >> G in this
situalion.

Int,uitively, the perl’ormance of S depends very much on
the value of SNUM. As a rule or thumb, algorithm S is

attractive if the value of SI\‘Uhl is small. Since a small
SI\‘\$l value will indicate long subruns, as a result, less
passes will have to be done over the data. Observalion 2
gives the formal criteria of choc&ng between S and G a.~ weI1
w between S and L.

Justifirat ion.

IO(M) - IO(L) = --(? b’/Bi+kd)<O.

cpu(hf) - CPU(L) = ZN(Af -l)>O.

Similar to the justification of (2) of Observation 2, L << hl
overall.

6.2. A Select Procedure

Below a decision procedure is given which is based on
the three observations above to select the cheapest transpe
sition algorithm.

Algorithm DECIDE.

IF available memory satisfies hf THEN select hl
ELSE IF available memory satisfies L

and log,, SNlmf > kd +2
-lFp-Fl

+2 THEN select L

ELSE IF rN/B1>SNUAd THEN select S
ELSE select G.

7. Implementation

All four transposition algorithms have been imple-
ment.ed using C in a VAX/VhlS environment. The Obser-
vations given above have all been experimentally validated.
These algorithms and the above DECIDE program are now
an integral part of our experimental SSDB management sys-
tem AllCSUM (j\Vong 6c LiSG]).

8. Summary and Conclusion

Transposition is the dominant operation in many
SSDBs. In this paper, a collection of eRicient transposilion
algorithms have been described and analyzed. These algo-
rithms operate directly on compressed data without the need
to first decompress them. The methods proposed are appli-
cable to databases that are compressed using the general
method or run-length encoding. A decision procedure is also
given to select the most efficient algorithm based on the
transposition request, available memory, as well as the data-
base parameters. Formulas have been developed which iden-
tify the required memory space, the length of the subruns
and the number of expected subruns. The algorithms have
the same order of I/O performance as that of [Floyd721 and
(Tsuda et al.831 where only dense 2-dimensional matrices are
dealt with. The algorithms presented can operate on
compressed multi-dimensional databases. Since aggregation
operations can be developed on top of transposition opera-
tions, the result of this paper can be applied directly to
ef%ent aggregation algorithms on compressed data.

In conclusion, direct manipulation over compressed
data is an important concept where great efficiency can be
achieved. Algorithm need to be developed and analyzed for
operators on compressed data. Transposition is just one
(and important) such operation in this direction, \+‘e are
now researching on other operators such as searching, aggre-

-309-

gation, and other higher level statistical operators on

compressed data.

Acknowledgements

\\‘e would like LO thank our collragur~ Frank Olden

and Doron Rotem for their input to the problem and Arie
Shoshani for his valuable comments Lo the paper.

Appendix

Algorithms In this appendis, the algorithms are

described in a pseudo programming language. 1Te will use

the following noLations for the relevant compressed database

parameters:

CSF: Compressed summary data file.

SIlF: Summary data header file.

C[i]: Cardinality of the itA category attribute, i=l to

M.
N: size of compressed summary data file.

M: number of category attributes.

The following parameters are assumed to be available for

each transposition request:

Also, routines that perform the backward mapping

from the compressed physical file to the logical file, array
linearization, and reverse array linearization are referred to
respectively BMAP, LIN, and REVJIN.

W: number of buITers.
B: size of buffers and blocks.
A(i]: Transposition assignment for category attri-

bu te i, i=l to M.
E.g., A(51 = 3 implies that the 5’* category

attribute is to be transposed to be the 3”
category attribute.

(I) FOR i=l TO hl DO

1;; FF$l 7 WI4
,=I TO rN/B/lYl DO

;i;
BEGIN

FOR j=l TO W DO

(6) BEGIN

(7) read ((i-l)‘\\‘+j)th block ol CSF into bulTer[j);

[ii
FOR each value v in bullcrlj] DO

BEGIN

;r;;
looh up v’s logical position using BMAP;
compute subscripts using REVJJN

and store to array I;

03 reassign z according to array A;

(13) compute new logical position using z and NC;
and store with Y in butler/j];

I;:;
END

sort bufcrlj] in order of logical positions;

(IG) END

(17) mergr the W runs in buflerlll,....buflerI\\‘) into a single run,
(il (h’/B1=\2’, ralcula~c header count5 and write to new header file)

(18) END

(IQ) FOR i=I TO

(20) merge the N/B/l+”

(Xi-[!

““i-r~~“!,:.d~“.,e,,,,,, or (20),

log N/Q 1. ,,romputr headers and wit? to new head?r file)

Algorithm GTRANSPO

Let I, denote the index of the leftmost attribute Lo
be transposed.

(1) FOR i-1 TO hI DO
(2) NCilj=C(A/l]],
(4) FOR each clement in crms product R,. , RJO-, in ascending ordrr D(

(5) BEGIN

w IF buflerin is empty THEN read B block of CSF CO buflerin,

(9) FOR each value v in buflcrin DO

(‘0 BEGIN

(11 Id up v*s Iogiral pocilion using RfjAJ’,
(I? compulr the subscripts using REVJIN

03)

and store ti array z,
rea.wgn z according to array A;

(14) rompute the new logical position p us,ng LIN
with z and AC as parameters;

(15) buflerjp I=\.;

I::/
END

wile values in bulier LO result file, and calculate the
header counts and write to the new header file;

(lg) END

Algorithm hiTRANSP0

(1) FOR i=l TO M DO
(2) IXJ[il=C]Ali]];
(3) SNUAf=number of subruns using Lemmas I and 2;
(4) FOR i=l TO rs~~~~f/fi’l DO

BEGIN
FOR j=l TO W DO

compute the ((i-I)*W+ j)” subrun’s boundary
and compute tbe boundary’s brew logical position;

M’HlLE one of the ((i-1)‘,,‘+1)“,((i-l)~1V+Z)“,
. . . . and ((i-l)*lV+H’)” subsuns is not at end DO

BEGIN
IF buUer[j] is empty and ((i-l)‘IV+ j)” subrun

is not al end (for j=l (0 “1’) THEN
BEGIN

read B block of ((i-l)s\i’+ j)1’ run LO buflerjj];
FOR each value Y except boundary in bufIcr]j] DO

BEGIN
look up v’s logical position using BhikP;
compute subscripts using RE\‘JIN

and st.xe LO xrray z;
reassign z according to array A;
compute the new logical position using LINEAR

and store with v in bufTer[j);
END

END
merge the W runs in the bufTera into single run;

E~DISNmf /WI==-1. compute beadera and wile to new header file.)

END

Algorithm STRANSI’O

-310

(1) FOR each combination I,. I;-,
in the cross product of R, I?.-, increuingly DO

(2) BEGIN

(3) rrnd onr blorl. of C?F into boflrrin;

(4) FOR each value Y in bufferin DO

(5) BEGIN

(6) looL up v’s logical position using BAlAP;

(7) compnk subscripts using RF\‘JJN
and sport lo arre.y z;

(6) bufkrl:, , ,I,+,]=v
(or buflrr;i..,,, z, j=v,;

(9) IF rhis bullcr is full THEN
write lo file 7SF Izi, , I, +,]

(or TSf-(4,,,,. , z,l);

[::I Fz?i=I TO D DO

(I?) IF buff:er[nl is not empty THEN
write lo 79 Ii];

(13) FOR each ti xi+, (or I;,,+, zi) increasingly DO
read TSF[ri. , I~+,] (or T.%=(I;+,+,. , z,]),
write sequentially lo result file;

compute header counts and write to new header file;
(14) END

Algorithm LTRANSPO

References

Shoshani, A., “Statistical Databases: Characteristics, Prob-
lems and Some Solutions”, Proc. 1982 Interna-
tional Conference on Very Large Data Bases,
h,fexico City, Mexico, Sept., 1982.

Shoshani, A., Olden, F., Wang, H.K.T., “Characteristics of
Scientific Databases”, Proc. 1984 International
Conference on Very Large Data Bases, Singapore,
Sept., 1984.

Turner, hf. J., Hammond, R., Cotton, F., “A DBMS for
Large Statistical Databases”, Proc. 1979 Interna-
tional Conference on Very Large Data Bases, Rio
de Janeiro, Brazil, Sept., 1979.

SAS Institute, Inc., SAS User’s GUIDE, 1979 Edition,
Raleigh NC.

McCart,hy, J., Merrill, D.W., hlarcus, A., Benson, W.H.,
Gey, F.C., Holmes, H., “SEEDIS: The Socie
Economic Environmental Demographic Informa-
tion System”, in A LBL Perspective on Statistical
Dafobases LBL Technical Report 15393, Dee,
1982.

Eggers, S., Shoshani, A., “EtTicient Access of Compressed
Data”, Proc. 1980 International Conference on
Very Large Data Bases, h$ont,real, Canada, Sept,
1980.

Aronson, J., Dala Compression - A Comparison oj Atethods,
Institute for Computer Sciences and Technology,
National Bureau of Standards, Washington,
D.C., 1977, pp 3 -5.

Klug, A , “Access Paths in the Abe Statistical Query Facil-
ity”, Proc. 1982 SIGMOD Conrerence, Orlando,
Florida.

Epst.ein, R., “Techniques for Processing Aggregates in Rela-
tional Database Systems”, Electronics Resrarch
Lab. UCB,‘ERL hl79/8, Univ. of Calif., Brrkelry.

Klug, A., “Abe -- A Query Language for Constructing
Aggregates-By- Example”, kvorkshop on Statisti-
cal Database Management, Menlo Park, Calif.,
Dec. 1981.

Tsuda, T., Sato, T., “Transposition of Large Tabular Data
Structures wit.h Applications to Physical Data-
base Organization”, Part I, Acta Informat.ica 19,
13-33 (1983), Part II, Acta Inl’ormatica, 19, 167-
182 (1983).

Batory, D.S., “On Searching Transposed Files”, AChi TO
DS 4, 531-544, 1979.

Floyd, R.W., “Permuting Information in Idealized Tao-
Level Storage”, Complerily 01 Computer Compu-
lotions R. Miller and J. Thatcher, editors, pp
105-109, New York, Plenum Press 1972.

\vong, H K.T., Li, J. Z., “An Experimental SSDB system
h?lCSUhl”, Working document.

rempture

loo0
loo0

”
I
I
”
I
”
”
n
”
n

hCidi1y

100

loo
”

”

”

c.8

*

”

”

I

”

”

”

”

”

200

saltily

1
1 "
.I
n
"

2
2
.*
.,
.I
,*

kmxion

.7
.8

1.2
15
1.7
23

-8
LO
1.2
1.5

5:

Multi Factor Parametric ~riment

Fig. 1

ABCDLP AC D B LP AD C B LP

I I 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 Y 1 1 2 1 3 1 2 1 1 7
1 1 ¶ 1 I 1 t 1 1 a 1 1 a 1 3
1 1 t ¶ 4 1 2 2 1 7 1 ¶ 2 1 a
1 1 a 1 s 1 a 1 1 m 1 1 8 1 I
1 1 a 2 I 1 8 I 1 11 1 2 a 1 11
1 1 1 1 7 1 1 1 1 I 1 1 1 8 f
1 2 I 2 a 1 1 I 1 4 1 I 1 1 8
1 a I 1 * 1 ¶ 1 s 0 1 1 a s 4
1 9 1 2 10 1 I 9 t 8 1 s ? I 10
I s a 1 11 1 8 1 s 10 I 1 a I a
1 I a 9 12 1 8 s s 12 1 2 I I 12

(4 (a) (4

W-1. PI-T. ICI-J. d PI-2
LP-l&al pxilion.

Fig. 1

-31 l-

