
Completeness Information and Its Application to Query Processing

Amihai Motro

Department of Computer Science
University of Southern California

Los Angeles, CA 90089

Abstract

The assumption that a database includes a

representation ol every occurrence in the real world

environmrnl that it models (the Closed World

Asscrtnplio?l) is frequently unrealistic, because it is always

made on the database as a whole. This paper introduces

a new type of dntab,ase information, called completeness

inlormnlion, lo dcscrihe the subsets of the database for

which this assumption is correct. With completeness

information it is possible to determine whether each

ansivcr to a user query is complete, or whether any

subsets of it are complete. To users, answers which are

accompanied by a statement about their completeness are

more mraningful. First, the principles of completeness

informn.lion are defined formally, using an abstract data

model. Then, specific methods are described for

implcmrnting completeness information in the relational

modr4. With these methods, each relational algebra query

can be n.ccompnnietl wi(.h a.n instantaneous verdict on its

coml)letcness (or on the completcncss of some of its

subsets).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage,, the VLDB copyright notice and fhe
title of the publicati& and rts date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
an&or special permission from the Endowment.

1. Introduction

The question whether a database contains all the

occurrcnccs of data which it attempts to model has

rcceivcd much attention lately. The assumption that it

dots, ca.lled the Closed World Assumption (CWA), allows

one to conclude tha.t when a query cannot be satisfied in

the database, t,hen the answer to it is negative [3]. The

CWA is always made on the database as a whole. In

practice, however, this assumption is not realistic. Most

databases include at least some information which is

possibly incomplete. In’other words, in reality the CWA

can only be mn.de on some subsets of the database.

In t.his paper we introduce a new kind of database

informn.tion, which we call completeness injormation.

With complctcncss information a database system can

dclcrmine whether each answer to a user query is

complete (i.e. all the real world occurrences are

rcproscnt,ed), or whether a.ny subsets of it are complete

(i.e. all the rca.l world occurrences which satisfy some

adtlitionnl constraints arc represented). As an example,

consider a database on recordings of music, and assume it

is known to include comp1et.e information on all

recordings by domestic record companies. The answer to

a query to retrieve all recordings of Beethoven

symphonies on the CBS label, can be shown to be

complete. The answer to a query to retrieve all

recordings which feature Toscanini, can be shown to be

complete with regard to domestic recordings only.

Clearly, answers which are accompanied by statements

about their completeness are more meaningful.

Proceedings of the Twelfth international
Conference on Very Large Data Bases -170- Kyoto, August, 1986

Corllplctcncss information and its application to query

processing are first defined and discussed using an

a.!)st.rnct model of dn.tabases. We give formal definitions

for such notions <as complefenesa asserfions, complete

answers and parlially complete answers. However, to

develop specific methods for expressing, storing,

manipulating and applying completcncss information, a

particular tlats mode! must be adopted, and we focus on

the rc!at,ional model. A major concern is that the

a.pplical.ion of completeness information to query

processing should be efficient, avoiding, for example,

methods tllat require mechanical theorem proving.

Town.rds tliis end, we develop a simple method for storing

completeness information in the relations themselves, and

sliow how to extend relational algebra operations to

preserve this information. Thus, the determination of the

complctcness of answers is available as an inexpensive by-

product of standard query processing.

It is interesting to compare this new concept of

completeness information with the way databases handle

inco~nplele inforn~alion. Often, some of the information

about t.hc rca! world that a database attempts to model is

unnvailablc. Consider, for example, a relational database

witli relation Ii: A ,,..., A,. Each tuple (al,.,.,an) of R

models a pa.rticular real world relationship. However, it

ma.y be that a certain real world relationship is known to

exist,, but not al! tllc n values are available. Such missing

V~!UW arc usudly modeled by null values. Much research

has been done on the different types of null values, and

on tllc mn.nipu!nbion of databases with null values (for a

review of bhis t,opic see [l]).

In many respects null values are very much like data

(the databnse operations are extended to handle this new

type of da.ta sat.isfactorily). On the other hand, the

descript.ion of the information which is complete is

a.ctun.!!y nxetn-&la’. Another observation is that

1
It may be intrresting to note here, that our methods for

specifying and storing completeness information for rclntional
databases will make it appear like data.

incotnplete information and completeness informatibn are

somewhat complcmcntary: an item of incomplete

information states that there exists data which could not

be specified as ‘regular data.; an item of completeness

informn.tion states that there does not exist any data

which has not been specified already.

The next section gives formal definitions of completeness

information and its application to query processing.

Section 3 and 4 discuss specific techniques for relational

databases, and Section 5 concludes with a brief summary

and discussion of some further issues.

2. Completeness Information

Assume a relational database on music with two

relations:

RECORDING = (LABEL, NUMBER, COMPOSER,

COMPOSITION, CONDUCTOR)
COMPOSER = (NAME, NATIONALITY,

YEAR-OF-BIRTH, YEAR-OF-DEATH)

RECORDING describes all recordings of music currently

available, and COMPOSER contains data on composers of

music. These relations are models of real world

recordings and composers. However, there is a significant

difference between these two models: while it is possible

that RECORDING covers the complete catalogue of

available recordings, we cannot expect COMPOSER to

include a!! composers that have ever lived (e.g. many

com!)oscrs may be unknown outside their own small

circles). This suggests that database information may be

clnssificd into two kinds: information which is complete,

and informa.tion which is only partial.

In the above example, it was quite simple to describe

which information was complete, and which was not: the

database knew about every recording, but not about

every composer. In genera!, however, the description of

the complete information may be more complex. In that

exnmple, the databnse could include complete information

only on recordings on the CBS label, or on recordings of

compositions by French composers. In general, to express

-171-

complctcness of information requires a language whose

power is cquivalcnt to Lhc power of a query language: in

tlic same wa.y ihnt a query describes the set of data items

that satisfy 3 ccrtsin requirement, a completeness

nsscrtion would dcclnrc that the datsb,?sc contains all the

dnln. itrms that satisfy a ccrta.in rcquircment.

Clt!a.rly, the meaning of completeness depends on the

scm:int,ics of I.hc da.tabasc. For example, if the relation

COMIYISI~R was mca.nt t,o model, not a.H composers, but

only, sa.y, those composers whose compositions will be

prrfc,rrnctl this season by the Los Angeles Philharmonic,

then it niny well be complete. WC assume that the

scmnnl.ics of the database are known when the

complctcncss assrrtions arc defined.

In l.his section we present formal definitions for

coml)lctcncss information and r&ted aspects. Our

formnliznlions use the notion of query generalization, as

drfincd in [2].

Let 7 dcnot,c the universe of all possible facts. A

specijicnlion s is a characteristic furiction on 3

s : 7 -+ { 0,l }.

Given a set of facts J’c7, WC define t,hc facts of F

spccificd by s as:

,9(F) = s-‘(l) n I;:

A spccificaf.ion 8 on 7is a compleleneas asset-lion for a

set of facts I;C7, if s-‘(~)cI? The subset s-‘(l) is then

said to bc co~~plcle in I’.

A t/n/abase D is a pair <r,A>, where F c 7is a set of

facts n.nd A is A. set of completeness assertions. Each

cornplctrncss assertion a E A defines a subset of F which

is comp1ct.c.

Spc:cifica.tions arc also used to define retrieval requests.

A query q against database D = <F,A> is a specification

on 3: The set q(F) is called the answer to q.

Given two specifications a1 and s2, WC define s2. to be

more general than s1 (and a1 to be more specijic than

s2), dcnotcd R1+s2, if ~~(1) C a&l).

For rxamplc, consider these five specifications:

1. Al1 French composers born after 1000.

2. All French composers born after 1850.

3. All composers born aft,cr 1000.

4. Al1 composers.

5. All persons.

In this set of specifications, 2 and 3 arc more general than

1, 4 is more general than either 2 or 3, and 5 is more

gcncral than 4. These specifications demonstrate some

methods to generalize specifications: weaken a condition

(from 1 to 2), rcmovc a condition altogether (from 2 to 3,

or from 3 t.o 4), and substitute a more general concept

(from 4 to 5).

Clearly, when a query fails in a given database (i.e.

cv’aluatcs to the empty set), then every more specific

query would fa.il, but more general queries may succeed;

a.nd when a query succeeds, then every more general

query would succeed, but more specific queries may fail.

When a complctcness assertion holds in a given database,

then every more specific assertion also holds.

Conscqurnt,ly, completeness information need only include

the most gcncrsl assertions.

Given two specifications s1 and a2, we define the

ii~lerseclion speci Jicalion
31”32

and the union

sljecijiralion s1Us2 in the standard way: for any fact

Jo 7, slns2(j)=l if both *9,(fl=l and s,(fl=l, and 0

otherwise; s,Us2(fl=l if either s,(J)=1 or .9,(fl=l, and

0 otherwise.

For example, consider bhcsc five specifications:

1. All French composers.

2. All composers who wrote operas.

3. All composers who wrote incidental music.

-172-

4. All French composers who wrote operas.

5. All composers who wrote operas or incidental
music.

In this scl of specifications, 4 is the intersection of 1 and

2, and 5 is the union of 2 and 3.

Clearly, an int,ersection specification is more specific

than either of the two participating specifications.

Consequently, when a completeness assertion holds in a

database, then its intersection with any other specification

also holds.

Consider now a query q a.gainst database D= <F/l>.

As before, the query can simply be evaluated against r,

producing the answer q(P). However, we can also

determine the completeness of this answer, by comparing

it with the completeness assertions A. Formally, the

answer to q is complete if there exist assertions al,...,a, in

A, such that q 4 i$=,ai ; otherwise, the answer is

partial.

In the a.bove example, assume the database includes the

following complctcness assertions:

l All recordings on the CBS label.

. All recordings of compositions by French
composers.

then queries such a.s

l All recordings of Beethoven’s 9th Symphony
on CBS.

l All recordings of compositions by 19th
Century French Composers.

can be shown to have complete answers.

Consider now a query q which is not generalized by any

union of complctcncss assertions. If q intersects with a

cornplctencss mscrtion, then the information described by

the intcrscction specification is complete. Forma.lly, the

answer to q is pnrlinlly complete with re&d to n E A if

qna # fl (i.e. there exists /E 7, such that qna(fi=l).

In the above example, assume the database includes the

following completeness assertions:

l All recordings of compositions by French
composers.

l All recordings of compositions by German
composers.

And consider the following query:

l All recordings of operas.

While the answer to this query is not complete, it is

partia.lly complete with regard to operas that were

composed by French or German composers.

Completeness information improves the responsiveness

of the system, as an answer which is accompanied with a

St3 tcment about on its completeness (or partial

completeness) is more meaningful. Completeness

information is particularly useful within a mechanism for

ha.ndling Mcd queries, such as the one described in [Z].

When a user query fails to match any data, but the

answer can be shown to be complete, then the user can be

notified authoritatively that data to satisfy his query does

not exist (and therefore the premise for the query is

incorrect).

3. Completeness Information in Relational

Databases

In this and the following section we focus on relational

databases, and how completeness information can be

expressed, stored, manipulated and applied in this

part icu1a.r model. We note that at several places we

sacril’ice generality, for simplicity, efficiency and economy.

In the relational model, the concepts of facts and

data.base subsets are selected to be, respectively, tuples

and relat,ions. Note that subsets cannot be arbitrary

collections of facts, as relatiok can only have tuples of

the same dimension. We define one database subset (i.e.

rclntion) to be contained in another, if the former can be

obtained from the latter with a selection and a projection.

-173-

Domain relsti0na.l calculus [4] offers a convenient tool

for expressing specifications (data queries or completeness

assertions). Each specification is an expression of the

form { z ,,..., zn 1 $(zl ,..., z,) }, where z1 ,.., zn are domain

va.rinblrs and $ is a sa.fe formula in predicate logic with

z~,...,z, .as its only free variables. It defines a database

subset, which is the n-tuplcs of data items that satisfy $.

Thus, one may think of the completeness assertions as

defining another database, which contains only complete

informst.ion. By the previous definition of containment,

one specification is a generalization of another, if the

rrlntion it defines can be reduced with a selection and a

projection to the relation defined by the other

specification.

Consider now a complctcness assertion

A = { 21,...,~,, I vq~,Y,~n) 1 and a query

0 =, { y ,,..., y,] +,,(y ,,..., y,) }. To determine whether

A is more general than 9, one needs to prove that under

any intcrpretstion J,, * @,. Attempting this with

mechanical theorem proving is a possibility. However,

this solution is quite impractical, as it requires substantial

computat,ion and is undecidable.

We describe here an altogether different approach,

which &oids such problems. First, we limit the

complexity of completeness assertions to assertions of the

following kind:

{ nl’.-‘an I wJJ...&J

Rl(“ll,-~,“lkI) A ... A Rp(~pl,...,~pk))
P

where t,he n’s and b’s arc variables, each appearing at

Icnst once among the c’s, and the c’s, which are not a’s or

b’s, n.rc data items (constants). Such an assertion states

the complctcncss of a particular subset of the database

which is derived from relations R1,...,Rp (note that the

relations Ri are not neccssa.rily distinct).

For example, in the previous database, the following

expression asserts the completeness of the set of all

numbers of recordings on the CBS label:

{ a [(3b1)(3b2)(3b,) RECoRDING(CBS,o,bl,b2,b3) }.

And t,o assert the completeness of all recordings (label and

number) of compositions by French composers:

C “1,“2 I (3bl)(3b,)(3b,)(3b,)(3b5)
RECORDING(n,,a,,b,,b,,b3) A

COMPOSER(b,,French,b4,b5) }.

Next, WC describe a method for storing completeness

assertions from this family in Ihe relations themselves.

As WC shall point out Iatcr, this a.pproach provides

important a.dvanta.ges, over separat.e storage of this

asscrlions as logic expressions. Our method recalls the

rcprcscntntion of QBE queries in skeleton tables [5] .

A completeness assertion of the general type defined

above is represented as p injormation luples; each tuple

(cil,...,cik.) is stored in relation Ri. The c’s which are a’s
I

arc suffixed with a *; the c’s which are variables (a’s or

b’s) that 8ppca.r onlp once in this assertion are replaced

wit,h blanks. Thus, each component of an information

tuplc may be either a constant (a data item), or a

variable, or a blank, or a variable suffixed by a *, or a *.

A constant or a variable impose restrictions on the values

that att,ribute may have. A blank is an attribute whose

value is irreleva.nt to this assertion. A * (whether

nppcndcd to a variable or to a blank) is an attribute on

which completeness is asserted.

We can assume that when an assertion involves more
i

than one information tuple, each tuple will share a

variable with at least one other tuple (otherwise, the

assertion can be regarded as several independent

assertions). Therefore, if all variables used in assertions

are chosen to bc different, then the information tuples

belonging to each assertion can be identified and

recovcrcd from the relations. A relation with information

tuplcs will be called an erterlded relation.

As a.n example, Figure 3-l shows the two assertions

sl.ntcd above together with a small instance of our

database (which clcn.rly does not satisfy the completeness

claimed by the assertions).

-174-

RECORDING
LABEL NUMBER COMPOSER COMPOSITION CONDUCTOR

Angel S-3613
CBS M2S-794
CBS M-31830
DCC 2631260
London LDR-71090
Philipe 9600369
RCA VICS-6113E
RCA LSC-6199
CBS *
* *

Bizet Carmen Beecham
Beethoven Symphony No 9 Bernetein
Tchaikoveky Swan Laki - Ormandy
Beethoven Violin Concerto
Saint-Saeno Organjymphony

Karajan
Dutoit

Debueey La Mer Haitink
Verdi Aida Toecanini
Bizet Carmen Kara j an

x

COMPOSER
NAME NATIONALITY YEAR-OF-BIRTH YEAR-OF-DEATH

Beethoven German
Bizet French
Debuesy French
Mozart Auetrian
Saint-Saens French
Tchaikoveky Rueeian
Verdi Italian
X French

1770 1827
1038 1876
1862 1918
1766 1791
1836 1921
1840 1093
1013 1901

Figure 3-l: A Database Extended with Completeness Information

This method for storing completeness information haa

scvcral advantages. Firstly, the specification of

completeness assertions using QIXMike notation is very

intuitive. Secondly, storing the information does not

require any new data structures. Thirdly, the information

may be updated with the same tools used to update the

d&a. But the greatest advanta.ge is in the testing of

completeness. As our general definitions indicated, data

and completeness information are separate concepts, and

query processing requires evaluating each query against

both. The advantage of storing both in the same

structures, is that we can develop methods with which

completeness determination becomes a “by product’ of

the st.anda.rd query evaluation.

Cousidcr the ext.ended rela.tions in the above example,

and assume that we apply relational algebra operations to

thrsc relat,ions. A question that has to be addressed is

how these operations should handle the information tuples

stored in these relations. Of course, we would like these

operations to manipulate the extended relation so that the

informat.ion tuplcs in the resulting relation would describe

its complctcncss correctly.

Let (z be a database query involving database relations

Z, and let P be the resulting relation. Let A be the

assertions that describe the completeness of I. We are

interest.ed in a.pplying & also to A, producing information

A’ t.hat will describe correctly the completeness of PT. This

goal is sketched in the following diagram, where solid

lines show existing conditions and dashed lines show how

the diagram should be completed:

A ?-I
I
I I

IQ

1

Achieving this goal would guarantee that after a query

had been processed, the verdict on the completeness of

-175-

t.he a.nswcr is immediately available in the result. For

example, if t.he result contains an informat.ion tuple which

has * in cvcry column, then the answrr is complete; il it

contains n tuple with the data item a in attribute A a.nd *

in every other column, then the answer is partially

complctc with regard to h-a; and so on. The extension

of relntionn.1 algebra opera.tors to preserve completeness

information is described in the next section. ,’

4. Extending Relational Algebra to Preserve

Completeness Information

For brevity, we describe here hpw to qxtend three

relntionnl a.lgebra operators: selection, projection and

Cnrt4a.n product (and therefore join). Other opera.tors

should present no special difficulty.

WC noted that the meaning of each completeness

a.ssert.ion drpcnds on the semantics of the relations that

are involved. Consequently, the semantics of the

database relations must be determined before

completeness information is detined. To show that

corn1jlctcness information is preserved after each extended

operation, it is important to determine the semantics of

bhc out,put rcla.tion, in terms of the semantics of the input

rcla.t.ion(s).

Consider, for example, a relation R, which models a

particular real world concept. After a selection oF is

a,pplied to R, the output relat.ion should no longer be

considrrcd a model of the original concept, but of a more

restrict&l one. ‘Thus, if COMPOSER models all composers,

thcrl “NATIONALITY = German
(COMPOSER) models only the

Germa.n composers. Consequently, although bot,h

relations may have the same attributes, an information

tuple in the output relation asserts something dirlerent

from the same information tuple in the input relation.

Let T be the Cartesian product of two extended

relat,ions R and S. T includes information tuples of two

kinds: tuplos that were obtained from an information

tuple and a data tuple, and tuples that were obtained

irom two $&bation tupl,es. Let a be an information

tuplc from R, describing %he, complete subset Ra , let B be

a data tuple f&q S, and le< 7 be their product tuple (i.e.

concatenation). l3ach.Cupl.e of Ra appears in T suffixed by

the tuple @. This subset of T is also complete, and is

dcscribcd by the’information tuple 7. Assume now that fi

is not a data tuple but an information tuple, describing

the complete subset sB. Their Cartesian product is a

complete subset of T, and is described by the information

tuple 7.

4.2. Projection

In discussing projection, we consider only projections

which remove a single attribute (the treatment of general

projections is quite similar). To extend projection to

irl.forrnntion tuples, we distinguish between information

triples that vestrid the values of the attribute which is

being rcmnvcd (i.e. either a constant, or a variable) and

those t1ln.t do not (i.e. a blank). In the former case we

rcta,in the (projected) information tuple; in the latter case

wvd discard it.

Let R0 be a complete subset of R, described by Dhe

inrormn.tion tuple a. Let R’, R’(,, and a’ denote the

corrc~sponding structures after attribute A had been

rerriovrt~. \Vhile, R’,, is a complete subset of R’, it is not

ncccssnrily described by 0’. If a had a restriction on

-176-

4.1. Cartesian Product

Our cxtrnsion of the Cartesian product is to handle

information t,uplcs as if t.hey were data tuples. We

observe 1.hn.t the Cnrtrsian product of two relation subsets

which a.rc complete, .is a complete subset in the output

relation. In particular, the Cartesian product of a subset

which. ,is complete and a single data tuple, is also

c0nip1cte.

attribute A, then n’, having removed the restriction, now

describes a. subset which is possibly hzrger than R’,, and

not necessarily complete. We can be certain that a’

a.ctun]ly describes R’,, only if a had no restrictions on

atlribute A.

4.3. Selection

In discussing selection we assume that the selection

formula is a single equality comparator (the generalization

to more complex formulas is straightforward). Again, to

estcnd selection to information tuples, we dist.inguish

between informat.ion tuples that realrict the values of the

selection attribute (i.e. either a constant, or a va.riable)

and ~.hose tha.t do not (i.e. a blank). In the former case

the information tuple will be selected only if its value

matches the value to which it is being compared; in the

latter C‘MSC the t.uple will always be selected; and the value

to which it is being compared will be substituted in the

tupk!. We observe that after a selection, the output

relation ma.y either preserve a complete subset, or it may

reduce it; but in either case the new subset is complete,

with regard to the semantics of the output relation.

Let Ra be a complete subset of relation R, described by

the information tuple (2. Consider now the operation

aA=.(The t. pl u es of Ila that satisfy k=a will be

sclcctcd a.nd, as mentioned above, will form a complete

subset of the output relation. a itself will be selected if in

atl,ribute A it has either a or blank, but in both cases will

have A=a in the output relation. In the former c,ase, the

tuples of RQ will a11 have A=a, and t!lerefore Ra will be

presrrvcd, a.long with a, in the output relation. In the

la&r case, only t!le tuples of Ra for which A=a will be

sclcctcd, a.nd these will be described correctly by the

informa.tion tuple obtained from a by substituting a in

al.tribute A. Simila.rly, if the selection formula compares

two attributes, e.g. u*=n(R), then a will be selected,

unlrss both abtribntcs are restricted by constants which

arc diffcrcnt. Except when both attributes are restricted

by the same constant, CL will be modified: if both

The informalion tuple indicates that the answer is

complete in the first two att,ributes (i.e. the projection on

the first two columns is complete). However, if we

assume that the first two attributes form a key, then the

whole answer is in fact complete.

-177-

attributes are unrestricted, then the same new variable

will be subst,ituted in both attributes; if only one is

unrestricted, then the restricting va.lue (variable or

constant) will be substituted in the unrestricted attribute;

if both are restricted by variables, then one of the

va.riables will be substituted by the other throughout; and

if one is a variable and the other a constant, then the

variable will be substituted by the constant throughout.

We now demonstrate our methods with two examples.

Consider this query to list the recordings (label and

number) of compositions by Beethoven:

"LADEL,NUMDER (0 COMPOSER= Beethoven (RECORDING))

The cxtcndcd operations produce the following relation:

LABEL NUMBER

CBS M2S-794
DGG 2631260
CBS *

The information tuple indicates that this answer is

complete only in regard to recordings on the CBS label.

As a.nother example, consider this query to list the

recordings (label, number and conductor) of compositions

of 19th century French composers:

XLADEL,NUMDER,CONDUCTOR (

6(~h~~~~~~~~~ = Frcnch)h(1800 5 YEAR-OF-BIRTII< 1850) (

(RECORDING: x COMPOSER)))

Even though this query uses a natural join and a complex

selection predicate, one can easily to verify that its answer

is:

LABEL NUMBER CONDUCTOR

Angel S-3613 Beecham
London LDR-71090 Dutoit
RCA LSC-6199 Karaj an
* *

5. Conclusion

We have prcscntcd a new kind of database information,

for specifying the subsets of the database which are

.closed world”. We have laid a formal basis, with

definitions of specification (completeness assertion or

iuev), intersection and unioti of specifications,

generalization rclstionship between * specifications,

cotnpletcneas of answers, and partial completeness with

regard to an asserl.ic)n.

We have, then focused 6n completeness information in

relational datnbascs; and dbfincd ti’ simpl’e family 01

domain ” cnlclilus expressions, for expressing a large

number of popular completeness assertions. ,For theie

nsscrtions we have dcfined a represen$ation (similar to

QBE) that cnnblcd us to store tg,ecjn@nation along with

the data. We have t,hen shown .how”to extend relational

algebra to manipulate these extended relations, do that

the information tuples in the output relations assert
. ,

correctly the completeness of the result. The main
,.’ ,. ” .

advant,a.ge of this representation, besides it simplicity and

economy, is that the standard query evaluation process

generates, ti a by-prodyct, the’ verdict on, the

completeness or pn.rtial completeness of the answer.

There are several other issues that require further

invcstign.tion: One is the re!atibnship between incomplete

informnt.i?ri: and complctcncss information (for example,

how dots one in(.crpret completeness nssertiqns in the

prcsctnce of tuplcs with null values). Anot.hcr is the

rrlntionship bclween functional +p,endcnc$zs and

complct~ncss information (for example, WC note that, a

completeness asscrt,ion ,on the key attributes of a relation

implies that complete information is available on the

other attributes, <as well). A third set of issues involves

our implemcnt~al.ion of completeness information in the

relational model, which was motivated by simplicity,

efficiency and economy, but at the cost of generality. An

intcrrsting issue here is how much ‘deduction power. was

sacrificed in this implementation, in comparison with an

’ References

D. Maier.
The Theory o / Relational Databases.
Computer Science Press, 1983, Chapter 12.

Query Generalization: A Technique for)Iandling ‘,
Query Failure.

In ,Procsedings of th.e First International
Workshop on Expert Database Systems, pages
314-32$. i(iawah Isl&nd, South Carolina, 1984.

R. keiter.
Towards a Logical Reconstruction of Relational

Data.base Theory.
In M. L. Brodie, J. Mylopoulos and J. W. Schmidt

(Cditors), On Conceptual Modellinj:
Perspectives from Arti jicial Intelligence,
Databases and Programming Languages,
chapter 8. Springer-Verlag, 1984.

J. D. Ullmnn.
Illl’nciples o/Database Systems.
Computer Science Press, 1982.

M. Zloof. M. Zloof.
Query-by-Example: A Database Language. Query-by-Example: A Database Language.
IdM Systems Journal 16(4):324-343, December, IdM Systems Journal 16(4):324-343, December,

1977. 1977.

imptcmcntat,ion that would express completeness

assertions with general first order logic formulas, and use

mccl~anical throrem proving to determine whether a user

query has a complete answer. There are also pragmatic

issues, such as the update of data which is covered by

completeness assertions, and the update of the

complctcncss assertions themselves.

Acknowledgements
(,

1 am grateful to my colleague Rick Hull for his

important commenls.

