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Abstract. 
An algorithm for synchronizing concurrent operations on 

extendible hash files is presented. The algorithm is deadlock free 
and allows the search operations to proceed concurrently with 
insertion operations without having to acquire locks on the direc- 
tory entries or the data pages. It also allows concurrent 
insertion/deletion operations to proceed without having to acquire 
locks on the directory entries. The algorithm is also unique in that 
it combines the notion of verification, fundamental to the optimis- 
tic concurrency control algorithm, and the special and known 
semantics of the operations in extendible hash files. A proof of 
correctness for the proposed algorithm is also presented. 

1. Introduction 

The concurrency control algorithm in a conventional data- 
base management system enforces serializability of transactions 
(Papadimitriou791. Each transaction is normally modeled as a 
sequence of read and write steps, and the concurrency control algo- 
rithm enforces serializability without assuming much knowledge of 
the semantics of the read and write steps of the transactions. 
While this level of generality enables the concurrency control algo- 
rithm to be applicable to any transaction system, it does not take 
advantage of the structures inherent in the applications to optimize 
for higher level of concurrency and lower synchronization over- 
head. 

In recent years specialized concurrency control algorithms 
that take advantage of the knowledge of the structure and/or the 
semantics of transactions have appeared [e.g., SK80, KS83, I(F79, 
IlM83, IIC85, O’Niel851. In particular, much attention has been 
paid to the optimization of algorithms that synchronize concurrent 
operations on B-trees [e.g., BS77, LY81, MR85]. 

In this paper we present an algorithm that synchronize con- 
current operations on a file structured using extendible hashing 
[FNPS79]. Extendible hashing is a form of dynamic hashing which 
adaptively updates a directory or pointers to data bucket, or data 
pages. Since the directory entries are subject to update at any 
moment, a search operation would normally be required to obtain a 
lock on the directory entry it reads to prevent the directory entry 
from being inadvertently changed. Bowever, by exploiting the 
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known semantics of the accesses to the directory entries, it is con- 
ceivable that one can devise concurrency control algorithms that 
minimize such overhead. 

We present a concurrency control algorithm that allows the 
search operation in an extendible hash file to proceed without hav- 
ing to set locks on the directory entries. We also allow concurrent 
insertions to be synchronized with a mechanism which is simpler 
and potentially able to offer a higher degree of concurrency. 

The algorithm is also unique in that it utilizes the general 
mechanism behind the optimistic concurrency control algorithms 
[KRSl]. By making use of verification at the right moment, opera- 
tions are guaranteed a consistent view of the data structures 
required to ensure their correctness while minimizing the locking 
overhead. 

The structure of the paper is as follows. In the next section, 
the general mechanism of the extendible hashing scheme is 
reviewed. In Section three, we present our concurrent search and 
insertion algorithms, followed by a proof of correctness in Section 
four. Section five concludes the paper and presents a discussion of 
future extensions. 

2. Review of Extendible Hashing 

Extendible hashing [FNPS79] is a file structuring and search- 
ing technique in which the user is guaranteed no more than two 
page accesses to locate the data associated with a given key. 
Unlike conventional hashing, extendible hashing has a dynamic 
structure that grows and shrinks gracefully as the database grows 
and shrinks. 

The file consists of a directory (D) and data pages. The 
directory is characterized by a global depth g, and contains 2’ 
entries, each of which points to a data page. The hash function, h, 
transforms the keys of the key set into a “pseudo key” of a bit 
form; the first g bits of the pseudo key determine the directory 
entry corresponding to a key. Each data page is characterized by 
a local depfh l<g, and a bit pattern bp of length 1. A data page 
with an I-bit & pattern bp contains all keys the first I bits of 
whose pseudo keys conform to the bit pattern bp. When a data 
page overflows, its local depth is incremented by 1 and the page is 
split in two: one page is now characterized by a bit pattern which 
is the old bit pattern concatenated with an additional bit of ‘0’ and 
the other, with the bit of ‘1’. 

Ezample. Consider the state of an extendible hash file as 
shown in Figure 2.1. Currently there are very few records with 
pseudo keys that begin at ‘1’. All such records are collected into a 
single data page whose local depth is 1 and whose I-bit bit pattern 
is ‘1’. When the page becomes full, as shown in Figure 2.2, it splits 
into two data pages, each with local depth of 2: one data page now 
has a bit pattern of ‘10’ and the other ‘11’. All keys whose pseudo 
keys begin at ‘10’ appear in the first of these data pages, and all 
keys whose pseudo keys begin at ‘11’ appear in the other. 
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When the data page whose local depth is equal to the global 
depth of the directory overflows, the directory size is doubled, i.e., 
the global depth is incremented by 1, and the overflowing data 
page is again allowed to split. For example, if we start with the 
situation as shown in Figure 2.2, and if the data page pointed to 
by the “010” pointer is already full, then the directory is doubled 
and the page splits, as shown in Figure 2.3. (Figures 2.1 to 2.3 are 
taken from Figures 8 to 10 in [FNPS’IB].) 

Data pages 
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Fiq. 2.1. A directory with ~3. 
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Directory 

The extendible hashing scheme uses a contiguously allocated 
directory whose size changes by factors of two. It enables direct 
access to the right data page (or bucket). No overllow area is 
used. In [FNPS79], it is shown that, in the case where the bucket 
(page) size is 400 and the size of the key set is 40,000, the storage 
utilization, on the average, is about 69%. 
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3. Concurrent Operations in Extendible Mashing 

In this section we describe the algorithm of our concurrent 
operations in extendible hash files. Throughout we will ignore the 
issue of underIlow and compaction. In other words, the number of 
pages of the file only grows and never shrinks. The compaction 
issue was also ignored in (LY81] and is generally justified by the 
observation that databases tend to grow and the utility of the 
storage recovered from on-line real-time compaction may not be 
worth the trouble. Compaction can be handled by taking the 
database ollhne for a reorganization. 

3.1. Search Algorithm 

The search operation on an extendible hash file consists of (1) 
applying the hash lunction to obtain a pseudo key, (2) examining 
the first q bits of the pseudo key to determine the directory entry 
to be read, (3) reading the directory entry to find a pointer to the 
data page to be searched, and (4) searching in the data page to 
llnd the key desired. 

What the search operation is vulnerable to is the concurrent 
insertion operation that splits a data page and relocates a range of 
the keys that include the key desired by the search operation. 
This type of interference can be eliminated by requiring the search 
and the insertion operations to obtain a lock on the directory entry 
and hold it until the operation ends. In our search algorithm, how- 
ever, this type of interference is avoided by re-reading the direc- 
tory entry when a search operation could not find the key in the 
data page it has just read, without having to hold any lock on the 
directory. This form of re-reading, or verification, continues until 
either the key is found, or the value of the directory entry does not 
change between two consecutive readings. The algorithm is for- 
mally defned shortly. 

Intuitively, the search algorithm attempts to verily the direc- 
tory entry it has previously read before it would conclude a search 
failure. If the content of the directory entry has changed in the 
mean time, the search operation automatically retries with the new 
pointer oht.ainrd. A formal proof of correctness of the algorithm is 
presented in Section 4. 

De/inition of the Search Algorithm. 

Algorithm Search(given key k); 
begin 

initialization: 
xold:=O; 

hashing: 
calculate k’ = h(k)= 6e6, 6,-i; 

getpointer: 
read d, base ; /* the global depth and base address of the directory D */ 
t := 6s6, 6r-,; /* take the initial d bits of k’ */ 
x := get(D[t]); /* D[t] is the t-th entry in D */ 

probe: 
do while x # xold; 

A := get(x); /* read a data page */ 
if key k in A then ‘success’, return(x); /* ends search */ 
xold := x; 
x := get(D]t]); /* re-read directory */ 
end; 

return (‘search fails’); 
end; 

3.2. Insertion Algorithm 

The insertion operation in an extendible hash file consists of 
(1) applying the hashing function to the key to obtain the pseudo 
key, (2) examine the first g bits OI the pseudo key to determine the 
directory entry to be read, (3) reading the directory entry to obtain 
a pointer to a data page, (4) reading the data page to search for 
the existence of the same key, and (5) inserting the key in the data 
page, if the key does not already exist. When inserting the new 
key, if the data page is full, then a split is performed, resulting in a 
new data page to be created and at least one directory entry to be 
updated. For now we will ignore the issue of directory expansion 
(i.e., doubling in size). We will revisit this issue briefly in the final 
section of this paper. 

Two insertion operations may interfere even when they are 
inserting digerent keys. Undesirable interference may be elim- 
inated by requiring the insertion operation to hold locks on both 
the directory entries and the data page that it updates till the end 
of the operation. In our algorithm, however, the need to hold locks 
on the directory entries is avoided by requiring the insertion opera- 
tion to perform verification of the content of the directory entry it 
has previously read after locking the data page and be/ore perform- 

ing updates on the data page. If vetillcation fails, the operation 
would unlock the page and lock a different one, and perform 
another verification. The insertion operation never blocks once its 
first lock is granted, therefore deadlock is eliminated. 

In handling splitting, our algorithm requires that the newly 
allocated page be locked until the aIfected directory entry(entries) 
is(are) updated. Inherent in the dynamic hashing algorithm, 
however, is the complication that when a key k is to be inserted 
into a page which is already full, one split may not be enough. 
When splitting occurs, the local depth of the splitting page is incre- 
mented by one and a new page is allocated in the database. The 
original key range in the splitting page is divided in half, with the 
higher half distributed into the new page and the lower half 
retained in the splitting page. One of these two pages, say p, now 

contains the key range that includes k. It is noted that in extreme 
cases p may be full again before k is inserted. This occurs when 
all the existing records in the splitting page are all hashed into the 
halved-key-range that contains k. When this occurs, p needs to be 
split again before k can be inserted. This process must continue 
until k finally falls in a page which is not full. However, the 
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number of splits required, and therefore the number of new pages 
need to be allocated to allow k to be inserted, can be determined 
from the contents of the splitting page when it is first examined. 
We will denote this number to be n. In general, n ranges from 0 
to log,(2d-‘.d)-l, where d is the global depth and 1.1 is the local 
depth of the splitting page before splitting. 

The way our concurrent insertion algorithm deals with the 
above complication is to (1) have the splitting page as well .zs n/l 
the newly allocated pages in the database locked, (2) rearrange 
contents of these pages in private work space and allowing k to be 
inserted, (3) write the newly allocated pages back to the database, 
(4) update all the allected directory entries, (5) unlock all new 
pages, (G) write the splitting page back to the database, and finally 
(7) unlock the splitting page. One may choose to combine steps (5) 
and (7) together as the last step, but that is not strictly necessary. 
Note that during the entire operation no directory entrirs are 
locked and all search operations proceed without being blocked. In 
particular, in step (4) above, when multiple directory entries are 
updated, they are updated one by one without having to be 

updated all in one atomic action. It is assumed, however, that 
updating any single directory entry is atomic, as well as writing 
any single data page to the database. 

We provide the definition of our insertion algorithm below, 
and the formal proof of correctness is presented in Section 4. 

3.3. Deletion Algorithm 

A deletion operation in an extendible hash file consists 
roughly of the same set of steps as the insertion operation, except 
that it needs not to deal with the issue of overflow and page split- 
ting. For our purpose, as mentioned in the beginning of this sec- 
tion, we will ignore the issue of underflow and compaction. There- 
fore syntactically a deletion operation is just like an insertion 
operation that does not encounter overflow. For brevity, we do 
not include a formal definition of its algorithm. 

Definifion o/ fhe Insertion Aigorilhtn 

Algorithm Insert(given key k); 
begin 

hashing: 
Calculate k’ = h(k)= bob, b,-,; 

getpointer: 

read d, b,ase; /* the global depth and base address of the directory D*/ 
t := bobI bd-,; /* take the initial d bits of k’ */ 
x := get(D[t]); /* D(t] is the t-th entry in D */ 

lock-and-verify: 
xold := x; 
lock (x); 
x := get(D[t]); /* re-read directory entry */ 
do while xold # x; /* verificat.ion loop */ 

unlock(x); 
xold := x; 
; :I (pe;.(D[t]); /* re-read */ 
oc x, 

end; 
probe: 

A := get(x-+p); /* read data page p pointed to by x */ 
if key k in A then ‘error duplication’, return; 

insertion: 
case 1. bl < c /* no need to split, where c is the capa.city of a page */ 

A := pageinsert (A,k); 
case 2. fi[ = c /* split required; assume no directory doubling */ 

n := number of new pages required; 

Yl,YZ,...,Y, := allocate n new pages in database; 
lock (yl,y2,...,yn); /* keep new pages locked */ 
A, B,,B, ,.., B, := rearrange old A and II’s, adjust I.d, insert k; 
for i = 1 to n do; 

put (@,y;--rp); /* write l3’s into database */ 
end; 

directory.modify(D,y,,..,y,); 

unlock (YI,..,Y.); 
put@, x+p); 
unlock(x); 

end; 

The function of directory.modify is 

Procedure directory.modify(D,y,,..,y,); 
begin 

for all directory entries j affected by split do; 
i := subscript of newly allocated page containing key range of entry j; 

put (Yij WI); 
end; 

end; 
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3.4. Discussion of Performance 

In this subsection we briefly discuss how our proposed algo- 
rithm compares with “standard techniques”. To our h?st 
knowledge, there has been little discussion of concurrent opcrnt,ions 
in extendible hashing in the literature. Therefore we will rwsunle 
the “+andard technique” in this case to be two-ph,ase locking 
(OPl,). Using 2PL, a search operation must (1) obtain a shared- 
lock on the directory entry, (2) obtain a shared-lock on the data 
page pointed to by the directory entry, (3) perform search and 
then release both locks. An insertion/deletion operation must (1) 
obtain an exclusive-lock on the directory entry, (2) obtain an 
exclusive-lock on the data page pointed to by the directory entry, 
and (3) perform updates and release both locks. If the insertion 
encounters the need to split the data page, it must additionally 
acquire exclusive locks on all directory entries alIected by the split 
before updating these entries and before releasing any lock that it 
has acquired. 

We first show that the standard technique is prone to 
deadlocks. Consider two adjacent directory entries d, and d, 
pointing to the same data page p where p currently hw a local 
depth which is 1 less than the global depth. Two insertion opera- 
tions I, and I2 are run, one with a pseudo key mapped to d, and 
the other to d,. Consider the following interleaved execution 
sequence using the standard technique: 

I, locks d,; 
I, locks d,; 
I, locks p; 
I, reads p and encounters overflow; 
I, attempts to lock d,; 
I, attempts to lock p; 

The two operations are now deadlocked 

Also, using the standard technique, while a search operation 
is never blocked by another search operation, it may be blocked by 
an insertion operation, and vice versa. In our algorithm, a search 
operation is never blocked by an insertion operation. Furthermore, 
in our algorithm, insertion operations do not have to acquire a lock 
on the directory entry before reading it, resulting in savings in 
locking overhead. The exact nature of the performance of the 
algorithm as compared to the standard technique would require 
additional analysis. 

While the proposed algorithm ofTers freedom from deadlocks, 
potentially higher level of concurrency and savings in locking over- 
head, it is conceptually simple and should be just as easy, if not 
easier, to implement. The only additional cost in the proposed 
algorithm is the cost of verification. The search operation is poten- 
tially required to perform verification of the content of the direc- 
tory entry previously read. This veritication is needed only when 
the key desired is not found. The insertion algorithm is always 
required to perform verification. However, it can be argued that, 
when a verification is performed on a directory entry, the likeli- 
hood that the latter is memory-resident (i.e., in the buffer pool) is 
very high. This is true even if one does not in general keep the 
entire directory in memory. Therefore the cost of verification due 
to re-reading the directory entries is but a few memory accesses, 
rlllrl can be largely ignored. 

Assumptions: 

(1) The database is finite in size. In other words, there exists a 
bound on the global depth. 

(2) Each search/insertion/deletion operation consists of a 
sequence of read and write steps. Each read/write step 
involves a data granrrle which is either a directory entry or a 
data page. We aSsume that each read and wrife step on such 
data granule is guaranteed to be atomic by the underlying 
system, on top or which the current algorithms are imple- 
mented. In other words, we assume that the gef and put steps 
in the definition of the algorithm are atomic steps. Note that 
this assumption can be supported by a synchronization 
mechanism at a lower level if necessary. 

In order to provide a proof of correctness the criterion of 
correctness must first be articulated. We first give the following 
definitions before we discuss the criterion of correctness. 

Definition. A schedule is a sequence of steps, each of which 
is in the form of A,(OP). The action A can be read (R) or write 
(W). The data granule is z, which can either be a directory entry, 
denoted as d, or a data page, denoted as p. OP is an operation, 
which may either be a search operation, denoted as S, which con- 
sists of two steps R,, and R,, or an insertion/deletion operation, 
denoted as I, which consists of at least three steps, R,, R, and WP. 
(Additional lVP and W, may also appear in an insertion operation.) 
An operation can also be denoted, together with the key k of the 
record to be operated on, as S(k) or I(k). 

Ezatnplc. An example of a schedule is 

4. Proof of Correctness 

To show that the above algorithm is correct, we use the fol- 
lowing steps: 

(1) Show that all operations are deadlock-free and will terminate. 

(2) Show that the search operation is correct. 

(3) Show that the insertion/deletion operation is correct 

in which three operations S,I and ?’ are involved. 

Definifion. Let A and A’ be two steps in a schedule. We say 
that A < A’ if A occurs before A’ in the schedule. 

Ezample. In the above example schedule, Rd(J) < W,(I) 

Criferion 01 Correctness. The unit of atomicity used for the 
purpose of defining correctness is the operation. In other words, the 
algorithm is correct if any interleaved schedule C that the alge 
rithm allows is equivalent (i.e., having the same net effect) to eotne 
serialized execution SE of the same set of operations, subject to an 
additional restriction to be described in the next paragraph. The 
notion of “having the same net effect” is defined as follows: if a 
search operation fails(succeeds with record r) in C it also 
fails(succeeds with record r) in SE, and if an insertion/deletion 
operation succeeds(fails) in C it also succeeds(fails) in SE. 

We lirst motivate the additional restriction, followed by t,he 
formal definition of the criterion of correctness. It is spurious to 
consider an interleaved schedule C correct if it results in a failure 
of a search operation (i.e., the search operation does not find the 
key it is looking for) while the search operation starts in C after an 
insertion operation that inserts that key has finished its last step. 
For example, consider an interleaved schedule C = 
< . . . . W,(I) ,..., R,(S),..> and assume that I inserts key k in page p 
and W,(I) is its last step, S searches for key k and fails, and no 
deletion operation is involved in this schedule. While one may find 
the net result of schedule C equivalent to that of a serialized exe- 
cution where S is run before I, it is meaningless to consider C 
correct. Therefore we define a more meaningful and more intuitive 
criterion of correctness, while retaining the basic notion of atomi- 
city at the operation level, as follows: 

A schedule C of an interleaved execution of a set of 
search and insertion/deletion operations is correct if the 
net eflect of C is equivalent to some serialized execution 
SE of the same set of operations s.t. if the last step of 
OF’, is before the first step of OF’, in C then OP, is 
before OP, in SE. 
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4.1. Proof of Termination 

Lemma 1. All operations terminate. 

Proof. Since no operation would hold any lock while wailing 
for another, no circular wait-for is possible, therefore no deadlock is 
possible. Therefore the termination proof amounts to proving that 
the potential loop in the operation will terminate. All operations 
potentially involve a loop of re-reading a directory entry. Given an 
operation 0 that involves such a loop, the loop in 0 terminates 
when the content of the last directory entry read is the same as 
that of the previous directory entry read. The content of any 
directory entry would change only when a split occurs in the data 
page that the directory entry points to. Since the number of times 
that any data page can split is bounded by the log,(N), where iV is 
the maximum number of pages allowed in this system, i.e., it is 
bounded by the maximum global depth of the system, the number 
of times the value of a directory entry will change is bounded by 
log,(N). Therefore the loop of re-reading the directory entry in 0 
will terminate. 

4.2. The Search Operation is Correct 

Lemma 2. The search operation is correct. 

Prooj. To prove that search operations are correct, we inves- 
tigate what could possibly be the cause for it, to be incorrect. 
Since all search operations terminate, they either succeed or fail. 
We consider each of these two cases separately. 

(i) If a search operation S succeeds, i.e., if it finds the key it 
is looking for, then it must be correct. This can be shown a.~ 
follows. Suppose the record it finds is r. Then there must exist. an 
insertion operation I that inserts r. We can construct an 
equivalent serialized execution in which I is before S. If there also 
exists a deletion operation I, which deletes r, then in the 
equivalent serialized execution we must let I,, be after S. This 
equivalent serialized execution is legal (according to the definition 
of correctness) as long as the last step of I, did not, come before 
the first step of S in our interleaved schedule. Suppose the last step 
of Id did come before the first step of S. Then the only way for r 
to still linger in the database when S starts is for it. to be in some 
data page p from out of which r was relocated (i.e., via page split) 
to a diflerent page p’, from which Id deleted r, and p is still in a 
transient state containing r. IIowever, if I, is finished by the time S 
starts, the directory entry corresponding to r would have already 
be pointing to p’. S therefore could not possibly get access to p. 
Therefore the last step of I, could not come before the lirst step of 
S in our interleaved schedule. Therefore the equivalent. serialized 
execution is legal. Therefore the search operation is correct.. 

(ii) If a search operation S fails, it could fail incorrectly only 
when concurrent relocation exists. In other words, we want. to 
show that if a search operation S(k) fails, and the last data page 
read by S(k) is p, then there exists no insertion operation I such 
that I relocates the key range containing k from p to p’ # p before 
S(k) reads p. 

Suppose that there exists such an insertion operation I. Let d 
be the directory entry corresponding to the key k. Then I, before 
finishing, would first write the directory entry d and then writes p. 
We denote these steps as W,,(I) and W,,(I). We also denote the 
final steps of S(k) in reading directory d, reading page p, then re- 
reading (i.e., verifying) directory d as R,(S),R,(S) and V,(S). By 
definition of the failed search operation, the value read in R,(S) 
would be equal to that of Vd(S). There are four cases of possible 
interleaving: 

(1) W,,(I)<R,(S) and W,,(I)<R,(S). In this case, since I relo- 
cates k from p to p’, the directory entry read by S(k) should 
not contain a pointer to p, therefore S(k) would not have 
read p, contradictory. 

(2) W,(I)<R,(S) and Rp(I)<W,,(S). In this case, similar argu- 
ment as above, S should not have read p, also contradictory. 

(3) 

(4) 

Rd(S)<W,(I) and W,,(I)<R,,(S). In this case, the V, step of 
S(k) would have read the new pointer (i.e., to p’) which is not, 
equal to the old pointer (i.e.,to p) read in the R,, step, con- 
tradictory. 

Rd(S)<Wd(I) and Rp(S)<Wp(I). In this case, S(k) would 
read the old content of page p before I relocates k out of p, 
contradictory to definition of I. 

Therefore we conclude that there exists no insertion opera- 
. . . . . 

tion I that could have relocated k out of p before S(k) reacls p as 
its last data Page to read before termination. Therefore the searci, 
operation is correct. 

Combining (i) and (ii) above we conclude that the search 
operation is correct. 

4.3. Insertion/Deletion is Correct 

Since search operations do not update the database, they 
would not affect the correctness of an insertion operation. There- 
fore to prove that, insertion operations are correct we need only to 
take into account interferences among insertion operations them- 
selves, and between insertion and deletion. 

We introduce some notations to refer to specific steps of an 
insertion/deletion operations. We are interested in the tailing end 
of the steps in these operations, i.e., those in the final round of the 
verification loop and those at the very end. The sequence of the 
read/write steps of the last round of the verification loop of an 
insertion/deletion consists of <Rd,L,,V;>, where L, stands for 
exclusive lock of p, V,, stands for the step of verifying the content 
of the directory entry read in Rd. We denote Rd and V, in this 
last round of verification as R*d and V’,. Note that by definition, 
the content of the directory entry read in R’l and V’, must be 
identical. After the last round of verification, the page pointed to 
by the value read in R*,, is read. We denote this step as R’,. 
The final sequence of steps of an insertion/deletion operation that 
does not involve a split is <WP,c$ >, where W, and UP sta:d for 
write and unlock of the page p which was locked between R 4 and 
V’, during the last round of verification. The sequence for one 
involving a split is <W,,U,W,,U,>. where U unlocks all new 
pages, and W, is the last directory entry update. We will denote 
these last, steps of directory update and page write as W’, and 
W’,. Note that the directory entry written in IV’, may not be , 
the same entry read in R d or V’,. 

Definilion. Let I be an insertion/deletion operation. We 
define the range of the keys relocated by I as the migration scl of 
I, denoted as migration(I). 

Since the deletion operation never relocates any record, ita 
migration set is obviously empty. 

Lemma 9. Any two concurrent insertion/deletion operations 
I, and I, always interleave correctly. 

Proof. Let the key to be operated by I, be k, and that by I, 
is k,. Assume without loss of generality R’,(I,)<R’,(I,). We 
consider the following cases, and for each case we show that they 
interleave correctly. 

(1) nGgration(I,) contains k,. Then I, must update the direc- 
tory entry for k,, denoted as dLS’ that I2 needs to read. TWO 
subcases are considered. (i) I, reads db2 in the final round 
a&r I, updates it. (i.e., W,,2(I,)<R’d(12) where W,+2(Il) is 

the step in which I, updates I&.) Then I, cannot read the 
page pointed to by dtp it read until I, releases the lock on it, 
by which time I, would have finished all its operations on 
directories. Therefore the only dependency that, the 
directory entry operations can possibly induce between I, 
and I, are I, giving to I,. Since I, will not read or write any 
data pages after I, writes them, the only dependency that 
the data page operations can induce are also I, giving to I,. 
Therefore any interleaving between I, and I, is equivalent to 
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serializing I, before I*, , therefore they are correct. (ii) 
W, (I,)>R 

t2 
,,(ls), i.e., 1, reads r&e before I, updates it. In 

this case Is will be forced to wait till 1, releases its lock on 
the page it is splitting, by which time W,,!I,) would have 

already occurred, which means V’,(I,) would have failed, 
contradictory. 

migrafion(1,) does not contain k,. There are also two sub- 
cases. (i) migration(ls) contains k,. Let the page read in 
R:,(I,) be p. I, holds a lock on p till finish. Since 
R ,(I,)<R’,(I,), I, can read p (if it ever does) only after I, 
is finished. Therefore the only possible dependency is I, giv- 
ing to Is, therefore the interleaving is correct. (ii) 
migrafion(Is) does not contain k,. In this case no conflict 
can occur between I, and Is on directory entries. And since 
data pages are two-phase locked,’ the interleaving must be 
correct. 

From the above three lemmas, one concludes that our algo- 
rithms for concurrent search/insertion/deletion operations are 
correct. Q. E. D. 

6. Conclusion 

We have presented an algorithm for synchronizing concurrent 
operations in extendible hash files. The algorithm allows the 
search operations to proceed concurrently with insertion operations 
without having to acquire locks on the directory entries or the data 
pages. It also allows concurrent insertion/deletion operations to 
proceed without having to acquire locks on the directory entries. 
Moreover, because at most a single lock is required at any time for 
each of these operations, the algorithm is deadlock free. The algo- 

rithm combines the method of verification used in the optimistic 
concurrency control algorithm and the special structures of opera- 
tions in extendible hash files together to yield a higher level of con- 
currency as well as a lower synchronization overhead. 

In this paper we ignore the issues of underflow and compac- 
tion. We also did not discuss the issue of directory expansion (i.e., 
doubling) extensively. However, the latter can be handled by a 
straightforward extension of the current algorithm, to require that 
(1) every time a verilication (i.e., re-read) of the content of the 
directory entry is performed, the global depth and the base address 
of the directory are also re-read, and that (2) the old version of the 
directory is carried around in memory for a specified period of 
time. (Incidentally, (2) can be relaxed if the bits in the pseudo key 
used to index into the directory are the suffix rather than the 
prelix of the pseudo key.) If these prove to be practical to imple- 
ment, directory expansion can be allowed to proceed concurrently 
with starch operations. In any case, database quiescence can 
always be resorted to as the method for handling directory expan- 
sion 

The algorithm can also be applied to handle dynamic perfect 
hash files [YD84]. The dynamic perfect hash file structure employs 
a method that optimizes the space requirement of the directory 
used in an extendible hash file, thus rendering it more practical to 
consider the directory being memory resident. However, the struc- 
ture of the directory in a dynamic perfect hash file is more compli- 
cated than that of an ordinary extendible hash file, and extensions 
of the current algorithm must be sought for. 
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