
DESIGNING A GENERALIZED NF2 MODEL

WITH AN SQL-TYPE LANGUAGE INTERFACE

P. Pistor, F. Andersen

IBN Wissenschaftliches Zentrum
D6900 Heidelberg, West Germany

Abstract

Because of its small set of data types, the rela-
tional model is constrained to simply structured
data management tasks. For more advanced applica-
tions like engineering databases in the CAD/CAN area
even a powerful extension like the NF' model is in-
sufficient, yet: Important concepts like order and
duplicates are not supported appropriately, and the
free usage of composite items is prohibited by in-
herent asymmetries.

These drawbacks can be removed by a data model which
suooorts atomic data, lists, multisets, and tUpleS
in"an orthogonal fashion. The necessary operations
can be provided in an SQL-like framework. Compared
with existing approaches, the expressive power could
considerably be increased; nevertheless, the pro-
posed SQL dialect has not become more complicated
for comparable tasks, but more consistent and easier
to understand.

1. Introduction

The classical relational model requests all data to
be in first normal form (1NF) /Co72, Da81/. While
this requirement considerably simplifies the data
model. it is not a necessity /U180/. In the past,
several proposals have been made for data models
supporting non-normalized relations /BFP72, Ma77,
Ko80/. Often, they arose in environments where the
simplicity of the relational model was perceived as
being too restrictive.

The NF' model /SP82/ was an attempt to provide the
foundations for svstems meeting these requirements.
Its algebraic aspects have be& addressed in nume-
rous naoers (e.g. lAB84, SS84, FV85, Jae85/). Sui-
table-high livei lingua-es have been proposed, even
independently of the NF' model /BFP72, SH77, SL81/;
others fSP82, Jac85, RKB85/ have been developed in
the spirit of SQL /CAE76, IBM81/.

Compared with the classical relational model, the
NF' approach provides better facilities in modelling

jadvanced applications, e.g. the complex structure
of engineering design objects. Similar to the rela-
tional model, however, important aspects (e.g. vec-
tors, matrices) are not adequately supported. In
the past, requirements not covered by the basic mo-
del have often been reflected in operational systems
by ad-hoc add-ons. Contrary to that approach, we
propose extensions of the NF* model fHHP82, PHH83,
PTR5/ which consistently integrate further struc-
tural concepts (section -2). On-this basis, desirable
auerv operations can readily be identified (section
$1, iol'lowing the example of existing database in-
terfaces and of appropriate programming languages.

These functional requirements can be met by a gen-
eralized SQL interface, which is based on the or-
thogonality of data sfructures and the transitive
closure of operations and expressions. In section
4 an applicative approach to DHL facilities (de-
letion, insertion, assignment) is given. The DDL
features matching the chosen data structures are
presented in section 5.

During the exercise of setting up the formal defi-
nition /HHP82/ of an SQL like interface for the ex-
tended NF' model, the definition tool /BJ78/ in turn
influenced the language to be specified. Similar
effects can be observed with other database language
proposals lACO85, La84, ShpBlf. While their scope
is even broader, our proposal shows how far the ev-
olution of existing approaches can be stretched.

2. Extended NF* Structures

2.1. Relations with Relation Valued Attributes

As originally proposed (e.g. /SP82/), an NF' re-
lation is a set of (equally structured) tuples (or
records), the fields (attributes) of.which contain
either "atomic" values (e.g. numbers
relations. The latter may be "flat"

strings) or
or NF' re-

lations, in.turn. Obviously, classical "flat" re-
lations are just a special case of NF' relations.

Fig. 1 gives an example of an NF' relation with a
two level hierarchy.
l-82/1,

As outlined elsewhere (e.g.
structures like the REPORTS table are ad-

vantageous with different respects:

. Related information need not be split into dif-
ferent tables (see Fig. 2).

. Reports to be generated from databases often
exhibit a hierarchical structure. NF' structures
match this fact.

. NF' structures readily capture 1:m relation-
ships.

2.2. Extending the Original Approach

When real world facts are to be modelled, NF*
structures as outlined above provide a great deal
of freedom not available with the classical rela-
tional model. Nevertheless, there are several draw-
backs, as demonstrated below by a couple of
observations. When taking a more general view of
these findings, desirability of extended NF' struc-
tures becomes obvious.

2.2.1. Observations on Unary Tables

As long as the number of attributes is greater than
one, tables are quite handy to model collections of

Permission lo copy wilhoul fee all or parlo
aduantuge, fhe VLDB copyrighf notice an d

lhis rnalerial is granted prooided lhat Ihe copies are nol made or dislribuled for direct commercid
fhe fifle offhe puhlicafion and ifs dafe appear, and nofice is given fhaf copyin

fhe Very Large Dafa Base Endowmenf. To cop ofherwise, or fo republish, requires n fee and/or special permission from f a
is by permission of

f
e Endowment.

Proceedings of the Twelfth International Con erence on Very large Data Eases Kyoto. August, 1986

-278-

Figure 1: .Table with unary and binary table valued
attributes. "Inner" tables (also referred to as
"repeating groups") need not be flat as in this ex-
ample; key attributes are printed in bold face.
(multiset: I..), list: <..>, tuple: [..I;).

equallv structured items. With unarv tables. how-
ever, ihe tuple level layer might be- undesiiable.
Consider for instance the AUTHORS .attribute of the
REPORTS table (Fig. 1). Having in hand some'AUTHORS
tuple, one does not have the name value itself, yet.
Instead, one needs a - redundant - intermediate ac-
cess to the NAME level. This situation can be
avoided by a more flexible model which allows for
sets in gener81, not only for sets of tuples.

With the AUTHORS column, another anomaly can be ob-
served. Assume that this REPORTS table attribute
contained foreign key entries representing tuples
of an address table ADDRS not further to be detailed
here. The question arises which of the following
interpretations for an AUTHORS field is better jus-
tified:

1. A subset of the ADDRS table:
2. A set of tuples with one field, the cohtknt of

which replicates an ADDRS t'uple.

Strictly speaking, none of these interpretations is
exactly mirrored by the structures provided by the
strict NF' model. To justify the fiist viewthe keys

REP-NO KEYWORD WE I CIIT

1179 Concurrency Contrcll 60
1179 necove t-y 30
1179 Distribution
1189 String Search :::
1109 [or-matting 30
1292 Ma tt1. Optimization
1292 Garbage Cal lection

Figure 2: To capture REPORTS information (see Fig.
1) in lNF, 3 flat tables are needed.

should be contained in a plain set rather than a
unary relation. View 2 seems to be more precise than
the first one but causes another problem since tuple
valued fields (see below) are not admissible.

2.2.2. Tuple Valued Attributes

Modern programming languages allow for records with
record valued fields. In the original NF' model,
this can be simulated by table valued attributes
with the additional constraint of having the cardi-
nality 1. The alternative approach - tuple valued
attributes - is superior since it is able to inher-
ently capture that consistency constraint.

2.2.3. Concept of Order

Classical relational theory knows two types of com-
posite items, ‘sets and tuples. It has no notion of
lists, i.e. composite items, the elements of which
ai-e arranged iti some order. Operational relational
systems, however, are less puristic (see e.g. the
LIKE predicate on strings /IBN61/ or the cursor
concept for "long fields" /HL82/). Above all, how-
ever, they provide facilities to specify the order
in which the tuples of a query result are to be re-
turned (thus violating the closure principle).

To clean up this situation, a properly extended NF'
model should comprise not only unordeted tables
(sets of tuples), but also ordered tables (lists of
tuples). In addition, lists should not mandatorily
be composed of tuples; instead, any other type of
list elements (see Fig. 3) should b‘e.supported.

2.2.4. Set Concept Revisited

In accordance with the homogeneity of relations,
lists and sets of the extended NF* model are homo-
geneous as welP. Different from sets, lists are
ordered, and they allow for duplicates, while sets
do not.. At this point, operational relational sys-
tems deviate again from pttre theory, both for im-
plementational reasons (suppression of duplicates
is expensive) and application oriented requirements
(suppression of duplicates may be undesirable, e.g.
when performing statistics).

Td make concepts more consistent, the notion of
multisets /Kn71/ should be supported rather than the
notion of sets'. Duplicate elimination, if required,
can be supported by a generic function (cf. section
3.3) which accepts both multisets and lists.

2.2.5. Keys and Surrogates

As in case of flat tables, keys serve two purposes:
First, they uniquely define specific tuples of a
table. Second, they establish relationships between
tuples in one or more tables. The latter facility
remains necessary in the NF' environment for dealing
with n:m relationships (see e.g. /GP83/).

With non-flat tables, the concept of keys exhibits
some properties not to be observed for flat tables
(see also Fig. 1):

. Non flat. attributes (e.g. AUTHORS) may be in-
volved in the set of key attributes.

. Key attribute combinations may be defined at
different levels (e.g. REP-NO at table level,
KEYWORD at the level of the DESCRIPTORS repeat-
ing groups).

. The concepts "key" and fluniqueness" should be
kept apart /SLgl/.

-279-

To establish references, the usage of surrogates
/Co791 has been proposed. This proposal has both
implementational and conceptual advantages /ML83/.
Especially, references to tuples of table valued
attributes (e.g. to DESCRIPTORS tuples as in Fig.
1) are considerably facilitated; in addition any
(sub-) object can be referred to by surrogate val-
ues.

2.3. Summarizing Extended NF2 Structures

In Fig. 3, an attempt is made to visualize the dif-
ferences between flat relations (a), strict NF' re-
lations (b), and the structures of the cxtendcd NF'
model (c). Other than (a) and (b), the concept of
extended NF' structures is completely orthogonal:
any aggregate type (list, multiset, tuple) allows
any aggregate component type. Thus, the model covers
not only the structures of the original NF' model.
It also integrates the concepts of order and dupli-
cates, and it allows for simple or nested multisets
and lists. These additional features enable one to
model concepts like text, vectors, matrices etc. in
a natural way.

(a) (b)

RELATION
4

TUYLES

ATOMIt VALUES ATOMIt VALUES

Figure 3: Structural Concepts of Different
(a) Classical relational model, (b) orig
model, (c) extended NF' model. The arrows
possible component types. Only (a) and
restrictions on admissible outermost types.

Models:
;inal NF'
indicate
(b) have

3. Query Facilities for Extended NF2 Structures (1) (expr-1 1 variable E expr-2, boolean-expr 1

The query language requirements follow quite na-
turally from the structures discussed in the previ-
ous section. When exploiting the syntactical
resources of SQL, it is possible to

and

. cover these requirements to a surprisingly large
extent,

. consistently integrate the new operations cov-
ering the structural extensions,

. design complementary high level constructs in
the spirit of corresponding genuine SQL ex-
pressions.

(2.1) SELECT expr-1
(2.2) FROM variable expr-2
(2.3) b'/!,'HERE boolean-expr

or by a concrete query on table DESCRIPTORS:

(3) (x.REP-NO 1 x E DESCRIPTORS, x.WEIGHT > SO)

which reads in SQL as

Fig. 4 summarizes the operations we consider neces-
sary for appropriately querying extended NF' struc-
tures. Many of them are an obvious consequence of
the structures to be manipulated (e.g. list concat-

(4.1) SELECT x.REPeNO
(4.2) FROM DESCRIPTORS x
(4.3) WHERE x.KEICHT > 50

t* ena Ion, counting). Since they are familiar from
programming languages or from query interfaces like
SQL, they are not treated here in detail, but only

Quite intentionally, the designers of SQL did not
want to stress the analogy outlined above. However,
in certain cases the "predicate calculus" view con-
siderably supports understanding. Consider e.g. the

Tuple-Specific Operations
binary concatenation
field access (6.1)
projection (6,27)

List-Specific Operations
binary, multiway concatenation
sub1 ist extraction
accessing elements by s~lbscripts

Multiset-Specific Operations
intersect ion, set difference,
binary union
multiway union :Eli:
set restriction (16.6)

Conversion Operations
ordering of’ multisets/l ists (24,251
lists <---> multisets
1NF <---> NF2 structures (17.18)
material izing references (30)

Duplicate Suppression
I ists, multisets (18.7)

Counting
I ist, multiset elements (2’1)

Arithmetic and Related Aggregation Functions
Slllll. average, maximum, . . .

Comparison Operations
I ists, multisets,
template matching (“wi Id cards”)
strings nume ra I s

Test Facilities
(16.6-8,19.3)

quantified expressions,
bllilt-in predicates:
uniqueness, undof irledness

Explicit Constructors
tuples, I ists, multisets (8.1,9.1,10.1)

Implicit Constructors
I ists, multisets (13.10)

Figure 4: Query Operations Summary: Where possible,
cross references to illustrative examoles are eiven.
For operations not covered in this paper, re?er to
/PT85, PHHEi3, or GP83/.

along with examples illustrating other operations,
especially those related to the most central feature
of SQL, the SELECT-FROM-WHERE (or "SFW") construct.

One remark on notation. When exposing the necessary
SQL modifications, comparison with old style ex-
pressions are necessary at some points. To avoid
confusion, they will be printed in italics.

3.1. Constructors

One way of understanding SQL's SFW construct is to
view it as another syntactical format of an implicit
set constructor /BJ78/. The analogy is given by

-280-

famous query "Which employee makes more than his
manager?". Using a stylized payroll table

EMP-TAB (EMP-NO, MGR-NO, SALARY) ,

this query reads quite naturally as

(5.1) SELECT outerloop_x.EMP-NO
(5.2) FROM EiYP_TAB outerloop
(5.3) WHERE outerloop_x.SALARY >

g;;
(SELECT innerloop-y.SALARY

(5:6)
FROM EHP-TAB innerloop-y
WHERE outerloopx.HGR-NO =

(5.7) innerloop-y.EMP-NO)

The usage of free variables is the key for avoiding
ambiguities, not only in cases like (S), but also
in processing NF' tables or lists and sets in gen-
eral (13). Therefore, we enforce its use - at least
for exposition reasons - and we stress this fact by
the format of the FROM clause which binds free var-
iables like outerloop_x:

(5.2') FROM outerloop-x IN EMP-TAB

So far, we have encountered not only an implicit set
constructor, but also a rudimentary form of an ex-
plicit tuple constructor, namely the expression list
of the SELECT clause As a matter of
fact,

(e.5.
in classical SQL,

(2.11,).
expr-1 nlways stands for

a tuple constructor. With extended NF' structures,
we need to be more explicit to avoid ambiguities.
Consider the following "projection" on the REP-NO
attribute of DESCRIPTORS:

(6.1) SELECT x.REP-NO
(6.2) FROM x IN DESCRIPTORS

Does this expression denote a set of unary tuples,
or is it just a plain set of numbers? As we think,
the latter should be true. If we want a unary table,
instead, we have to use explicit tuple constructors
which are also a means to change the attribute name
(details of field renaming and name inheritance are
not discussed in this paper):

(7.1) SELECT [NUMBER: x.REP-NO]
(7.2) FROM x IN DESCRIPTORS

Explicit tuple constructors are more than just a
fall back for the degenerated unary case. Instead,
they are an essential contribution to the manipu-
lation of extended NF' structures. E.g., if one
wants to retrieve a binary table from DESCRIPTORS,
this is achieved by

(8.1) SELECT [x.REP-NO, x.WEIGHT]
(8.2) FROM x IN DESCRIPTORS

If one writes (note: REP-NO and WEIGHT are both
INTG):

(9.1) SELECT < x.REP-NO, x.WEIGHT '
(9.2) FROM x IN DESCRIPTORS

then the result is a multiset of lists, each having
exactly two numeric elements. Finally, a multiset
of 2-element multisets is requested by:

(10.1) SELECT [x.REP-NO, x.WEIGHT)
(10.2) FROM x IN DESCRIPTORS

Expressions like (8) are to be understood as fol-
lows: If the "input" (here: DESCRIPTORS) is a set
or multiset of tuples ("unordered table"), the ele-
ments may be processed in any order, thus producing

an unordered result. In case of an ordered table,
however, the table elements are processed in the
predefined list order, the result being a list
again. In any case, no attempt is made to suppress
duplicates. By these conventions, the SFW construct
is generalized to a generic expression which accepts
both ordered and unordered input, thus supporting
both implicit list and implicit multiset con-
struction.

The question is whether well established concepts
like "joining" carry over to lists as well. We shall
demonstrate it with a tiny example, which also shows
that the SFW mechanism is applicable for lists or
multisets composed of elements other than tuples.
Let Vl and V2 be two numerical vectors:

(11) Vl = < 1, 2, 57, (12) v2 = <lO, 5, 37

By (13) we obtain a list (14) of pairs such that the
first element is smaller than the second one:

(13.1)

I::::;

(14) <

Note that
extending
to lists

SELECT <x, y7
FROM x IN Vl. Y IN V2
WHERE x < y . -

<1,107, <1,57, Cl, 37, <2,107,
<2, 57, <2,37, <5,107 >

the use of free variables is the key for
the applicability of the SFW constructs
and sets of "non-tuple" elements. One

should also note that the order of the FROM-list
elements (13.2) is important, if lists are involved.
If we had

(13.2') FROM'y IN V2, x IN Vl

instead of (13.2), the result would be different
from (14), since - loosely speaking - ny" is in the
outer loop, now:

(15) < <1,107, <2,107, <5,107, <1,57,
<2, 57, Cl, 37, <2, 37 >

If uV1" and "V2" were multisets of numbers, (13)
would return a multiset of pairs. In this case, the
order of the FROM-list elements ((13.2) and (13.2'))
would be irrelevant (traditional symmetry of join
in case of (multi-)set operands).

It is also possible to define the meaning of joins
between lists and multisets. For details, the reader
is referred to /PT85/.

3.2. Nested Queries

So far, we have not touched queries against typical
NF' structures like REPORTS (see Fig. 1). As long
as we need not "look into" non-atomic fields, the
SFW construct - and some appropriate primitive op-
erations - will cover most needs. However, addi-
tional facilities are required to descend into
nested structures. Nested queries, no longer subject
to the restrictions of classical SQL, are a major
means for that end. Consider e.g. the task of ex-
tracting from REPORTS the REP-NOs together with
their KEYWORDS of WEIGHT 30 (restriction and re-
structuring at DESCRIPTORS fields level). In the
query below, this is achieved by the subquery
(16.2-4). The nested structure of the intended re-
sult (including attribute renaming) is reflected by
the structure of this nested query:

-281-

(16.0) SELECT
(16.1) [NUM : report.REP-NO ,
(16.2) ITEMS: (SELECT y.KEYWORD
(16.3) FROM y IN report.DESCRIPTORS
(16.4) WHERE y.WEIGHT = 30)I
(16.5) FROM report IN REPORTS

Certain DESCRIPTORS fields might not contain any
tuple of the required weight (e.g. REP-NO 1292 in
Fig. 1). In this case, the resulting ITEMS field
would be empty. If we want to discard the associated
report, an appropriate predicate on "report" is re-
quired:

(16.6) WHERE () f (SELECT v
(16.7j -FROM y-IN report.DESCRIPTORS
(16.8) WHERE y.WEIGHT = 30 1

Syntactically, this predicate is similar to subque-
ries in classical SQL (except for the fact that a
table valued field is acted upon).

Instead of the subquery style of (16.6-g), a quan-
tified expression might be more attractive:

(16.6') WHERE EXISTS y IN report.DESCRIPTORS:
(16.7') (y.WEIGHT = 30)

The main message of example (16) is this: The lan-
guage we propose has been designed such that the
user can exactly specify the intended query result.
Other proposals /SH77/ trade expressive power for
syntactical simplicity. As has been demonstrated
/Ha80/ for hierarchical structures, the price of
simplicity is ambiguity. By restricting semantics,
ambiguity can be resolved in different ways; how-
ever, it is hard to decide which of them is prefer-
able.

3.3. Nesting, Unnesting, Grouping

Compared with the classical relational algebra, two
distinctive features of the NF* algebra /SS84,
Jae85/ are the UNNEST and NEST operations. We will
first show that the extended SFW construct is pow-
erful enough to cover these operations, and then
discuss the desirability of dedicated operations.

An example of unnesting is the generation of the
DESCRIPTORS table contents from REPORTS; if we did
so "by hand", we would repeat - for any REPORTS tuple
- the required top level information as often as we
have tuples in the associated DESCRIPTORS field.
This is in essence a Cartesian product which shows
up in (17.4-5) below:

(17.1) SELECT [REP-NO : rep.REP-NO ,
(17.2) KEYWORD : desc.KEYWORD,
(17.3) WEIGHT : desc.WEIGHT]
(17.4) FROM rep IN REPORTS,
(17.5) desc IN rep.DESCRIPTORS

This join operation is very efficient since one
touches only once the information required for the
intended result. The advantage over dedicated oper-
ations /PHH83, RKB85/ is that the full power of the
SFW construct remains available.

While unnesting turns out as a special join opera-
tion, the "inversetl operation (nesting) is covered
by an appropriate nested query. Consider a projec-
tion of REPORTS on the attributes REP-NO and DE-
SCRIPTORS. By nesting, one can obtain this
information from the flat DESCRIPTORS table:

(18.0)
(18.1)

::i: t;
(18.4)
(18.5)
(18.6)
(18.7)
(18.8)

SELECT
[REP-NO : Y ,
DESCRIPTORS:(SELECT

FROM
WHERE

FROM
y IN UNIQUE(SELECT

FROM

[KEYWORD: x.KEYWORD,
WEIGHT : x.WEIGHT]
x IN DESCRIPTORS
x.REP-NO = y)]

z.REP-NO
z IN DESCRIPTORS)

In this formula, we first obtain (18.7-8) a (proper)
set of REP-NOs from DESCRIPTORS. This set determines
the number of non-flat tuples to be constructed in
(18.1-5). While the REP-NO information (18.1,7,8)
is provided by the the operation for duplicate sup-
pression (UNIQUE), the repeating group itself is
constructed by a subquery (18.2-5) directly ad-
dressing the DESCRIPTORS table.

Not regarding for this moment the question of sim-
plicity, (18) illustrates the semantics of nesting
operations. Especially, it indicates how to define
nesting semantics in case of an ordered input table:
If DESCRIPTORS were a list of tuples, then the or-
dering of the top level result tuples were deter-
mined by the semantics of the UNIQUE operation.
Within the repeating groups, tuples would be ar-
ranged according to the relative order they had in
the input table.

Like nesting, grouping also increases the number of
hierarchical levels. The difference is that nesting
restructures tuples, while grouping simply parti-
tions the input, leaving the tuple structure un-
touched. To further stress the difference, compare
(18) with the SFW expression (lP), which specifies
the grouping of DESCRIPTORS tuples by REP-NOs:

19.0) SELECT
19.1) (SELECT y
19.2) FROM y IN DESCRIPTORS
19.3) WHERE y.REP-NO = x.REP-NO)
19.4) FROM
19.5) x IN UNIQUE(SELECT z.REP-NO
19.6) FROM z IN DESCRIPTORS)

Like nesting, grouping can be applied both on or-
dered and on unordered input. Evidence is given by
(191, where DESCRIPTORS might equally well be a
multiset or a list of tuples. Details can be deduced
from (19) in analogy to the discussion on nesting.

Examples (18) and (19) convincingly illustrate the
expressive power of the SFW construct. Nevertheless,
this construct should be complemented by dedicated
GROUP and NEST operations for different reasons
(compact notation, ease of use, query optimization).
Following /RKB85/, nesting operations can be con-
siderably boiled down when restricted to tables as
in (18):

120.1) NEST DESCRIPTORS
,20.2) ON (KEYWORD, WEIGHT) AS DESCRIPTORS

Having a GROUPing facility, (19) is rewritten as
follows:

(21.1) GROUP
(21.2) x IN DESCRIPTORS
i21.3j BY x.REP-NO

Other than in (20), we use free variables here.
Therefore, GROUPing is not restricted to tables, but
may operate any list or multiset. E.g.9 the set

(22) MS = (3, 1, 2, 5, 6)

-282-

of numbers may be partitioned into odd and even
;y;;;fence classes (i.e. ((1,5,3], (2,6)]) as

(23.1) GROUP
(23.2) x IN MS
(23.3) BY (x MOD 2)

3.4. Ordering

ORDERing is a generic operation which takes multi-
sets or lists and returns a list, the elements of
which are sequenced according to the order specifi-
cation. Unlike NESTing and GROUPing, the ORDERing
operation is beyond the possibilities of the SFW
construct.

The syntax of the ORDERing operation is designed in
analogy to GROUPing. In doing so, we are able to
order not onll,y tables
or lists of anonymous

1(124), but also multisets (25)
elements:

(24) ORDER x IN REPORTS BY COUNT(x.AUTHORS)

(25) ORDER x IN MS BY (x MOD 3)

3.5. Projection

It is the virtue of the SFW construct to allow for
projection, restriction, and renaming within one
operation. In case of plain projection, however, the
operation is overpowered. Consider for instance the
following projection on the attributes REP-NO, DE-
SCRIPTORS, and KEYWORD:

(26.1) SELECT
(26.2) [REP-NO
;;;X;; DESCRIPTORS: (&!fj:TN;y.KEYWORD] '

FROM y IN x.DESCRIPTORS)]
(26.3) FROM x IN REPORTS

Similar to NESTing (20) it would be sufficient, in-
stead, to indicate the involved attributes /SH77/:

(27) REPORTS*(REP-NO, DESCRIPTORS(KEYWORD))

Here, the right operand of the projection operator
n*u is a template denoting a subschema of the left
operand, which in turn may be a list/multiset of
tuples. The left op;rfnd could also be a single tu-
ple. In this case, l would return a tuple rather
than a table.

3.6. Joins via Surrogates

Let REPORTS-S be a table similar to REPORTS (Fig.
1) but having an AUTHORS field with surrogates re-
ferring to tuples of an address

(28) ADDRS(FIRST-NAME,LAST-NAME,)

Based on these tables, a table of author lists can
be obtained by the following join operation:

(29.0) SELECT
(29.1) [REP-NO : x.REP-NO,
(29.2) AUTHORS:(SELECT
(29.3) [FIRST-NAME: y.FIRST-NAME,
(29.4) LAST-NAME : y.LAST-NAME]

I:?:;
FROM z IN x.AUTHORS, y IN ADDRS

(29:7) FROM
WHERE SURROGATE(y) = z) 1

x IN REPORTS-S

In this expression, the explicit naming of the ADDRS
table is redundant since surrogate values (here: z)
uniquely identify data objects (here: ADDRS tuples).

The join (29.5-6) can be condensed (further com-
paction were achievable by the operation "*n of
sect. 3.5) by a generic function "MAT" which takes
a scalar surrogate or a list/multiset of surrogates
and returns the associated object or the
list/multiset of objects, resp.:

(30.0) SELECT
(30.1) [REP-NO : x.REP-NO,
(30.2) AUTHORS: (SELECT
(30.3) [FIRST-NAME: v.FIRST-NAME.
(30.4j 'LAST-NAME : $.LAsT-NAME -1
(30.5) FROM y IN MAT(x.AUTHORS)]
(30.6) FROM x IN REPORTS-S

Note that (29) is robust against unresolvable sur-
rogate values. To preserve this property in (30),
MAT must be defined such that it ignores dangling
references when taking a list/multiset of surrogate
values.

4. DML Facilities

To change data in database relations, SQL provides
three basic DML sections:

. deletion of tuples,

. insertion of a single tuple or a set of tuples,

. overwriting contents of (atomic) tuple fields.

When considering REPORTS as a typical NF' structure,
it becomes obvious immediately that these operations
must be generalized to support

. overwriting contents of a repeating group (e.g.
an AUTHORS field),

. inserting additional tuples into a repeating
group (e.g. DESCRIPTORS field),

. removing tuples from a repeating group (e.g. an
AUTHORS field).

To support these requirements, facilities are needed
to identify the specific repeating groups which are
to be operated upon. Most probably two complementary
approaches will be needed to provide this facility.
One of them (e.g. /PHH83,PT85/) is strongly influ-
enced by the imperative style of conventional pro-
gramming languages. In this paper (see examples
below) a more declarative approach is presented
which attempts to preserve the spirit of SQL. As
we will see, the operations are provided in such a
format that one can appropriately process not only
tables (both ordered and unordered), but also lists,
multisets and tuples in general.

4.1. Deletion

As an example for deleting tuples from a repeating
consider "Remove all DESCRIPTORS entries with

I%% < 50'):

(31.1) DELETE y
(31.2) FROM y IN x.DESCRIPTORS, x IN REPORTS
(31.3) WHERE y.WEIGHT < 50

As illustrated above, free variables enable one to
descend in the REPORTS table. In the same way, one
can descend in anonymous structures like LL (see
(14)). E.g. > the following statement deletes cer-
tain elements of inner lists:

(32.1) DELETE y FROM y in x, x in LL
(32.2) WHERE (y < 4) AND (SUM(x) < 10)

-283-

4.2. Insertion

Like deletion, insertion is restricted to lists and
multisets. First, we demonstrate the insertion of a
tuple into an ordered repeating group:

(33.1) INSERT [NAME: 'Duck, D.'] AFTER 1
(33.2) INTO x.AUTHORS FROM x IN REPORTS
(33.3) WHERE EXISTS y IN x.AUTHORS:
(33.6) (y.NAME = 'Ente, G.')

Instead of explicitly enumerated tuples (33.1), any
type compatible expression denoting a target com-
patible list or multiset may be used for insertion:

(34.1) INSERT (SELECT y'(KEYWORD,WEIGHT)

;::::;
FROM y IN DESCRIPTORS
WHERE y.REP-NO=x.REP-NO)

(34.4) INTO x.DESCRIPTORS
(34.5) FROM x IN REPORTS

Of course, insertion can be supported not only for
tables, but also for lists and sets in general.

4.3. Assignment

Other than /RKBg5/, insertion and deletion is not
understood as an update operation. Instead, updating
is conceived as replacing the contents of data base
objects of any type. In (35) e.g. a specific DE-
SCRIPTORS field in REPORTS is overwritten by a new
tuple:

(35.1) ASSIGN ([KEYWORD:'B tree', WEIGHT:50])
(35.2) TO x.DESCRIPTORS
(35.3) FROM x IN REPORTS
(35.4) WHERE x.REP-NO = 205

Examples involving other types of source or target
expressions are omitted here. They are analogous to
the DML examples given so far.

5. DDL Language

In systems based on the classical relational model,
it is in essence sufficient to specify the attribute
names, the data types to be associated with them,
and, of course, the relation name. With NF' struc-
tures, aggregate types cannot be defaulted but must
be specified explicitly. A possible minimal set of
declaration facilities requires some predefined ba-
sic data types, and type constructors for multisets
((..)), lists (<..>), and'tuples ([..I). Us-
ing these facilities, it is possible to declare ob-
jects like a list of integers (36)

(36.1) CREATE L-I < INTG > END

as well as our REPORTS table (37):

(37.1) CREATE REPORTS
(37.2) ([REP-NO : INTG

1:::2;
AUTHORS : <[NAME: CHARVAR (30)]>:
TITLE : CHARVAR (250)

(37.5) DESCRIPTORS: ([KEYWORD: CHARVAR(SO),'
(37.6) WEIGHT : INTG 1)
(37.7) 1) END

If undefined values are admissible (e.g. undefined
AUTHORS values), this must be explicitly allowed
(NULLS option).

The facilities discussed so far do not cover keys
or surrogates. Key attributes or key attribute com-
binations may be specified by clauses like

(37.6') . ..I KEYS (KEYWORD)')
(37.7') . ..I KEYS (REP-NO; AUTHORS, TITLE)] END

(37.6') defines the key attribute of a repeating
group. In (37.7') two alternative "top level" keys
are specified. Especially interesting is the com-
bination AUTHORS/TITLE, since it involves a non-a-
tomic attribute. For obvious reasons, a NULLS
option is incompatible with key attributes.

If a DBMS is expected to support referential integ-
rity, it is necessary that data representing foreign
keys need to be indicated as such. When using sur-
rogates, the system is first of all explicitly told
where surrogates are to be generated. Examples:

(37.7") . . .] SURROGATED)

(38) CREATE LL <<INTG> SURROGATED> END

(In the latter example, the surrogates are intended
to identify the inner lists of "LL". In contrast,
ordinary keys are restricted to tuples).

Surrogate values must be strictly type-bound. Oth-
erwise, expressions like (30) would return inhomo-
geneous multisets, thus violating the closure
principle. Type binding can be specified directly
(e.g. 'REF <INTG>"), or may be further restricted
to certain objects (e.g. for authorization):

y; ... { REF y IN x.DESCRIPTORS,
x IN REPORTS 1 . .

Even mutually recursive references are allowed,
provided they are declared within one CREATE opera-
tion:

(40.0) CREATE OBJECT
(40.1) REF-OBJl {I Fl : REF x IN REF.-OBJ2.
i40.2j VAL : INTG .I),
(40.2) REF-OBJ2 {[F2 : REF y IN REF-OBJL,
(40.2) AUTHOR: CHARVAR (20) 1)
(40.3) END

6. Conclusions

As has been pointed out by several authors, the re-
lational model is too poor to adequately support
advanced applications like engineering databases.
Approaches like the NF' model provide more freedom
in capturing complex facts, but do not consistently
support important concepts like order and dupli-
cates, and instead of a general notion of sets, it
only allows for sets of tuples. These drawbacks can
be removed by a structural concept which supports
atomic data, homogeneous aggregates (lists, multi-
sets) and inhomogeneous aggregates (tuples), where
any supported data type is admissible for aggregate
components. Both classical relations and strict NF'
tables are special cases of this generalized ap-
proach.

For the manipulation of these structures we propose
a language interface that provides any reasonable
mapping between the supported data types. As dem-
onstrated in this paper, such a language interface
can be built on the basis of SQL. The goal was
achieved by

. extending the domain of the SFW construct,

. complementing it by similarly powerful oper-
ations (e.g. grouping, ordering),

. extending the set of more basic operations (ac-
cess by surrogates, subscripts etc.),

. observing the closure principle /Daa4/.

-284-

In spite of increased power, complexity of the lan-
guage remains moderate. Where comparable with ori-
ginal SQL, it has become more transparent and better
to understand. While concentrating on query lan-
guage aspects, we have also demonstrated that our
proposal provides considerable freedom for changing
stored data. We feel that it largely covers the
requirements of nonstandard applications, at the
same time providing an interesting migration path
for hierarchical, network, and classical relational
database systems.

7. References

A084 S.Abitoul, N.Bidoit: Non First Normal Form
Relations: An Algebra Allowing Data Restruc-
turing. Rapports de Recherche No 347, Institut
de Recherche en Informatique et en Automa-
tique, Rocquencourt, France, Nov. 1984.

AC085 A.Albano, L.Cardello, R.Orsini: Galileo: A
Strongly-Typed, Interactive Conceptual Lan-
guage, ACM TODS, Vol. 10(Z) (1985), pp. 230-
260.

BFP72 G.Bracchi et al: A Language for a Relational
Data Base Management System. Proc. Sixth Ann.
Princeton Conf. on Information Science and
Systems, Mar. 1972, pp. 84-92.

8578 D.Bjoerner, C.B.Jones: The Vienna Development
Method: The Meta-Language. Lect. Notes in
Comp. Science 61, Springer, 1978.

CAE76 D.D.Chamberlin et al.: SEOUELZ: A Unified AD-

Co72

co79

Da81

Da84

FV85

GP83

Ha80

preach to Data Definition, Manipulation and
Control, IBM Journ. Res. Devel. 20 (1976), pp.
560-575.
E.F.Codd: Further Normalization of the Data-
base Relational Model. Database Systems, ed.
R. Rustin, Courant Comp. SC. Symposia Ser.
Vol. 6, Englewood Cliffs, N.Y. Prentice Hall,
1972.
E.F.Codd: Extending the Data Base Relational
Model to Capture More Meaning. ACM TODS, Vol.
4(4) (1979), pp. 379-434.
C.J.Date: An Introduction to Database Systems,
Addison-Wesley Publishing Company, 1981.
C.J.Date: Some Principles of Good Language
Design with Special Reference to the Design
of Database Languages. ACM SIGMOD Record 14(3)
(Nov. 1984), l-7.
P.Fischer, D.van Gucht: Determining when a
Structure is a Nested Relation. Proc. Eleventh
Intern. Conf. on Very Large Databases, Stock-
holm, (Aug. 1985).
L.Gruendig, P.Pistor: Landinformationssys-
teme und ihre Anforderungen an Datenbank-
schnittstellen. In /Sc83/, pp.61-75.
T.H. Hardgrave: Ambiguity in Processing Boo-
lean Queries on TDMS Tree Structures: A Survey
on Four Different Philosophies. IEEE Trans.
Softw. Engin. 6(4), July 1980.

HHP82 B.Hansen, M.Hansen, P.Pistor: Formal Specifi-
cation of the Syntax and Semantics of a High
Level User Interface to an Extended NF2 Data
Model (unpublished, 1982).

HL82 R.L.Haskin, R.A.Lorie: On Extending the Func-
tions of a Relational Database System. Proc.
SIGMOD 82, Orlando, June 1982, pp. 207-212.

IBM81 SQL/Data System, Concepts and Facilities, IBM
Corporation, GH 24-5013, Jan. 1981.

Jac85 B.Jacobs: Applied Database Logic II: Hetero-
geneous Distributed Query Processing. Pren-
tice-Hall, Englewood Cliffs, 1985.

Jae85 G.Jaeschke: Recursive Algebra for Relations
with Relation Valued Attributes. IBM Wiss.
Zentr. Heidelberg Techn. Rep. TR 85.03.002,
March 1985.

Kn71

Ko80

La84

Lo84

Ma77

ML83

PHH83

PT85

RKB85

Sc83

Shp81

SH77

SL81

SP82

ss84

U180

D. E. Knuth: The Art of Computer Programming,
Vol. 2. Addison Wesley Publishing Company,
Reading (Mass), 1971.
I.Kobayashi: An Overview of the Database Ma-
nagement Technology. Tech. Report TRCS-4-1,
Sanno College, 1753 Kamikasuya, Isehara, Ka-
nagawa 259-11, Japan, June 1980.
W.Lamersdorf et al: Language Support for Of-
fice Modelling. VLDB Proc., Singapore, 1984,
pp. 280-288.
R.A.Lorie et al: User Interface and Access
Techniques for Engineering Databases. IBM
Res. Rep. RJ 4155 (45943), Jan. 1984.
A. Makinouchi: A Consideration on Normal Form
of Not-Necessarily-Normalized Relations in
the Relational Data Model. VLDB Proc., Tokio,
1977, pp. 447-453.
A.Maier, R.A.Lorie: Implicit Hierarch. Joins
for Complex Objects. IBM Res. Rep. RJ3775,
1983.
P.Pistor, B.Hansen, M.Hansen: Eine sequelar-
tige Schnittstelle fuer das NF2 Modell. In
/Sc83/, pp. 134-147.
P.Pistor, R.Traunmueller: A Database Language
for Sets, Lists, and Tables. IBM Wiss. Zentr.
Heidelberg Techn. Rep. TR 85.10.004, Oct.
1985.
M.A. Roth et al: SQL/NF: A Query Language for
-NF Relational Databases. Deptm. Comp. Scienc.
Univ. of Texas, Austin, TR-85-19, Sept. 1985.
J.W.Schmidt (ed.): Sprachen fuer Datenbanken.
Informatik Fachberichte 72, Springer Verlag,
Berlin-Heidelberg-New York, 1983.
D.W.Shipman: The Functional Data Model and the
Data Language DAPLEX. ACM TODS, Vol. 6(l)
(1981), pp. 140-173.
N.C.Shu et al.: EXPRESS: A Data Extraction,
Processing, and REStructuring System, TODS
2(2) (1977), pp. 134-174.
N.C.Shu, V.Y.Lum et al: Specification of Forms
Processing and Business Procedures for Office
Automation, IBM Res. Rep. RJ 3040, 1981.
H.-J.Schek, P.Pistor: Data Structures for an
Integrated Data Base Management and Informa-
tion Retrieval System, Proc. VLDB Conf. Mex-
ico, Sept. 1982.
H.-J.Schek, M.Scholl: An Algebra for the Re-
lational Model with Relation-Valued Attrib-
utes. TR DSVI-1984-Tl, Techn. Univ. Darm-
stadt, 1984.
J. D. Ullman, Principles of Database Systems,
Pitman, London, 1980.

-285-

