
On Affinity Based Routing in Multi-System Data Sharing

Philip S. Yu, Douglas W. Cornell, Daniel M. Dias and Balakrishna R. Iyer

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598

Abstract
Multiple systems coupling incurs performance degradation due

to inter-system (global) lock conlention and database buffer invali-
dation. At high transaction rates, the level of inter-syslem interference
can have a severe hnpact on performance. In this paper, we propose
a scheme for transaction routing lhat reduces inter-system interference
while keeping load nearly balanced. The routing decision is based on
affinity relations defined between transactions and databases. A
methodology, employing an integer linear programming technique, is
developed to classify incoming transactions into affinity groups based
on their dotuba& call reference puffem. Based on traces from two of
IBM’s high volume single system customers, we find that. at high
lransaction rates, the proposed aflinily based routing significantly re-
duces the lock contention probability and leads to a substantial re-
duction in transaction response time. Further, the reduction in
inter-system data contenlion, produces a large hnpact on the perform-
ance of optimislic type concurrency control.

1. Introductibn
The rapid increase in MIPS required for transaclion processing

and the inability of high-end processor MIPS to keep up with demand
have required the design of multiple processor based architectures. In
a multi-syslem data sharing enviromnent [SEK184], processors running
jndependent copies of lhe operating system are coupled by sharing lhe
‘database on the disks. Every system has direct access to the shared
database. In [YU85A,B], a comprehensive sludy is provided to un-
derstand the performance impacl of database system users migrating
from a single syslem lo a multi-system environment. The two sources
of intersystem interference in IBM’s IMS database managerment sys-
tem [STRl82] are: (a) lock contention due to transaction on different
systems needing to simultaneously hold the right to access the same
dala, and (b) dalabase buffer invalidation due lo updates of a block
on one system causing obsolescence of copies of the same block if re-,
tained by other systems. The level of interference among systems, es-
pecially due to lock contention, is found to have a critical effect on
system performance, as the transaction rate increases.

In a multi-system transaction processing environment, a com-
mon front-end processor may be used to route incoming transactions
from terminals lo transaction processors. Inler-system inlerference
may be reduced by employing a proper rouling strategy at the front-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direcf commercial aduanfage,, the VLDB copyrighf notice and the
title of the publication and its date appear, and notice is given
thaf copying is by permission of the Very Large Data Base
Endowment. To copy ofherwise, or to republish, requires a fee
an&or special permission from the Endowment.

end. Jntuitively, if transactions with similar database reference pat-
terns are routed lo tbe same system, the level of interference (lock
confiicls and buffer invalidations) may be reduced. This is referred to
as affinity based routing [SHOE84]. The question is how to classify
transaclions inlo affinily groups and assign affinity groups to syslems,
while keeping the system load balanced. In this paper, we develop a
methodology to partition transactions into affinity groups. We evalu-.
ate the effectiveness of affinity based routing on reducing inter-system
intetference. Furthermore, the effect of affinity based routing on an
optimislic type of concurrency control is investigated [KUNGSI]
[SHOE84]. Our investigations are based on workloads traced on twos
mainframe systems, each running a commercial high volume database
system. Although ‘our conclusions may be only strictly valid for lhe two
traced workloads, they show clear trends that we conjecture lo be
characleristics of many more workloads. The methodology developed
is applicable to all workloads.

To study response time under different system structures and
configurations, e.g. processor size, concurrency control schemes, etc.,
a hierarchical modelling approach is taken to decompose the problem
inlo manageable parts and gain the benefit of both trace driven simu-
lation and analytical modelling. We decompose the problem into two
parts. In the first part, a trace driven simulation is employed to study
the effect of the workload on lock contention and buffer invalidation.
The lock contention observed is based on the original timing of the lock
request trace. In the second part, an approximale analytical queueing
model is adopted to study the effect of system structures and config-
uralions on response time. The analytical model uses the lock con-
tention estimate from the trace driven simulation as an initial estimate
of the lock contention probability. A methodology is developed to
adjust this initial estimate taking into account the effect of global
locking overhead, communication delay based on the system structure
and configuration. The analytical model asstmres a linear relationship
between kck contention and transaction response time to adaptively
adjust the lock contention probability.

SYSTEM 1

Figure 1.1. Multisystem Data Sharing

Proceedings of the Twelfth International
Conference on Very Large Data Bases

-249-

Kyoto, August, 1986

An overview of the techniques used in IMS multi-system data
sharing is given in Section 2. In Section 3, we present a routing scheme
to exploit transaction affinity. In order to evaluate the reduction in
inter-system interference,due lo routing by affinity, as compared to the
case without routing, multi-system lock traces are synthesized from
traces obtained from two users of IBM’s IMS database system. Trace
.driven simulations are employed. The methodology is discussed in
Section 4. In Section 5, the benefits of transaction routing by affinity
are examined. Both the impact on lock contention, and on buffer in-
validation and I/O rate are considered. A study of overall system
performance is conducted in Section 6. The effect of routing on a
semi-optimistic concurrency control scheme is also considered. Con-
cluding remarks appear in Section 7. Affinity routing is found to sig-
nificantly reduce transaction response time at high transaction rates.

2. Overview of IMS Data Sharing
The analysis in this paper is based on traces from IBM’s IMS

database management system [DATE86]. This section outlines as-
pects of IMS pertinent to following sections. Each system schedules
transactions for execution in a fixed number of regions (a region can
be thought of as a single process that executes transactions sequen-
tially). Between systems, read and write locks are obtained at record
granularity. Although records can span blocks in some access methods,
typically there are multiple records stored in each block. Additionally,
for each block containing an update, an exclusive lock is obtained for
the block -- this is necessary to prevent a record that was updated by
one system being overwritten with its old value by a concurrent update
to a different record in the same block by the second system. Note that
although this is called block level data sharing, if one system is updating
a recorcl, concurrent reads to different records in the same block by the
second system are allowed. More precisely, data sharing is provided
at the record level for read access, and at the block level for updates.
Finally, dataset busy locks are obtained for various operations such as
update or insertion into a database index. The locking protocol, both
within a system and between systems, is not strictly Iwo-phase
[ESWA76], but rather depends on the semantics of the database op-
erations being performed. We will call the locks obtained for concur-
rency control within a single system (intra-system) loco/ loclcc, and the
inter-system locks global locks.

The IMS resource lock manager (JRLM) implements global
locking through a protocol called pass-the-buck. The two systems ex-
change messages to pass a “buck” (table) back and forth. The buck
is alternately held by each system for a fixed time called the buck hold
time and is then sent to the other system, incurring a communication
delay. The sum of the buck hold time and the buck communication
delay will be referred to as the buck delay. On each system, global lock
requests are generally queued in the intervals between the points at
which the buck is sent to the other system. Sending the buck lo the
other system consists of sending all queued global lock requests, to-
gether with buffer invalidation messages (see below). When a system
receives the buck, it processes the global lock requests and invalidation
messages from the other system, and then sends back the results of
these requests together with its own queue of requests when the buck
hold time expires. Generally, pass-the-buck protocol requires each
global lock request to be granted by both systems. There are ex-
ceptions to this due to the use of a lock name hashing scheme, which
we describe next.

In order to reduce communication overhead and the average re-
sponse time for a global lock request, a lock name hashing scheme is
used by IMS: every lock name hashes to one of 16K hash classes. IMS
uses a global hash table to track the states of each hash class. For each
hash class, a hash table entry contains an inreresr bit, for each system,
with the following semantics: a system has interest in a hash class if it
currently owns or is waiting for any locks in that hash class. We will
use the following notation (different from that of IRLM) for the hash
class stales.

io.01 no syslem has interest in this hash class;

[I,01 only this system has interest locks in this hash class;
[O,l] some other system has interest in this hash class;
[l,l] both this and other system(s) have interest in this hash class.

Any system can immediately grant a lock that maps to a hash class in;
state [I.01 at that system. If a lock maps to a hash class in state [O,O].
the lock can be granted when the buck is sent and acknowledged by the
next system in the order in which the buck is passed, but it is not nec-
essary to wait for the buck to return before granting the lock. For
other states, the requesting system must send out the buck and wait,
until the buck returns and it is determined that there is no contention
on the specific lock requested.

Finally, messages to invalidate buffers are included in lhe buck
in the pass-the-buck protocol, and any blocks referred to in the invali-’
date messages that happen to reside in buffers on the system receiving
the buck are marked as invalid. When a transaction completes, its up-
date locks are held at least until the buck is sent to the other system and
the invalidate processing is acknowledged as complete, so that it is
known that any old versions of the blocks being updated have been
invalidated (update locks are also held until log buffers and updated
blocks have been forced to disk).

3. Transaction Routing by Affinity
The problem of routing transactions among multiple systems in

order to optimize overall system performance involves minimizing
inter-system interference while simultaneously balancing the load on
the systems in the complex. The routing scheme considered here is a
static routing scheme where all transactions of a type will be routed to
a fixed destination system. We assunre transaction types are known
apriori, e.g. in transactions generated by pre-coded application pro-
grams by supplying different parameters.

Trace tapes of database requests are used to establish the vi-
ability of affinity based transaction routing. Two large high volume
single system IMS installations were traced. The first system ran a
parts database system on an IBM 30glK, with 15R physical databases.
The tracing period was about 15 minutes. The second system ran on
on-line planning database system on an IBM 3033, wilh 103 physical
databases. The tracing period was about GO mimttes. (In IMS, a
physical database is an ordered set of physical database records which
in turn are physical sets of hierarchically-related segments of one or
more segment types.) The two traces will be referred to as workloads
1 and 2, hereafter.

Each trace tape has records including the identifier of the re-
source to be locked, transaction name and time. Transactions gener-
ated by the same application program have the same name. The
transaction name will be the basis of classification of transactions into
types. The resource identifier is a concatenation of database nmnber,
dataset mmrber, and offset within dataset which is referred to as the
relative byte address (RBA) of the resource. A data block reference
trace can be derived by converting the RBA of a record or segment to
be locked into the RBA of the block containing it. A trace processing
program was developed to measure the number of occurrences of dif-
ferenl data block references, read and write, to each database, etc. for
each transaction type.

We will try to assign transactions referenci : common databases
to the same system. A database is considered to be affiliated to the
system with the most references to it. We hypothesize that minimizing
database references from transactions assigned to a system to data-
bases affiliated with other systems, will reduce inter-system interfer-
ence. This hypothesis is verified later.

Let x(ij) be the transaction routing matrix andy(ij) be the da-
tabase affinity matrix. Define x(i j) = 1 if transaction type i is assigned
to affinity group j and x(ij) = 0 otherwise. Similarly,y(ij) = 1 if da-
tabase i belongs to affinity group j and y(ij) = 0 otherwise. If i is a
transaction and k is a database, the penalty for x(ij)y(k,m) having a
value 1 is the number of data block reference calls from transaction
type i to database k if j # m and is 0 if j = m.

-250-

Penalty = C C C C 4i,k) x(idy(k,m) ,
i j k m

j#m

where o(i,/c) is the number of different data block references from
transaction type i to database k and can be obtained from the trace
processing program. The objective is to minimize the penalty subject
to the constraints,

P 1 Vi, and Cy(k,m) - 1 V k .
m

This quadratic programming problem can be transformed into a
linear programming problem in integer variables by a standard method
[WATE67]. An additional set of constraints on the solution is used to
balance the load. Let D(i) be the number of database calls made by a
transaction of type i and X(i) be the arrival rate of transaction type i.
Note that D(i) is independent of the assignment of transaction types
or databases to systems. Assume that (I is the average number of in-
structions on a transaction application program, and p is average
number of instructions to process a database call. The constraint on
the load to system j is as follows:

where

lowerlimit 5 workload(r) 5 upperlimit

-
workload(j) = CUi)(ar(ij) + flD(i).r(iJ))

I

All X(i) and D(i) can be derived from the trace processing. The
upperlimit and lowerlimit values are chosen to keep each system’s load
to within 10% of the average system load. The parameters (x and S
have the values 1OOK and 15K, respectively. In setting up the linear
integer programming it is not necessary to include all of the transaction
types and databases. Good results can be obtained by performing
clustering on the thirty or so most active transactions types and data-
bases using the linear integer programming approach, where rest of the
transactions can be assigned to systems based on heuristics.

4. Multi-system Trace Synthesis and Trace Driven
Simulation

To evaluate the benefit from the affinity based routing strategy,
trace driven simulations are employed to study the inter-system inter-
ference statistics. In the first case (no routing) every transaction type
can be executed on any system. In the second case, routing is em-
ployed based on transaction affinity, as described in Section 3.

To conduct the trace driven simulations, multi-system lock
traces and reference traces are synthesized from single system IMS
traces for each of the two cases, respectively. These characterized the
type of workloads we would have, if a single system IMS workload was
required to move to a multi-system data sharing environment due to
increased throughput requirements, assuming however that application
programs and databases remain essentially unchanged. A methodology
to synthesize a multi-system lock trace for the case without routing is
described in [YU85B]. Inter-system or global lock requests are derived
from the single system trace by analyzing the semantics of the partic-
ular lock requests. The trace tape is split by time interval. In a two
system example, the lock records in each region for the second half of
the trace period are moved “backward in time” to the beginning of the
trace period and assumed to occur from the second system.

Next consider the multi-system lock trace for the case of affinity.
based routing. To make the two cases comparable, we take the multi-
system traces for no routing and remap it into another multi-system
trace which captures the characteristic of routing by affinity. The same
level of multiprogramming or number of regions is maintained. The
order of transaction arrivals to the front-end processor is preserved
from the case with no routing. Transactions are reassigned to systems
based on the integer programming solution of the problem to reduce
inter-system interference as described in Section 3. The multi-system

trace from the no routing case is first sorted by transaction start time.
A scheduling routine is developed to scan the sorted trace and schedule
the transaction assigned to each system in an appropriate region. The
transactions cannot remain assigned to the same region as in the ori-
ginal single system trace. For each system, the transactions are reas-
signed to regions so as to approximately equalize the run times in each
region. The scheduling routine does not exploit any sophisticated
technique to minimize the local lock contention. Some attempt is made
to reduce local lock contention by attempting to schedule transactions
of the same type (i.e with the same name on the trace records) in one
region for the major transactions. Transactions of the same type often
go after similar sets of records. Assigning these to the same region
would eliminate a major source of local contention. Transactions of
the same type having large total execution times will have to run in
more than one region. A table is maintained in the scheduling routine
to track the end of the current transaction in each region at every sys-
tem. The scheduling routine schedules the next transaction and resets
the current transaction end time in the region the transaction is to ex-
ecute, by adding the current transaction execution time to the preced-
ing transaction end time for this region. The scheduling program also
adjusts the lock/unlock time of each trace tape record based on the
new start time of each transaction. The resulting output is sorted on
lock/unlock time and used to drive the trace driven simulation program
which determines the resulting lock contention.

To study the buffer invalidation rate and I/O rate, a database
block reference trace is needed. A database reference trace can be
derived from the lock trace as data entities must be locked before being
referenced. Database block references are generated at the time of
lock or unlock action for the entity being locked or unlocked. Data-
base blocks are assumed to be modified by a transaction if they are
held locked until the end (commit time) of the transaction. Updated
blocks are assumed to be written to tbe disk at the end of the trans-
action. This is done in IMS from data base recovery considerations.

Trace driven simulation programs are used to simulate the
multi-system data sharing environment using the multi-system lock
trace and reference trace described above to study the inter-system
interference. The simulation program produces a report showing tbe
resources contended for, the contending transactions, the number of
contentions for each transaction, buffer invalidation rate, etc.

5. Reduction of Inter-system Interference
In this section, we examine the inter-system interference re-

duction due to transaction routing based on the trace driven simu-
lations described in Section 4. The effect on global lock contention is
examined in Section 5.1, while the effect on buffer invalidation and
I/O rate is examined in Section 5.2. Substantial reduction in inter-
system interference is observed. Improvement in hierarchical locking
to take advantage of affinity based routing is also investigated.

5. I. Global Lock Contention

The effect of routing by affinity on global lock contention is
examined. As described in Section 2, block locks are held mainly to
prevent simultaneous updates into different records in the same block
from transactions executing on different systems. Routing by affinity
should substantially reduce the likelihood of updating into the same
block from different systems, and hence block lock contentions. For
other types of locks, record lock and data set lock, routing transaction
accessing the same data into the same system instead of different sys-
tems will not eliminate lock contentions. It will only change the con-
tentions from inter-system global lock contentions into intra-system
local lock contentions and hence reduce the incurred pass-the-buck
protocol overhead, as discussed below. Since the costly inter-system
global contentions have been reduced by transaction routing it may
become feasible to use optimistic concurrency control methods for
inter-system concurrency control and locking for local concurrency
control, as we shall see in the next section. Table 5.1 shows the tom-

parison of lock contentions under the two cases, no routing and routing
by affinity, for both workloads 1 and 2 on two systems. The columns

-251-

Workload I

Contentions per Transactions

w/o Routing
Block Other

with Routing
Block Other

Local .DQO6 .Ql58 .QOlO .a523

Global .034g .0577 .OG24 .GG55
lots1 .G355 .G737 GG35 .857a

Workload 2
w/o Routing

Block Other
with Routing

Block Other

Local .GD25 .8184 .OG37 .fJ568
Global .039Q .0429 .I3110 . GO58
Total .0415 .Q612 .0148 .Q626

Table 5.1 Contentions for TWO systems

labelled “Block” refer to contentions on block locks, and tbe cohunrts
labelled “Other” refer lo contention on record and dataset locks. For
example, a contention figure of 0.07 iorplies that 7% of the trans-
actions will experience blocking during their execution.

We observe substantial reduction in global block lock coo-
teotioos in both workloads, especially for workload 1. With respect to
record and dataset locks, the contentions switch from predominantly
global to predominantly local. Total global lock contentions drops to
less than one tenth and one fourth of the contentions with no routing
for workloads 1 and 2, respectively. The resultant reduction in trans-
action response liote is analyzed in Section 6.

The advantage of the transaction affinity obtained by routing
can go beyond the reduction of lock contentions. IO a distributed
locking environment, a saving in inter-system comtouoication overhead
can be obtained as well. One way to reduce the inter-system comotu-
nicalioos in obtaining global locks is to introduce a control hierarchy
on locking. Hierarchical locking discussed below is a slight variation
of the scheme described in [GRAY79]. The idea is to map data iteots
into a hierarchy of group items and then try to obtain an exclusive lock
on an item at the highest level of the hierarchy containing the target
item to be accessed. If unsuccessful, the lock is obtained in shared
mode and communication is required with the other system to lock the
item al the next highest level of the hierarchy containing the target
item. Holding an exclusive lock on an iteor higher in the hierarchy
gives the holder the authority to grant locks to requests on items lower
in the hierarchy without further communications to the other systems.
The success of hierarchical locking depends upon the existence of lo-
cality in lock requests. Intuitively, hierarchical locking would work well
in the environment where transactions with affinity are scheduled to
execute in the same system. A system can first obtain locks at some
high level in the hierarchy, and continue to grant locks at lower level
in the hierarchy to different transactions without further inter-system
communications. If transactions are routed randomly, the chances of
holding locks at high levels in the hierarchy become small and the ef-
fectives of hierarchical locking diminishes.

The hierarchical locking structure in BvlS is used as a case study
to examine the relationship between hierarchical locking and routing
by affinity. The findings should be general enough to understand the
synergism between the two concepts. IMS uses two hierarchies. The
lop level of the hierarchy uses locks on hash classes and the next hier-
archy uses the record, block or data set locks. As described in Section
2, IMS uses a global hash table (GHT) to track the state of each hash
class. If the hash class state is [O,l] or [l,l] the lock request must be
cooromnicated to the other system(s) to determine whether the lock
may be granted. This would introduce a worst case delay of ahnost two
full pass-the-buck cycles. Affinity based transaction routing reduces
substantially the probability that a lock request will encounter either
[O,l] or [I,1] state. For workloads 1 and 2 for two systems, Table 5.2
shows that the reduction in the number of lock requests hashing to
[O,l] or [l,l] state is by a factor greater than 3. Affinity based routing

Global Hash Table State Probability

Workload I
w/o routing with routing

80

A?
:x
a:81

:zz
0. igx

I 1 1.2% 0.35%

Workload 2
w/o routing with routing

00 41.5%

;:
57.5%

I I

Table 5.2 Global Hash Table State Probability for Two Systems

reduces the tendency of different systems going for the same hash
class. However, since [O,l] and [l,l] state probabilities are fairly small
even in the case with no routing, the overall hnprovement in reducing
the average wait tiore for the buck is small. Thus the oraio effect of
affinity based routing is reduced contention.

Somewhat surprising is that the probability of encountering [l,O]
state, the state where locks can be granted without inter-system com-
munications, shows little improvement with routing. After careful ex-
amination on the cause of [l,O] case, we found that [l,O] hits mainly,
come from locality within a single transaction not between traos-
actions. The probability that different transactions are going after data
in the same hash class simultaneously is quite small. This is consistent
with the small value of [O,l] and [l,l] state probabilities observed in
the no routing case. Hence, routing is not too helpful in increasing
[l,O] state probability. There is still a substantial chance of eocouot-
ering [O,O] which requires inter-system communication. Although the
delay involved is about half to a third of that for [O,l] or [l,l], the
frequency of encountering [O,O] is an order of magnitude higher.
Hence, the performance is more affected by occurrences of the [O,O]
stale. One solution to reduce the encountering of [O,O] is lo use the
‘notion of hash class retentiveness [SHOE84]. Hash class retentiveness
is the tendency that a hash class will be reclaimed by a system after the
system releases the ownership on that hash class, i.e. a hash class will
be changed directly back to [1,0] after it has been changed from [I ,O]
to [O,O]. When strong hash class retentiveness exists, it would make
sense to let a system continue to keep a hash class in [l,O] state even
after it releases all locks in the hash class. The system does not release
its ownership on the hash class until a lock is requested in that hash
class by some other system. At that time the hash class will be changed
into the [O,l] state. This strategy of retaining [l,O] state can sigoif-
icaotly reduce the frequency of encountering the [O,O] state. The
trade-off is as follows. The systeoi retaining the hash class will not
require the communication delay or overhead to change the hash class
state when it needs a lock in the hash class the next time. However the
delay or overhead for some other system requesting a lock in that hash
class is increased since it now observes state [O,l] rather than [O,O].
Let Al be the total delay or overhead when a [O.O] hash class is eo-
countered and A2 be the total delay or overhead when a [O,l] hash
class is encountered. Define the retentiveness ratio to be the ratio of
successful retentions to unsuccessful retentions, where a successful re-
tention means that the next request to the hash class is from the system
retaining the hash class. A successful retention leads to a [l,O] hit and
a saving of Al whereas an unsuccessful retention leads to a [O,l] hit,
and a cost penalty of A2-Al. The hash class retention strategy pays
off when the retentiveness ratio is larger than the ratio of A2-Al to
Al. The exact ratio between A2-Al and Al depends upon various
system parameters, like the buck hold time and comomoicatioo time.
Assuming that the acknowledgement of buck receipt is done from one
system to another at the hardware level in negligible time (compared
lo the buck hold time) it can be shown that the ratio of A2-Al to Al
should lie between 1 and 0.5, for two systems.

-252-

Workload I

IQ via QQ
IQ via 09
IQ via II
IQ via II

Workload 2

Hash Class Retentiveness

w/o routing with routing

successful retention .75 .EQ
unsuccessful retention

::45
.2Q

successful retention .43
unsuccessful retention .46 .57

w/o routing with routing

IQ via a0 successful retention
r::

.a7
IQ via 08 uns+uxessful retention
IQ via II successful retention .53 ::?I
IQ via II unsuccessfal retention .47 .5Q

Table 5.3 Hash Class Retentiveness For Two Systems

The effect on hash class retention is shown in Table 5.3 for both
workloads 1 and 2. The [l,O] state can be reached from either the [O,O]
or [1,1] state. The success of the retention, as will be shown later, de-
pends upon how the [l,O] state is reached. In Table 5.3, the row “10
via 00 successful retention” represents the probability that the next
request to the hash class will be from the last system owning the hash
class after the hash class cycles through [O,O] to [1,0] and back to [O,O],
and the row “10 via 00 unsuccessful retention” represents the next
request will be from the other system. The row “10 via 11 successful
retention” represents the probability that after the hash class reaches
[l,O] state through [l,l] and returns to [O.O], tbe next request will be
from the last system owning the hash class, where the row “10 via 11
unsuccessful retenlion” represents the opposite. Table 5.3 shows that
there is a reasonable retentiveness even with no routing for a hash class
which reaches [l,O] from [O,O] to be reclaimed by the same system af-
ter it has been released. The retentiveness ratio is 3 for both work-
loads. The retentiveness may be due to IMS trying to schedule
transactions which are already loaded. This hash class retentiveness
can be further enhanced by transaction routing. With transaction
routing by affinity, a hash class cycling from [O,O] to [LO] and back to
[O,O] is reclaimed 80% of the time for workload 1 and 87% of the time
for workload 2. This translates into retentiveness ratios of 4 and 6.7
for workloads 1 and 2 , respectively. Also shown in Table 5.3 is the
retentiveness of [1.01 when cycling through [l,l] instead of [O,O]. The
retentiveness of hash class cycling through [l,l] generally speaking is
poor with or without routing. This is because a hash class entering
[l,l] state must contain data of interest to both systems. The
retentiveness ratio is around 1 in all cases, not enough lo justify the
retention. Hence in [l,O] retention strategy, [LO] should be retained
only when it does not cycle through [l,l] state. Table 5.4 shows the
global hash table state probabilities when [LO] retention is employed.
The [O,O] state probability is substantially reduced, and the [1 ,O] state
probability becomes dominant. Notice that the negative effect of [l,O]
retention appears in the increase in [O,l] state probability.

Similar experhnents were performed for tbe three system case
‘for both workloads 1 and 2. The total block lock contentions are again
substantially reduced to less than one third of the total block lock

Global Hash Table State Probability

Workload 1
w/o routing with routing

QQ

A':

8.6%
85.4%

Workload 2
w/o routing with routing

08 6.0%
I 0
Q I ;A::;

6.7%

1 1 2.2%
W

8.7%

Table 5.4 Effect of Hash Class Retention on Two Systems

4 6 12

SIZE IN MEGABYTES OF DATA BASE BUFFER PER SYSTEM

Figure 5.1. Reduction in DB Buffer Invalidation due to Routing.

contentions with no routing. For global locks, the total contentions are
again reduced to less than ahnosl ohe fourth of the contentions with
no routing. The retentiveness ratio of [LO] through [O,O] under affinity
based routing remains above 3 and hence hash class retention can still
be used to enhance performance, while with no routing the
retentiveness ratios may drop below the point where hash class re-
‘tention is viable.

5.2. Buffer Inwlidation and Buffer Hit Ratio

Buffering of data in main memory is used to decrease the num-
ber of waits due to I/O. In a multi-system environment, buffer con-
tents can become obsolete due to updates from other systems. IMS
uses a buffer invalidation mechanism to insure buffer integrity. A ref-
erence to an invalidated block causes an extra read, increasing the I/O
rate for multi-systems. Transaction routing based on affinity tends to
route transactions making reference to the blocks from the same data-
bases to the same system. The chances of a block in a system’s buffer
being updated by another system must be smaller as compared to cou-
pling without routing. There is a downward effect on the number of
l/O’s per transaction due to routing because of a) decreased invali-
dations and b) because of increased hit ratios - stemming from the fact
that transactions making references to the same database tend to be
assigned to the same system. Our simulation model captures both ef-
fects.

We considered a buffer per system managed by simple LRU re-
placement policy, for both two and three system coupling with and
without transaction routing for workload 1. Invalidated blocks are
read from disk if referenced after invalidation.

In Figure 5.1, we plot tbe number of database buffer blocks in-
validated on a per transaction basis as a function of buffer size. The
increase with buffer size is due to the fact that larger buffers hold more
blocks and each is a candidate for invalidation. In three systems cou-
pling we have more blocks invalidated because for every system there
are two other systems that are potential sources of invalidation and in
the two system coupling case there is only one other system that may
cause buffer invalidation. For a buffer size of 2 Megabytes per system,
we note that for three systems coupling the number of blocks invali-
dated reduces from about 0.09 per transaction to about 0.03 per
transaction, and from 0.06 to about 0.01 blocks per transaction for two
syslem’coupling.

Since an invalidated block is read from the disk only if rerefer-
enced, the increase in I/O rate is smaller than the invalidation rate. In
Figure 5.2 we plot the actual number of reads to the database as a
function of the buffer size per system for botb two and three coupled
systems with and without affinity based routing. As expected, coupling

-253-

- 3 svsml wl1Hou1 RcJunNc
- - . - 2 SYslrM wlT”ouT RixmW
- 3 SYSTEM WITH RoullNc
--.- 2 SYSlEM WllH RcullNG

4 I) 12

SIZE IN MEGABYIES OF DATA BASE BUFFER PER SYSTEM

Figure 5.2. Reduction in I/O due to Transaction Routing.

with routing causes less database reads than coupling without routing.
For example, for a buffer size of 2M a savings of about 0.25 reads per
transaction results. The results from workload 2 were similar and are
not presented here.

6. Multi-system Model and Periormauce
The multi-system model uses as input parameters the lock con-

tention levels, hash-class probabilities, and the reduction in I/O due to
the affinity routing, obtained from the trace driven simulations. These
parameters are used to project tbe overall transaction response time
with and without affinity rouling and hash class retention. The model
takes into account the increase in lock contention with transaction rate
and buck delay, and the feedback effect of lock contention increasing
with response time. The analysis method is first outlined, and is fol-
lowed by performance projections.

6. I Approximation for A wage Raponse Time
In [YU85A] an approximate analysis is given to estimate the

average response time in the data sharing environment. Related work
has been reported in [TAY84], where a mean value analysis method-
ology, based on the probabilistic access of a database made up of a fi-

nite number of granules, has been used. The analysis is validated to
within 5% of the simulation results for two systems coupling over a
wide range of lock contention probabilities. The transaction response
time is expressed as,

R ~ (&PO + RIO + R~,)

pcoh7 L
(6.1)

1-c 3)

where R is the average transaction response time, R,,,, is the average
time transactions spend at CPU, R,, is the total I/O delay, R,,,, is the
time spent in waiting for the buck, PcovT is the lock contention proba-
bility, and L is the.number of locks per transaction. The reciprocal of
the denominator in Equation (6.1) indicates the expansion in the re-
sponse’time due to lock contention wait and is referred to as the lock
contention expansion factor. Note that the expansion factor is small
for the lock contention levels observed in the trace but will increase
substantially at higher contention levels as obtained by increasing the
transaction rate. The time R,, is estimated from the average number
of I/OS per transaclion and the assumed average I/O time, corrected
by the reduction in I/O due to transaction routing as estimated in
Section 5. The time the transaction spends at the CPU is approximated
as follows. Since the average number of locks, unlocks, I/OS, and the
frequency of passing the buck, and their concomitant overheads are
known, the CPU utilizatio? at each system can he computed, for a

fixed lock contention probability. Since the mainframes traced used
dyadic CPU’s an M/M/2 approximation is used for modelling the
(dyadic) CPU and gives,

RCPCI =
2P

(6.2)
x (1 - P2)

where h is the transaction arrival rate per system; R,, is the time
transactions spend at the CPU; and p is the CPU utilization per system.

The lock contention probability is proportional to the multipro-
gramming level, which is the product of tbe response time and trans-
aclion rate. In turn, the response time increases with increasing lock
contention. This feedback effect is estimated using an iteration. The
transaction response time is first estimated for the contention proba-
bility observed in the trace driven simulation (Table 5.1). Then the
resulting response time is used to compute a new contention probabil-
ity by assuming that the contention probability grows as the product
of the transaction rate and response time. The approximate model is
then run again with the new contention probability to estimate a new
response time. The iteration is repeated until convergence is obtained.
Only a few iterations are required for the contention range considered.

In optimistic concurrency control schemes [KUNGIl], trans-
action processing proceeds by assuming that no database contention
occurs, and if contention is detected later, the transaction is backed out
and re-started. The reduction in inter-system contention through af-
finity based routing suggests that the performance of optimistic type
concurrency control will be enhanced. Note that local (within a sys-
tem) locking is less expensive than global locking (which involves going
through the pass-the-buck protocol). Hence, we consider a semi-
optimistic concurrency control scheme, where the concurrency control
among transactions running on the same system is done through lock-
ing and the concurrency control among transactions across systems is
done “optimistically”. We assume that any transaction requesting a
global lock is immediately granted the lock on the assumption that the
other systems do not hold that lock concurrently. At the end of the
transaction it is determined, by going through the pass-the-buck pro-
tocol once, whether the global locks so granted were in conflict with
any other on-going transaction on any other system. If a conflict is
detected on any global lock the transaction is aborted and after a
back-off period (which could be zero) the transaction is restarted from
the beginning.

We make the following modifications to our approximate model
summarized previously. The probability that a transaction has to re-
start due to conflict is the transaction conflict probability for global
locks that was derived from the trace driven simulations of the previous
section. Let us denote this as L Pe We assume that a transaction in
conflict gives up all its locks and has to acquire them again. We will
treat restarted transactions exactly like new transactions. The effective
transaction rate input to the model is X / 1 - L PC , where L is the
average number of locks per transaction. We have not modelled the
following two aspects of restarted transactions a) they may have a
higher g4obal lock conflict probability and b) they may have a higher
hit probability in the data buffer. The two aspects have opposing ef-
fects on the transaction response time. Back-off before restarting a
transaction reduces the probability of conflict to that of a new trans-
action - at the same time the buffers get aged out from the memory
during the back-off interval and hence the buffer hit probability will
also reduce to that of a new transaction. Hence we treat re-started
transactions just like a new transaction. The remaining contention
L (Pcosr - P,) is due to local lock contention and denoted as L PC
Local contentions are retained in our model and contribute to the ex-
pansion in the transaction response time by the denominator in
Equation (6.1) where we will use PL instead of P,,,, for the expansion
to obtain a nominal transaction response time

R, = RCPU + RIO + React

PLL
(6.3)

l-G-+

-254-

Transaction Rate 20 Trans.&c/System

Transaction Pathlength 43QK instructions

Locks/Transaction 15

Unlocks/Transaction 3

Unlocks at Purge 6

Initialization I/O 5

I/O during Transaction I1

DASD I/O time 35 ttilli-Sec.

Buck Delay 5. a3 Milli-sec.

Table 6.1. Model Parameters

The transaclion response time is the nominal response time multiplied
hy the number of times a transaction has to restart on the average phrs
the backoff times.

6.2 Perfomatw of Affinity Routing and Hush Clms Retention
We now examine the performance of multi-system data sharing

using affinity routing and/or hash class retention, as projected by the
model using parametric values found by the IMS trace analysis de-
scribed in the previous section. Parameter values used are summarized
in Table 6.1.

The primary advantage of affinity routing is the reduction in lock
contention. This is indicated in Table 5.1, which shows a large de-
crease in contenlion with affinity rouling, while table 5.2 shows that
affinity routing does not affect the bash class probabilities significantly.
Since lock contention increases with transaction rate for a fixed re-
sponse time (and the same database size) affinity routing should be
advantageous when this occurs. Figure 6.1 shows response time for
two coupled systems when varying the MIPS per system. Here, the
transaction rate per MIPS is kept conslant to produce a CPU utilization
of about 80% , and the buck delay is varied so that the CPU utilization
due to buck processing is relatively constant, with a nominal buck delay
of 5 msec at 14 MJPS per system. It is asstmted that the bandwidth of
the l/O system is increased with transaction rate to maintain the aver-
age l/O time invariant lo system throughput for this mainframe based

,’
I I I I I I I I J

7.0 40 60 M 1M)

mPs/srsror

Figure 6.1. Performance: Affinity Routing and Hash Class
Retention.

Figun 6.2. Optimistic Concumncy Control with Affinity
Routing.

hierarchical database system. This can be achieved by improved buf-
fering in the I/O control unit or by spreading the data over more disks.
At low MlPS per system, the contention level is low, and affinity
routing produces a small decrease in response time. Hash class re-
tention considerably decreases the probability of the [O,O] hash class,
and this results in a significant reduction in response time for low MIPS
per system. As tbe MIPS per systems increases, the transaction rate
and lock contention level increase, while the buck delay becomes
smaller (since lhe buck can be passed more frequently for the same
absolute CPU overhead). Initially, tbe response time decreases with
increasing MIPS per system because the processing time and buck de-
lay decreases. However, without affinity routing the lock contention
increases to a point when it dominates the decrease in processing time
and buck delay. Since bash class retention affects the hash class
probabilities but does not decrease contention, its benefit becomes
smaller. With affinity routing, the lower contention level allows a much
larger transaction rate without this lock wait effect becoming predom-
inant.

The effect of affinity routing on the semi-optimistic concurrency
control scheme described in Section 6.1 is illustrated in Figure 6.2. The
figure also shows bow this compares with conventional locking. Tbe
assumptions made are identical to those in tbe previous paragraph.
The figure indicates that at low MIPS per system, optimistic concur-
rency control results in significantly lower transaction response time.
This is because the buck delay is larger (for a constant CPU utilization
due lo buck passing) at low MIPS per system; since with optimistic
concurrency control there is no waiting for the buck, the transaction
response time decreases. Further, the lock contention level is low in
this range, and consequently the transaction restart rate with optimistic
concurrency control is small. As the MlPS per system increases, the
buck delay can be made smaller and its effect on response time dimin-
ishes, while the global lock contention increases leading to a higher’
transaction restart rate with optimistic concurrency control. Thus,
without affinity routing optimistic concurrency control has a worse re-
sponse lime than conventional locking for higher MIPS per system.
However, affinity routing reduces the response time for optimistic
concurrency control considerably. This is because, affinity routing re-
duces global lock contention significantly as seen in Table 5.1. Since
it is the global lock contention that leads to transaction restarts in this
semi-optimistic concurrency control, affinity routing is very effective.
Figure 6.2 shows that with affinity routing, semi-optimistic concur-
rency control does better than conventional locking except at very high
MIPS per system. Even in that range, it is the indirect effect of in-
crease in the CPU utilization due to restarts that increases the overall
transaction response time.

-255--

7. Conclusion
In this paper we developed a methodology to partition trans-

actions into affinity groups and studied the effect of affinity based
transaction routing on multi-system data sharing, based on traces from
large customers of IBM’s IMS database management system. The
partitioning technique involves the solution of an integer linear pro-
gramming problem to determine the affinity groupings. Based on the
transaction routing obtained by this technique, a trace driven simu-
lation was run to determine the reduction in lock contention levels, and
changes in hash class probabilities for a hierarchical locking scheme.
The effect of affinity based routing on buffer invalidation and on the
1/O rate is also determined. Finally, an approximate analytical model
was used to estimate the overall system performance.

The results of the study indicate that affinity based routing can
reduce lock contention considerably. This leads to significant re-
duction in transaction response time, as the contention increases with
total system transaction rate. Affinity based routing also results in re-
ductions in the buffer invalidation rate, and reduction in the J/O. The
effect that hash class retention combined with affinity based routing
has on reducing the time transactions spend waiting for the buck is
then examined. In addition, affinity based routing enhances the per-
formance of the optimistic type of concurrency control considerably.

We would like to thank John Robinson for providing clarifications of
oplimistic concurrency control.

References
[DATE861 Date, C.J., “An Introduction to Database Systems”, Vol.

1 and 2, Addison Wesley (1986).
[ESWA76] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, LL.,

“The Notions of Consistency and Predicate Locks in Da-
tabase Systems”, Comm. ACM 19, 11 (Nov. 1976),
624-633.

[GRAY 791 Gray, J. “Notes on Data Base Operating Systems”, in ed.
Bayer, R., Graham, R. M. and Seegmuller, G. Operating
SYstellu: An Advanced Course, Springer-Verlog, New
York, 1979,394-481.

[KUNGII] Kung, H.T., and Robinson, J.T., “On dptimistic Methods
for Concurrency Control”, ACM Transacfions on Dafo-
&se Sysfems, 6.2 (June 1981). 213-226.

[SEK184] Sekino, A., Moritani, K.. Masai, T., Tasaki, T.. Golo, K.,
“The DCS - A New Approach to Multisystem Data-
Sharing”, Proc. National Compufer Confenmce 1984, Las
Vegas, NV (July 1984).

[SHOE841 Shoens, K., Narang, I., Obermarck, R., Palmer, I.. Silen,
S., Traiger, I., and Treiber, K., “Amoeba Project”, IBM
Research Report, RJ4465, San Jose, CA (Oct. 1984).

[SIR1821 Strickland, J. P., Uhrowczik, P. P., and Watts, V. L..
“IMS/VS: An Evolving System”, IBM Systems Journal
21,4 (1982), 490-510.

[TAY84] Tay, Y.C., “A Mean Value Performance Model for
Locking in Databases”, Ph.D. Dissertation, Harvard Uni-
versity, Cambridge, MA (Feb. 1984).

[WATE67] Waters. L. G., “Reduction of Integer Polynomial Pro-
gramming Problems to Zero-One Linear Programming
Problems”, Operations Research, 15, 1171-1174, (1967).,

[YUSSA] Yu, P.S., Dias, D.M., Robinson, J.T., lyer, B.R. and
Cornell, D., “Modelling of Centralized Concurrency
Control in a Multi-system Environment”, Performonce
Ewluurion Review 13.2 (Proc. 1985 ACM SIGMETRICS
Conference), 183-191.

[YU85B] Yu, P.S., Dias, D.M., Robinson, J.T., Iyer, B.R. and
Cornell, D., “Distributed Concurrency Control Analysis
for Data Sharing”, Proc. 16th Cornpurer Measurement
Group Conference, Dallas, TX (Dec. 1985). 13-20.

-256-

