
THE IDEA OF DE-CLUSTERING AND ITS APPLICATIONS 

ABSTRACT 

M. T. Fang*, R. C. T. Lee* and C. C. Chang** 

* Institute of Computer and Decision Sciences, National 
Tsing Hua University , Hsinchu, Taiwan, CHINA 

** Institute of Applied Mathematics, National Chung Hsing 
University, Taichung, Taiwan, CHINA 

The idea of de-clustering is defined 
as follows: Given a set of data, divide 
them into two groups such that these two 
groups are similar to each other. We 
shall show that this de-clustering 
technique can be used to solve the multi- 
disk data allocation problem for parallel 
processing. 

SECTION 1. INTRODUCTION 

The problem of clustering is defined 
as follows: Given a set of data, divide 
these data into homogeneous groups. 
Clustering analysis and its applications 
have been studied by many researchers 
[Lee81, Zahn71, Sibs73, Roh173, Dube801. 

It often occurs that we have a situa- 
tion which is exactly opposite to that 
where clustering is required. For 
instance, suppose that there are a group 
of students and we like to divide these 
students into two teams to play, say 
basketball. Certainly, in this case, 
clustering analysis can not be applied. 
If it is applied, one team will consist 
of tall and strong kids while the other 
team will consist of small and weak kids. 
Actually, in such a situation, we like 
to have two groups of kids which are 
similar to each other as a whole. That 
is, the average height, weight and skill 
of one team should be quite close to 
those of the other team. If there are 
strong and tall kids in one team, there 
should be such kids in the other team. 
Similarly, if there are weak and short 
kids in one team, such kids should also 
exist in the other team. 

Consider another situation. We have 
a large company which has many branches 
in different cities. Some of the branches 
are located in very affluent cities and 
some are located in poverty-stricken 
cities. Let us assume that the company 
has two managers and each manager is in 
charge of a group of branches. Again, 
we have to be sure that these two groups 
are smilar to each other. That is, the 
number of affluent cities of one group 

should be rouqhlv the same as that of the 
other gxoup. -0niy through this arrange- 
ment we can truly compare the capabilities 
of these two managers. 

In this paper, we shall discuss a 
de-clustering technique and then show how 
this de-clustering t'echnique can be used 
to solve a multi-disk data allocation 
problem. 

SECTION 2. A DE-CLUSTERING ALGORITHM 
BASED UPON MINIMAL SPANNING 
TREES 

One way of defining two similar 
groups Gl and G2 is the following. For 

every point P in Gl, there exists at 
least one point Q in G2 such that either 
P is a nearest neighbor of Q or Q is a 
nearest neighbor of P. To produce such 
two groups, we may use minimal spanning 
trees [Dijk59, Prim57, Yao75, Cher76, 
Bent781. Let us assume that all of 
inter-point distances are different. In 
this case, if P is a nearest neighbor of 
Q, then P and Q are connected in the 
minimal spanning tree. 

To produce two groups which are 
similar to each other', we may do the 
following. 

(1) Construct a minimal spanning tree 
for a set S of points. 

(2) Pick any point, say A, from S and 
mark the level of A as 1. 

(3) For any other node on the minimal 
spanning tree whose level is not 
marked yet, mark its level as 
i+l if it is linked to a node 
whose level is already marked as 

(4) &peat step 3 until every node is 
marked. 

(5) Let Gl consist of all points whose 

levels are odd numbers and G2 

consist of all points whose levels 
are even numbers. 

Example 2-l. 
Consider the points in Fig. 2-l. 
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------------L-- 

Fig. 2-l here 
~-_-----~-_--_- 

Suppose we choose C to start with. The 
levels of all nodes will be shown in 
Fig. 2-2. 

~~_---_-------- 
Fig. 2-2 here 

------_-----_-_ 
In this case, Gl = {C, E, G, H] and 

G2 = IA, B, D, F, I]. The reader can see 
that for every point in Gl, there is a 

point in G2 such that these two points 
form a nearest neighbor pair. For 
instance, C, D is such a pair and {G, F] 
is also such a pair. 

To illustrate the de-clustering 
effect, we shall use "x" and "o" to 
indicate points in Gl and G2 respectively 
and redraw Fig. 2-l as Fig. 2-3. The 
reader can see that we have produced two 
groups of points which are similar to 
each other. 

-----_-------_- 
Fig. 2-3 here 

~~~---_~_---_-- 
Example 2-2. - 

Fig. 2-4 shows another example of 
using the de-clustering technique based 
upon the minimal spanning trees. The 
effect of de-clustering is easy to see 
and understand. 

_--_-__-_---_-- 
Fig. 2-4 here 

~_~---_~~_----- 
The readers may have noticed that 

the number of points of Gl is not equal 
to those of G2. In the next section, we 
will propose another approach to avoid 
this problem. 

SECTION 3. DE-CLUSTERING BASED UPON 
SHORT SPANNING PATHS 

One disadvantage of using the minimal 
spanning tree approach is that the number 
of points of one group is not necessarily 
equal to those of the other group. In 
this section, we shall show that we can 
also use the concept of short spanning 
tree paths to de-cluster data. 

A shortest spanning path is defined 
as a shortest path connecting all of the 
data points. A shortest spanning path is 
hard to find because the problem of 
finding such a path is NP-complete 
[Papa76]. In Lee [Lee811 an algorithm to 
find a short, not necessarily the shortest, 
path was given. 

A short spanning path produces a 
unique ordering of points. Let the points 
be labeled according to their positions 
in the path. We may then put points with 
odd numbers into one group and points 
with even numbers into another group. If 
this method is used, the difference 

between the numbers of these two troups 
is at most 1. 
Example 3-1. 

Consider the points in Fig. 2-l 
again. A short spanning path is given in 
Fig. 3-l. In this case, we shall have 
two groups: {A, C, E, F, I] and {B, D, G, 
H]. 

----------e--w- 
Fig. 3-l here 

--------------- 
Example 3-2. 

Consider the points in Fig. 2-4 
again. The result after de-clustering 
using the short spanning path approach is 
shown in Fig. 3-2. The reader can see 
easily that de-clustering using short 
spanning path produces two equal sized 
groups. 

_---__-~---_-_- 
Fig. 3-2 here 

__----_--_-__-- 

SECTION 4. THE DE-CLUSTERING EFFECT 

In this section, we should discuss 
whether our de-clustering techniques work 
or not. 

If a de-clustering technique is 
effective, it should produce just exactly 
the opposite effect of clustering 
analysis. Therefore, in the following, 
we should first discuss the effects of 
clustering analysis. 

Assume that we have a set S of data. 
If clustering analysis produces two 
groups Sl and S2 from S, then Sl and S2 
will have the following properties: 

(1) Both Sl and S2 will be quite 
different from the original set S. 

(2) Sl and S2 should be quite 

different from each other. 
Because de-clustering should produce 

opposite effects as clustering does, we 
expect that after de-clustering produces 
Sl and S2, Sl and S2 will have the 
following properties: 

(1) sl and S2 should be quite similar 

to the original set S. 
(2) Sl and S2 should be quite similar 

to each other. 
To measure the similarity between 

two sets Sl and S2 which are mutually 

exclusive, we may do the following: Let 
s = s1 u s2. For each point Pi in Sl, 

find Qi which is a nearest neighbor of 

Pi. Let (Pi,Qi) be denoted as a within- 
sets closest pair if Pi and Qi belong to 
the same set Si. If Sl and S 2 are 
similar to each other, the number of 
within-sets closest pairs should be small. 
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Therefore, we may use the number of 
within-sets closest pairs to indicate 
the similarity between Sl and S2. That 
is, if Sl and S2 are two mutually 
exlusive sets, then d(Sl,S,) is the 
number of within-sets closest pairs. 

If de-clustering produces Sl and S2 
from S, then we like both Sl and S2 to be 

able to represent S. Let Xi be a point 
in S. Let Yj be a nearest neighbor of 

'i in S.. 1 Let d(Xi,Yj) be the distance 
between Xi and Y.. Let 

7 

should be small. 
The experimental results are shown 

in Table 4-l. The last item of each row 
is the number of times that the distance 
produced by the minimal spanning trees 
approach is smaller than that produced by 
the random method. From Table 4-1, we 
can see that the minimal spanning trees 
approach was better than the random 
method in each of the three comparisons. 
That is, we may conclude that the minimal 
spanning trees approach produces two 
subsets which are very similar to each 
other (d(A,B) = 0) and they both represent 
the original data better than randomly 
selecting two groups of data. 

d(S,S$ = ; d(xi,Yj). Clearly, if 
i=l 

d(S,Si) is small, then Si represent S. 
In other words, if Si is a subset of S, 
then d(S,Si) measures the similarity 
between S and Si. 
Experiment 1. - 

In this experiment, we tested the 
effectiveness of using the minimal 
spanning trees to de-cluster data. For 
each data set, we used two methods to 
de-cluster these data. The first method 
was the minimal spanning trees approach. 
The second method was simply using the 
random approach. That is, the data were 
de-clustered by randomly assigning data 
into two groups. The purpose of this 
experiment was to test whether we can 
randomly produce two similar subsets of 
data and whether each subset can represent 
the original set of data. 

Let the number of points be denoted 
as N. In this experiment, it was set to 
be euqal to 100, 200, . . . . 1000. For 
each N, five data sets of 2-dimensional 
points were generated by a random number 
generator. Thus, there were totally 
fifty sets of data used. 

For each set, we first used the 
minimal spanning tree approach to de- 
cluster the data. Let the two groups of 
data be denoted as A and B. Let the 
original set of data be denoted as S. 
Then d(A,B), d(S,A) and d(S,B) were all 
calculated. Since A and B were 
generated by using the minimal spanning 
trees approach, as expected, d(A,B) was 
zero for each set of data. 

For each data set, let the sizes of 
A and B produced by the minimal spanning 
trees approach be NA and NB respectively. 
We then used the random number generator 
to produce two subsets A and B of sizes 
NA and NB respectively. Again, d(A,B), 
d(S,A) and d(S,B) where clculated. 

Table 4-l here 

Experiment 2. 
In this experiment, instead of 

minimal spanning trees, we used the short 
spanning paths. The experimental results 
are shown in Talbe 4-2. We may draw the 
following conclusions: 

(a) As compared with the minimal 
spanning trees approach, the short spanning 
paths approach produces two groups which 
are less similar to each other. For the 
minimal spanning trees approach, d(A,B) 
is zero. This is not the case for the 
short spanning paths approach, as 
expected. 

(b) The short spanning path de- 
clustering produced two subsets of data 
which were less representative than those 
produced by the minimal spanning trees 
approach. But the difference is very 
small, in general. 

(c) The de-clustering method based 
upon the short spanning path method 
produced two groups of data which are 
much more similar to each other than the 
groups produced by the random method, as 
shown by the distance between A and B. 

---------------- 
Table 4-2 here 

---~-----t--C--- 

SECTION 5. THE APPLICATION OF DE- 
CLUSTERING TO THE MULI-DISK 
DATA ALLOCATION PROBLEM 

The multi-disk data allocation 
problem was first proposed by Du and 
Sobolewski [Du821 and studied by some 
researchers [Wu83, Du84a, Du84b, Chan851. 
The problem can be explained by considering 
the following example. Assume that there 
are sixteen records as shown in Table 5-l. 

---------------- 
Table 5-l here 

----_-__-----~-- 
Table 5-2 shows one way of assigning 

the records into the two disks. 
---------------- 

Note that for a good de-clustering 
technique, d(A,B), d(S,A) and d(S,B) Table 5-2 here 

-_--------~-_~-- 
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Let us denote a partial match query 
which retrieves all records with the 
first attribute equal to A and the second 
attribute equal to anything as (A, *). 
Then when this query is issued, all of 
the records which are to be retrieved are 
in Disk 1. That is, Disk 2 is idling all 
the time as data are retrieved from Disk 1. 
Let us assume that the retrieving of one 
record takes one unit of time, Then, for 
the above confiquration, the retrieval 
will take four units of time. The 
retrieval of (*, A) will take two units 
of time.. 

Let us consider another way of 
assigning data as shown in Table 5-3. 

-------------_-- 
Table 5-3 here 

-------------_-- 
In this case, for any partial match 

query, it will always take two units of 
time to complete. Thus, we may 'say that 
the above way of allocating data is more 
effective. 

If one compares the above two ways 
of allocating data, one should note that 
the second method is more effective 
because it employs the de-clustering 
concept while the first allocation method 
employs the clustering method.' 

If we have a set of data and we have 
to allocate them onto some disks in such 
a way that we can retrieve them in 
parallel, we should distribute similar 
records onto different disk. This is why 
de-clustering can be applied. 
Example 5-l. 

Consider a 2-attribute Cartesian 
product file [ChanEO, Chan841 as shown in 
Table 5-l. Applying the de-clustering 
algorithm based upon the minimal spanning 
tree, we obtained the data allocation 
scheme exactly as in Table 5-3, which is 
optimal. 
Example 5-2. 

Consider the data in Table 5-4. 
This set of data are from a paper written 
by Dayhoff [Dayh6Y] and are concerned with 
the sequence of amino acids in a protein 
molecule, cytochrome c, found in the 
mitochondria of animals and heigher plants. 
Only the positions which vary are recorded. 
The result after de-clustering based upon 
the minimal spanning tree is shown in 
Table 5-5. We measure the effectiveness 
of our method by examining every attribute. 
For instance, consider the first attribute. 
This attribute assumes two values: V and 
I. As can be seen, there are two records 
with the first attribute equal to I and 
distributed onto different disks. 
Similarly, there are eleven records whose 
first attributes are equal to V. Again, 
five of them in one disk and six of them 
in another disk. For attribute 1, our 
allocation is optimal as the distribution 

is totally balanced. By examining all of 
the attributes, we conclude that our 
allocation method is not optimal only for 
Atrributes 12, 16 and 18. 

-----------_-mm- 
Table 5-4 here 

-----------_-se- 
--------___-_--- 

Table 5-5 here 
------e--_-_--e- 

Example 5-3. 
Let us consider a three-attribute 

file as shown in Table 5-6. In fact, they 
are .data from (Lee791. The three attributes 
are department code, skill code and salary 
code. 

WV----e--w------ 
Table 5-6 here 

----__--_____--- 
We use Monte Carlo simulation method 

as the basis of the random allocation 
scheme. A random'allocation is constructed 
by randomly assigning records into disks. 
A random number generator is used to put 
all the twenty eight records in Table 5-6 
onto two available disks. This allocation 
is a kind of random allocation. The 
reader should note that talking about the 
performance of a particular random alloca- 
tion is nonsense because a random alloca- 
tion can be quite "good" or quite "poor" 
in its performance. So we have to 
calculate the expected performance of 
random allocation scheme. By the expected 
performance of random allocation scheme, 
we mean the expected number of buckets 
to be accessed in parallel over all 
possible partial match queries. In this 
case, we calculate the expected perform- 
ance of random allocation scheme as the 
average performance of fifteen random 
allocations. 

The experimental results of applying 
De-clusterings based upon the minimal 
spanning tree and the short spanning path 
and random allocation scheme are as shown 
in Table 5-7. 

_----------__--- 
Table 5-7 here 

As can be easily seen, our de- 
clustering techniques based upon the 
minimal spanning tree and the short 
spanning path are better than their 
corresponding random allocations. 

SECTION 6. CONCLUSIONS AND REMARKS 

De-clustering is a new idea in 
analyzing the similarities between data 
set and is exactly opposite to clustering 
analysis. Clustering analysis divides 
data into homogeneous groups while de- 
clustering distributes similar data into 
different groups. 

In database design, clustering 
analysis can be used to group similar 
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records into one bucket to shorten 
retrieval time. On the contrary, de- 
clustering is used to distribute similar 
records into different disks and also can 
be used to reduce response time to a query 
for parallel accessing. 

From our experience, since de- 
clustering produces two subsets that 
represent the original data set, it appears 
to us that it can be used as a sampling 
technique in Statistics. 

Finally, we believe that de-clustering 
is not only good for parallel partial 
matching, but also.good for parallel 
nearest neighbor searching [Frie75, Shen78, 
Bent80, Lee82]. 
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Table 4-l. The results of Experiment 1. 

Method: MST RANDOM 

N Itr d(A.B) d(k.A) d(S,B) d(A,B) d(S,A) d(S,B) 

Table 4-2. The results of Experiment 2. 

Method: SSP RANDOM 

N Itr d(A,B) d(S,A) d(S,l3) d(A.8) d(S,A) d(S,B) E 

1 0 13.1 14.1 43 16.5 21.3 3 1 14 14.2 14.1 41 19.5 17.2 3 
2 0 13.2 14.8 46 14.8 - 21.4 3 2 10 14.2 14.7 53 20.1 18.8 3 

100 3 0 13.6 13.4 62 20.9 20.9 3 100 3 11 13.9 14.2 52 21.7 20.0 3 
4 0 12.8 12.0 48 17.0 18.5 3 4 12 13.3 12.9 50 17.7 17.2 3 
5 0 13.2 14.0 51 23.9 20.9 3 5 16 14.6 13.8 57 20.4 19.4 3 
1 0 9.5 8.8 101 13.4 12.2 3 1 26 9.4 9.9 92 12.5 12.7 3 
2 0 8.6 9.9 100 12.1. 14.5 3 2 24 9.2 9.6 92 12.5 12.3 3 

200 3 0 9.8 8.4 105 14.2 11.7 3 200 3 21 9.3 9.8 101 14.6 13.2 3 
4 0 9.2 8.8 104 13.3 13.5 3 4 27 9.3 9.3 82 12.3 12.1 3 
5 0 8.7 0.7 114 12.4 12.3 3 5 32 9.1 El.9 92 12.8 12.9 3 
1 0 7.7 7.6 159 11.3 10.5 3 1 38 8.0 8.0 143 10.6 10.6 3 
2 0 7.2 7.6 166 10.5 11.8 3 2 53 7.9 7.7 141 10.5 9.9 3 

300 3 0 7.0 7.2 143 10.6 9.4 3 ,300 3 35 7.1 7.6 154 11.2 11.1 3 
4 0 7.1 6.9 146 10.4 9.9 3 4 47 7.4 7.2 159 9.6 10.3 3 
5 0 7.0 7.4 133 9.1 9.8 3 5 32 7.4 7.5 161 10.2 10.3 3 
1 0 6.8 6.0 211 9.5 8.4 3 1 56 6.4 6.6 189 0.7 8.5 3 
2 0 6.4 6.0 180 8.3 7.9 3 2 53 6.5 6.4 179 8.8 8.1 3 

400 3 0 6.5 6.9 192 8.8 9.6 3 400 3 44 6.9 6.8 203 9.3 9.2 3 
4 0 6.7 6.4 220 9.8 9.6 3 4 65 6.8 6.9 190 9.0 9.0 3 
5 0 6.1 6.5 195 8.6 9.4 3 5 52 6.7 6.8 199 9.1 9.0 3 
1 0 5.4 5.6 231 7.7 8.0 3 1 54 5.8 5.8 257 8.3 8.0 3 
2 0 5.6 5.7 262 7.8 7.9 3 2 68 5.7 5.9 321 1.5 7.0 3 

500. 3 0 5.9 5.6 278 8.6 8.5 3 500 3 80 5.8 5.7 234 7.7 7.0 3 
4 0 5.5 5.7 268 7.9 8.6 3 4 62 5.8 5.8 259 8.3 El.3 3 
5 0 6.3 5.5 249 8.6 7.9 3 56 5.9 5.9 246 8.0 8.1 3 
1 0 5.4 5.2 314 7.6 7.2 3 1 68 5.5 5.4 301 7.3 7.5 3 
2 0 5.3 5.1 294 7.7 7.2 3 2 88 5.4 5.5 284 7.4 7.4 3 

600 3 0 5.0 5.2 312 7.0 7.9 3 600 3 91 5.4 5.5 277 7.2 7.1 3 
4 0 5.2 5.2 315 7.6 7.5 3 4 73 5.5 5.4 307 7.3 7.3 3 
5 0 5.0 5.1 301 6.9 7.3 3 5 89 5.2 5.3 278 7.4 7.2 3 
1 0 4.7 4.8 349 .6.6 7.0 3 1 83 5.1 5.0 348 6.9 7.0 3 
2 0 5.0 5.9 368 6.9 6.9 3 '2 93 4.9 5.0 341 6.6 6.5 3 

700 3 0 4.4 4.6 391 6.8 6.9 3 700 3 92 4.8 4.8 355 6.7 6.7 3 
4 0 4.7 4.9 , 333 6.7 6.8 3 4 87 4.9 5.0 342 7.1 7.0 3 
5 0 4.9 4.5 349 6.8 6.5 3 5 101 4.9 4.7 349 6.3 6.8 3 
1 0 4.7 4.4 377 6.3 6.2 3 1 111 4.8 4.7 422 6.5 6.7 3 
2 0 4.6 4.7 428 6.7 7.0 3 2 102 4.6 4.6 419 6.7 6.4 3 

800 3 0 4.3 4.5 372 6.0 6.3 3 800 3 116 4.6 4.6 380 6.0 6.2 3 
4 0 4.5 4.4 432 6.7 6.3 3 4 103 4.6 4.7 395 6.3 6.2 3 
5 0 4.4 4.6 369 6.2 6.4 3 5 116 4.8 4.1 421 6.3 6.4 3 
1 0 4.1 4.4 483 5.8 6.5 3 1 130 4.3 4.4 478 6.2 5.8 3 
2 0 4.3 4.3 453 6.3 6.2 3 2 108 4.4 4.5 487 6.1 6.3 3 

900 3 0 4.2 4.4 440 6.2 6.2 3 900 3 111 4.4 4.4 429 5.8 5.8 3 
4 0 4.3 4.1 449 6.0 6.0 3 4 132 4.5 4.3 461 6.1 6.1 3 
5 0 4.2 4.3 433 5.9 5.9 3 5 132 4.4 4.4 432 6.0 6.1 3 
1 0 3.9 4.2 495 5.7 5.8 3 1 149 4.2 4.2 412 5.6 5.9 3 
2 0 3.9 4.0 489 5.6 5.3 3 2 170 4.3 4.3 463 5.5 5.4 3 

1000 3 0 3.7 4.1 501 5.5 5.8 3 1000 3 116 4.1 4.0 522 5.9 5.7 3 
4 0 4.1 3.8' 507 6.1 5.4 3 4 134 4.2 4.2 479 5.6 5.5 3 
5 0 4.1 3.9 515 5.9 5.7 3 5 117 4.0 4.1 534 5.8 5.9 3 

(A,A) (A,B) (A,c) (A,D) 
@,A) (B,B) (B,C) (B,D) 
(CA (C,B) (C,C) (C,D) 
(D,A) (D,B) (D,C) (D,D) 

Table 5-1. 2-attribute records 

Disk 1 Disk 2 
(A,A) (C,A) 
(A,B) (C.B) 
(A,C) (C,C) 
(A,D) (C,D) 
@,A) (D,A) 
(B.B) (D,B) 
(B,C) (D,C) 
(B,D) (D,D) 

Table 5-2. One allocation result of 
Table 5-l. 

Disk 1 Disk 2 
(A,A) (A,B) 
(A,C) (A,D) 
(B,B) @,A) 
(B,D) (B,C) 
(C,A) (C,B) 
(C,C) (C,D) 
(D,B) (D,A) 
(D,D) (D,C) 

Table 5-3. Optimal allocation of Table 5-1. 
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VIMSVTHLFPYSAIGDVKEAKTNE 
VIMSVTHLFPYSATGDVKEAKTNE 
VVQAVTHLFPFTDTKEAKTEKTNE 
VVQAVTHLFPFSDTGEAKGEKTNE 
VVQAVTHLFPFSDTGEATGAKTKE 
VVQAVTHLFPFSDTGEAKGAKTNE 
VVQAVTHLFPFSDTGDAKDAKTNE 
VVQAVTNLFPFTDIGDAKGAKTNE 
IVQSVTHLFEFSDTGDAKSVDTSK 
IVQSVTHLFEFSDTGDAKSADTSK 
VVQSVTHLFEFSDTGDAKSADTAK 
VVQAVTNLIEFSDTGEAKAADTSK 
VVQACVYLIAFSETGDAKGOSCSK 

Table 5-4. Data from Dayhoff 

000000000111111111122222 
Attr.12 34 5678901234 56789012 34 

D VIMSVTHLFPYSATGDVKEAKTNE 
i VVQAVTHLFPFTDTKEAKTEKTNE 
s VVQAVTHLFPFSDTGEAKGAKTNE 
k VVQAVTNLFPFTDIGDAKGAKTNE 

IVQSVTHLFEFSDTGDAKSVDTSK 
1 VVQSVTHLFEFSQTGDAKSADTAK 

VV!jACVYLIAFSETGDAKGDSCSK 
D VIMSVTHLFPYSAIGDVKEAKTNE 
1 VVQAVTHLFPFSQTGEAKGEKTNE 
s VVQAVTHLFPFSDTGEATGAKTKE 
k VVQAVTHLFPFSDTGOAKDAKTNE 

IVQSVTHLFEFSDTGDAKSADTSK 
2 VVQAVTNLIEFSDTGEAKAADTSK 

Table 5-5. The de-clustering result of Table 5-4. 

- 
Records Department Skill Salary 

code Code Code 
RO P 
R 1 
R2 
R3 
R4 
R5 
R6 
Rl 
R8 
R9 
R10 
Rll 
R12 
RI.3 
R14 
R15 
R16 
Rl7 
R18 
R19 
R20 
R21 
R22 
R23 
R24 
R25 
R26 

Q 
R 
P 
Q 
R 
P 
P 
R 
R 
Q 
R 
R 
P 
P 
P 
R 
R 
Q 
R 
P 
P 
P 
Q 
R 
P 
P 

FI A 
SE C 
PL B 
SE D 
SE C 
PL B 
AD D 
PL B 
FO C 
AD D 

FI C 

FO C 
PL B 
SE D 
AD D 
FI A 
PL B 
PL B 
SE B 
PL C 
FI A 
MA C 
MA C 
SE E 
PL B 
PL C 
MA C 

T 
MST 

T 
SSP T 

RA 
T MsT/T,&) Tssp/Tm(%) 

2.2444 2.2222 2.5185 89.10 88.24 

T MST: The performance of de-clustering based 
upon the minimal spanning tree. 

T 
ssp: The performance of de-clustering based 

upon the short spanning path. 
T 

RA: The expected performance of random 
allocation scheme. 

Table 5-7. The results of Example 5-3. 

R27 Q SE C 

Table 5-6. Data from Lee and Tsenq 
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