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ABSTRACT

This paper oullines the system software of-a parallel re-
lalional database machine GRACE, and describes ils execu-
lion and conlrol of relalional operalions based. on Lhe dala
siream oriented processing. I'he syslem soflware is ‘orgnniied
in a hierarchy, and the execulion of a relalional.operation
and ils operand dala are encapsulaled and controlled in Lhe’
form of lask. The dala slream conlrol prolecol belween
modules in a task makes lasks autono'mo‘us objects. The
system sollware we propose eliminales the greater parl of
possible conlrol overheads first by adopling the lask-level
granularity Tor Lhe execulion and conlrol, then by execuling
Lhe operalion along Lhe flow of operand dala. The former
reduces the conlrol overhead for enabling the execulion of a
relalional operalion, whilg the Ialler hides the execulion
behind Lhe 1/0’s or dala transfer. Ils preliminary implemen-
lalion on Lhe soflware simulalor of GRACE is also reported.
In addition, Lhe novel virtual space management algorilhm is
proposed, which enables us lo handle a large dala siream
quile efliciently. )

1. Inlroduclion

The past decade has seen considerable efforls direcled
towards exploring parallel architectures for relational dala-
base processing [Ozka75, DeWi78, Kits82, Kim84]. These
research eflorls have clarified two substanlial performance
faclors of dalabase machines: lhe conlrol and dala lransfer
overhead for parallel execulion ol relalional operations, and
Lhe classical [/O botlleneck problem [DeWi86]. The Lypical
example which convinces us of Lhese poinls is Lhe DIRECT
prololype implemenlalion [BoraB2)]. ‘The designers of
DIRECT reported Lhat, allhough relalional oberations were
exccuted wilh suflicienl parallelism, lhe performance was
nol improved as éxpccl,cd duc to the heavy conlrol and dala
lransfer overhead and Lhe ralher low 170 performance (in
spile of datafiow conirol and parallel disk 170 mechanism of
DIRECT).

As for lhe [/0 boltlencck problem, we have already
developed lhe adaplive mullidimensional cluslering algo-
rithm [Fush85], and lhe highly [unclional disk syslem
|Kits88], bolh of which have shown to be able Lo achieve
Lhe draslic performance improvement.
funclional disk syslem can cxecule Wisconsin benchmark in-
cluding join in 6.2 seconds, compared with 10.2 minutes lor
Ingres and 1.8 minules for ils commercial version. Wilh
such background, our major concern is now the efflicient
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syslein software lo conlrol Lhe complexed query processing
in Lthe parallel refalional dalabase machine.

lHere we examine Lhe control and execulion stralegy of
PIRECT. DIRFCT adopled the page-level granularily for
enabling  processors lo execule relational operalions
[Bora8B0]. That is, operand relalions are partilioned inlo a
'sel of pages, which are processed by multiple processors in
parallel. The page-level granularily enables the machine Lo
incorporale lhe data flow conlrol where a processor can, be
fired when al lcasl one operand page is formed. It seems
Lhal Lthe page-level granularily is the best choice to execule
relalional operalions in the multiprocessor architecture. We
nolice, however, that every activation of processors should
be preceded and followed by communications wilth the con-
troller and data lransfers to/from memory modules (Figure
1): to starl an operalion Lo a page, a processor should first
obtain the page address from the controller, then read dala

1 ceun
, C |
Backend Controiter Query Processor
Resource Aliocation
. ’ Initialization
Processor Activation :
Request Page
Return Page Address . :
) . Transfer Page
h
h
g Execution of Operation
Lo the Page
B Request Empty Page
Return Empty Page - to Write Resuits
Address é
Transfer Results to
< the Empty Page
. Request New Page
Return Page Address : )
' Transter Page
Reques& New Page
No More Page.
| Retease Resources Clear Itself |

Figure 1. Execution of Relational pperauon n DIRECT

without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
DB copyright notice and the title of the publication and its date appear, and notice is given that copyinf is by permission of

e Endowment.
Kyoto, August, 1986

—209—



in Lhe page from a memory moduic inlo ils local mewmnory.
Similarly, Lo wind up Lhe operalion, a processor should ob-
lain an emply page and wrile Lhe resulls in il. Since dala
lransfier consumes ralher long lime, and the controller be-
comes Loo busy Lo provide these page addresses to multiple
processors, more Lhan hall of Lhe lolal processing Llime was
consumed by such overheads[BoraB2]. Note thal Lhe per-
formmance cannol be improved by employing more proces-
sors, or by making processors faster. It can be improved lo
our salisfaclion only when Lhese overheads are removed by
the eflicient. conlrol mechanism, or the system software.

Observalions abhove imply Lhat relational operalions
should be execuled by much coarser granularily al leasl to
reduce Lhe conlrol overhead, and Lhal Lthe execution of rela-
lional operalions should be overlapped wilh data transfer.
‘The dala stream orienled processing can meet Lthese require-
menls (Figure 2). In Lhe dala slream oriented processing,
Lhe unil of execulion and control is a whole sel of Luples re-
ferred Lo by Lhe operalion. Thus, the controller of Lhe
machine is invoked much less frequently than in DIRECT:
it is calied only when an operalion slarls or finishes. Also,
all of operalions are excculed keemng up with the flow of data
(hence the name dala slream orienled processing). In olher
words, all of opcralions are hidden behind 1/0's or dala
Lranslers.

A parallel relalional dalabase machine GRACE [KilsB4]
fully achieves Lhe dala slream orienled processing. In
GRACE, join is executed in Q((N+M)/m) time by the nov-
el parallel algorithm based on hash and sorl [Kits83], where
N and M are sizes of operand relalions, and m is Lhe
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number of souwrces which genecrale data slreams in parailel.
In Lhis paper,-we presenl ils syslem soflware Lo conlrol the
query processing, and describe how Lhe dala stream oriented
processing is achieved in the machine.

In GRACF, cvery relalional operation is execuled in
Lhe form of lask 'T'ask is Lhe encapsulation of Lhe execution
ol rclalional operalion and ils operand dala slream, and gen-
crally consisls of sowrce space, fillering, clusiering, and sink
space, along wilh a dala slreamnto be processed. The syslem
soltware controls Lhe complexed query processing by the un-
ils of lask, while a lask can run quile autonomously by Lhe
dala stream conlrol prolocol beltween Lhe modules involved in
il. This task-level granularily and the data slream conlrol
protocol dislinguish our syslem software from olhers.

Allhough our syslem soflware design includes the con-
currency control and lransaction managemenl, we omitled
Lheir delailed descriplion because ol the space limilalion.

Also, Lhe formal model used for the design is omilted here.

‘T'he delails on Lhem can be found in [Fush86].

The remainder of Lhe paper is organized as follows. In
scclion 2, Lhe archilectural descriplion of GRACE and ils
query processing algorithms are given. In this seclion, the
novel wvirlual space management algorithm is also proposed.
‘I'he overall organizalion ol its syslem soflware is presented
in seclion 3. The system sollware is organized in a hierar-
chy of four layers: mimilive algorithms layer, inltra-lask conlrol
layer, inler-task conlrol layer, and [lransaclion managemeni
layer. Scclion 4 and 5 outline Lhe design and organizalion of
Lhe inlra- and inter-lask layers. Seclion 6 describes Lhe prel-
iminary implementalion of the system software on the
software simulator of GRACE. The conclusion is given in
seclion 7, along wilh Lhe briefl description of the concurrency
conlrol and lransaclion management, and Lhe current slalus
of Lhe GRACT projecl.

2. A Parallel Relalional Dalabase Machine GRACE

2.1. IMardware Archileclure of GRACE

GRACHE is a parallel relalional database machine
currenlly being developed at The University of Tokyo
[Kils82, Kils84]. GRACFE aims al achieving high perfor-

~mance even for the join-inlensive applicalions by incorporal-

ing Lthe dala slream orienled processing. The linear lime
parallel join algorilhm based on the clustering properly of
hashing and Lhe lincar lime sorling supporls the dala sltream
orienled processing in GRACE.

The global archileclure of GRACE is shown in Iligure
3. GRACFT consists of four kinds of fundamental modules:
processing module, memory module, disk module, and conirol
module. Processing modules are responsible for the execu-
lion of relalional operalions. Memory modules offer Lhe
Lemporary, or staging slorage for dala streams. The dalabase
ilsell is slored in disk modules. Conlrol modules are in
charge of Lhe conlrol of Lhe machine. These modules are
connccled cach olher Lhrough two ring buses, processing ring
and slaging ring. ‘These rings are so called lime-division,
mulliple channel ring bus in which mulliple channels are ac-
livaled and available for Llhe communication beltween
modules. Rings are implemented by shift registers in. ring
trus inlerface unilsconnecled in a circle.
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PM  :Processing Module DM :Disk Module
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Figure 3. Hardware Organization of GRACE

2.2. Query Processing in GRACE

GRACE implements the novel query processing algo-
rithm based on hash and sorl [Kits83]. Consider the query
consisling of Lwo scleclions Lo relations R and S [ollowed by
a join of sclected resulls. To execule Lhis query, first Lwo
seleclions Lo R and S are aclivaled simullaneously. Dala
slreams are generaled from disk modules sloring R and S
and direcled Lo the "sink”, a sel of memory modules (Figure
1). 'he query processing is now said Lo be in Lhe slaging
phase. Lel's lake a close look al lhis phase. In Lhe slaging
phase, Luples emerging from disks are firsl direcled Lo lhe
Jiller processor in Lhe disk module, and applied Lhe seleclion
operalion. This processor also eliminales unnecessary atlri-
bules from Luples. Only tuples which passed Lhis lesl are
Lhien sent Lo the hashing unil by which Lhe hash value ol the
join allribule is allached lo cach tuple. Tuples having the
same hash value form one cluster'. Nole Lhat tuples in one
cluster cannol be joined wilh those in olher cluslers. The
nel. effect is thal join is decomposed inlo small joins which
can he processed independenlly (Figure 5). These tuples are
finally senl lo sink memory modules allocaled to Lhis dala
slream. As shown in Figure 4, each clusler is uniformly dis-
Lribuled over sink memory modules so Lhat variable sizes of
cluslers generated by hashing do nol affect Lhe memory ulil-
izalion [KilsB83}.

Il should be mentioned thal the so-called joinabilily
filler can be incorporaled in disk modules by using filler and
hashing processors. Allhough both of joinability filler and
our cluslering technique utilize hashing, Lhey are in principle
different, Lechniques, and can coexist in GRACE [Kits83).

When Lhe processing compleles Lhe slaging phase, il
then goes lo processing phase, in which Lhe subsequenl join
operalion is performed (I'igure 6). In this phase, memory
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modutles which absorbed Luples resulled in preceding sclec-
lions are swilched lo Lhe "source” of a dala slream. The
same nhumber of processing modules as source memory
modules are aclivaled Lo perform join operalion on Lhe clus-
Ler by cluster basis. They work in paraliel, or more precise-
ly. in a pipelined fashion (IFigure 7). When aclivaled, the
1-Lh processing module first visils Lthe "i-lh memory module
Lo oblain Lhe fragment of the i-Lh clusler slored Lherein. 1f
the fragmenl is consumed, lhe i-lh processing module
changes ils partner io the (i-1 modulo n)-lh memory
module lo gel Lhe remaining. fragmenls of the i-lh cluster,
where n is the number of source memory modules. The
whole clusler is collecled when Lhe processing module visil-
ed all of memaory modules. While collecling the clusler frag-
menls, processing modules conduct Lhe join operalion lo Lhe
incoming skreams of [ragmenls. In a processing module, Lhe
linear Lime algorithm using pipefined merge sorler Is applicd
alang Lhe flow of incoming data. The pipelined merge sorler
can sorl a dala stream of Luples of variahle lenglhs al
3MB/sec |KilsB5]. The sorled stream is direcled Lo the fuple
mampulalion wnil in Lhe processing module, in which' Lhe
intra-chusler join is excculed. 'The algorilhm in il can be
quite simple because dala are already sorled. . Since the sorl-
ing and ils subsequent operalions are performed along Lhe
flow of incoming siream, a processing module becomes
ready Lo process Lhe nexl clusler just when it finished gath-
cring Lhe current cluster.

As pmcossi‘ng modules execule the join operation, the
resnll luples are gradually formed. The haShing umil localed’
in the processing module is used Lo parlilion Lhe resull Lu-
ples suilable for Lhe nexl operation: The final oulpul from
the processing modules are forwarded to anolher sel of

memory modules, or the "sink™. Resull Lluples are stored in-
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Figure 7. Dala Stream Pipelining in Processing Phase

lhese memory moditles in quile Lhe same way as in Lhe slag-

ing phase.

Nole Lhal Lhis algorilhm works well only il cluslers are
ol the same size. Olherwise, a processing module mustl wail
when the memory module which il wanls lo access nexl is
slill being visiled by olher processing module. As a resull,
Lhe pipelining is dislurbed. The idea to tackle this problem
is Lhe clusler size tuming which merges the sel of small clus-
lers produced by cllmloring inlo some number ol processing
clusiers whose sizes are ncnrly equal ta lhe capacily of pro-

cessing moduie.

Nole also llml Lhe preprocessing of (Inln (hashing) is
complelely hidden bchlnd the execulion of Lhe ‘preceding
operalion. ‘I'herefore, no overhead appears even when a
query lo be processed include many relalional operalions.

2.3. Task

The processing of a quéry in geiiéfal'_requires it lo be
decomposad into a number of primilive dalabase operalions.
In GRACIE, Lhese operalions include all of relalional algebra
operalions (joins,” scleclions, projeclions; divisions, ele.),
sorling, and aggregalion. The execulion of primilive dala-
base opceralions are encapsulaled in Lhe form- of lask. lligh-
level query such as SELECT FROM WHERE clause in SQL
[Cham76] is configured as Lhe irec ol tasks called lask iree.

Inluilively, lask consists of "river” and "water”. "Waler”
is a dala slream, i.ce., ﬂowing luples of operand relalions,
while Lhe "river" offers the execulion -enviromment for Llhe
operalion. ‘Fhe execulion environmenl will be composed of
necessary number of machine resources enough to execute
Lhe designated operalion. A dalabase operalion is execuled
in Lhe Torm of task by lelling operand data flow through ils
excectilion environment being applied Lhe designaled opera-
Lion.

Qur design policy is thal a task should be so aulo-
nomous that il runs wilhoul any direclion from Lhe coniroll-
er. I alask can be such a scll-conlained object, Lhe control
module becomes responsible only for preparing and elim-
inating Lhe cxccﬂ!.ion environmenl [or task, Lhal is, manag-
ing resources.  Specifically, according lo the lask Llree, lhe
controllier approprialely produces “junclion”s when il
prepares “river"s for dala slreams. The lask lree can be con-
sidered Lo represent how tribulary rivers are merged inlo lhe
main slream.

" Fhe exeenlion of primilive dalabase operalions which
need Lo access Lhe dalabase direclly (seleclions, elc.), thus
execuled in the staging phase, is called a read task, while
Lhal of olher operalions like joins which are exccuted in Lhe

processing phase are called an inlernal lask.

In GRACIH, the exceulion environmen! of a read lask
consisls of 1he sel of disk modules which store Lhe Luples Lo
be accessed by Lhe corresponding seleclion, a set of memory
modules Lo slore Lhe resulls, and a sel of channels on Lhe
slaging ring lo convey luples (sce Figure 4). Execulion cn-
vironment of an inlernal lask is in lurn composed ol Lhe sct
of memory moduiles which slore the operand dala, a sel of
processing modules, a sel of memory modules Lo absorb the
resulls, and a sel of channels on Lhe processing ring (Figure

5).
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We nolice Lhal cilher of read or inlernal tasks essenlial-
ly has Lhe identical struclure; eilher task logically consisls of
source space, which produces Lhe parallel dala streams (disks
in disk modules in read lasks, or memory modules in inler-
nal lasks), filtering, which applies several modificalions or
sieving Lo dala slreams (fillering unils in disk modules in
read lasks, or hardware sorler and Ltuple manipulalion unils
in processing modules in internal lasks), clustering, which
parlitions a dala stream inlo mulliple, independenl dala sub-
slreams (hashing unils in disk or processing modules in rcad
and internal lasks respeclively) and, sink space, which ab-
sorbs Lhe result dala strecams ( memory modules in bolh of
lasks). This observalion can be formalized as lhe dala
stream model which can be a general framework for Lhe sys-
Lem software design of dala slream oriented relalional dala-
base machines [FushB6].

2.4. Virtual Space Managemenl Based on Clusters

IFrom Lhe view poinl of Lhe structure of execulion en-
vironment, Lhe mosl crucial problem is the overflow in Lhe
sink space. 1o slarl a lask, enough capacily should be
prepared as the sink space; otherwise, if the unexpecledly
large slream is resulled, lhe overflow occurs in the sink
space, disabling Lthe processing to proceed further. Since
precise estimalion of Lhe size of Lhe resull dala slream can-
nol be expected, some means musl be laken.

Our solulion to this problem is Lthe virlualizalion of sink
and smurce spaces. The virtual spaceis conslructed by a set of
memory modules Ltogether with working disks One working
disk is associaled with each memory module, and behaves
ilsell in the very similar way Lo Lhe swapping disks used in
Lhe virlual memory management in Lthe conventional operal-
ing syslem.

Before we proceed, the hierarchy of cluslersis firsl inlro-
duced (IYignre 8). In Lhe hierarchy, we refler Lo a clusler by
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an alowic cluster. By clusler size luning, some number of
alomie cluslers are grouped Lo a processing clusler, which fils
in one processing module. 'The processing clusler is Lhe unil
of dala which can be processed in one processing module.

Usually, (sink or source) memory modules are to slore
Lhe entire scl of atomic (hence processing) clusters. Howev-
er. in case the very large dala stream resulled, or enough
number of memory modules is not available because of the
Jack of resources, we consider the larger unil of dala whose
size is cqual Lo lhe size of Lhe lotal capacily ol (sink or
source) memory modules allocated lo Lhe task. The sel of
alomic cluslers which fils in the sel of (sink or source)

‘memory modules in a lask is called slaging cluster. When

the resull dala slream exceeds the lolal capacily of Lhe allo-
cated memory modules, more lhan one slaging cluslers
form the enlire dala stream.

Mow, we relurn Lo Lhe overflow problem. If Lthe dala
stream overflows in Lhe sink memory modules, firsl. we con-
sider Lhe siream as lhe sel of slaging clusters. In the virlual
space. Lhese slaging clusters are arranged so thal one of
them arc slored in Lhe memory modules, while others are
deslaged Lo Lhe working disks associaled with each memory
module (Figure 9). Consider the dala lransfer from pro-
cessing modules to memory modules in an internal lask.
While receiving Lhe resull data streams, memory modules
occasionally deslage some atomic clusters lo their working
disk modules il Lhe overflow is expecled to occur. When
Lhe transfer of dala compleles, the memory modules are
filled wilh dalta which form Lhe slaging clusler to be execut-
ed firsl in the nexl operation, whereas the working disks
slore Lhe remaining dala without losing Lhe clustering pro-
perly. To exccule the subsequent lask, Lhe sink space is
changed lo Lhe source space, then begins Lo oulput the
paratlel dala subslrcams from memory modules in il. As
lhe dala in memory modules are oulput, Lthe new siaging
cluslers are successively staged up lo Lhe memory modules

Memory Module

Atomic Cluster
I Processing Cluster

Staging Cluster

Figure 9. Virtual Space Mansgement
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from Lhe working disks. 'T'hus, when some slaging clusler is
consumed, Lhe nexl one is formed at the same lime in
memory modules. This means Lhal Lhe dala are continuous-
ly supplied from the working disks Lo lhe memory modules
in Lhe pipelined fashion. Consequently, Llhe memory
modules, logether wilh the working disks, gencrale a
cluslered very large dala slream wilhoul serious overhead
(thal is, wilhoul lhrashing between disks and memories).
Note Lhat Lhe perlect estimalion of the access patlern of dala
is nalurally achieved by this clusler-based scheme.

Which alomic cluster should be deslaged? Memory
modules in Lhe sink space select the largest alomic clusler at
that time, because such a clusler tends to become much
larger, hence mighlt exceed the capacily of lhe processing
module. Such a ralher large clusler will be furlher cluslered
using finer hashing funclion in working disk modules.

Note that we still keep the linear Lime execulion of
lasks cven il the spaces are virlualized. This is quile
“different from the virlualizalion scheme in RAP [Ozka77]
which reveals Lhe squared order ol execution lime.

o

3. Sysltem Software Organizalion

The organizalion of syslem soflware we propose con-
sists ol four major components, which are organized in a
layered hierarchy. Figure 10 shows an overview of Lhe com-
ponenls we will disenss. Al the heart of the syslem soflware
liec Lhe primitive (hardware) algorithms employed in disk or
processing modules. They impiement filtering and clustering
funclions in tasks. [or example, hardware sorler, logether
with Luple manipulation unil, implements the filtering [unc-
lion in an inlernal lask. Softwares in Llhe nexl layer

Transaclion Managemet
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BRI Inter-task Control
2% % Layer
2 % % pmasss R
8RR R Intra-task Control
o ere; Layer
X
x: ”"“‘, Primitive Algorithms
R : Layer
SRR )
W <
s 2
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Figure 10.Organization of System Software

conslilule e inlra-lask conlrol Lhal implements the eflicient
flow counlrol ol dala slrenms wudlhin each lask. In olher
words, il enables slreams Lo act aulonomously. Jusl beyond
Lhe inlra-lask control comes Lhe inler-lask control layer Lhal
conlrols Lhe inilialion and delelion of cooperaling lasks,
such as Lhe resource management, scheduling of lhe execu-
tion of lasks, task firing, and deadlock resolulion. The lop
level layer is the transaction management, which produces Lhe
cxcculable lask trees and makes Lransaclions alomic and re-
coverable aclivilies.

The four layers of Lhe system software arc implement-
ed in GRACE in Lhe Tully distribuled manner (Figure 11).
‘The primilive algorilhms layer is implemenled by ils
hardware modules. The inlra-lask conlrol layer is placed in
the ring bus inlerface unils of modules, thus implemented
in Lhe form of proflocol belween Lhem. The inter-lask con-
Lrol layer is on Lwo conlrel modules in cooperalion wilh ring
bus inlerface unils of modules. The transaclion manage-
menl layer is implemented mainly on Lhe conirol module on
Lhe staging ring.

The primilive algorithms layer was described in the pre-
vious scclion as Llhe query processing algorilbhms. We
presenl Lhe intra- and inler-lask conlrol layers in Lhe follow-
ing seclions. ‘The lransaclion management layer, along with
Lhe concurrency control, is briefly described in seclion 7.

4. Inlra-task Conlro! Layer

Inira-lask conlrol Jayer is responsible for lhe dala
stream control in a lask. Is objeclive is to achieve Lhe con-
linuous flow of dala in a task. In other words, il provides

b ¢4
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&2 :Inter-task Control Layer
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Figure 1 1. Layer Placement
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deslinalion modules Lo each Luple in a slream wilthoul caus-
ing any overhead. fecause of our design policy Lhal a Lask
should supporl ilself, Lhis layer is implemenled in Lhe form
of prolocol, as opposed to the centralized conlrol. Most of
efforls were concentraled on Lhe design of lhis layer because
of its oulsltanding importance in the dala stream orienled
processing.

Belore we proceed, it should be menlioned how parallel
lask excculions are isolaled each other. Task executions are
fully isolated in GRACE in the following way. All modules
keep Lhe id of Lhe lask they are belonging to in lheir ring
bus interface unil. Modules respond to channels only il
channels have Lhe same lask id as modules. Wilhin a lask,
madiules are idenlified by their relalive positions?, and Lhese
posilions arc used Lo establish the conneclion belween
senders and receivers of dala.

4.1. Sublask: Inlra-task Struclure

Ilere we examine Lhe flow palterns of streams wilhin a
lask, and inlroduce Lthe lower slruclure of a lask called sub-
lask.

A dala stream in a lask is dicholomized according lo ils
flow patlerns. In any kind of lasks, Luples are transferred in
cilher of Lwo ways: Luples in each atomic cluster are dislribut-
ed uniformly ‘over destinalion modules, or, tuples in each
cluster Lhus distribuled are collecled again inlo some deslina-
lion mocdule. These are later referred Lo as clusler disbribulion
and clusler colleclionrespeclively.

According to Llhis crilerion, a lask ilself is decomposed
inlo sublasks: a disbhibution sublask, and a coliection sublask.
Then, each lask consists of al mosl two sublasks: a read task
consists ol one distribution sublask (dala lransfer from disk
modules Lo sink memory modules), while an internal lask is
composed of one colleclion subtask (dala transfer from
source memory modules to processing modules) and one
distribution sublask (dala lransfer from processing modiles
to sink memory modules).

4.2. Prolocols

In the colleclion sublask, the module which is Lo send a
Luple can casily delermine the deslinalion module by ilself
as described in scclion 2.2 (see Tigure 7), hence Lhe dala
slreams of Lhis Lype are ralher easy to conlrol; il is suflicient
for sender modules jusl Lo allach the destinalion address
(the relalive posilion) to the Luple, and then pul il on Lhe
ring bus. Deslination modules in turn always keep an eye
on such channels. I malching is found belween id's of Lhe
module and of some channel, Lhe dala on the channel are
laken in. ‘I'he prolocol is slraightforward. Channels used by
Lhis prolocol are called collection channels.

On Lhe other hand, a dislribulion subtask is ralher
diflicull Lo conlrol. 1In this sublask, tuples in each cluster
should be distribuled over recciver modules uniformly. To

Z1tach kind of modules in one lask is successively numbered
beginning with one, Irom downstrcam Lo upslream, on the ring.
This number is referred to as the relakive position of the module in
Lhe task. and used Lo idenlily Lhe module in a task (module id). It
should be relative because the physically (or absolutely) adjacent
module may be allocated Lo olher lask.

keep Lhe cluster disleibulion uniform, the destination should
he delermined so Lhal adding Lhe Luple Lo il does nol cause
any skew in Lhe flal distribulion achieved so far. Nole Lhal
Lhe mapping belween senders and receivers should be one-
lo-one because reccivers can reccive al most one Luple at
one time.

Here we presenl the overview of the protocol for Lhe
disltribution sublask. As the readers will see, Lhis protocol
makes il possible for tuples to be lransferred wilhoul any
overhead concerning the prolocol execulion.

The prolocol consisls of three phases. Consider the
dala transfer in a distribution subtask in an internal lask as a
representative of this sublask. For simplicily, suppose n
processing modules are lo send n luples to n memory
modies by n channels. Channels used for this Lype of dala
Lransler are called distribulion channels Their [ormal con-
'sists of header part and dala segment parlt The header parl
Wolds several kinds of conlrol informalion. The dala seg-
ment part carries Lhe fixed size of dala, or segment of Luples.

In the imilial phase, each of processing modules reserves
any one of channels by wriling ils id on the channel, and al
Lthe same Lime, puls on it Lthe hash value {clusler id) of lhe
luple Lo be lransferred. Channels Lhus inilialized are Lhen
direcled Lo memory modules. In the initial phase, memory
modules in turn sel Lhe maximum and minimum values
among sizes of fragmenis of the clusler the hash id Llhe
channel specifies. That is, if the channel specifies the i-Llh
clusler, max; and min; among BI.J. (i = 1,..n) are sel on
Lhe channcl by memory modules, where B is the fragment
size of Lhe i-th cluster slored in Lhe j-lh memory module.
These two values are used to establish the mapping in Lhe
following phase.

T'hen, in the link phase, we establish the one-to-one
connection belween processing modules and memory
modules using such stalislics. In Lhe link phase, each pro-
cessing module puls Lhe first segmenl of tuple on the chan-
nel it reserved in Lhe inilial phase. Then, Lhese channels are
senl Lo memory modules. Memory modules in lurn exam-
inc channels one by one, and select Lhe "besl” tuple to lake
in il. ‘'he "best" Lluple is determined by the following
evalualion funclion R of B‘.j, max;, and min, as above:

R(Bij,maxi,mini) =

1.0 il By=min; and 3,;=max;

o +max, — D il B,-,:miniand Bij;émnxl.

L)

min; — max; il B;#min; and B =max;

max, — Bi]

Bij—mmj

if B;##min; and B, # max;

The value of R(Bi)-,max‘-.mini) becomes more Lhan
one, if Lhe j-th memory module has less Luples of the i-th
clusler lhan Lhe average, and less than one, otherwise. The
value of R indicales Lhe relalive suilabililty on acceplance of
a Luple: the grealer R value Lthe tuple has, Lhe beller the
maodule lo take it in.

Memory modules use this funclion in the link phase to
decide Lhe Luple Lo receive in Lhe [ollowing way. Memory
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module is equipped with a buffer slore of one channcel size.
The buffer is iniliatized emply al the end of inilial phase. In
Lhe link phase, every lime memory module encounlers a
channel allocaled to Lhe dislribulion sublask, the funclion R

[ | HE Y
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is evalualed, and the resull value is ¢

the luple temporarily slored in the buffer: Suppose the .j-Lh
memory module encounlers Lhe channel carrying Lhe Luple
belonging to Lhe i-Lh cluster. Then, the memory module
felehes Ili] from ils own clusler fragment size table, max;
and min; from Llhe channel, and Llhen evaluales
R(I),],maxi,min]). I the value is grealer than Lhat of lhe
tupie in Lhe bufler, Lhe contenls are exchanged. When ihe
module examines all of channels, the tuple whose alomic
cluster gave Lhe grealest resull value is left in Lhe bufler.
Memory module establishes the connection with Lhe pro-
cessing module which sent Lhis tuple by remembering ils id.

[+

Note Lhal not all channels are examined by a memory
moduie: Lthe first memory module can examine all of chan-
nels in Lhe sublask, while Lhe sccond module examines all
of channels excepl one which is already laken in by Lhe firsl.
In general, Lthe i-Lh memory module selecls Lthe tuple out of
Lhe candidales excepl Lhose which are taken in by ils preced-
ing i—1 modules. In parlicular, the lasl memory module has
no choices. Tn Lhis scheme, lherefore, the more upsiream
the module is loeated, the more preferenlial treatment is
given. The evalualion funclion R was carefully designed not
Lo make Lhe modules downstream disadvanlageous.

T'he example of the link phase is shown in Figure 12.
Nole Lwo id's used Lo designale Lhe processing module in
the figure. One is used Lo specify the "owner” of the chan-
necl, while Lhe olher indicales lhe "sender” of dala in Lhe
channel. ‘T'hese Lwo id’s should be used because of Lhe ex-
change operalion in Lhe link phase.

The link phase is lollowed by the lransmission phase in
which remaining segmenlts are transferred Lhrough Lhe con-
neclion Lhus eslablished.  Processing module puls Lhe
remaining fragmenl on. the channel il reserved, while
memory module lakes in Lhe data which are senl by Lhe pro-
cessing module il is connecled Lo. This phase is repealed
necessary limes Lo Lransfer a whole Luple.

In the aclual implementation, Lhe inilial phase is over-

lapped with Lhe transmission phase in which Lhe lasl dala’

segment of Lthe previous Luple is transferred. The nel effect
is Lhat the inilial phase is complelely hidden behind the
Lransmission phase, hence no explicil overhead exisls.

The protocol has been generalized Lo handle Lhe gen-
eral case in which the dynamically variable number of luples
are senl lo Lhe receiver memory modules which may occa-
sionally refuse Lo receive Luples when they become loo busy
wilh olher jobs like working disk managemenl. The dclails
on il can be found in {FushB6].

5. Inler-task Conlrol Layer

, In our design, il should be kepl in mind Lhal Lhe con-
trol moduie is consulled by olher kind of modules much
less Trequently Lhan usual.  This is because Lhe operand
granularily Tor enabling modules is much coarser and larger
Lhan olher designs, and also because cooperaling modules
work quile antonomously in Lhe form of lask: once lasks are
aclivaled, they can run wilthoul any cenlralized control. The
indication is Lhal one conlrol module on cach ring would be

Clock O: MM4 MM3 MM2 MM1

L [a]a] [a]e] [e]e] [e]e
B: Nobody Bulfer of one
i

R(3PR(1) R(4DR(2)

R(1) - 00 R(2)R(3)

R(3HR(1)

R(1)> - 00

R(n): R(Byj, max}, minj) computed st the }-th memory
module for the i-th cluster sent [rom the n-th
processing module ( i and | are not explicitly given in the figuce.)

Link Id  :Theid of processing module which owns a chacnnel
Sender Id : The id of processing module which sent the data
on the channel

Figure 12 Link Phase in Distribution Protocol

abie Lo manage the machine wilhoul causing serious over-
head.
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The main parl of Lhe inter-task conlrol layer is imple-
mentaed on Lthese Lwo conlrol modules. 'lI'he conlrol module
on Lhe processing riug is responsible for the conlrol of inler-
nal lasks, while Lhat on Lhe staging ring is in charge ol
managing read tasks. These two control modules perform
same management routines - except the conflict/deadlock
resolulion on the ‘control module on Llhe staging ring
{FushB6]. S

Roughly speaking, Lhe inler-tas nlrol manages exe-
culions of lasks by repeating the’ followmg procedures it

first idenlifies firable tasks.
lask whose child lasks in the task tree finished, hence iis”

source spnco is ready lo ouLpul. dala slrcams Next, it selecls
' H
IIC

me

[+ ? Las H]
Lo (-nnhlo its_execulion. "l‘hcn‘. it cxactly ﬁrcs sk.-
The control can set aboul the next ﬁrablc l/ask wnthout me-

ing for Lhe complelion of this Lask l"venl.ually Lhe inler-

task conlrol is rleqe_q Lhe complollon of, the’ Lmk cxocutlon

PN TY il Aa .|l Py P
SOH, IL Geanolawes

the task from the sys Lem

There are Lthus rour main; componculs in, lhe inler- lask .

conlrol layer; —vesource management, clmmwl al/m‘m‘mn
management, lask monilor, and channel deallocatmn m(mngp-

menl. 'I'hey are invoked when some specnﬁc channel is en-

counlered. T hroughout this sectlon we consider Lhe cxecu-

lion of an internal task for the illustrative purposes

A Rc-qourm‘ Ma n.ngr'monl.

ln the design, resources are managed in a ralher novel
manner: Llhey. are managed  without using any kind of,
resource management lable.
following idea which ulilizes the channel regulalion proper‘ty
of ring bus: resource manager puLs (qub)l'usk ‘id ‘on Llhe
(sub)lask i field and ihe numbers of necessary processing
and memory modules on the module count fields of the spe-
cial channel, roqnosl‘ing parlicipalion of modules in 4 lask.
T he idle modulo in‘turn roqponds to such a ¢hannel by de-:
crementing Hm rorroqpondmg count field of the channel lo
nolify il intends Lo )om Lhe lask. The channel is eventually
relnrned Lo Lhe resource manager, and ils fields are exam-
incd. Il all of ils module counl fields are décrémenled to
zero, desired number of modules are reserved. Olherwise,
the syslem currenlly lacks modules. This protocol wiil he’
laler referred Lo by Lhe couni-down ]'nnlncol and Lhe channel
nsed for resource mnnagemenL purposm in lhaL way is called '
allocation channel Only one allocation charinel is avallable in-
Lhe sy:lv(-m The resource managcmenl 'rouline wlnch is’
rr'sponslhlo for allocaling modules to a lask is' rc[crred Lo by
Lhe resource ‘manager. '

To allnmfo resources Lo a lask, resource, manager re-
quesls avaityble modules Lo join the lask.. More precisely, it
uses three modile counl ficlds on the allocalion channcl lo
specify Lhe number of .memory modules in source space,
processing modules, and memory modules in sink space.
The allocalion.channel also carries the colleclion and &Iisl.ri.-
bution sublask id's. Nole lhal the comman dislribulion
sublask id is used among Lhe sibling tasks.. All whal is re-
quired for Lhe exccution of tree-formed lasks is to let si.nk.
memory modules know Lhis common id. The prolocol for
dislribulion subtask autqmalically merges resull data streams

from mutliple lasks.

By firable lask, we mean Lhe

The scheme is based on lhe‘

Basically, a lask is allowed Lo be fired only when Lhese
Lhree module counl fields are decrementled Lo zero aller Lhe
count-down proleco) is execuled. We can proooed Lhe lask
aclivalion, however, even if exnected size ol sink space is
nol reserved (Lhe module count field for sink menory
modules is not decrementled to zero), because of Lhe virtual-
ization mechanism described in section 2.4.

When Lhe allocation channel is relurned, resource
manager informs modules lemporarily .assigned Lo ihe lask
of. success/lailure of resource allocation again by the count-
down prolocol. Modulcs Lthen initializés themselves (or Lhe
lask execulion, or relurn lo L'he‘ previous stale.

5.2. Firing Tasks .

The channel allocatwn 171a-nageme‘nl is rcsponSIble l’or al-
localing nccessary number: of channels. to Llhe tasks which
have been aiready allocaled modules by Llhe resource
manager. A task is wctually fired jUSL when the channcl allo-
oallon oomploles

Whenever an cmply channel is shlﬂ.cd in the conlrol
module; the channel allocalion - management is called.. 1f
Lhere is-a lask wailing.Tor Lhe channel allocalion, Lhe emply
channel is formaled either as Lhe collection channel, or dis-
Lribution channel for it.. When all of channels are allocaled
for. the lask, now Lhe task is actually fired. .No directions to
enabhle - modules.are required. The modules are automaticai-
ly activaled under.ihe intra-task control prolocol just when
Lhey find |he¢.c channels in the task in whlch Lhey are in-
volved.

5.9 l';xéClxtijoxi Moniloring
Qnee Lask.i&.ﬁred, |Ls execulion slatus is monjtored by
Lhe; lask conlrol channel

The task conltrol channel carries enough information on
Lhe execculion’ slalus’ .ol -active lasks; inciuding ‘the currenl
number of source memory modules. processing modules,
and <sink ‘memory . moduies. The count-down--prolocol. is
again used in Lhe lask conlrol channel: modules which.
finished sending/receiving lhe data stream decrement lhe
corresponiding module count field. These values are exam-
incd by Lhe lask monilorin Lhe inler-lask conlrol evéry lime
Lheilask conlrel channel is.directed in Lhe conlrol module.
When all of-these fields are decrementled Lo zero, the lask
monilor (dirccls .source memory modules. and processing
modulas lo..leave, Lhe lask.. “As .for the sink menjory .
modules, .il. examines whelher .the lask-is the lasl child
amang siblings. .If olher sibling lasks are still aclive, or not,
yel activaled, only Lhe source memory modules and process-
ing modules are Ireed, while sink. memory modules are kepl
allocaled Lo absorb Lhe dala streams Irom ils siblings which
are nol. yel complclo Olhcr\vnse, the lasic monilor requesls
sink memory modules Lo leave Lhe task.

5.4. Task Terminalion

To wind tih Lhe lask, chan‘nel deallocation is finally per-
formed. The followmg rouhne channel deallocation manage-
ment, is responsible l'or it. "This rouline is called every lime
the conlrol module ﬁnds the colleclion’ channel or
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distribulion channel. According lo lhe Lype of Lhe channel,
it. checks if Lhe corresponding (sub)lask Lerminales. If so, il
emplies Lthe channel. When all ol channels in a task are
deallocaled, a task is exaclly finished.

imulator

The system soflware described in Lhe previous seclions
has been implemenled on Lhe sollware simulator of GRACE
[Fush06], and several performance evalualions are being
conducled. We are primarily concerned wilh Lhe perfor-
mance of inira- and inter-lask conirol layers: how welil Lhe
conlrol module manages Lhe execulion of tasks, and how
conlinuously data slreams flow Lthrough Lthe machine. Nole
Lhat the former is is concerned wilh overhead belore a lask
is fired or aller u lermmnles while the laller is on the per-

formance dur lllg

Preliminary performance evaluation showed Lhal our
design enabled the machine to work wilh litlle conlrol over-
head. The implementalion of the roulines in the inler-lask
layer were very eflicienl. In Lhe implementalion, tasks wail-
ing lor several services such as resource allocalion form a
quecue. Thus, all whal is required lor Lhe layer is Lo examine
a few number of fields on Lhe channel, to felch informalion
of lasks from Lhe queue, or lo-modify some fields in the
conlrol table. These aclions are aclivated just when Lhe
specific channel is shifted in the control module, and can be
finished hefore the channel leaves Lhe control modute.

[ T TN DR Y N PO pi
IL WS 0150 SNOWin wnaw aawa Sureaib

through the
machine quile conlinuously, and Lhal almost perfect dala
stream oricnled processing was achieved. The conlinuous
dala slreaming is achieved by Lhe complele pipelining in the
rollochon sublasks, which is in turn accomplished by Lthe un-

of LIllllL in Lhe
sublask, along wilh Lhe clusler size tuning. The proloco! lor
Lhe distribution sublask described in seclion 4 can achieve
the almost perfecl uniform clusler distribulion for any sel of
Luples and hash funclions. 'l‘he difference between the frag-

ihlv emall {only
ibly small (only
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7. Conclusion

In Lhis paper, lhe sysiem soflware design ol a parailel
relalional dalabase machine GRACE was described. Ils prel-
iminary implemenialion on the sofllware simulalor of
GRACE was also reported. The preliminary implementalion
showed thal our design enabled Lthe machine to work wilh
litllle conlrol overhead, and Lhat the almost periecl dala
stream orienled processing was achieved. The novel virlual
space managemenl algorilhm was also proposed.

Ilere, we present Lhe brief descriplion of Lhe con-
currency control and lransaction managemeni. in GRACE.
The concurrency conlrol is also data stream orienled; il uses
Lhe precision lock [JordB81} in which Lhe read access is per-

farmoed by Lhe nredi
formad by Lhe pred

i wic w
by Lhe units of tuple. Disk module in GR/\CI" has anolher
filer processor, and uses il Lo sieve oul the conflicling up-
daled Lluples. 'F'he predicates issued by Lhe Llransaclions
which do nol yol commil are scb in Lhis filler processor.

chiock can he carried oul in Lhe same way
one o Te carrieq ol in Lhe same way

cale, while Lthe wrile
caLe, Wil rive

i
led dala stream causes

24 K
"Machine DIRECT, IEEE Trans. on Software Eng., SE-8(6),

flict if il salisfies some predicale in this conflict check
Gl A When conflicl is delecled il is reported Lo e conlrol
filler. When conflicl is delecled, il is reporled lo lhe conlrol

odule on Lhe slaging ring, and resolved there.

['or recovery purposes, Lhis filler processor also collecls

Lhe before and after vaiues of updated tuples. These logs are
slored in Lhe local log disk in Lhe disk module. The control
module on Lhe slaging ring, on the other hand, stores the
begin and commil transaclion log records in its own commit
log disk. To commit Lhe transaclion, Lhe control module re-
quesls disk modules Lo flush Lthe log dala on the transaction.
When all of logs are successfully flushed, the commil log is
recorded -in the commit log disk. To recover the system
afler a crash, Lhe recovery manager on the control module on
Lhe slaging ring can perform winner/loser analysis only by
examining lhe commil log disk. Subsequent undo’s and
redo's can be execuled in paraliel by disk modules. In addi-
Lion, our system soilware aliows the paraliei execulion of
Lransaclion sleps wilhin a transaction. This requires the ex-
tended Ltheory of the serializabilily. The delails on Lhe con-
currency conlrol and transaclion management, along wilh
Lhis extended serializabilily, can be found in {Fush86].

Besides conducling Lhe delailed performance evalualion
of Lhe syslem sofllware, we are currenlly developing Llhe
"core” of GRACHRE nctiona!l disk system [Kits881 and

] "
core RACE, L unctional disk system [Kits86], an
hash-based soflwarc relalional dalabase syslem. The lunc-
Lional disk syslem is a movable head disk with "funclionali-
ty". Ils currenl configuratlion consisls of one SMD disk
drive, Lhe disk conlroller wilh enhanced lunclionalily, and

lwea (8000 minrg nrocpossors The dies canlralla imnla-
LWO UUUVUY MICTC procaessors. ine gisK conurelier impee

menls the on-lhe-fly selection and dynamic clustering based
on hashing. As mentioned before, the performance im-
provemenl observed so (ar is drastic.

‘I'he hash-based dala stream orienled software relational
daiabase system is aiso being impiemenied on ihe conven-
tional mini-computer. The idea is to implement Lhe "minia-
ture” of GRACE by means of cooperaling concurrent
processes. T'he virlual space management algorilhm
described in seclion 2.4 makes il possible for Lhis systiem Lo
andie iarge dalabases wilh limiled memory capacily. The
delails will be reporled elsewhere, along with the overali

performance of GRACE.
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