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Abstract 

In this paper, we present tie design, implementation techniques, 
and initial performance evaluation of Gamma. Gamma is a new rela- 
tional database machine that exploits dataflow query processing tech- 
niques. Gamma is an operat&l ‘protow io&isting of 20 VAX 
111750 computers. In addition to demonstrating that parallelism can 
really be made ‘to work in ‘a d&abase fnachine context, the Gamma 
prototype shows how parallelism can be controlled tith minimal.con- 
trol overhead through a combination of the use of algorithms based on 
hashing and the pipelining of data between processes. 

1. Introduction 2. Hardware Architecture of GAMMA.. 

While the database machine field has been a very active area of 
reseal-ch for the last 10 years, only a handful of research prototypes 
lOZKA75, LEIL78, DEW179, STON79, HELL81, SU82, GARD83, 
FlSH84, KAKU8.5, DEMU86] and three commercial products 
ITERAI?, UBCL85, lDM85l have ever been built. None have 
demonstrated that a highly parallri relarional database machine can 
actually be con<trnrted. 

2.1. Solutions to Ihe 110 Bottleneck Problem 

In thi, paper, we present the design of Gamma, a new relational 
database machine that exploits dataflow query processing techniques. 
Gamma is a fully operational prototype whose design is based on what 
we learned from building our earlier multiprocessor database machine 
prototype (DIRECT) atid several years of subsequent research on the 
problems raised b) the DIRECT prorotype. Our evaluation of 
DIRECT [BITTI?] showed a number of major flaws in its design. 
First, for certain types of queries, DIRECT’s, performance was 
severely constrained by its limited 110 bandwidth. This problem was 
exaggerated by the fact that DIRlXT attempted to use parallelism as a 
substitute for indexing. When one looks at indices from the viewpoint 
of l/O bandwidth and CPU resources, what an index provides is a 
mechanism to avoid searching a large piece of the database to answer 
certain types of queries. With 110 bandwidth a critical resource in 
any database machine [BORA83], the approach used by DIRECT, 
while conceptually appealing, leads to disastrous performance 
[BlTT83]. The other major problem with DIRECT was ‘that Ihe 
number of control actions (messages) required to control th? execution 
of the parallel algorithms used for complex relational operations (e.g. 
join) was proportional to the product of the sizes of the two input rela- 

Soon after conducting our evaluation of the DIRECT prototype, 
we realized that limited I/O bandwidth was not just a problem with 
DIRECT. As discussed in IBORA83], changes in processor and mass 
storage technology have affected all database machine designs. During 
the past decade, while the CPU performance of single chip micropro- 
cessors has improved by at least two orders of magnitude (e.g. Intel 
4040 to the Motorola 68020). there has been only a factor of three 
improvemenf ‘in 110 bandwidth from commercially available disk 
drives (e.g. IBM 3330 to IBM 3380). These changes in technology 
have rendered a number of datibase machine designs riseless and have 
made it much more difficult to exploit massive amounts’,of parallelism 
in any database machine design. 

In lBORA83), we suggested two strategies for improving I/O 
bandwidth. One idea was to use a very large main memory as a disk 
cache [DBWl84al. The second was the use of a number of small disk 
drives in novel configurations as a replacement for large disk drives 
and to mimic the characteristics of parallel read-out disk drives. A 
number of researchers have already begun to look at these ideas 
[SALE84, KIM85, BROW85, LIVN85] and Tandem has a product 
based on this concept [TA,ND85]. 

Although this .concept looks interesting, we feel that it suffers 
from the following drawback. Assume that the approach can indeed be 
used LO construct a mass storage subsystem with an effective bandwidth 
of, for example, 100 megabytes/second. As illustrated by Figure 1, 
before the data can be processed it must be r.outed @rough an inter- 
connection network (e.g.. banyan switch, cross-bar) which. must have a 

bandwidth of at Ieat’ 100 megabytes/second. If one believes the 
fabled “90-10” rule, most of the data moved is not needed in the first 
place. 

Permission to copy withouf fee all or part of this material is 
granted provided thut the copies are not made or distributed for 
direct commercial advantage? the VLDB copyright notice and the 
title of the publication and rts date appear, and notice is given 
that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

lions. Even with message p&sing implemented via shared memory, 
the time spent passing and handling messages dominated the process- 
ing and I/O time for this type of query. 

The remainder of this paper is organized as follows. The archi- 
tecture of Gamma and the rationale behind this design is presented in 
Section 2. In Section 3, we describe the process structure of the 
Gamma software and discuss how these processes cooperate to execute 
queries. In Section 4 we describe the algorithms and techniques used 
10 implement each of the relational algebra operations. In Section 5, 
we present’the results of our preliminery performance evaluation of 
Gamma. Our conclusions and future research directions are 
,jescribed in Sertion 6. 

Figur-e 2 illustrates one alternative design. In this design, con- 
ventional disk drives are usrd and associated with each disk drive is a 
processor. With enough disk dr-ives (50 drives at 2 megabytes/second 

’ 100 megabytes/second are needed to handle the disk traffic. 
Additional bandwidth would be needed to handle processor to proces- 
sor communications. 
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each) the I/O bandwidth of the two alternatives will be equivalent. 
However, the second design has a number of what we consider lo be 
significant advantages. First, the design reduces the bandwidth that 
must be provided by the interconnection network by 100 
megabytes/second. By associating a processor with each disk drive 
and employing algorithms that maximize the amount of processing 
done’locally, the results in [DEWl85] demonstrate that one can signi- 
ficantly cut the communications overhead. A second advantage is that 
the design permits the 110 bandwidth to be expanded incrementally. 
Finally, the design may simplify exploiting improvements in disk tech- 
nology. 

Figure 1 

Figure 2 

This alternative, on which Gamma is based, seems to have been 
pioneered by Goodman [GOOD811 in his thesis work on the use of the 

X-tree multiprocessor for database applications. It is also the basis of 
several other active database machine projects. In the case of the 
MBDS database machine [DEMU86], the interconnection network is a 
10 megabit/second Ethernet. In the SM3 project [BARU84], the 

interconnection network is implemented as a bus with switchable 
shared memory modules. In the Teradata product [TERA83], a tree 
structured interconnection network termed the Y-net is employed. 

2.2. Gamma Hardware 

The architecture of the current prototype of the Gamma database 
machine is shown in Figure 3. Presently, Gamma consists of 20 VAX 
111750 processors, each with two megabytes of memory. An 80 
megabit/second token ring developed for us [DEWl84b] by Proteon 
Associates is used to connect the processors to each other and to 

another VAX running Berkeley UNIX. This processor acts as the host 
machine for Gamma. Attached to eight of the processors are 160 
megabyte Fujitsu disk drives (8”) which are used for database storage. 

2.3. Discussion 

One may wonder how Gamma (or MBDS [DEMU86]) is dif- 
ferent from a distributed database system running on a local area net- 
work. As will become obvious in the next section, Gamma has no 
notion of site autonomy, has a centralized schema, and a single point 
for initiating the execution of all queries. Furthermore, the operating 
system used by Gamma has no capability to dynamically load new pro- 
grams, has lightweight processes with shared memory, and does not 
provide demand paging. 

Gamma Hardware Configuration 
Figure 3 

3. Design of the Gamma System Software 

3.1. Storage Organization 

All relations in Gamma are horizontally partitioned [RIES78] 
across all disk drives in the system. The Gamma query language (gd] 

a extension of QUEL [STON76]) provides the user with four 
alternative ways of distributing the tuples of a relation: 

. round robin 

. hashed 

. range partitioned with user-specified placement by key value 

. range partitioned with uniform distribution 

As implied by its name, in the first strategy when tuples are loaded 
into a relation, they are distributed in a round-robin fashion among all 
disk drives. This is the strategy employed in MBDS [DEMU86] and 
is the default strategy in Gamma for relations created as the result of a 
query. If the hashed strategy is selected, a randomizing function is 
applied to the key attribute of each tuple (as specified in the partition 
command of gdl) to select a storage unit. This technique is used by 
the Terradata database machine [TERA83]. In the third strategy the 
user specifies a range of key values for each site. For example, with a 
4 disk system, the command partition employee on emp-id (100, 
300, 1000) would result in the following distribution of tuples: 

Distribution Condition Processor # 

empid zz 100 1 
100m< emp id 5 300 2 
300 < emp:id c 1000 3 
empid > 1000 4 



Al fit-st glance, this distribution is similar IO the partitioning 
mechanism supported by VSAM [WAGN73] and the TANDEM file 
system [ENSCSS]. There is, however, a significant difference. In 
VSAM and in the Tandem file system, if a file is partitioned on a hey, 
then at each site the file must he Lepl in sorted order on that key. This 
is not the case in Gamma. In Gamma, there is no relationship 
between the partilioning attribute of a file and the order of the tuples at 
a site. To understand the motivation for this capability consider the 
following banking example. Each tuple contains three arlributes: 
acccmnt #, balance, and branch #. 90% of the queries fetch a single 
tuple using account b’. The other 10% of the queries find the current 
balance for each branch. To maximize throughput, the file would be 
pat-titioned on account #. However, rather than building a clustered 
index on account # as would be required with VSAM and the Tandem 
tile system, in G&ma, a clustered index would be built on branch # 
and a non-clustered index would be built on account #‘. This physical 
design will provide the same response time for the single tuple queries 
and a much lower response time for the other queries. 

If a user does not have enough information about his data file to 
select hey ranges, he may elect the final distribution strategy. In this 
strategy, if the relation is not already loaded, it is initially loaded in a 
round robin fashion. Next, the relation is sorted (using a parallel 
merge sort) on the partitioning attribute and the sorted relation is 
redistributed in a fashion that attempts to equalize the number of tuples 
at each site. Finally, the maximum key value at each site is returned 
to the host processor. 

Once a relation has been partitioned, Gamma provides the nor- 
mal mechanisms for creating clustered (primary) and non-clustered 
(secondary) indices on each fragment of the relation. However, a 
special multiprocessor index is constructed when a relation is horizon- 
tally partitioned using either of the two range techniques. As shown in 
Figure 4, the disks, and their associated processors, can be viewed as 

nodes in a primary, clustered index.* The root page of the index is 
mainrained as part of the schema information associated with the index 
on the host machine. As will be described below, this root page is 
used by the query oplirnizer to direct selection queries on the key attri- 
bute to the appropriate sites for execution. 

r- 

* A multiprocessor index may consist of only I level if indices 
have not been created at the disks. 

3.2. Gamma Process Structure 

In Figure 5, the structure of the various processes that form the 
software of Gamma is specified. Along with indicating the relation- 
ships among the processes, Figure 5 specifies one possible mapping of 
processes to processors. In discussing the role each process plays in 
Gamma, we will indicate other alternative ways of mapping Gamma 
processes to machines. The role of each process is described briefly 
below. Their interaction is described in more detail in the following 
section. 

Gamma Process Structure 
Figure 5 

Catalog Manager - The function of the Caralog Manager is to act as 
a central r-epository of all conceptual and internal schema information’ 
for each database. The schema information is permanently stored in a 
set of UNIX files on the host and is loaded into memory when a data- 
base is first opened. Since multiple users may have the same database 
open at once and since each user may reside on a machine other than 
the one on which the Catalog Manager is executing, the Catalog 
Manager is responsible for insuring consistency among the copies 
cached by each user. 

@cry hlanagcr - There is one query manager process associated 
with each active Gamma user. The query manager is responsible for 
caching schema information locally, providing an interface for ad-hoc 
queries using gdl, query parsing, optimization, and compilation. 

Srhcduler Processes - While executing, each “complex” (i.e. mul- 
tisite) query is controlled by a scheduler process. This process is 
responsible for activating the Operator Processes used to execute the 
nodes of a compiled query tree. Since,a message between two query 
processors is twice as fast as a message between a query processor and 
the host machine (due to the cost of getting a packet through the UNIX 
operating system), we elected to run the scheduler processes in the 
database machine instead of the host. At the present time, all are run 
on a single processor. Distributing the scheduler processes on multi- 
ple machines would be relatively straightforward as the only informa- 
tion shared among them is a summary of available memory for each 
query processor. This information is centralized to facilitate load 
balancing. If the schedulers were distributed, access would be 
accomplished via remote procedure calls. 
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Operator Process - For each operator in a query tree, at least one 
Operator Process is employed at each processor participating in the 
execution of the operator. The srrucfure of an operator process and 
the mapping of relational operators lo operator processes is discussed 
in more detail below. 

Deadlock Detection Process - Gamma employs a centralized 
deadlock detection mechanism. This process is responsible for.collecr- 
ing fragments of the “wait-for” graph from each lock manager, for 
locating cycles, and selecting a victim to abort. 

Log Manager - The Log Manager process is responsible for collect- 
ing log fragments from the query processors and writing them on the 
log. The algorithms described in [AGRA85] are used for coordinating 
transaction commit, abort, and rollback. 

3.3. h Overview of Query Execution 

System Initialization and Gamma Invocation 

At system initialization time, a UNIX daemon process for the 
Catalog Manager (CM) is initiated along with a set of Scheduler 
Processes, a set of Operator Processes,’ the Deadlock Detection Pro- 
cess and the Recovery Process. To invoke Gamma, a user executes the 
command “gdl” from the UNIX shell. Executing this command starts 
a Query Manager (QM) process which immediately connects itself to 
the CM process through the UNIX IPC mechanism and then presents 
a command interpreter interface 10 the user. 

Execution of Database Utility Commands 

After parsing a create database or destroy database com- 
mand, the QM passes it to the CM for execution. A create database 
command causes the CM to create and initialize the proper schema 
entries and create the necessary tiles to hold information on the rela- 
tions when the database is closed. Although the catalog manager uses 
UNIX files instead of relations lo hold schema information, the rata- 
log structure it employs is that of a typical relational database system. 
When a destroy database command is executed, its actual execution 
is delayed until all current users of the database have exiled. The first 
step in executing an open database command is for the QM to 
request the schema from the CM. If no other user currently has the 
requested database open, the CM first reads the schema into memory 
from disk and then returns a copy of the schema to the requesting 
QM. The QM caches its copy of the schema locally until the database 
is closed. 

When a user attempts to execute any command that changes the 
schema of a database (e.g create/destroy relation, build/drop index, 
partition, etc), the QM first asks the CM for permission. If permis- 
sion is granted, the QM executes the command, and then informs the 
CM of the outcome. If the command was executed successfully, the 
CM records the changes in its copy of the schema and then propagates 
them lo all query managers with the same database open [HEYT85]. 
A lock manager within the CM ensures catalog consistency. 

Query Execution 

Gamma uses traditional relational techniques for query parsing, 
optimization ISEL179, JARK84], and code generation. The optimiza- 
tion process is somewhat simplified as Gamma only employs hash- 
based algorithms for joins and other complex operations IDEWISS]. 
Queries are compiled into a tree of operators. At execution rime, 
each operator is executed by one or more operator processes at each 
participating site. 

In the process of optimizing a query, the query optimizer recog- 
nizes that certain queries can be executed at a single site. For exam- 
ple, consider a query containing only a selection operation on the 
relation shown in Figure 4 (assume that q is the name of the attribute 
on which the relation has been partitioned). If, for example, the selec- 
tion condition is “q -: A and q 5 C” then the optimizer can use the 

root page of the multiprocessor index on q to determine that the query 
only has to be senr ro Processor #I. 

In the case of a single site query, the query is sent directly by 
the QM to the appropriate processor for execution. In the case of a 
multiple site query, the optimizer establishes a connection to an idle 
scheduler process through a dispatcher process. The dispatcher pro- 
cess, by controlling the number of active schedulers, implements a 
simple load control mechanism based on information about the degree 
of CPU and memory utilization at each processor. Once it has esta- 
blished a connection with a scheduler process, the QM sends the com- 
piled query to the scheduler process and waits for the query to com- 
plete execution. The scheduler process, in turn, activates operator 
processes at each query processor selected to execute the operator. 
Finally, the QM ‘reads the results of the query and returns them 
through the ad-hoc query interface to the user or through the embed- 
ded query interface 10 the program from which the query was initiated. 

In the case of a multisite query, the task of assigning operators 
to processors is performed in part by the optimizer and in part by the 
scheduler assigned to control the execution of the query. For exam- 
ple, the operators at the leaves of a query tree reference only per- 
manent relations. Using the query and schema information. the 
optimizer is able to determine the best way of assigning these operators 
lo processors. The root node of a query tree is either a store operator 
in the case of a “retrieve into” query or a spool operator in the case of 
a retrieve query (ie. results are returned to the host). In the case of a 
Store operator, the optimizer will assign a copy of the query tree node 
to a process at each processor with a disk. Using the techniques 
described below, the store operator at each site receives result tuples 
from the processes executing the node which is its child in the query 
tree and stores them in its fragment of the result relation (recall that 
all permanent relations are horizontally partitioned). ln the case of a 
spool node at the root of a query tree, the optimizer assigns it to a sin- 
gle process: generally, on a diskless3 processor. 

3.4. Operator and Process Structure 

In Gamma, the algorithms for all operators are written as if they 
were to be run on a single processor. As shown in Figure 6, the 
input to an Operator Process is a stream of tuples and the output is a 
stream of tuples that is demultiplexed through a structure we term a 
split table. After being initiated, a query process waits for a control 
message to arrive on a global, well-known control port. Upon receiv- 
ing an operator control packet, the process replies with a message that 
identifies itself to the scheduler. Once the process begins execution, 

i CONnlOI. PICKET 

Figure 6 

’ The comrnunica~ions software provides a back-pressure 
mechanism so that the host can slow the rate at which tuples are being 
produced if ir cannot keep up. 
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it continuously reads tuples from its input stream, operates on each 
tuple, and uses a split table to route the resulting tuple to the process 
indicated in the split table. When the process detects the end of its 
input stream, it first closes the output streams and then sends a control 
message to its scheduler indicating that it has completed execution. 
Closing the output streams has the side effect of sending “end of 
stream” messages to each of the destination processes. With the 
exception of these three control messages, execution of an operator is 
completely self-scheduling. Data flows among the processes executing 
a query tree in a dataflow fashion. 

The split table defines a mapping of values to a set of destination 
processes. Gamma uses three different types of split tables depending 
on the type of operation being performed. For example, consider the 
use of a split table shown in Figure 7 in conjunction with the execu- 
tion of a join operation using 4 processors. Each process producing 
source tuples for the join will apply a hash function to the join attri- 
bute of each output tuple to produce a value between 0 and 3. This 
value is then used as an index into the split table to obtain the address 
of the destination process that should receive the tuple. 

Value Destination Process 
0 (Processor U3, Port #5) 
1 (Processor U2, Port #l3) 
2 (Processor #7, Port #6) 
3 (Processor U9, Port #I 5) 

An Example Split Table 
Figure 7 

The second type of split table used by Gamma produces tuple 
streams that are partitioned on discrete ranges of non-hashed attribute 
values. In this case, the upper bound of each partition range serves as 
a key value for each entry in the split table. These range partitioned 
split tables are used when permanent relations are fragmented using 
either of the range partitioning strategies described in Section 3.1. 
These split tables are also applicable when the split attribute targeted 
by an operation at the leaf of a query tree is the horizontal partitioning 
attribute (HPA) for ‘a relation. In this case, the split table is initialized 
with the boundary values defined for the source relation’s HPA with 
the effect that each fragment of the source relation is processed locally. 
For join operations, if the outer relation is horizontally partitioned on 
the join attribute, then the relation will generally not be transmitred 
across the network. In this case, the inner relation of the join would 
be partitioned and distributed according to the HPA ranges of the frag- 
ments of the outer relation at each site. 

Gamma uses a third form of split tables when tuples are distri- 
buted in a round robin fashion among destination processes. For this 
distribution strategy, tuples are routed to destination processes 
represented tn the split table, independently of the table’s key values. 

To enhance the performance of certain operations, an array of 
hit vector filters [BABB79, VALD84] is inserted into the split table as 
shown in Figure 6. In the case of a join operation, each join process 
builds a bit vector filter by hashing the join attribute values while 
building its hash table using the outer relation [BRAT84, DEW185, 
DEW184a, VALD84]. When the hash table for the outer relation has 
been completed, the process sends its filter to its scheduler. After the 
scheduler has received all the filters, it sends them to the processes 
responsible for producing the inner relation of the join. Each of these 
processes uses the set of filters to eliminate those tuples that will not 
produce any tuples in the join operation. 

3.5. Operating and Storage System 

Gamma is built on top of an operating system developed specifi- 
cally for supporting database management systems. NOSE provides 
multiple, lightweight processes with shared memory.’ A non- 
preemptive scheduling policy is used to help prevent convoys 
[BLAS79] from occurring. NOSE provides reliable communications 

between NOSE processes on Gamma processors and to UNIX 
Processes on the host machine. The reliable communications mechan- 
ism is a timer-based, one bit stop-and-wait, positive acknowledgement 
protocol [TANEBIJ. A deltaT mechanism is used to re-establish 
sequence numbers [WATSII]. File, record, index, and scan services 
in NOSE are based on the Wisconsin Storage System (WiSS) 
[CHOU85]. Critical sections of WiSS are protected using the sema- 
phore mechanism provided by NOSE. To enhance performance, the 
page format used by WiSS includes the message format required for 
interprocessor communications by NOSE. Thus, a page can be read 
from disk and sent to another processor without requiring that tuples 
be copied from the page in the buffer pool into an outgoing message 
template. 

4. Query Processing Algorithms 

4.1. Selection Operator 

The performance of the selection operator is a critical element of 
the overall performance of any query plan. If a selection operator pro- 
vides insufficient throughput, then the amount of parallelism that can 
be effectively applied by subsequent operators is limited. Gamma’s 
use of horizontally partitioned relations and closely coupled 
processor/disk pairs addresses the I/O bottleneck from a macro-system 
perspective. However, the efficiency of individual selection operator 
processes on distinct processors is still important. For a given set of 
resources, a well-tuned selection operator should provide the necessary 
throughput IO ensure that the rest of the system is effectively utilized. 

To achieve the maximum possible throughput, Gamma uses 
three complementary techniques. First, indices are used whenever 
possible. Second, selection predicates are compiled into machine 
language procedures to minimize their execution time. Finally, a lim- 
ited form of read-ahead is used in order to overlap the processing of 
one page with the I/O to get the “next” page of the relation from disk. 

4.2. Join 

The multiprocessor hash-join algorithm used by Gamma is based 
on a partitioning of source relations into disjoint subsets called buck- 
ets [GOODSI, KITS83a,b, BRAT84, DEWl84a, VALD84, 
DEW185]. The partitioned buckets represent disjoint subsets of the 
original relations. These partitions have the important characteristic 
that all tuples with the same join attribute value share the same bucket. 
The potential power of this partitioning lies in the fact that a join of 
two large relations can be reduced to the separate joins of many 
smaller relation buckets ]KlTS83a,b]. 

Gamma’s Hash Join Algorithm 

In Gamma, the tuple streams that are consumed by a hash-join 
operation are produced by operators using hash-based split tables. 
These tuple streams pat-tition the tuples based on their join attribute 
values. As identical split tables are applied to both source relations of 
a join, a join of two large relations is reduced to the separate joins of 
many smaller relation buckets. In Gamma, these separate, indepen- 
dent joins provide a natural basis for parallelism. The following dis- 
cussion considers the details of how this parallelism is achieved and 
exploited. 

Hash-join operators are activated in a manner that is uniform 
with all other operators. There is an additional control interaction, 
however, that is unique to the hash-join operator. This control mes- 
sage is required because there are two distinct phases to the hash- 
partitioned join algorithm. In the first phase, termed the building 
phase, the join operator accepts tuples from the first source relation 
and uses the tuples to build in-memory hash tables and bit vector 
filters. At the end of this building phase, a hash-join operator sends a 
message to the scheduler indicating that the building phase has been 
completed. Once the scheduler determines that all hash-join operators 
have finished the building phase, the scheduler sends a message to 
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each join operator directing the operators to begin the second phase of 
the operation, the probing phase. In this phase, individual join 
operator processes accept tuples from the second source relation. 
These tuples are used to probe the previously built hash-tables for 
tuples with matching join attribute values. At the end of the probing 
phase, each of the join operators sends a message to the scheduler 
indicating that the join operation has been completed. 

An important characteristic of this algorithm is the simplicity of 
the interactions between the scheduler and participating operator 
processes. The net cost of activating and controlling a hash-join 
operator is five messages per site. (In effect, the building and probing 
phases of a join operation are considered separate operators for pur- 
poses of control.) All other data transfers can proceed without further 
control intervention by the scheduler. 

In addition to controlling individual join operators, the scheduler 
must also synchronize the join with the operators of adjacent nodes in 
the query tree. In particular, the scheduler must initiate the operators 
which will be producing the input tuple streams for the join. The pro- 
duction of these tuple streams must coincide with the activation of the 
building and probing phases of the hash-join operator. 

Mash Table Overflow 

During the building phase of the multiprocessor hash-join algo- 
rithm, if buckets grow unacceptably large, the in-memory hash tables 
may overflow. The choice of an appropriate hash funcfion will tend to 
randomize the distribution of tuples across buckets and, as such, will 
minimize the occurrence of hash table overflow. Additionally, in 
order to decrease the likelihood of hash table overflow, the optimizer 
attempts to build query trees that minimize the size of the relations that 
are accessed during the building phase of the hash-join algorithm. 
For joins in the interior of a query tree, this is a difficult task. 

When hash-table overflow occurs, a local join operator narrows 
the dimensions of the tuple partition that is used for the construction of 
the hash table, in effect creating two subpartitions. One subpartition is 
used for hash table construction and the other is dumped to an over- 
flow file on disk (possibly remote). Tuples that have already been 
added to the hash table, but now belong to the overflow subpartition, 
are removed from the table. As subsequent tuples are read from the 
input stream, they are either added to the hash table or appended to the 
overflow file. 

When the local join operator notifies the scheduler of the com- 
pletion of the building phase, it identifies the repartitioning scheme 
that was used for the handling of any overflow condition. With this 
knowledge the scheduler can alter the split tables of the second, prob- 
ing source relation in such a manner that the overflow subpartitions 
are directly spooled to disk, bypassing the join operators. After the 
initial non-overflow subpartitions have been joined, the scheduler 
recursively applies the join operation to the spooled, overflow subparti- 
tions. This method will fail in the case that the combined sizes of 
tuples having identical join attribute values exceeds the size of available 
memory. In such a case, a hash-based variation of the nested loops 
join algorithm is applied [BRAT84, DEWI85J. 

4.3. Update Operators 

For the most part, the update operators (replace, delete, and 
append) are implemented using standard techniques. The only excep- 
rion is a replace operation that modifies the partitioning attribute. In 
this case, rather than writing the modified tuple back into the local 
fragment of the relation, the modified tuple is passed through a split 
table lo determine where the modified tuple should reside. 

5. Performance Evaluation 

In this section, we present the results of our preliminary perfor- 
mance evaluation of Gamma. This evaluation is neither extensive nor 
exhaustive. For example, we have not yet conducted any multiuser 
tests. Rather, these tests only serve to demonstrate the feasibility of 

the hardware architecture and software design of Gamma. Concerns 
of correctness rather than absolute speed have necessarily dominated 
the current phase of development. 

All our tests were run with the host in single user mode. 
Elapsed time at the host was the principal performance metric. This 
value was measured as the time between the points at which the query 
was entered by the user and the point at which it completed execution. 

5.1. Test Database Design and Results 

The database used for these tests is based on the synthetic rela- 
tions described in [BITT83]. Each relation consists of ten thousand 
tuples of 208 bytes. Each tuple contains thirteen, four byte integer 
attributes followed by three, 52 byte character string attributes. 

All permanent relations used in the following tests have been 
horizontally partitioned on attribute Unique1 which is a candidate key 
with values in the range 0 through 9,999. Range partitioning was 
used to equally distribute tuples among all sites. For example, in a 
configuration with four disks, all tuples with Unique1 values less than 
25OO*i reside on disk i. All result relations are distributed among all 
sites using round-robin partitioning. The presented response times 
represent an average for a set of queries designed to ensure that each 
query i leaves nothing in a buffer pool of use to query i + 1. 

5.2. Selection Queries 

In evaluating the performance of selection queries in a database 
machine that supports the concept of horizontal partitioning and mul- 
tiprocessor indices, one must consider a number of factors: the selec- 
tivity factor of the query, the number of participating sites, whether or 
not the qualified attribute is also the horizontal partitioning amibute, 
which partitioning strategy has been utilized, whether or not an 
appropriate index exists, and the type of the index (clustered or non- 
clustered). If the qualified attribute is the horizontal partitioning attri- 
bute (HPA) and the relation has been partitioned using one of the 
range partitioning commands, then the partitioning information can 
be used to direct selection queries on the HPA to the appropriate sites. 
If the hashed partitioning strategy has been chosen, then exact match 
queries (e.g. HPA = value) can be selectively routed to the proper 
machine. Finally, if the round-robin partitioning strategy has been 
selected, the query must be sent to all sites. If the qualified attribute 
is not the HPA, then the query must also go to all sites. 

To reduce the number of cases considered in this preliminary 
evaluation, we restricted our attention to the following four classes of 
selection queries: 

We restricted classes Sl and S2 further by designing the test queries 
such that the operation is always executed on a single site. This was 
accomplished by having the horizontal partitioning ranges cover the 
qualifications of the selection queries. Since queries in both classes 
S3 and S4 reference a non-HPA attribute, they must be sent to every 
site for execution. Each of the selection tests retrieved 1,000 tuples 
out of 10,000 (10% selectivity). The result relation of each query was 
partitioned in a round-robin fashion across all sites (regardless of how 
many sites participated in the actual execution of the query). Thus, 
each selection benefits equally from the fact that increasing the 
number of disks decreases the time required for storing the result rela- 
tion. 

The results from these selection tests are displayed in Figure 8. 
For each class of queries, the average response time is plotted as a 
function of the number of processors (with disks) used to execute the 
query. Figure 8 contains a number of interesting results. First, as 
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the number of processors is increased, the execution time of SI and S3 
queries drops. This decrease is due to the fact that as the number of 
processors is increased, each processor scans proportionally less data. 
Since the entire relation is always scanned in the S3 case, the results 
for S3 indicate that parallel, non-indexed access can provide acceptable 
performance for large multiprocessor configurations when there is suf- 
ficient l/O bandwidth available. 

It is important IO understand the difference between the Sl and 
S3 queries in Figure 8. While both have approximately the same 
response time, SI would have a higher throughput rate in a multiuser 
test since only a single processor is involved in executing the query 
(assuming, of course, that the queries were uniformly distributed 
across all processors). 

At first, we were puzzled by the fact that S3 was slightly faster 
than Sl. In fact, one might have expected exactly the opposite result 
due to the overhead (in S3) of initialing the query at multiple sites. In 
both cases, each processor scans the same number of source tuples. 
In addition, since the result relation (which has the same size in both 
cases) is partitioned across all sites, the cost of storing the result rela- 
tion is the same. The difference seems to be the number of processors 
used to distribute the tuples in the result relation. In case Sl, one 
processor produces all the result tuples which must be distributed to 
the other sites. In case S3, all processors produce approximately the 
same number of result ruples (since Unique2 attribute values are ran- 
domly ordered when the file is horizontally partitioned on Unique]). 
Thus, the cost of distributing the result tuples is spread among all the 
processors. This explains why the gap between the Sl and S3 curves 
widens slightly as the number of processors is increased. The ano- 
maly in the curves that occurs when 7 or 8 processors are used is dis- 
cussed in Section 5.4. 

Cases S2 and S4 illustrate different effects of horizontal partition- 
ing and physical database design on response time. III the case of sin- 
gle site, indexed selections on the partitioning attribute (such as S2), 
increasing the number of disks (and, hence, decreasing the size of the 

relation fragment at each site) only decreases the cost of the index 
traversal (by reducing the number of levels in the index) and not the 
number of leaf (data) pages retrieved from disk. While this effect 
might be noticeable for single tuple retrievals, the number of levels in 
the index does not change across the range of sites evaluated. Instead, 
we attribute the drop in response time as the number of processors is 
increased from 1 to 2 as a consequence of increasing the number of 
disks used to store the result relation. Thus, scanning the source rela- 
tion on site 1 can he partially overlapped with storing half the result 
relation on site 2. As the number of processors is increased from 2 to 
3 one sees a very slight improvement. After three processors, little or 
no improvement is noticed as the single processor producing the result 
relation becomes the bottleneck. 

In the case of S4 (an indexed selection on a non-partitioning 
attribute), the query is executed at every site. Since Unique2 attribute 
values are randomly distributed across all sites, each processor pro- 
duces approximately the same number of result tuples. Thus, as the 
number of sites is increased, the response time decreases. The perfor- 
mance of case S4 relative to S3 illustrates how parallelism and indices 
can he used to complement each other. 

An observant reader might have noticed that while the speedup 
factors for Sl and S3 are fairly close to linear, there is very little 
improvement in response time for S4 when the number of processors 
is doubled from 4 to 8. Given the way queries in class S4 are exe- 
cuted, it would be reasonable to expect a linear bpeedup in perfor- 
mance as the number of processors is increased. The reason this does 
not occur, while a little difficult to describe, is quite interesting. First, 
it is not a problem of communications bandwidth. Consider a 4 pro- 
cessor system. Each site produces produces approximately I/4 of the 
result relation. Of these 250 tuples, each site will send 63 to each of 
the other three sites as result tuples are always distributed in a round- 
robin fashion. Thus, a total of 750 tuples will be sent across the net- 
work. At 208 bytes/tuple, this is a total of I.2 million hits. At 80 mil- 
lion hits/second, approximately 2/1OOs of a second is required to redis- 
tribute the result relation. 

The problem, it seems, is one of congestion at the network inter- 
faces. Currently, the round-robin distribution policy is implemented 
by distributing tuples among the output buffers on a tuple-by-tuple 
basis. At each site in an 8 processor system, 8 qualifying tuples can 
change the state of the 8 output buffers from non-empty to filf. Since 
the selection is through a clustered index, these 8 tuples may very 
well come from a single disk page or at most two pages. Thus, with 8 
processors, 64 output buffers will become full at almost exactly the 
same time. Since the networh interface being used at the current time 
has buffer space for only two incoming packets, five packets to each 
site have to be retransmitted (the communications software short- 
circuits a transmission by a processor to itself). The situation is con- 
plicated further by the fact that the acknowledgments for the 2 
messages that do make it through, have to compete with retransmitted 
pachets to their originating site (remember, everybody is sending to 
everybody). Since it is likely that some of the acknowledgements will 
fail to he received before the transmission timer goes off, the original 
packets may be retransmitted even though they arrived safely. 

One way of at least alleviating this problem is to use a page-hy- 
page round-rohin policy. By page-by-page, we mean that the first out- 
put buffer is filled before any tuples are added to the second buffer. 
This strategy, combined with a policy of randomizing to whom a pro- 
cessor sends its first output page, should improve performance signifi- 
cantly as the production of output pages will be more uniformly distri- 
buted across the execution of the operation. 

Rather than fixing the problem and rerunning the tests, we 
choose to leave this rather negative result in the paper for a couple of 
reasons. First, it illustrates how critical communication’s issues can 
he. One of the main objectives in constructing the Gamma prototype 
is to enable us to study and measure interprocessor communications so 
that we can develop a better understanding of the problems involved in 
scaling the design to larger configurations. By sweeping the problem 
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under the rug, Gamma would have looked better but an important 
result would have been lost (except to us). Second, the problem illus- 
trates the importance of single user benchmarks. The same problem 
might not have showed up in a multiuser benchmark as the individual 
pl-ocessors would be much less lihely to be so tightly synchronized. 

As a point of reference, the IDMSOO database machine (10 MHz 
CPU with a database accelerator and an equivalent disk) lakes 22.3 
seconds for SI selections. The IDMSOO time for S2 selections is 5.2 
seconds. Finally, the time in Gamma IO retrieve a single tuple using a 
multiprocessor index such as that used for S2 is 0.14 seconds. 

5.3. Join Queries 

As with selection queries, there are a variety of factors to con- 
sider in evaluating the performance of join operations in Gamma. For 
the purposes of this preliminary evaluation, we were particularly 
interested in the relative performance of executing joins on processors 
with and without disks. We used the following query as the basis for 
our tests: 

range of X is tenKtupA 
range of Y is tenKtupB 
retrieve into temp (X.all, Y.all) 
where (X.Unique2A = Y.UniqueZB) and (Y.UniqueZB < 1000) 

Each relation was horizontally partitioned on its Unique1 attribute. 
Execution of this query proceeds in two steps. First, the building 
phase of the join (see Section 4.2) is initiated. This phase constructs a 
hash table using the tenKtupA relation on each processor participating 
in the execution of the join operator. Ordinarily, the optimizer 
chooses the smallest source relation (measured in bytes) for processing 
during the building phase. in this query, the source relations can be 
predicted to be of equal size as the qualification on the tenKtupB rela- 
tion can be propagated to the tenKtupA relation. 

Once the hash tables have been constructed and the bir vector 
filters have been collected and distributed by the scheduler, the second 
phase begins. During this phase, the selection on tenKtupB is exe- 
cuted concurrently with the probing phase of the join operation. 

Since Unique2 is not the HPA for either source relation, all sites 
participate in the execution of the selection operations. The relations 
resulting from the selection and join operations contain 1,000 tuples. 

To reduce the number of cases considered, joins were either 
performed solely on processors with disks attached or solely al proces- 
sors without disks. For convenience, we refer to these joins, respec- 
tively, as local joins and remote joins. We performed four sets of 
joins with the following characteristics: 

The results of these join tests are displayed in Figure 9. For 
each class of queries the average response time is plotted as a function 
of the number of processors with disks rhat are used. For the remote 
joins, an equal number of processors without disks are also used. 
Figure 9 demonstrates that there is nor a performance penalty for join- 
ing tuples on sites remote from the source of the data. In fact, joins 
on processors without disks are actually slightly faster than those per- 
formed on processors with disks. The following discussion addresses 
this somewhat counterinruitive, but intriguing result. 

Two factors conrribufe lo making remote joins slightly faster 
than local joins (with respect, at least, to a response time metric). 
First, when joins are performed locally, Ihe join and select operators 
compete with each other for CPU cycles from the same processor. 
Second, since Gamma can transfer sequential streams of tuples 
between processes on two different processors at almost the same rate 
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as between processes on the same machine, there is only a very minor 
response time penalty for executing operations remotely. Additional 
CPU cycles are, however, consumed while executing the communica- 
tions protocol. Thus, there is likely to be a loss in throughput in a 
multiuser environment. We intend to explore the significance of this 
loss in future benchmark tests. 

Since twice as many processors are used by the remote join 
design, one might wonder why the response times for remote joins 
were not half those of the corresponding local joins. Since the build- 
ing and probing phases of the join operator are not overlapped, the 
response time of the join is bounded by the sum of the elapsed times 
for the two phases. For the cases tested, it turns out that the execution 
time for the building and probing phases is dominated by the selections 
on the source relations. There is, however, another benefit that 
accrues from offloading the join operator that is not reflected in a 
response time metric. When the join operation is offloaded, the pro- 
cessors with disks can effectively support a larger number of con- 
current selection and store operations. 

While remote joins only marginally outperform local joins, we 
consider the implications significant. Having demonstrated that a 
complex operation such as a join can be successfully offloaded from 
processors with disks provides a basis for expanding the design spec- 
trum for multiprocessor database machines. 

As a point of reference for the join times of Figure 9, the 
lDM500 rook 84.3 seconds for J2 joins and 14.3 seconds for joins of 
type J4. 

5.4. Speedup of Join Elapsed Times 

In Figure 10, response-time speedup curves are presented for 
the join tests described in the previous section. These results confirm 
our hopes that multiprocessor, partitioned hash-join algorithms can 
effectively provide a basis for a highly parallel database machine. The 
anomalous shape of the speedup curves for systems with 7 or 8 disks 
can be attributed to two factors. First, the seventh and eighth disks 
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that were added to the system have only 82%4 the performance of each 
of the other six disks. With evenly partitioned source relations, these 
slower disks increased the time required for scanning each of the 
source relations. All of this additional time is directly reflected in 
increased response times for join operations because the building and 
probing phases of the join operation are not overlapped. 

A second factor also contributes to the shape of the speedup 
curve for systems with large numbers of processors. The ratio of con- 
trol messages to data messages per processor increases as processors 
are added to the system. This factor only becomes significant once the 
volume of tuples processed by each processor becomes small. In the 
join tests presented, this effect may become noticeable when as few ai 
eight disks are used because the Gamma query optimizer recognizes 
that the qualification on the first source relation (tenKtupB) can be 
propagated IO tenKtupA. Therefore, only 1000 tuples are produced by 
the selections on each source relation. When join operators are active 
on eight processors, this means that each join operator will process 
approximately fourteen data pages from each relation and five control 
messages. 

The reduced (and less impressive) speedup factors for joins J3 
and J4 appear to be a consequence of the reduced speedup obtained for 
selection S4 which is executed as part of join queries J3 and J4 (see 
Section 5.2). As discussed above, for the join tests conducted, the 
execution time for the building and probing phasgs of the join is dom- 
inated by the selections on the source relations. 

As Gamma enters a more mature stage of development, fur-ther 
speedup results will be obtained from queries that generate more mas- 
sive amounts of data. For the current time, we present the speedup 
data for purposes of illustrating the potential that the system promises. 

6. Conclusions 

In this paper we have presented the design of a new relational 
database machine, Gamma. Gamma’s hardware design is quite sim- 

’ This value was determined by measuring the elapsed time of 
scanning a 10,000 tuple relation on the two sets of disk drives. While 
all the drives are 160 megabyte Fujitsu drives, six are newer 8” drives 
while the other two are older 14” drives. 

ple. Associated with each disk drive is a processor and the processors 
are interconnected via an interconnection network. The initial proto- 
type consists of 20 VAX 1 l/750 processors interconnected with an 80 
megabit/second token ring. Eight of the processors have a 160 mega- 
byte disk drive. This design, while quite simple, provides high disk 
bandwidth without requiring the use of unconventional mass storage 
systems such as parallel read-out disk drives. A second advantage is 
that the design permitc the I/O bandwidth to be expanded incremen- 
tally. To utilize the I/O bandwidth available in such a design, all rela- 
tions in Gamma are horizontally partitioned across all disk drives. 

In order to minimize the overhead associated with controlling 
intraquery parallelism, Gamma exploits dataflow query processing 
techniques. Each operator in a relational query tree is executed by 
one or more processes. These processes are placed by the scheduler 
on a combination of processors with and without dish drives. Except 
for 3 control messages, 2 at the beginning of the operator and 1 when 
the operator terminates execution, data flows between between the 
processes executing the query without any centralized control. 

The preliminary performance evaluation of Gamma is very 
encouraging. The design provides almost linear speedup for both 
selection and join operations as the number of processors used to exe- 
cute an operation is increased. Furthermore, the results obtained for a 
single processor configuration were demonstrated to be very competi- 
tive with a commercially available database machine. Once we have 
completed the prototype, we plan on conducting a thorough evaluation 
of the single and multiuser performance of the system. This evalua- 
tion will include both more complex queries and non-uniform distribu- 
tions of attribute values. 
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