Completeness Information and Its Application to Query Processing

Amihai Motro

Department of Computer Science
University of Southern California
Los Angeles, CA 90089

Abstract

The assumption that a database includes a
representation of every occurrence in the real world
models (the Closed World

Assumplion) is frequently unrealistic, because it is always

environment that it

made on the database as @ whole. This paper introduces
a new type of database information, called completeness
in formalion, to describe the subsets of the database for
which this assumption is correct. With completeness
information it is possible to determine whether each
answer to a uscr query is complete, or whether any
subsets of it are complete. To users, answers which are
accompanied by a statement about their completeness are
more meaningful. First, the principles of completeness
information are defined formally, using an abstract data
Then,

implementing completeness information in the relational

model. specific methods are described for

model. With these methods, each relational algebra query
can be accompanied with an instantaneous verdict on its

completeness (or on the completeness of some of its

subsets).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

—170—-

1. Introduction

The question whether a database contains all the
occurrences of data which it attempts to model has
received much attention lately. The assumption that it
does, called the Closed World Assumption (CWA), allows
one to conclude that when a query cannot be satisfied in
the database, then the answer to it is negative [3]. The
CWA is always made on the database as e whole. In
practice, however, this assumption is not realistic. Most
databases include at least some information which is
possibly incomplete. In other words, in reality the CWA

can only be made on some subsets of the database.

In this paper we introduce a new kind of database
information, which we. call compleleness information.
With completeness ‘information a database system can
dctcrminé whether each answer to a user query is
complete (i.e. all the real world occurrences are
represented), or whether any subsets of it are complete

(i.e. all the real world occurrences which satisfy some

additional constraints are represented). As an example,
consider a database on recordings of music, and assume it
is known to include complete information on all
recordings by domestic record companies. The answer to
a query to retrieve all recordings of Beethoven
symphonies on the CBS label,'c:m be shown to be
complete. The answer to a query to retrieve all
recordings which feature Toscanini, can be shown to be
complcte with regard to domestic recordings only.
Clearly, answers which are accompanied by statements

about their completeness are more meaningful.

Kyoto, August, 1986

Completeness information and its application to query
processing are first defined and discussed using an
abstract model of databases. We give formal definitions
for such notions as completeness assertions, complete
answers and partially complete answers. lowever, to

develop specific methods for expressing, storing,
manipulating and applying completencss information, a
particular data model must be adopted, and we focus on
the relational model. A major concern is that the

information to query

application of completeness
processing should be efficient, avoiding, for example,
methods that require mechanical theorem proving.
Towards this end, we develop a simple method for storing
completeness information in the relations themselves, and
show how to extend relational algebra operations to
preserve this information. Thus, the determination of the
completeness of answers is available as an inexpensive by-

product of standard query processing.

It is interesting to compare this new concept of

completeness information with the way databases handle
tncomplele in formalion. Often, some of the information
about the real world that a database attempts to model is
unavailable. Consider, for example, a relational database

with relation R:A_,..A

pody Each tuple (a;,..,a) of R

models a particular real world relationship. However, it
may be that a certain real world relationship is known to
exist, but not all the a values are available. Such missing
values are usually modeled by null values. Much research
has been done on the different types of null values, and
on the manipulation of databases with null values (for a

review of this topic see [1]).

In many respects null values are very much like data
(the database operations are extended to handle this new
type of data satisfactorily). On the other hand, the
description of the information which is complete is
Another observation is that

actually meta-data’.

1lt may be interesting to note here, that our methods for
specifying and storing completeness information for relational
databases will make it appear like data.

incoinplete information and completeness information are

somewhat complementary: an item of incomplete
information states that there exists data which could not
be specified as "regular data®; an item of completeness
information states that there does not exist any data

which has not been specified already.

The next section gives formal definitions of completeness
information and "its application to query processing.
Section 3 and 4 discuss specific techniques for relational
databascs, and Section 5 concludes with a brief summary

and discussion of some further issues.

2. Completeness Information
Assume a relational database on music with two
relations:

RECORDING = (LABEL, NUMBER, COMPOSER,
COMPOSITION, CONDUCTOR)

COMPOSER = (NAME, NATIONALITY,
YEAR-OF-BIRTH, YEAR-OF-DEATH)

RECORDING describes all recordings of music currently
available, and COMPOSER contains data on composers of

These

recordings and composers. However, there is a significant

music. relations are models of real world
difference between these two models: while it is possible
that RECORDING covers the complete catalogue of
available rccordings, we cannot expect COMPOSER to
include all composers that have ever lived {e.g. many
composers may be unknown outside their own small
circles). This suggests that database information may be

classified into two kinds: information which is complete,

and information which is only partial.

In the above example, it was quite simple to describe
which information was complete, and which was not: the
database knew about every recording, but not about
every composer. In general, however, the description of
the complete information may be more complex. In that
example, the database could include complete information
only on recordings on the CBS label, or on recordings of

compositions by French composers. In general, to express

—171—

completeness of information requires a language whose
power is equivalent to the power of a query language: in
the same way that a query describes the set of data items
that satisfy a certain requirement, a completeness
assertion would declare that the database contains all the

data items that satisly a certain requirement.

Clearly, the mcaning of completeness depends on the
semantics of the database. For example, if the relation
COMPOSER was meant to model, not all composers, but
only, say, those composers whose compositions will be
performed this season by the Los Angeles Philharmonic,
then it may well be complete. We assume that the

semantics of the database are known when the

completeness assertions are defined.

In this section we present formal definitions for
completeness information and related aspects. Our
formalizations use the notion of query generalization, as

defined in [2].

Let 7 denote the universe of all possible facts. A
speci fication s is a characteristic funiction on 7

s F - {01}.
Given a set of facts FC ¥ we define the facts of F

specified by s as:

s(F) = s"'(1)NF.

A specification g on Fis a compleleness assertion for a
set of facts FCF, if s_l(])gF. The subsct s"](l) is then

said to be complele in I

A dalabase Dis a pair <F,A>, where I C Fis a set of
facts and A is a set of completeness assertions. Each
completeness assertion a € A defines a subset of F which

is complete.

Specifications are also used to define retrieval requests.
A query q against database D= <I,A> is a specification
on ¥ The set ¢(I) is called the answer to g.

Given two specifications EH and 8, Wwe define s, to be
more general than s, (and s, to be more spectfic than

8,), denoted s, <s,, il 5,(1) C 8,(1).

For example, consider these five specifications:

1. All French composers born after 1900.
2. All French composers born after 1850.
3. All composers born after 1900.

4. All composers.

E AN naqmcnna
J. £1 PUESURS.

In this sct of specifications, 2 and 3 are more gencral than
1, 4 is more general than either 2 or 3, and 5 is more
general than 4. These specifications demonstrate some
methods to generalize specifications: weaken a condition
(from 1 to 2), remove a condition altogether (from 2 to 3,
or from 3 to 4), and substitute a more general concept

(from 4 to 5).

Clearly, when a query fails in a given database (i.e.

evaluates to the empty set), then every more specific
query would fail, but more general queries may succeed;
and when a query succeeds, then every more general
query would succeed, but more specific queries may fail.
When a completeness assertion holds in a given database,
then every more specific assertion also holds.
Consequently, completeness information need only include

the most general assertions.

Given two specilications s, and s, we define the

3o

inlerseclion specificalion s,MNs, and the wunion

speci ficalion s,Us, in the standard way: for any fact
€ 7 s,Nsy(f)=1 if both s,(f)=1 and s,(f)=1, and 0
otherwise; s,Us,(f)=1 if cither s,(f)=1 or s,(f)=1, and

0 otherwise.
For example, consider these five specifications:
i. All French composers.
2. All composers who wrote operas.

3. All composers who wrote incidental musie.

—172—

4. All French composers who wrote operas.

5. All composers who wrote operas or incidental
music.

In this set of specificalions, 4 is the intersection of 1 and

2, and 5 is the union of 2 and 3.

Clearly, an intersection specification is more specific
than either of the two participating specifications.
Consequently, when a completeness assertion holds in a
database, then its intersection with any other specification

also holds.

Consider now a query ¢ against database D= <F,A>.
As before, the query can simply be evaluated against F,
producihg the answer ¢(F). However, we can also
determine the completeness of this answer, by comparing
it with the completeness assertions A. Formaily, the

answer to g is complete if there exist assertions a8y, in

A, such that qv<U?=la‘.; otherwise, the answer is

partial.

In the above example, assume the database includes the

following completeness assertions:

e All recordings on the CBS label.

e All recordings of compositions by French
composers.

then queries such as

e All recordings of Beethoven's 9th Symphony
on CBS.

o All recordings of compositions by 19th

Century French Composers.

can be shown to have complete answers.

Consider now a query g which is not generalized by any
union of completeness assertions. If ¢ intersects with a
compleleness assertion, then the information described by
the intersection specification is complete. Forma.llky, the
answer to g is partially complete with regérd toa€Aif

qNa 5% B (i.e. there exists f € 7, such that gna(f)=1).

In the above example, assume the database includes the

following completeness assertions:

e All recordings of compositions by French
composers.

¢ All recordings of compositions by German
composers.

And consider the following query:
o All recordings of operas.

While the answer to this query is not complete, it is
partially complete with regard to operas that were

composed by French or German composers.

Completeness information improves the responsiveness
of the system, as an answer which is accompanied with a
statement about on its

completeness (or partial

completeness) is more meaningful. Completeness
information is particularly useful within a mechanism for
handling failed queries, such as the one described in [2].
When a user query fails to match any data, but the
answer can be shown to be complele, then the user can be
notified authoritétively that data to satisfy his query does
not exist (and therefore the premise for the query is

incorrect).

3. Completeness Information in Relational
Databases
In this and the following section we focus on relational
databases, and how completeness information can be
in this

expressed, stored, manjpulated and applied

particular model. We note that at several places we

sacrifice generality, for simplicity, efficiency and economy.

In the relational model, the concepts of facts and
database subsets are selected to be, respectively, tuples
and relations. Note that subsets cannot be arbitrary
collections of facts, as relations can only have tuples of
the same dimension. We define one database subset (i.e.

relation) to be contained in another, if the former can be

obtained from the latter with a selection and a projection.

~173—

Domain relational calculus [4] offers a convenient tool
for expressing specifications (data queries or completeness
asserlions). Each specification is an expression of the

form {z,...,z, | 'I'(:fl""'xn) }, where z,,.,z are domain

11"7
variables and vy is a safe formula in predicate logic with

Z,,..,%, as its only free variables. It defines a database

e
subsct, which is the n-tuples of data items that satisfy y.
Thus, one may think of the completencss assertions as
(lcfining 'zmo_t,her database, which contains only complete
information. By the previous definition of containment,
one specification is a generalizétion of another, if the

relation it defines can be reduced with a selection and a

projection to the relation decfined by the other
specification.

_ Consider now a completeness assertion
A = {27, | ¥,(2-7,) } and a query

Q. = { ¥V, | 9ofyr1¥,,) }. To detérmine whether
A is more general than @, one needs to prove that under
any interpretation i, = ¥, Attempting this with
mechanical theorem proving is a possibility. However,
this solution is quite impractica],‘as it requires substantial

computation and is undecidable.

We describe here an altogether different approach,
which avoids such probblexﬁs.b First, we hmit the
complexity of completeness assertions to assertion;s of the
following kind: '

{aga, | (3b)..(3b,)

Rl(cll"'”clkl) A A Rp(cpl,.‘.,cpkp) }
where the a’s and b’s are variables, each appearing at
least once among the ¢'s, and the ¢’s, which are not a's or
b's, are data items (constants). Such an assertion states
the completencss of a particular subset of the database
which is derived from relations Ryl (note that the

relations R; are not necessarily distinct).

For example, in the previous database, the following
expression asserts the coinpletcness of the set of all
numbers of recordings on the CBS label:

{a] (361)(3b2)(3b3) RECORDING(CBS,a,bl,bz,ba) }-

And to assert the completeness of all recordings (label and

number) of compositions by I'rench composers:

{ ay,a, | (3b,)(3b,)(3b,)(3b,)(3b;)

RECORDING(,8,,b,,b,,6,) A

COMPOSER(b, ,French,b,,b.) }.

Next, we describe a method for storing completeness
assertions from this family in the relations themselves.
As we shall point out later, this a.pproach provides
importa.nvt a,dvantages,‘ over separate storage of this
asscrtions as logic expressions. Our method recalls the

representation of QBE queries in skeleton tables [5] .

A completeness assertion of the general type defined
above is represented as p information tuples; each tuple

(¢;1r-+€;;) is stored in relation R.. The cs which are a’s
1

are suffixed with a *; the ¢’s which are variables (a's or

b's) that appcar only once in this assertion are replaced
with blanks. 'Thus, each component of an information
tuple may be cither a constant (a data item), or a
variable, or a blank, or a variable suffixed by a *, or a *.
A constant or a variable impose restrictions on the values
that attribute may have. A blank is an attribute whose

A * (whether

appended to a variable or to a blank) is an attribute on

value is irrelevant to this assertion.

which completeness is asserted.

We can assume that when an assertion involves more
than one information tuple, each tuple will s{lare a
variable with at leaét one other tuple (otherwise, the
several independent

assertion can be regarded as

asscriions). Therefore, if all variables used in assertions
are chosen to be different, then the information tuples
belonging to each assertion can be identified and
recovered {rom the relations. A relation with information

tuples will be called an extended relation.

As an example, TFigure 3-1 shows the two assertions
stated above together with a small instance of our
database (which clearly does not satisfy the completeness

claimed by the assertions).

—174—

RECORDING

LABEL NUMBER COMPOSER
Angel 5-3613 Bizet

CBS M25-794 Beethoven
CBS M-31838 Tchaikovsky
DGG 2531260 Beethoven
London LDR-71090 Saint-Saens
Philips 9600369 Debussy
RCA VICS-6113E Verdi

RCA LSC-6199 Bizet

CBS *

* * x

COMPOSER

NAME

Beethoven German 1770
Bizet French 1838
Debussy French 1862
Mozart Austrian 1756
Saint-Saens French 1835
Tchaikoveky Russian 1840
Verdi Italian 1813

x French

Figure 3-1:

This method for storing completeness information has

several advantages. Firstly, the specification of
completeness assertions using QBE-like notation is very
intuitive. Secondly, storing the information does not
require any new data structures. Thirdly, the information
may be updated with the same tools used to update the
data.

completeness. As our general definitions indicated, data

But the greatest advantage is in the testing of

and completeness information are separate concepts, and
query processing requires evaluating each query against
both. The advantage of storing both in the same
structures, is that we can develop methods with which
completeness determination becomes a "by product® of

the standard query evaluation.

Consider the extended relations in the above example,
and assume that we apply relational algebra operations to
these relations. A question that has to be addressed is
how these operations should handle the information tuples

stored in these relations. Of course, we would like these

COMPOSITION CCNDUCTOR
Carmen Beecham
Symphony No 9 Bernstein
Swan Lake Ormandy
Violin Concerto Karajan
Organ Symphony Dutoit

La Mer Haitink
Aida Toscanini
Carmen Karajan

NATIONALITY YEAR-OF-BIRTH YEAR-OF-DEATH

1827
1875
1918
1791
1921
1893
1901

A Database Extended with Completeness Information

operations to manipulate the extended relation so that the
information tuples in the resulting relation would describe

its completeness correctly.

Let @ be a database query involving database relations
I, and let I' be the resulting relation. Let A be the
assertions that describe the completeness of 1. We are
interested in applying @ also to A, producing information
A’ that will describe correctly the completeness of I. This
goal is sketched in the following diagram, where solid
lines show existing conditions and dashed lines show how

the diagram should be completed:

A > |
i

|

!

1@ Q
|

v

Al - > I

Achieving this goal would guarantee that after a query

had been processed, the verdict on the completeness of

—175—

the answer is immediately available in the result. For
example, if the result contains an information tuple which

* in cvery column, then the answer is complete; if it

has
contains a tuple with the data item a in attribute A and *
in every other column, then the answer is pﬁrtially
complete with regard to A==a; and so on. ~The extension
of relational algebra operﬁ.tgirs to preserve comp]eténcss

information is deseribed in the next section.

4. Extending Relational Algebra to Preserve
Completeness Information
For brevity, we describe here how to. extend. three
relational algebra operators: selection, projection and
Cartesian product (and therefore join). O,t‘li'er operators

should present no special difficulty.

We noted that the meaning of each .cbompleteness
assertion depends on the semantics of the relations that
the scmantics of the

are involved. Conscquently,

database relations must be determined before

completeness information 4is defined. To ~show that
completeness information is preserved. after each extended
operation, it is important to determine the semantics of
the output relation, in terms of the semantics of the input

relation(s).

Consider, for example, a relation R, which models a

particular real world concept. After a selection o,. is

F
applied to R, the output relation should no longer be
considered a model of the original concept, but of a more
restricted one.. Thus, if COMPOSER models all composers,
then o\ rionaLITY = Gernan
German Consequently,

(COMPOSER) models only the
composers. although = both
relations may ‘have the same attributes, an information
tuple in the output relation asserts something different

from the same information tuple in the input relation.

- information tuple a.

4.1. Cartesian Product

Our extension of the Cartesian product is to handle
information tuples as if they were data tuples. We
observe that the Cartesian product of two relation subsets
which are complete, is a complete subset in the output
Fclation. In particular, the Cartesian product of a subset
which:,is complete and a single data tuple, is also

comiplete.

Let T be the Cartesian product of two extended

relations R and S. T includes information tuples of two

- kinds: tuples - that were o.b-tai_rjed from an information

tuple and a data tuple, and tuples that were obtained

"from two i})f(ér;hation 1tupljes. "Let a be an information
‘tuple from'R, describing the complete subset R, let g be
" ‘a data tuple from S, and let 4 be their product tuple (i.e.

concutcnaﬁon). Each:tuple of R appears in T suffixed by
the tuple 4. This subset of T is also complete, and is
described by the information tuple 4. Assume now that g
is not a data tuple but an information tuple, describing

the comp]éte subset S'ﬂ. " Their Cartesian product is a

- complete subget of T, and is described by the information

tuple 7.

4.2. Projection

In discussing projection, we consider only projections
which remove a single attribute (the treatment of general
projections is quite similar). To extend projection to
information tuples, we distinguish betwecen information
tuples that restrict the values of the attribute which is
being removed (i.e. cither a constant, or a variable) and
those tliat do not (i.e. a blank). In the former case we
retain the (projected) information tuple; in the latter case

we discard it.

Let R be a complete subset of R, described by the
Let R, R', and o' denote the
corresponding structures after attribute A had been
removed. While~R'a. is a complete subset of R’, it is not

nccessarily described by o'. I o had a restriction on

—-176—

attribute A, then o', having removed the restriction, now
describes a subset which is possibly larger than R’ , and
not necessarily complete. We can be certain that o
actually describes R only if a had no restrictions on

aliribute A.

4.3. Sclection

In discussing selection we assume that the selection
formula is a single equality comparator (the generalization
to more complex formulés is straightforward). Again, to
extend sclection to information tuples, we distinguish
between information tuples that restrict the values of the
selection attribute (i.e. either a constant, or a variable)
and those that do not (i.e. a blank). In the former case
the information tuple will be selected only if its value
matches the value to which it is being compared; in the
latter case the tuple will always be selected, and the value
to which it is being compared will be substituted in the
tuple. We observe that after a selection, the output
relation may either preserve a complete subset, or it may
reduce it; but in either case the new subset is complete,

with regard to the semantics of the output relation.

Let i, be a complete subset of relation R, described by
the information tuple a. Consider now the operation
7,—,(R). The tuples of R that satisfy A=a will be
sclected and, as mentioned above, will form a complete
subset of the output relation. « itsell will be selected if in
attribute A it has cither a or blank, but in both cases will
have A=a in the output relation. In the former case, the
tuples of R will all have A=a, and therefore R, will be
In the

latter case, only the tuples of R, for which A=a will be

preserved, along with a, in the output relation.

selected, and these will be described correctly by the
information tuple obtained from o by substituting a in
attribute A. Similarly, if the selection formula compares

two attributes, e.g. R), then a will be sclected,

75—l
unless both attributes are restricted by constants which
are different. IExcept when both attributes are restricted

by the same constant, « will be modified: il both

attributes are unrestricted, then the same new variable
will be substituted in both attributes; if only one is
unrestricted, then the restricting value (variable or

constant) will be substituted in the unrestricted attribute;

" if both are restricted by variables, then one of the

variables will be substituted by the other throughout; and
if one is a variable and the other a constant, then the

variable will be substituted by the constant throughout.

We now demonstrate our methods with two examples.
Consider this query to list the recordings (label and
number) of compositions by Beethoven:

”LABEL,NUMBER(UCOMPOSER — Beethoven(RECORDING))
The extended operations produce the following relation:

LABEL NUMBER -
CBS M25-794
DGG - 2531250
CBS . #*

The information tuple indicates that this answer is

complete only in regard to recordings on the CBS label.

As another example, consider this query to list the
recordings (label, number and conductor) of compositions
of 19th century French composers:

"LABEL,NUMBER,CONDUCTOR(

P(NATIONALITY = French)A(1800 < YEAR-OF-BIRTH < 1850)(
(RECORDING X COMPOSERY)))

Even though this query uses a natural join and a complex
selection predicate, one can easily to verily that its answer

is:

LABEL NUMBER CONDUCTOR
Angel . 5-3613 Beecham
London LDR-71090 Dutoit
RCA LSC-6199 Karajan

* *

The binformat.ion tuple indicates that the answer is
complete in the first two attributes (i.e. the projection on
the first two columns is complete). However, il we
assume that the fir.st two attributes form a key, then the

whole answer is in fact complete.

—177—

5. Conclusion

We have presented a new kind of database information,
for specifying the subscts of the database which are
*closed world®. We have laid a formal basis, with
definitions of specification (completeness assertion or
unionn of specifications,

query), inlerseciion. and

generalization rclationship between - specifications,
compleleness of answers, and partial completeness: with

regard to an assertion.

“We have then focused on completeness information in
relational databases; and defined a’ simple family of
domain:ealctilus expressions, for expressing. .a large
number of popular completeness assertions: For- these
asscrtions we have defined a representation (simtilar to
QBE) that enabled us to store the lnl’ormatlon along with
the data. We have then shown llOW to extend re]atlonal
algebra to manipulate these extended relations, so that
the information tuples in the output rclatlons assert

corrcctly the completeness ol' the result The maln

advant'lge ol' tlns representation, besndes it simplicity and
economy, is that the standard query evaluatlon process
a by product the

generates as verdlct on the

complcteness or pnrtnl completeness of the answer.

There are several other issues that require further
investigation. One is the relationsliip betv_veen lncomplete
information. and completeness information (for example,
how docs one interpret completeness assertions in the
presence of tup]cs/with null values). Another is the

relationship between functional ~ dependencies and
completeness information (for example, we note that a
completeness assertion on the key attributes of a rélation
implies that complete inl'ormatlon is availablcvon the
other attributes, as well}. A third set of issues involves
our implementation of completeness information in the
relational model, wllich was motiviated by simplicity,
efficiency and cconomy, but at the cost of gencrallty “An

interesting issue here is how much *deduction power® was

sacrificed in this lmplcmcntatlon, in companson with an

completeness

would express

implementation that
assertions with general first order logic formulas, and use
mechanical theorem proving to determine whether a user

query has a complete answer. There are also pragmatic

issues, such as the update of data which is covered by

asscrtions, and the

completeness update of the

complcten ess assortlons themselves.

Acknowledgements

1 am gratcful to my colleague Rick lIull l'or his

important comments.

'References
1] D. Maier.
* * "The Theory of Relational Databases. -
Computer Science Press, 1083, Chapter 12.

2] - < A.:Matro. :
Query Generallzatlon A Techmque for Handlmg
Query Failure.
In Proceedings of the First Inlernalional
Workshop on Ezpert Dalabase Systems, pages
314-325. meah Island, South Carolma 1984.

8] R. Reiter.

Towards a Logical Reconstruction of Relational
Database Theory.

In M. L. Brodie, J. Mylopoulos and J. W. Schmidt

" (editors), On Conceptual Modelling:
Perspectives from Artificial Intelligence,
Databases and Programming Languages,
“chapter 8. Springer-Verlag, 1984.

[4] J. D. Ullman.
Principles of Database Systems.
;omputer Science Press, 1982.

15) - M. Zloof.
Query-by-Example: A Database Language.
IBM System's Journal 16(4) 324-343, December,
1977,

~178~

