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Abstract 

Because of its small set of data types, the rela- 
tional model is constrained to simply structured 
data management tasks. For more advanced applica- 
tions like engineering databases in the CAD/CAN area 
even a powerful extension like the NF' model is in- 
sufficient, yet: Important concepts like order and 
duplicates are not supported appropriately, and the 
free usage of composite items is prohibited by in- 
herent asymmetries. 

These drawbacks can be removed by a data model which 
suooorts atomic data, lists, multisets, and tUpleS 
in"an orthogonal fashion. The necessary operations 
can be provided in an SQL-like framework. Compared 
with existing approaches, the expressive power could 
considerably be increased; nevertheless, the pro- 
posed SQL dialect has not become more complicated 
for comparable tasks, but more consistent and easier 
to understand. 

1. Introduction 

The classical relational model requests all data to 
be in first normal form (1NF) /Co72, Da81/. While 
this requirement considerably simplifies the data 
model. it is not a necessity /U180/. In the past, 
several proposals have been made for data models 
supporting non-normalized relations /BFP72, Ma77, 
Ko80/. Often, they arose in environments where the 
simplicity of the relational model was perceived as 
being too restrictive. 

The NF' model /SP82/ was an attempt to provide the 
foundations for svstems meeting these requirements. 
Its algebraic aspects have be& addressed in nume- 
rous naoers (e.g. lAB84, SS84, FV85, Jae85/). Sui- 
table-high livei lingua-es have been proposed, even 
independently of the NF' model /BFP72, SH77, SL81/; 
others fSP82, Jac85, RKB85/ have been developed in 
the spirit of SQL /CAE76, IBM81/. 

Compared with the classical relational model, the 
NF' approach provides better facilities in modelling 

jadvanced applications, e.g. the complex structure 
of engineering design objects. Similar to the rela- 
tional model, however, important aspects (e.g. vec- 
tors, matrices) are not adequately supported. In 
the past, requirements not covered by the basic mo- 
del have often been reflected in operational systems 
by ad-hoc add-ons. Contrary to that approach, we 
propose extensions of the NF* model fHHP82, PHH83, 
PTR5/ which consistently integrate further struc- 
tural concepts (section -2). On-this basis, desirable 
auerv operations can readily be identified (section 
$1, iol'lowing the example of existing database in- 
terfaces and of appropriate programming languages. 

These functional requirements can be met by a gen- 
eralized SQL interface, which is based on the or- 
thogonality of data sfructures and the transitive 
closure of operations and expressions. In section 
4 an applicative approach to DHL facilities (de- 
letion, insertion, assignment) is given. The DDL 
features matching the chosen data structures are 
presented in section 5. 

During the exercise of setting up the formal defi- 
nition /HHP82/ of an SQL like interface for the ex- 
tended NF' model, the definition tool /BJ78/ in turn 
influenced the language to be specified. Similar 
effects can be observed with other database language 
proposals lACO85, La84, ShpBlf. While their scope 
is even broader, our proposal shows how far the ev- 
olution of existing approaches can be stretched. 

2. Extended NF* Structures 

2.1. Relations with Relation Valued Attributes 

As originally proposed (e.g. /SP82/), an NF' re- 
lation is a set of (equally structured) tuples (or 
records), the fields (attributes) of.which contain 
either "atomic" values (e.g. numbers 
relations. The latter may be "flat" 

strings) or 
or NF' re- 

lations, in.turn. Obviously, classical "flat" re- 
lations are just a special case of NF' relations. 

Fig. 1 gives an example of an NF' relation with a 
two level hierarchy. 
l-82/1, 

As outlined elsewhere (e.g. 
structures like the REPORTS table are ad- 

vantageous with different respects: 

. Related information need not be split into dif- 
ferent tables (see Fig. 2). 

. Reports to be generated from databases often 
exhibit a hierarchical structure. NF' structures 
match this fact. 

. NF' structures readily capture 1:m relation- 
ships. 

2.2. Extending the Original Approach 

When real world facts are to be modelled, NF* 
structures as outlined above provide a great deal 
of freedom not available with the classical rela- 
tional model. Nevertheless, there are several draw- 
backs, as demonstrated below by a couple of 
observations. When taking a more general view of 
these findings, desirability of extended NF' struc- 
tures becomes obvious. 

2.2.1. Observations on Unary Tables 

As long as the number of attributes is greater than 
one, tables are quite handy to model collections of 
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Figure 1: .Table with unary and binary table valued 
attributes. "Inner" tables (also referred to as 
"repeating groups") need not be flat as in this ex- 
ample; key attributes are printed in bold face. 
(multiset: I..), list: <..>, tuple: [..I;). 

equallv structured items. With unarv tables. how- 
ever, ihe tuple level layer might be- undesiiable. 
Consider for instance the AUTHORS .attribute of the 
REPORTS table (Fig. 1). Having in hand some'AUTHORS 
tuple, one does not have the name value itself, yet. 
Instead, one needs a - redundant - intermediate ac- 
cess to the NAME level. This situation can be 
avoided by a more flexible model which allows for 
sets in gener81, not only for sets of tuples. 

With the AUTHORS column, another anomaly can be ob- 
served. Assume that this REPORTS table attribute 
contained foreign key entries representing tuples 
of an address table ADDRS not further to be detailed 
here. The question arises which of the following 
interpretations for an AUTHORS field is better jus- 
tified: 

1. A subset of the ADDRS table: 
2. A set of tuples with one field, the cohtknt of 

which replicates an ADDRS t'uple. 

Strictly speaking, none of these interpretations is 
exactly mirrored by the structures provided by the 
strict NF' model. To justify the fiist viewthe keys 

REP-NO KEYWORD WE I CIIT 

1179 Concurrency Contrcll 60 
1179 necove t-y 30 
1179 Distribution 
1189 String Search ::: 
1109 [or-matting 30 
1292 Ma tt1. Optimization 
1292 Garbage Cal lection 

Figure 2: To capture REPORTS information (see Fig. 
1) in lNF, 3 flat tables are needed. 

should be contained in a plain set rather than a 
unary relation. View 2 seems to be more precise than 
the first one but causes another problem since tuple 
valued fields (see below) are not admissible. 

2.2.2. Tuple Valued Attributes 

Modern programming languages allow for records with 
record valued fields. In the original NF' model, 
this can be simulated by table valued attributes 
with the additional constraint of having the cardi- 
nality 1. The alternative approach - tuple valued 
attributes - is superior since it is able to inher- 
ently capture that consistency constraint. 

2.2.3. Concept of Order 

Classical relational theory knows two types of com- 
posite items, ‘sets and tuples. It has no notion of 
lists, i.e. composite items, the elements of which 
ai-e arranged iti some order. Operational relational 
systems, however, are less puristic (see e.g. the 
LIKE predicate on strings /IBN61/ or the cursor 
concept for "long fields" /HL82/). Above all, how- 
ever, they provide facilities to specify the order 
in which the tuples of a query result are to be re- 
turned (thus violating the closure principle). 

To clean up this situation, a properly extended NF' 
model should comprise not only unordeted tables 
(sets of tuples), but also ordered tables (lists of 
tuples). In addition, lists should not mandatorily 
be composed of tuples; instead, any other type of 
list elements (see Fig. 3) should b‘e.supported. 

2.2.4. Set Concept Revisited 

In accordance with the homogeneity of relations, 
lists and sets of the extended NF* model are homo- 
geneous as welP. Different from sets, lists are 
ordered, and they allow for duplicates, while sets 
do not.. At this point, operational relational sys- 
tems deviate again from pttre theory, both for im- 
plementational reasons (suppression of duplicates 
is expensive) and application oriented requirements 
(suppression of duplicates may be undesirable, e.g. 
when performing statistics). 

Td make concepts more consistent, the notion of 
multisets /Kn71/ should be supported rather than the 
notion of sets'. Duplicate elimination, if required, 
can be supported by a generic function (cf. section 
3.3) which accepts both multisets and lists. 

2.2.5. Keys and Surrogates 

As in case of flat tables, keys serve two purposes: 
First, they uniquely define specific tuples of a 
table. Second, they establish relationships between 
tuples in one or more tables. The latter facility 
remains necessary in the NF' environment for dealing 
with n:m relationships (see e.g. /GP83/). 

With non-flat tables, the concept of keys exhibits 
some properties not to be observed for flat tables 
(see also Fig. 1): 

. Non flat. attributes (e.g. AUTHORS) may be in- 
volved in the set of key attributes. 

. Key attribute combinations may be defined at 
different levels (e.g. REP-NO at table level, 
KEYWORD at the level of the DESCRIPTORS repeat- 
ing groups). 

. The concepts "key" and fluniqueness" should be 
kept apart /SLgl/. 

-279- 



To establish references, the usage of surrogates 
/Co791 has been proposed. This proposal has both 
implementational and conceptual advantages /ML83/. 
Especially, references to tuples of table valued 
attributes (e.g. to DESCRIPTORS tuples as in Fig. 
1) are considerably facilitated; in addition any 
(sub-) object can be referred to by surrogate val- 
ues. 

2.3. Summarizing Extended NF2 Structures 

In Fig. 3, an attempt is made to visualize the dif- 
ferences between flat relations (a), strict NF' re- 
lations (b), and the structures of the cxtendcd NF' 
model (c). Other than (a) and (b), the concept of 
extended NF' structures is completely orthogonal: 
any aggregate type (list, multiset, tuple) allows 
any aggregate component type. Thus, the model covers 
not only the structures of the original NF' model. 
It also integrates the concepts of order and dupli- 
cates, and it allows for simple or nested multisets 
and lists. These additional features enable one to 
model concepts like text, vectors, matrices etc. in 
a natural way. 

(a) (b) 

RELATION 
4 

TUYLES 

ATOMIt VALUES ATOMIt VALUES 

Figure 3: Structural Concepts of Different 
(a) Classical relational model, (b) orig 
model, (c) extended NF' model. The arrows 
possible component types. Only (a) and 
restrictions on admissible outermost types. 

Models: 
;inal NF' 
indicate 
(b) have 

3. Query Facilities for Extended NF2 Structures (1) ( expr-1 1 variable E expr-2, boolean-expr 1 

The query language requirements follow quite na- 
turally from the structures discussed in the previ- 
ous section. When exploiting the syntactical 
resources of SQL, it is possible to 

and 

. cover these requirements to a surprisingly large 
extent, 

. consistently integrate the new operations cov- 
ering the structural extensions, 

. design complementary high level constructs in 
the spirit of corresponding genuine SQL ex- 
pressions. 

(2.1) SELECT expr-1 
(2.2) FROM variable expr-2 
(2.3) b'/!,'HERE boolean-expr 

or by a concrete query on table DESCRIPTORS: 

(3) (x.REP-NO 1 x E DESCRIPTORS, x.WEIGHT > SO) 

which reads in SQL as 

Fig. 4 summarizes the operations we consider neces- 
sary for appropriately querying extended NF' struc- 
tures. Many of them are an obvious consequence of 
the structures to be manipulated (e.g. list concat- 

(4.1) SELECT x.REPeNO 
(4.2) FROM DESCRIPTORS x 
(4.3) WHERE x.KEICHT > 50 

t* ena Ion, counting). Since they are familiar from 
programming languages or from query interfaces like 
SQL, they are not treated here in detail, but only 

Quite intentionally, the designers of SQL did not 
want to stress the analogy outlined above. However, 
in certain cases the "predicate calculus" view con- 
siderably supports understanding. Consider e.g. the 

Tuple-Specific Operations 
binary concatenation 
field access (6.1) 
projection (6,27) 

List-Specific Operations 
binary, multiway concatenation 
sub1 ist extraction 
accessing elements by s~lbscripts 

Multiset-Specific Operations 
intersect ion, set difference, 
binary union 
multiway union :Eli: 
set restriction (16.6) 

Conversion Operations 
ordering of’ multisets/l ists (24,251 
lists <---> multisets 
1NF <---> NF2 structures (17.18) 
material izing references (30) 

Duplicate Suppression 
I ists, multisets (18.7) 

Counting 
I ist, multiset elements (2’1) 

Arithmetic and Related Aggregation Functions 
Slllll. average, maximum, . . . 

Comparison Operations 
I ists, multisets, 
template matching (“wi Id cards”) 
strings nume ra I s 

Test Facilities 
(16.6-8,19.3) 

quantified expressions, 
bllilt-in predicates: 
uniqueness, undof irledness 

Explicit Constructors 
tuples, I ists, multisets (8.1,9.1,10.1) 

Implicit Constructors 
I ists, multisets (13.10) 

Figure 4: Query Operations Summary: Where possible, 
cross references to illustrative examoles are eiven. 
For operations not covered in this paper, re?er to 
/PT85, PHHEi3, or GP83/. 

along with examples illustrating other operations, 
especially those related to the most central feature 
of SQL, the SELECT-FROM-WHERE (or "SFW") construct. 

One remark on notation. When exposing the necessary 
SQL modifications, comparison with old style ex- 
pressions are necessary at some points. To avoid 
confusion, they will be printed in italics. 

3.1. Constructors 

One way of understanding SQL's SFW construct is to 
view it as another syntactical format of an implicit 
set constructor /BJ78/. The analogy is given by 
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famous query "Which employee makes more than his 
manager?". Using a stylized payroll table 

EMP-TAB (EMP-NO, MGR-NO, SALARY) , 

this query reads quite naturally as 

(5.1) SELECT outerloop_x.EMP-NO 
(5.2) FROM EiYP_TAB outerloop 
(5.3) WHERE outerloop_x.SALARY > 

g;; 
( SELECT innerloop-y.SALARY 

(5:6) 
FROM EHP-TAB innerloop-y 
WHERE outerloopx.HGR-NO = 

(5.7) innerloop-y.EMP-NO ) 

The usage of free variables is the key for avoiding 
ambiguities, not only in cases like (S), but also 
in processing NF' tables or lists and sets in gen- 
eral (13). Therefore, we enforce its use - at least 
for exposition reasons - and we stress this fact by 
the format of the FROM clause which binds free var- 
iables like outerloop_x: 

(5.2') FROM outerloop-x IN EMP-TAB 

So far, we have encountered not only an implicit set 
constructor, but also a rudimentary form of an ex- 
plicit tuple constructor, namely the expression list 
of the SELECT clause As a matter of 
fact, 

(e.5. 
in classical SQL, 

(2.11,). 
expr-1 nlways stands for 

a tuple constructor. With extended NF' structures, 
we need to be more explicit to avoid ambiguities. 
Consider the following "projection" on the REP-NO 
attribute of DESCRIPTORS: 

(6.1) SELECT x.REP-NO 
(6.2) FROM x IN DESCRIPTORS 

Does this expression denote a set of unary tuples, 
or is it just a plain set of numbers? As we think, 
the latter should be true. If we want a unary table, 
instead, we have to use explicit tuple constructors 
which are also a means to change the attribute name 
(details of field renaming and name inheritance are 
not discussed in this paper): 

(7.1) SELECT [ NUMBER: x.REP-NO ] 
(7.2) FROM x IN DESCRIPTORS 

Explicit tuple constructors are more than just a 
fall back for the degenerated unary case. Instead, 
they are an essential contribution to the manipu- 
lation of extended NF' structures. E.g., if one 
wants to retrieve a binary table from DESCRIPTORS, 
this is achieved by 

(8.1) SELECT [ x.REP-NO, x.WEIGHT ] 
(8.2) FROM x IN DESCRIPTORS 

If one writes (note: REP-NO and WEIGHT are both 
INTG): 

(9.1) SELECT < x.REP-NO, x.WEIGHT ' 
(9.2) FROM x IN DESCRIPTORS 

then the result is a multiset of lists, each having 
exactly two numeric elements. Finally, a multiset 
of 2-element multisets is requested by: 

(10.1) SELECT [ x.REP-NO, x.WEIGHT ) 
(10.2) FROM x IN DESCRIPTORS 

Expressions like (8) are to be understood as fol- 
lows: If the "input" (here: DESCRIPTORS) is a set 
or multiset of tuples ("unordered table"), the ele- 
ments may be processed in any order, thus producing 

an unordered result. In case of an ordered table, 
however, the table elements are processed in the 
predefined list order, the result being a list 
again. In any case, no attempt is made to suppress 
duplicates. By these conventions, the SFW construct 
is generalized to a generic expression which accepts 
both ordered and unordered input, thus supporting 
both implicit list and implicit multiset con- 
struction. 

The question is whether well established concepts 
like "joining" carry over to lists as well. We shall 
demonstrate it with a tiny example, which also shows 
that the SFW mechanism is applicable for lists or 
multisets composed of elements other than tuples. 
Let Vl and V2 be two numerical vectors: 

(11) Vl = < 1, 2, 57, (12) v2 = <lO, 5, 37 

By (13) we obtain a list (14) of pairs such that the 
first element is smaller than the second one: 

(13.1) 

I::::; 

(14) < 

Note that 
extending 
to lists 

SELECT <x, y7 
FROM x IN Vl. Y IN V2 
WHERE x < y . - 

<1,107, <1,57, Cl, 37, <2,107, 
<2, 57, <2,37, <5,107 > 

the use of free variables is the key for 
the applicability of the SFW constructs 
and sets of "non-tuple" elements. One 

should also note that the order of the FROM-list 
elements (13.2) is important, if lists are involved. 
If we had 

(13.2') FROM'y IN V2, x IN Vl 

instead of (13.2), the result would be different 
from (14), since - loosely speaking - ny" is in the 
outer loop, now: 

(15) < <1,107, <2,107, <5,107, <1,57, 
<2, 57, Cl, 37, <2, 37 > 

If uV1" and "V2" were multisets of numbers, (13) 
would return a multiset of pairs. In this case, the 
order of the FROM-list elements ((13.2) and (13.2')) 
would be irrelevant (traditional symmetry of join 
in case of (multi-)set operands). 

It is also possible to define the meaning of joins 
between lists and multisets. For details, the reader 
is referred to /PT85/. 

3.2. Nested Queries 

So far, we have not touched queries against typical 
NF' structures like REPORTS (see Fig. 1). As long 
as we need not "look into" non-atomic fields, the 
SFW construct - and some appropriate primitive op- 
erations - will cover most needs. However, addi- 
tional facilities are required to descend into 
nested structures. Nested queries, no longer subject 
to the restrictions of classical SQL, are a major 
means for that end. Consider e.g. the task of ex- 
tracting from REPORTS the REP-NOs together with 
their KEYWORDS of WEIGHT 30 (restriction and re- 
structuring at DESCRIPTORS fields level). In the 
query below, this is achieved by the subquery 
(16.2-4). The nested structure of the intended re- 
sult (including attribute renaming) is reflected by 
the structure of this nested query: 
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(16.0) SELECT 
(16.1) [NUM : report.REP-NO , 
(16.2) ITEMS: (SELECT y.KEYWORD 
(16.3) FROM y IN report.DESCRIPTORS 
(16.4) WHERE y.WEIGHT = 30 )I 
(16.5) FROM report IN REPORTS 

Certain DESCRIPTORS fields might not contain any 
tuple of the required weight (e.g. REP-NO 1292 in 
Fig. 1). In this case, the resulting ITEMS field 
would be empty. If we want to discard the associated 
report, an appropriate predicate on "report" is re- 
quired: 

(16.6) WHERE () f (SELECT v 
(16.7j -FROM y-IN report.DESCRIPTORS 
(16.8) WHERE y.WEIGHT = 30 1 

Syntactically, this predicate is similar to subque- 
ries in classical SQL (except for the fact that a 
table valued field is acted upon). 

Instead of the subquery style of (16.6-g), a quan- 
tified expression might be more attractive: 

(16.6') WHERE EXISTS y IN report.DESCRIPTORS: 
(16.7') ( y.WEIGHT = 30 ) 

The main message of example (16) is this: The lan- 
guage we propose has been designed such that the 
user can exactly specify the intended query result. 
Other proposals /SH77/ trade expressive power for 
syntactical simplicity. As has been demonstrated 
/Ha80/ for hierarchical structures, the price of 
simplicity is ambiguity. By restricting semantics, 
ambiguity can be resolved in different ways; how- 
ever, it is hard to decide which of them is prefer- 
able. 

3.3. Nesting, Unnesting, Grouping 

Compared with the classical relational algebra, two 
distinctive features of the NF* algebra /SS84, 
Jae85/ are the UNNEST and NEST operations. We will 
first show that the extended SFW construct is pow- 
erful enough to cover these operations, and then 
discuss the desirability of dedicated operations. 

An example of unnesting is the generation of the 
DESCRIPTORS table contents from REPORTS; if we did 
so "by hand", we would repeat - for any REPORTS tuple 
- the required top level information as often as we 
have tuples in the associated DESCRIPTORS field. 
This is in essence a Cartesian product which shows 
up in (17.4-5) below: 

(17.1) SELECT [ REP-NO : rep.REP-NO , 
(17.2) KEYWORD : desc.KEYWORD, 
(17.3) WEIGHT : desc.WEIGHT ] 
(17.4) FROM rep IN REPORTS, 
(17.5) desc IN rep.DESCRIPTORS 

This join operation is very efficient since one 
touches only once the information required for the 
intended result. The advantage over dedicated oper- 
ations /PHH83, RKB85/ is that the full power of the 
SFW construct remains available. 

While unnesting turns out as a special join opera- 
tion, the "inversetl operation (nesting) is covered 
by an appropriate nested query. Consider a projec- 
tion of REPORTS on the attributes REP-NO and DE- 
SCRIPTORS. By nesting, one can obtain this 
information from the flat DESCRIPTORS table: 

(18.0) 
(18.1) 

::i: t; 
(18.4) 
(18.5) 
(18.6) 
(18.7) 
(18.8) 

SELECT 
[REP-NO : Y , 
DESCRIPTORS:(SELECT 

FROM 
WHERE 

FROM 
y IN UNIQUE( SELECT 

FROM 

[KEYWORD: x.KEYWORD, 
WEIGHT : x.WEIGHT] 
x IN DESCRIPTORS 
x.REP-NO = y ) ] 

z.REP-NO 
z IN DESCRIPTORS ) 

In this formula, we first obtain (18.7-8) a (proper) 
set of REP-NOs from DESCRIPTORS. This set determines 
the number of non-flat tuples to be constructed in 
(18.1-5). While the REP-NO information (18.1,7,8) 
is provided by the the operation for duplicate sup- 
pression (UNIQUE), the repeating group itself is 
constructed by a subquery (18.2-5) directly ad- 
dressing the DESCRIPTORS table. 

Not regarding for this moment the question of sim- 
plicity, (18) illustrates the semantics of nesting 
operations. Especially, it indicates how to define 
nesting semantics in case of an ordered input table: 
If DESCRIPTORS were a list of tuples, then the or- 
dering of the top level result tuples were deter- 
mined by the semantics of the UNIQUE operation. 
Within the repeating groups, tuples would be ar- 
ranged according to the relative order they had in 
the input table. 

Like nesting, grouping also increases the number of 
hierarchical levels. The difference is that nesting 
restructures tuples, while grouping simply parti- 
tions the input, leaving the tuple structure un- 
touched. To further stress the difference, compare 
(18) with the SFW expression (lP), which specifies 
the grouping of DESCRIPTORS tuples by REP-NOs: 

19.0) SELECT 
19.1) (SELECT y 
19.2) FROM y IN DESCRIPTORS 
19.3) WHERE y.REP-NO = x.REP-NO) 
19.4) FROM 
19.5) x IN UNIQUE(SELECT z.REP-NO 
19.6) FROM z IN DESCRIPTORS) 

Like nesting, grouping can be applied both on or- 
dered and on unordered input. Evidence is given by 
(191, where DESCRIPTORS might equally well be a 
multiset or a list of tuples. Details can be deduced 
from (19) in analogy to the discussion on nesting. 

Examples (18) and (19) convincingly illustrate the 
expressive power of the SFW construct. Nevertheless, 
this construct should be complemented by dedicated 
GROUP and NEST operations for different reasons 
(compact notation, ease of use, query optimization). 
Following /RKB85/, nesting operations can be con- 
siderably boiled down when restricted to tables as 
in (18): 

120.1) NEST DESCRIPTORS 
,20.2) ON (KEYWORD, WEIGHT) AS DESCRIPTORS 

Having a GROUPing facility, (19) is rewritten as 
follows: 

(21.1) GROUP 
(21.2) x IN DESCRIPTORS 
i21.3j BY x.REP-NO 

Other than in (20), we use free variables here. 
Therefore, GROUPing is not restricted to tables, but 
may operate any list or multiset. E.g.9 the set 

(22) MS = ( 3, 1, 2, 5, 6 ) 
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of numbers may be partitioned into odd and even 
;y;;;fence classes (i.e. ( (1,5,3], (2,6) ]) as 

(23.1) GROUP 
(23.2) x IN MS 
(23.3) BY (x MOD 2) 

3.4. Ordering 

ORDERing is a generic operation which takes multi- 
sets or lists and returns a list, the elements of 
which are sequenced according to the order specifi- 
cation. Unlike NESTing and GROUPing, the ORDERing 
operation is beyond the possibilities of the SFW 
construct. 

The syntax of the ORDERing operation is designed in 
analogy to GROUPing. In doing so, we are able to 
order not onll,y tables 
or lists of anonymous 

1(124), but also multisets (25) 
elements: 

(24) ORDER x IN REPORTS BY COUNT( x.AUTHORS ) 

(25) ORDER x IN MS BY (x MOD 3) 

3.5. Projection 

It is the virtue of the SFW construct to allow for 
projection, restriction, and renaming within one 
operation. In case of plain projection, however, the 
operation is overpowered. Consider for instance the 
following projection on the attributes REP-NO, DE- 
SCRIPTORS, and KEYWORD: 

(26.1) SELECT 
(26.2) [REP-NO 
;;;X;; DESCRIPTORS: (&!fj:TN;y.KEYWORD] ' 

FROM y IN x.DESCRIPTORS)] 
(26.3) FROM x IN REPORTS 

Similar to NESTing (20) it would be sufficient, in- 
stead, to indicate the involved attributes /SH77/: 

(27) REPORTS*(REP-NO, DESCRIPTORS(KEYWORD)) 

Here, the right operand of the projection operator 
n*u is a template denoting a subschema of the left 
operand, which in turn may be a list/multiset of 
tuples. The left op;rfnd could also be a single tu- 
ple. In this case, l would return a tuple rather 
than a table. 

3.6. Joins via Surrogates 

Let REPORTS-S be a table similar to REPORTS (Fig. 
1) but having an AUTHORS field with surrogates re- 
ferring to tuples of an address 

(28) ADDRS(FIRST-NAME,LAST-NAME, . ...) 

Based on these tables, a table of author lists can 
be obtained by the following join operation: 

(29.0) SELECT 
(29.1) [REP-NO : x.REP-NO, 
(29.2) AUTHORS:(SELECT 
(29.3) [FIRST-NAME: y.FIRST-NAME, 
(29.4) LAST-NAME : y.LAST-NAME ] 

I:?:; 
FROM z IN x.AUTHORS, y IN ADDRS 

(29:7) FROM 
WHERE SURROGATE(y) = z ) 1 

x IN REPORTS-S 

In this expression, the explicit naming of the ADDRS 
table is redundant since surrogate values (here: z) 
uniquely identify data objects (here: ADDRS tuples). 

The join (29.5-6) can be condensed (further com- 
paction were achievable by the operation "*n of 
sect. 3.5) by a generic function "MAT" which takes 
a scalar surrogate or a list/multiset of surrogates 
and returns the associated object or the 
list/multiset of objects, resp.: 

(30.0) SELECT 
(30.1) [REP-NO : x.REP-NO, 
(30.2) AUTHORS: (SELECT 
(30.3) [FIRST-NAME: v.FIRST-NAME. 
(30.4j 'LAST-NAME : $.LAsT-NAME -1 
(30.5) FROM y IN MAT(x.AUTHORS) ] 
(30.6) FROM x IN REPORTS-S 

Note that (29) is robust against unresolvable sur- 
rogate values. To preserve this property in (30), 
MAT must be defined such that it ignores dangling 
references when taking a list/multiset of surrogate 
values. 

4. DML Facilities 

To change data in database relations, SQL provides 
three basic DML sections: 

. deletion of tuples, 

. insertion of a single tuple or a set of tuples, 

. overwriting contents of (atomic) tuple fields. 

When considering REPORTS as a typical NF' structure, 
it becomes obvious immediately that these operations 
must be generalized to support 

. overwriting contents of a repeating group (e.g. 
an AUTHORS field), 

. inserting additional tuples into a repeating 
group (e.g. DESCRIPTORS field), 

. removing tuples from a repeating group (e.g. an 
AUTHORS field). 

To support these requirements, facilities are needed 
to identify the specific repeating groups which are 
to be operated upon. Most probably two complementary 
approaches will be needed to provide this facility. 
One of them (e.g. /PHH83,PT85/) is strongly influ- 
enced by the imperative style of conventional pro- 
gramming languages. In this paper (see examples 
below) a more declarative approach is presented 
which attempts to preserve the spirit of SQL. As 
we will see, the operations are provided in such a 
format that one can appropriately process not only 
tables (both ordered and unordered), but also lists, 
multisets and tuples in general. 

4.1. Deletion 

As an example for deleting tuples from a repeating 
consider "Remove all DESCRIPTORS entries with 

I%% < 50'): 

(31.1) DELETE y 
(31.2) FROM y IN x.DESCRIPTORS, x IN REPORTS 
(31.3) WHERE y.WEIGHT < 50 

As illustrated above, free variables enable one to 
descend in the REPORTS table. In the same way, one 
can descend in anonymous structures like LL (see 
(14)). E.g. > the following statement deletes cer- 
tain elements of inner lists: 

(32.1) DELETE y FROM y in x, x in LL 
(32.2) WHERE (y < 4) AND (SUM(x) < 10) 
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4.2. Insertion 

Like deletion, insertion is restricted to lists and 
multisets. First, we demonstrate the insertion of a 
tuple into an ordered repeating group: 

(33.1) INSERT [ NAME: 'Duck, D.' ] AFTER 1 
(33.2) INTO x.AUTHORS FROM x IN REPORTS 
(33.3) WHERE EXISTS y IN x.AUTHORS: 
(33.6) (y.NAME = 'Ente, G.') 

Instead of explicitly enumerated tuples (33.1), any 
type compatible expression denoting a target com- 
patible list or multiset may be used for insertion: 

(34.1) INSERT (SELECT y'(KEYWORD,WEIGHT) 

;::::; 
FROM y IN DESCRIPTORS 
WHERE y.REP-NO=x.REP-NO ) 

(34.4) INTO x.DESCRIPTORS 
(34.5) FROM x IN REPORTS 

Of course, insertion can be supported not only for 
tables, but also for lists and sets in general. 

4.3. Assignment 

Other than /RKBg5/, insertion and deletion is not 
understood as an update operation. Instead, updating 
is conceived as replacing the contents of data base 
objects of any type. In (35) e.g. a specific DE- 
SCRIPTORS field in REPORTS is overwritten by a new 
tuple: 

(35.1) ASSIGN ([KEYWORD:'B tree', WEIGHT:50]) 
(35.2) TO x.DESCRIPTORS 
(35.3) FROM x IN REPORTS 
(35.4) WHERE x.REP-NO = 205 

Examples involving other types of source or target 
expressions are omitted here. They are analogous to 
the DML examples given so far. 

5. DDL Language 

In systems based on the classical relational model, 
it is in essence sufficient to specify the attribute 
names, the data types to be associated with them, 
and, of course, the relation name. With NF' struc- 
tures, aggregate types cannot be defaulted but must 
be specified explicitly. A possible minimal set of 
declaration facilities requires some predefined ba- 
sic data types, and type constructors for multisets 
( (..) ), lists ( <..> ), and'tuples ( [..I ). Us- 
ing these facilities, it is possible to declare ob- 
jects like a list of integers (36) 

(36.1) CREATE L-I < INTG > END 

as well as our REPORTS table (37): 

(37.1) CREATE REPORTS 
(37.2) ([ REP-NO : INTG 

1:::2; 
AUTHORS : <[ NAME: CHARVAR (30) ]>: 
TITLE : CHARVAR (250) 

(37.5) DESCRIPTORS: ([ KEYWORD: CHARVAR(SO),' 
(37.6) WEIGHT : INTG 1) 
(37.7) 1) END 

If undefined values are admissible (e.g. undefined 
AUTHORS values), this must be explicitly allowed 
(NULLS option). 

The facilities discussed so far do not cover keys 
or surrogates. Key attributes or key attribute com- 
binations may be specified by clauses like 

(37.6') . ..I KEYS (KEYWORD)') 
(37.7') . ..I KEYS (REP-NO; AUTHORS, TITLE) ] END 

(37.6') defines the key attribute of a repeating 
group. In (37.7') two alternative "top level" keys 
are specified. Especially interesting is the com- 
bination AUTHORS/TITLE, since it involves a non-a- 
tomic attribute. For obvious reasons, a NULLS 
option is incompatible with key attributes. 

If a DBMS is expected to support referential integ- 
rity, it is necessary that data representing foreign 
keys need to be indicated as such. When using sur- 
rogates, the system is first of all explicitly told 
where surrogates are to be generated. Examples: 

(37.7") . . . ] SURROGATED ) 

(38) CREATE LL <<INTG> SURROGATED> END 

(In the latter example, the surrogates are intended 
to identify the inner lists of "LL". In contrast, 
ordinary keys are restricted to tuples). 

Surrogate values must be strictly type-bound. Oth- 
erwise, expressions like (30) would return inhomo- 
geneous multisets, thus violating the closure 
principle. Type binding can be specified directly 
(e.g. 'REF <INTG>"), or may be further restricted 
to certain objects (e.g. for authorization): 

y; ... { REF y IN x.DESCRIPTORS, 
x IN REPORTS 1 . . 

Even mutually recursive references are allowed, 
provided they are declared within one CREATE opera- 
tion: 

(40.0) CREATE OBJECT 
(40.1) REF-OBJl {I Fl : REF x IN REF.-OBJ2. 
i40.2j VAL : INTG .I), 
(40.2) REF-OBJ2 {[ F2 : REF y IN REF-OBJL, 
(40.2) AUTHOR: CHARVAR (20) 1) 
(40.3) END 

6. Conclusions 

As has been pointed out by several authors, the re- 
lational model is too poor to adequately support 
advanced applications like engineering databases. 
Approaches like the NF' model provide more freedom 
in capturing complex facts, but do not consistently 
support important concepts like order and dupli- 
cates, and instead of a general notion of sets, it 
only allows for sets of tuples. These drawbacks can 
be removed by a structural concept which supports 
atomic data, homogeneous aggregates (lists, multi- 
sets) and inhomogeneous aggregates (tuples), where 
any supported data type is admissible for aggregate 
components. Both classical relations and strict NF' 
tables are special cases of this generalized ap- 
proach. 

For the manipulation of these structures we propose 
a language interface that provides any reasonable 
mapping between the supported data types. As dem- 
onstrated in this paper, such a language interface 
can be built on the basis of SQL. The goal was 
achieved by 

. extending the domain of the SFW construct, 

. complementing it by similarly powerful oper- 
ations (e.g. grouping, ordering), 

. extending the set of more basic operations (ac- 
cess by surrogates, subscripts etc.), 

. observing the closure principle /Daa4/. 

-284- 



In spite of increased power, complexity of the lan- 
guage remains moderate. Where comparable with ori- 
ginal SQL, it has become more transparent and better 
to understand. While concentrating on query lan- 
guage aspects, we have also demonstrated that our 
proposal provides considerable freedom for changing 
stored data. We feel that it largely covers the 
requirements of nonstandard applications, at the 
same time providing an interesting migration path 
for hierarchical, network, and classical relational 
database systems. 
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