
A Study of Sort Algorithms for Multiprocessor Database Machines 

Jai Menon 

IBM Almaden Research Center 
San Jose, California 95 120-6099 

Abstract 
This paper presents and analyzes algorithms for parallel execution 
of sort operations in a general multiprocessor architecture. We 
consider both internal and external sorting algorithms. For the 
latter, we study the performance of sorting algorithms that are 
derived from sorting algorithms that only do comparison and ex- 
change by replacing each comparison-exchange with a B-way merge. 
In particular, we propose a new algorithm called the modified block 
bitonic sort. We then present the results of analyzing the perfor- 
mance of these different parallel external sorting algorithms. We 
show that the modified block bitonic sort is the fastest of the 
algorithms over a wide range of values of interest to us. 

Introduction 

Several multiprocessor database machines [GARDAIII] [BABBE79] 
[DEWIT79]. have been or are currently being developed. Two of 
the most demanding operations that must be performed by such 
multiprocessor database machines are sorting and join. This paper 
presents a study of various algorithms for performing the first of 
these two operations on a general model of a multiprocessor data- 
base machine. 

We will begin by considering ways to use parallel processors to 
sort files stored in random access memory (parole/ interm/ sorting). 
In particular, we will show how to use the bitonic merge in order 
to do parallel internal sorting ([HSIAOIO], [BITf’084]). We have 
presented the bitonic merge principle before, but the particular al- 
gorithm described here, and its analysis are presented for the first 
time. 

Due to memory limitations, sorting of large files cannot be done 
in memory, and ertemd sorting dgorithm need to be used. The 
study of the external sorting algorithms is the main focus of this 
paper. 

For external sorting algorithms, we study the performance of sorting 
algorithms that are derived from sorting networks that only do 
comparison and exchange by replacing each comparison-exchange 
with a B-way merge. We are interested in this class of algorithms 
because of the result of [BIIT083] where a sorting algorithm that 
is derived by replacing each comparison-exchange with a 2-way 
merge was presented and shown to be superior to all other algo- 
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rithms presented in that paper. In this study, we are interested in 
the use of B-way merges, where B is significantly larger than 2. 
This is important because of the continuing drop in the costs of 
semiconductor memory, making it feasible to build multiprocessors 
with large amounts of semiconductor memory. For this class of 
external sorting algorithms, we investigate the impact of larger 
amounts of memory. While [BRATS841 analyzed the impact of 
large amounts of main memory on uniprocessor sorting algorithms, 
we believe our work is the first such investigation for multiprocessors. 

For the class of external sorting algorithms that are derived as 
described above, we also consider several general techniques for 
further improving their performance. We feel that there are three 
techniques that have general applicability. We give examples of use 
of two of these three techniques to improve the performance of 
algorithms in the class of interest to us. The two techniques we 
consider are the use of pipe/bring and the use of prnrM internal 
sorting. The application of these techniques leads us to the discovery 
of an algorithm we call the modijkf bkk bitonic sort. 

We then present the results of analyzing the performance of these 
different parallel external sorting algorithms. We show that the 
modified block bitonic sort is the fastest of the algorithms over a 
wide range of values of interest to us and that it makes the best 
use of additional main memory buffer space. 

The Architectural Model 

In this paper, we are concerned with the parallel execution of 
sorting algorithms on multiprocessor database machines that do not 
have any special-purpose hardware for execution of the sorting 
operation [BIlT083] [VALDU84]. Such machines will have several 
general-purpose processors linked through a contention-free inter- 
connection network of some sort. Each processor will have its own 
local memory, and all the processors also share some amount of 
global memory. The processors exchange data via this shared global 
memory which may be accessed simultaneously by several processors. 

The database machines also use conventional disk drives for sec- 
ondary storage. Relations (files) to be sorted are stored on these 
disk drives as fixed-size pages. The shared global memory is as- 
sumed to be the cache for accesses to secondary store. Then, any 
page stored in secondary store may be transferred and stored in 
any page frame in the cache. The local memory of the processors 
is also assumed to be page-oriented. 

In general, our algorithms assume that each processor has B pages 
of memory associated with it. We may think of this as B pages of 
local memory, making a total of BP pages of local memory spread 
across the P processors, or we may think of it as B pages of global 
memory, making a total of BP pages of global memory shared by 
the P processors. 
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The general organization of our multiprocessor database machine 
is shown in Figure 1. The local memories of each processor are 
not shown in the figure. 

Parallel Internal Sorting Algorithms 
Using Bitonic Merge 

Most of the work on sorting using parallel processors [VALIA75] 
[PREPA78] [MULLE75] [HIRSC78] [THOMP77] [NASSI78] as- 
Qume that P processors will be used to sort I’ records. We are more 
interested in considering methods which can use P processors to 
sort MP records, where M, which is very large, is the number of 
records that will fit in the local memory of each one of the P 
processors (alternatively, the space for MP records may be in the 
shared global memory). 

[BAUDE78] was the first paper to consider this problem and 
present algorithms for sorting MP records using P processors. The 
class of algorithms presented in their paper was obtained by re- 
placing every comparison-exchange step (in a sorting algorithm 
consisting of comparison-exchange steps) by a two-way merge. 
The merged sequence is split two ways, with the “lower” half sent 
to one destination processor, and the “upper” half sent to another 
destination processor. 

The problem with the approach taken by [BAUDE78], is that their 
algorithms require each processor to have 4M memory. Thus, in 
order to sort MP records using P processors, they use 4MP memory. 
We present, below, a class of algorithms that can sort MP records 
using P processors, with (M+I)P memory [HSIAOIO]. 

Our class of algorithms is also obtained from sorting algorithms 
that do comparison-exchanges. However, rather than replace each 
comparison-exchange with a two-way merge, we propose that we 
replace each comparison-exchange with a bironic merge. We have 
presentecl tbe bitonic merge principle before [BlTT084], but the 
particular algorithm described *here, and its analysis are presented 
here for the first time. 

An exa?ple of a bitonic merge is shown in Figure 2, where we 
show 2 processors, each with enough local memory to hold five 
records. The smallest record in PI is compared with the largest 
record in P2, the smaller of the two is placed in PI”s memory, the 
larger of the two is placed in P2’s memory. Next, the second 
smallest record in Pl’s memory is compared with the second largest 
record in P2’s memory. Once again, the smaller record is placed 
in PI’s memory, and the larger record is placed in P2’s memory. 
The process continues until no more exchanging is needed. At the 
end of these exchanges, the smallest 5 records are in Pl and the 
largest 5 records are in P2. The bitonic merge is complete, if PI 
does a local sort of its memory and P2 does a local sort of its 
memory in parallel. The fact that the smallest records will be in 
PI was proved by Alekseyev [KNUTH73]. He also showed that 
at the end of the exchanging, the M smallest records in PI and 
the M largest records in P2 each form a bitonic sequence (a bitonic 
sequence is the concatenation of two sorted sequences, one sorted 
in ascending order, and one sorted in descending order). Clearly, 
such a bitonic sequence may be sorted by merging the two sorted 
subsequences from opposite ends. 

Several reascms make the bitonic merge superior to the two-way 
merge of [BAUDE78]. First, we only require that each processor 
have enough memory to hold M+l records, whereas the two-way 
merge requires each processor to have enough memory to hold 4M 
records. Second, the bitonic merge is more suitable for implemen- 
tation on parallel computers that require a high degree of synchro- 

PROCESSORS mslcs 
SHUtED YEMORWK!HE 

Figure I: General Organimtion of a Multiprocessor Database 
Machine 

nization between their processors. Third, the two-way merge re- 
quires an entire block of data to be transferred to a processor’s 
memory before the merge operation is initiated, whereas the bitonic 
merge only requires the fist record to be transferred before the 
merge operation is initiated. 

Parallel Internal Shuffle Sort 

A fast parallel internal sort can be derived from Stone’s algorithm 
[STONE’II] to sort P elements using P processors in IogzP steps, 
where P must be a power of two. To describe the algorithm, we 
use the following notation. Let EXCHANGE(i,j) represent the 
procedure adopted to exchange records between processor i and 
processor j, so that the smallest M records are in processor i’s 
memory and the largest M records are in processor j’s memory. 
Also, let us give each processor a binary index - with four proces- 
sors, processor 0 is ‘00’, processor 1 is ‘Ol’, . . . , processor three 
is ‘1 I’. Then, we define the slruffle..p- r for processor k as 
processor I, if I is k left-circularly shifted. Finally, we say that 
during a perfazt shuffle, each processor sends the records in its 
memory to the memory of its shuffle processor. 

The parallel internal shuffle sort is described below for the case of 
P=4. In general, the algorithm consists of log2P stages, and each 
stage has IogzP steps. 

. STAGE I 
I. Perform the perfect shuffle. 
2. Perform the perfect shuffle. 

EXCHANGE(O,l),EXCHANGE(3,2) in parallel. 
l STAGE II 

I. Perform the perfect shuffle. 
EXCHANGE(O,l),EXCHANGE(2,3) in parallel. 

2. Perform the perfect shuffle. 
EXCHANGE(O,l),EXCHANGE(3,2) in parallel. 

. FINAL STEP - Do localized sorts. 

Analysis of Parallel Internal Shuffle Sort 

Let us use the following notation for the analysis. 

P Number of processors 
M Number of records per processor 
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Fignre 2: An Example of the Bitonic Merge 

B Number of pages per processor local memory 
k Number of records per page, M=Bk 
C Time to do a compare of two keys 
V Time to move a record in memory (or time f0r.a complex 

move) 

We note that the algorithm consists of one exchange step in the 
first stage, two exchange steps in the second stage, etc., and log 
P exchange steps in the final stage. Thus, there are a total of 
(L)(logP)(l + IogP) exchange steps. We also note that there is 
oie final localized sort step. 

For our analysis, we will assume that the k tuples inside a page 
are in sorted order to begin with. Then, for the first exchange, 
each local processor may sort the Bk records into sorted order by 
performing a B-way merge of the B sorted pages. The time for 
the B-way merge is BkY+ Ek(logzB)C. In order to complete the 
first exchange, processors must compare and move Bk corresponding 
records requiring Bk(C+V) time. Therefore, the total time for the 
first exchange is BkV+ Bk(log#)C + Ek(C + v). For each of the 
remaining 

log2P log@ 
(2+-y-- 1) 

exchanges, the sort step is simpler, since the sequence to be sorted 
is bitonic and may be sorted by merging from the two ends. The 
time for each of these exchanges is ZBk(C+V). The time for the 
final sort step is also Bk(C+V). So, the total time for the execution 
of the algorithm is 

Bk(C+ l’-)[log2P + log;P] + EkV+ Bk(log2fl)C 

Parallel External Sorting Algorithms 

Let us now turn our attention to parallel external sorting algorithms. 
These are algorithms which use P processors, each with B pages 
of memory (and an additional page for holding output tuples), to 
sort N pages, where N is much greater than B (not necessarily 
much greater than BP). Just as parallel internal sorting algorithms 
can be derived from sorting algorithms that only do compare and 
exchange, so also can parallel external algorithms. This fact was 
pointed out in [BITT083]. In that paper, a parallel external sorting 
algorithm called a block bironicsoti is derived from Batcher’s bitonic 

sort [BATCH681 by replacing each comparison-exchange with a 

two-way external merge of two runs of size $, 

Using this same idea for generating parallel external algorithms, we 
first present an external sorting algorithm based on the odd-even 
transposition sort [KNUTH73]. For the odd-even external sort, we 
will show how to use pipelining to arrive at a pipe/id u&-even 
et-ternd serf which is superior in performance to the odd-even 
external sort. We will then examine the block bitonic sort 

([BITTO83]). Using the technique of pipelining on the block 
bitonic sort, we will derive a pipelimi block bitonic sort which, 
unfortunately, has inferior performance to the block bitonic sort. 
From that, we will draw some conclusions about the efficacy of 
pipelining as a general technique for performance enhancement. 

In order to improve the performance of the block bitonic sort, we 
will the examine the idea of using parallel internal sorts. 

The Parallel Odd-Even External Sort 

Execution of the odd-even external sort for two processors (P = 
2) and eight pages (N = 8) is illustrated in Figure 3. The class 
of algorithms suggested in [BITT083] can process at most 2P runs 
with P processors. Therefore, a preprocessing stage is necessary 
when the number of pages to be sorted exceeds 2P. The function 

of this preprocessing stage is to produce 2P sorted runs of size $ 

each. Since our external odd-even sort is an algorithm in the class 

of algorithms suggested in [BITTOSS], it will also have a prepro- 
cessing stage. In our example, the preprocessing stage will produce 
four sorted runs of two pages each. Following this preprocessing 
stage, the odd-even external sort will have 2P more stages (this 
follows from the odd-even transposition sort), in each stage of 

which, the processors, in parallel, merge two runs of size $. 

Analysis of Parallel Odd-Even External Sort 

We use the following notation, in addition to those developed for 
the analysis of the parallel internal sorting algorithms. 

Cr 
CW 
Cm 

6 

Time to read an external page 
Time to write an external page 
Time to merge two pages = Zk(C+V) 

Time to read, merge and write two pages. This is equal 
to 20 + 2Cw + 2k(C+ V). 
Time to read, merge and write B pages. This is equal to 
ECr + BCw+ BkV+ B(log2B)kC. 

As described and analyzed in [BITTO83], the preprocessing stage 
consists of processors, in parallel, successively merging longer and 
longer pairs of runs, until the number of runs is twice the number 

of processors. It is the job of each processor to produce two runs 

of size 5. This will take 

(2, log 
2P 

(N)C2 
22P p 

Then, each of the 2P steps of the odd-even external sort requires 

($)C$ steps. Therefore, the total time for the odd-even external 

sort is 

C(S) log,($) + A9c; 

Parallel B-ary Odd-Even External Sort 

We now consider the following refinement. Until now, we had 
assumed that each processor had enough memory to hold 3 pages, 
where one page was for output, and the other two pages was to 
hold the input during a two-way merge. Now, let us assume that 
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Figure 3: Illustration of the External Odd-Even Sort 

each of the processors has more than 3 pages of buffer. Let each 
processor have B+l pages of buffer, so that it may do a B-way 
merge, rather than a two-way merge. In other words, we are 
proposing a class of external parallel sorting algorithms that are 

derived by replacement of each comparison-exchange with a B-way 
N external merge of B runs of size -. 

BP 

N The preprocessing stage must now produce BP runs of size -. 
BP 

Then, each of the 2P steps of the odd-even external sort requires 

(-/$)Cp steps. Therefore, the total time for the odd-even external 

sort is 

((j-!$log,(-+ + cyx$ 

Consider the following example. 

Example 1. Let N = 4096, P = 16, Cr = 6.4 msccs, Cw = 14.4 
msecs, k = 40, C = .Ol msecs, V = .20 msecs. Then, C$ is 58.4 
msecs and C$ is 118.4 msecs. With these values, the time for the 
two-way odd-even sort is 291.5 seconds and the time for the 
four-way odd-even sort is 265.2 seconds. Therefore, it is attractive 
to do a four-way odd-even sort. 

The values chosen for Cr, Cw. C and V above are those used in 
[BlTT083]. In general, increasing B helps to a point. Beyond 

that critical point, increasing B will actually hurt the performance 
of the odd-even external sort. The faster the CPU, and the slower 
the mass storage devices used, the higher the optimal value of B. 

Pipelined B-ary Odd-Even External Sort 

We wish to reduce the time taken to execute the 2P merge steps 
in the odd-even sort that follow the preprocessing stage. As it 
currently stands, the second merge step cannot be executed until 
the first step completes, the third step cannot be completed until 
the second step completes, and so on. However, if we had several 
more processors, then we could assign these extra processors to 
execute all the 2P steps in a pipelined fashion. Looking back at 
Figure 3, we see that two processors are used in the first step, one 
processor is used in the second step, two processors are used in 
the third step and one processor is used in the final step. Therefore, 
if we had six processors to do the odd-even sort, we could pipe/he 
between the stages. As soon as the first pages of all the input runs 
to step 2 were available, step 2 would be started. Then, as soon 
as the first pages of all the input runs to step 3 were available, it 
would be started, and so on. This would speed up the algorithm, 
at the cost of additional processors. 

Let us illustrate the difference between the odd-even sort and the 
pipelined odd-even sort by means of an example. Let P = 6 and 
B = 2. In the odd-even sort, we will have a preprocessing stage 

in which we will create 2P or I2 runs of size A. Then, we will 
I2 

execute 2P or I2 merge steps in a non-pipelined fashion. In the 

pipelined odd-even sort, we will have a preprocessing stage in 

which we will create four runs of size N 7 We wilI.then organize 

the six processors in four steps (two in step 1, one in step 2, two 
in step 3, one in step 4). Then, we will execute four merge steps 
in a pipelined fashion. 

Clearly, the pipelined odd-even sort takes longer during the pre- 
processing stage, because it needs to create longer runs. However, 
it makes up for the longer preprocessing stage by virtue of the fact 
that it only needs fewer merge steps and because these fewer merge 
steps can be executed in a pipelined fashion. 

Analysis of Pipelined Odd-even Sort 

We will do the analysis for B = 2. It is easy to show that with 
P processors, the pipelined odd-even sort executes the sa 

of merge steps as a normal odd-even sort with K = ( 
Fr 1 + (1+8P)) 

4 
processors. Thus, for example, with P = 6, the pipelined odd-even 
sort has the same number of merge steps as a normal odd-even 
sort with K = 2 processors. 

In the first step of the pipelined odd-even sort, we will need to 
N create 2K runs of size - 

2K’ 
using 2K out of the P processors. It 

is easy to see that P > 2K as long as P 1 3. So, if we only consider 
P to be three or greater, we can do this first step in 

Now, we need to wait until ‘the first pages reach the last step 
(there are 2K steps) of merging. This takes (2K- l)Cs time units. 

Finally, in the last step, all processors will merge two runs of size 

N in(N 
2K 

-$Cj steps. 

Consider the following example. 

Example 2. Let N = 24, P = 6, K = 2, and Cr, Cw, k, C and 
V are as in example 1. Then, the time for the odd-even sort is 26 
time units, whereas the time for the pipelined odd-even sort is 3 
log 6 + 9, which is 16.75 time units, and hence, better. 

External Block Bitonic Sort 

Next, let us consider the Block Bitonic Sort which had been de- 
scribed in [BITT083]. It is derived from Batcher’s bitonic sorter 
in the same manner as we derived the odd-even external sort from 
the odd-even transposition sort. The algorithm is illustrated in 
Figure 4, for P = 2 and N = 8. The preprocessing step is identical 
to that for the odd-even external sort. H wever, instead of 2P 

f merge steps, the algorithm only needs (-)(logzZP)( I + log22P) 
merge steps, so that its total execution 2time. as analyzed in 
[BITT0831 is 

logS2P log*2P 
log,N+2-- 

2 1 @)C2 
2P p 
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Figure 4: Illustration of the Block Bitonic Sort (IBITTO83I) 
I 

We begin by improving the performance of this algorithm using B 
buffers, so that the total execution time now is 

1 &)CB 
BP ’ 

Consider the following example. 

Example 3. Let N = 512, P = 8, Cr, Cw, k, C and V as in 
Example 1. Then, the time for the block bitonic sort with B = 2 
is 28.8 seconds, whereas the time with B = 8 is 21.12 seconds. 

Improving the Performance of the Block 
Bitonic Sort 

Once again, our first avenue of exploration in the search for a 
better sorting algorithm is to consider the idea of pipelining. We 

will do the analysis for the case of B=2. The pipelined block 

bitonic sort will have a preprocessing stage in which 2K runs of 

‘me 2K 
L are created. Subsequently, the pipelined block bitonic sort 

will do the merge steps in a pipelined fashion, using K processors 
at each stage of the pipeline. It is not difficult to see that K can 
be calculated by solving the equation 

f~~(log,zK)(l + Iog22K) = P 

To take an example. consider P=6, K=2. In this example, proces- 
sors 3 and 4 will wait a single time unit (C$) before they begin 
merging, and processors 5 and 6 will wait two time units before 
t ey begin merging. In general, the last processors must wait 
1 (T)(logz2K)( 1 + log22K) - 1 time units before beginning merging. 

To comnlete the analvsis. let us assume that we are interested onlv _ 
in cases where P, the number of processors, is 6 or greater. Then, 
it is easy to see, from the formula for K above, that 2K is less 
than or equal to P. In the first step of the pipelined block bitonic 

sort, we will need to create 2K runs of size z using 2K out of 
2K’ 

the P processors. This will take 

Then, we must wait 

((~)(log22f0(1 + log22LK) - 1)c; 

time units until the last processors get pages to start merging. 

Finally, in the last step, all processors will merge two runs of size 
N 

2K’ 
in ($)Cs steps. 

Consider the following example. 

Example 4. Let N = 1920, P = 80, K = 8, and Cr. Cw, K, C 
and V as in example 1. Then, the time for the block bitonic sort 
is 444 time units, whereas the time for the pipelined block bitonic 
sort is 609 time units. 

We see that the pipelined block bitonic sort is worse than the block 
bitonic sort. Pipelining, as a general technique, is clearly not always 
rewarding - it helped the odd-even sort, but not the block bitonic 
sort. We have explored the idea of pipelining on other algorithms 
and have come to the conclusion that it is only useful when the 
number of merge steps in the original algorithm is high. 

There are two other possible avenues of attack that may now be 
explored in order to improve the performance of the Block bitonic 
sort further. We may either improve the performance of the pre- 
processing stage without changing the number of merge steps 
needed, or we may try to decrease the number of merge steps 
needed without hurting the performance of the preprocessing stage. 
In the following sections, we wilI discuss the former. Details of the 
latter technique may be. found in [MENON86]. 

Improving the Performance of the Preprocessing 
Stage 

In order to improve the performance of the preprocessing stage, 
we suggest the use of the parallel internal sort that we developed 
in the section titled “Parallel Internal Shuffle Sort”. Consider the 

case when N is very large and when s is equal to BP. Then, we 

may make one pass over the file, bring in BP records at a time, 

and sort these BP records using the parallel internal sort developed 
previously. After BP such internal sorts, we have completed the 

preprocessing stage and created BP runs of size 5. 

Consider the following example. 

Example 5. Let N = 4096, P = 16, B = 4, k = 40, Cr = 17 

msecs, Cw = 17 msecs, C = 0.01 msecs and V = 0.1 msecs. In 

this case BP is equal to 2. Using the method of iterated merging, 

the preprocessing stage will take 35.33 seconds. Thii consists of 
approximately 26.12 seconds of I/O time and 9.21 seconds of 
CPU time. On the other hand, if we use the parallel internal sorts, 
we can accomplish the preprocessing in 34.3 seconds (25.6 CPU 
and 8.7 I/O). In other words, the parallel internal sort can be 
used to improve the performance of the preprocessing stage. The 
improvement is achieved by trading off CPU time for I/O time. 

If the CPU is any faster or the disks are any slower than in the 
example, the use of the internal parallel sort for the preprocessing 
stage is recommended. On the other hand, if the CPU is any 
slower, or the disks are any faster, the method of iterated merging 
remains superior. 

We conclude that it is possible to improve the performance of the 
preprocessing stage by using parallel internal sorts rather than 
iterated merging, as long as our processors are fairly powerful. The 
example shown above considered the case when the file to be 
sorted was larger than BP. We may also consider the case when 
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the file to be sorted is smaller than BP. In that case, the modified 
bitonic sort would simply read the file into local memory, do a 
parallel internal sort, and then write the sorted file back to disk. 
On the otherlhand, the unmodified block bitonic sort would need 
to perform (y)(logz2P)(l + logz2P) merge steps. 

Consider the following example. 

Example 6. Let N =,64, P = 16. B = 4. k = 40. and Cr, Cw, 
k, C and V as in Example 1. In this case, BP is equal to N. Using 
the unmodified block bitonic sort, requires 7.6032 seconds for the 
execution to complete. Using the modified block bitonic sort, we 
would need only .52 seconds. Therefore, the modified block bitonic 
sort can be an order of magnitude faster than the unmodified block 
bitonic sort. We conclude that there are situations where, even 
with a slow CPU and fast disks, the modified bitonic sort is still 
the preferred algorithm. 

Analyzing the Resultant Mndifiid Block Bitonic Sort 

The algorithm consists of a preprocessing stage in which we create 

BP runs of size 5. This is followed by the merge steps which we 

have analyzed before. We need to analyze the time to execute the 
preprocessing ,stage, since we have modified the technique for 
preprocessing. We recall that the purpose of the preprocessing stage 

is to create BP runs of size $. Let us consider three cases, and 

analyze the preprocessing time for each of the three cases. 

The first case is when N (the number of elements to be sorted) is 
less than BP (the number of elements that can be sorted internally). 
Using the formula developed in “Parallel Internal Shuffle Sort”, it 
is easy to see that the internal sorting time is: 

$)k(C+ P’)[log,P + lo&‘] + ($)kV+ ($)k(log,B)C 

In addition, we must add the time, to read and write the N pages 

to be sorted (each processor reads and writes -$ pages) which is 

(E)(Cr + Cw). So, the total time’ for the preprocessing stage for 
tlfi case when N is less than BP is 

($)k(C+ P-)[logzP+ lo&] + 

, 

(+kV+ ($)k(log,B)C+ (f)(Cr+ Cw) 

In this case, there is no need for a subsequent merge stage. There- 
fore the total time for sorting is as above. 

Next, let us consider the case when N is greater than BP, but it 
is less than or equal to B2PZ. In this case, the preprocessing stage 
will consist of BP passes, and each pass will consist of a parallel 

internal sort of & elements. At the end of these BP passes, we 

will have the required BP runs of size 

equal to B*P*, so 5 

&. Since N is less than or 

N 
is less than or equal to BP. Assume BP IS 

equal to XP. Then, the time for each pass is 

Xk(C+ V[log,P+ log@] + 

XkV+ Xk(log,B)C + X(Cr + Cw) 

The total sort has BP passes and must include the time for merging 
and is 

($)k(C + O[ log2P + lo&] + 

($)kY+ ($)k(log,B)C+ $)(Cr+ Cw) 

+(~)(log22P)(1 + log*2P)C,B 

Finally, we consider the case when N is greater than B*P* or L 

N Bp is greater than BP. In this case, we will begin by creating - runs 

of size BP each. This is done by making 6 
BP 

internal sorts, each 

internal sort creating runs of size BP. Now, each processor can 

take runs of size BP and create runs of size B*P, then take runs 

of size B*P and create runs of size B3P, and so on until runs of 

. N 
S’ze BP 

are created. It can be shown that the total time, including 

merging is 

($)k(C + U[ log*!’ + log;P] + 

(f)kY+ ($)k(log2B)C + (+)(Cr + Cw) 

($4 
+mB( Bp -,,(++a +(~)(log*2P)U + l0&2& 

Comparative Analysis of External Sorting 
Algorithms 

In this section, we present the results of a comparative analysis of 
the different algorithms that we have presented. The numerical 
results for the execution times of the different sorting algorithms 
are obtained from APL programs that were written to calculate 
them based on the equations derived in the previous sections. For 
all the results presented in the following sections, we assumed that 
Cr and Cw, the times to read and write a page from the disk was 
17 msecs, that k the number of tuples (records) per page was 40, 
that C, the time to compare two keys was .Ol msecs, and that V, 
the time to move a record in memory was .I msecs. 

First, we compare the pipelined odd-even sort, the block bitonic 
sort, and the modified block bitonic sort. Since the pipelined odd- 
even sort was only analyzed with B the number of buffers equal 
to two, we only present results for B=2. 

Comparing the Pipelined Odd-Even Sort With the 
Bitonic Sorts 

The results of our comparison are shown in Figures 5, 6, 7, and 
8. In these graphs, 1 is the block bitonic sort, 2 is the modified 
block bitonic sort and 3 is the pipelined odd-even sort. 

From the first two graphs, we see that the sorting time for all three 
methods increases with the size of the relation being plotted. These 
graphs also tell us that the pipelined odd-even sort is inferior to 
the two block bitonic sorts except for very low number of processors 
when all the three methods are approximately equivalent in perfor- 
mance. 
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Variation with Relation Size 
P=15: B=2 
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Figure 5: Execution Time Versus delation Size for Sorting Meth- 
ods 

Vaiiation with Relation Size 
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Figure 6: Execution Time Versus Relation Size for Sorting Meth- 
OCJS 

Looking at the latter two graphs, we see that all the sorting 
algorithms improve in performance when they can use more pro- 
cessors. Once again, it is clear that the pipelined odd-even sort is 
inferior to the other two sorting methods, except for very low 
number of processors when it actually outperforms the block bitonic 
sort. 

Variation with Number of Proceseors 
N=256; B=2 
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Fiie 7: Execution Time Versus Number of Processors 

Variation with Number of Processore 
N=2048; B=2 

I ’ “I 
I I I 

I 

0 ‘I 10 20 40 
Number of Proceeeore 

Figure 8: Eliecution Time Versus Number ,of Prucessors 

For the chosen values of the parameters, there does not appear to 
be much difference in performance between the block bitonic sort 
and the modified block bitonic sort. The modified block bitonic 
sort is slightly better for small number of processors (less than 20 
when the relation size is small (256 pages) and less than 40 when 
the relation size is large (2048 pages). It also appears better when 
the relation sizes to be sorted are large. The block bitonic sort 
appears to be slightly better for large number of processors and 
small refation sizes. 

Comparing the Odd-Even Sort With the Block 
Bitonic Sorts 

In this section, we show the odd-even sort, rather than the pipelined 
odd-even sort, for a couple of reasons. First, we were able to 
analyze the pipelined odd-even sort only for B=2, whereas the 
other sorting methods were analyzed for all values of B. Secondly, 
we found that while the pipelined odd-even sort was better than 
the odd-even sort, when.compared against the performance of the 
block bitonic sorts, it looked as bad as the odd-even sort. 

In Figures 9, 10 and 11, we show the variation in execution time 
with the size of the relation being sorted. In these graphs, 1 is the 
block bitonic sort, 2 is the odd-even sort, and 3 is the modified 
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block bitonic sort. The odd-even sort is clearly the most inferior 
of the three algorithms. The relative performance of the bitonic 
sorts is more interesting. In Figure 9, we see that the modified 
block bitonic sort outperforms the block bitonic sort when the size 
of the relation to be sorted is less than about 1000 pages, and in 
Figure 10, we see that the modified block bitonic sort outperforms 
the block bitonic sort when the size of the relation to be sorted is 
less than about 8000 pages. For other values of the relation size, 
the two methods are approximately equal in performance. In gen- 
eral, it is seen that the modified block bitonic sort outperforms the 
other methods when the size of the relation to be sorted is smaller 
than, equal to, or slightly greater than the product of the number 
of processors P and the number of buffers B. For other values of 
the various parameters, the performance of the modified block 
bitonic sort is almost equal to that of the unmodified block bitonic 
sort. In summary, the modified block bitonic sort is superior for 
very large values of P anrIB, or very small values of N. From the 
previous section, we are also aware that the. modified block bitonic 
sort is superior for very large values of N, and very small values 
of P. 
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Figure .9: Execution Time. Versus Relatfon Size for Sorting Meth- 
ods 
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Figure 10: Execution Time Versus Relation Size for Sorting 
Methods 
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Figure 11: Execution Tiwe Versus Relation Size for Sorting 
Methods 

In Figure 12, we show, the variatiouin execution time with the 
number of processors ‘involved in the sorting. Once again, it may 
be seen that the modified b&k bitonic sort and the unmodified 
block bitonic sort are almost equal in performance until a threshold 
number of processors is reached. Beyond this threshold number of 
processors. the modified block bitonic sort is the best Performer. 
The threshold is, reached when there are enough processors so that 
the total size of t&e records to be sorted only slightly exceeds the 
total capacity of the ‘combined memories in the multiprocessor 
given by B times P. The performance of the modified block bitonic 
sdrt is seen to improve even when the number of processors is 
increased beyond the threshold number of processors we described 
above. 

‘, 

Variation with Number of Proceesore 
N=256; B=4 
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Figure 12: Execution Tie Versus Number of Processors 

Finally, in Figures 13 and 14, we show the variation in execution 
time with the number of buffers available per processor. It is seen 
that the odd-even sort and the unmodified block bitonic sorts 
exhibit a very mild bowl-shaped behavior - that is, increasing the 
number of buffers helps to a point. Increasing the number of 
buffers beyond that point actually hurts the performance of these 
algorithms. 
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Variation with Number of Buffers 
N=2048; P=16 

101 ’ 1 fi1111’ I ‘1 11,111 I 
10 100 

Number of Buffere 

Figure 13: Execution Time Versus Number of Buffers 
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Figure 14: Execution Time Versus Number of Buffers 

three and studied two techniques for improving performance - the 
use of pi@ining and the use of plrrnllrl intanrrl sorting. These are 
general techniques that may be used to improve the performance 
of any of the algorithms in the class of algorithms of interest to us. 

For pipelining. we concluded that it may be used to improve the 
performance of those algorithms that have a large number of merge 
steps, but is less useful for those algorithms where the number of 
merge steps is not very large. 

We have also shown how to improve the block bitonic sort by 
using parallel internal sorting, and called our new algorithm the 
modifid block bitonic awt. 

We have analyzed and studied the performance of several sorting 
algorithms under various conditions. We believe that our work 
represents the first attempt to study the variation in performance 
of multiprocessor sorting algorithms with changing buffer size. This 
study is important given that memory costs are dropping, making 
it quite feasible to build multiprocessors with large buffers. We 
showed that the odd-even and the unmodified block bitonic sorts 
exhibit a very mild bowl-shaped behavior - that is, increasing the 
number of buffers helps to a point. Increasing the number of 
buffers beyond that point actually hurts the performance of these 
algorithms. The modified block bitonic sort, on the other hand, 
behaves differently. It initially exhibits the same, mild, bowl-shaped 
behavior. However, beyond a certain buffer size, its performance 
improves dramatically. This buffer size beyond which the dramatic 
performance improvement takes place is when the total size of the 
records to be sorted only slightly exceeds the total capacity of the 
combined memories in the multiprocessor. 

We saw that the modified block bitonic sort is much better than 
all the other methods for very large values of P (the number of 
processors) and B (the number of buffets per processor minus 1). 
or very small values of N (the size of the relation being sorted). 
We also saw that the modified block bitonic sort is slightly better 
than the other methods for very large values of N. and very small 
values of P (less than 20 to 40). For other values of N, B, and 
P, the modified block bitonic sort is slightly worse in performance 
than the block bitonic sort which is the best sorting algorithm 
under those conditions. 

The modified block bitonic sort exhibits a very different kind of 
behavior. It begins with the same bowl-shaped behavior. However, 
beyond a certain buffer size, its performance improves dramatically. 
Once again, this buffer size beyond which the dramatic performance 
improvement takes place is when the total size of the records to 
be sorted only slightly exceeds the total capacity of the combined 
memories in the multiprocessor given by B times P. 

Our results show that the modified block bitonic sort is the fastest 
or close to the fastest algorithm over a wide range of values among 
the class of algorithms of interest to us. Furthermore, of all the 
algorithms we considered in this paper, the modified block bitonic 
sort made the best use of additional main memory buffers. 

Finally, we note that the modified block bitonic sort is the only 
algorithm that can make use of buffer sizes in excess of about 8 
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