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Abstract 
Over the last decade, many techniques for optimizing relational 
queries have been developed. However, the optimization of queries 
with aggregation has received little attention. 

This paper investigates possible improvements for aggregate queries 
on groups of tuples. We suggest the use of program transformation 
methods to systematically generate efficient iterative programs for 
their evaluation. Two transformation steps successively translate a 
program, which sorts the relation before applying the aggregate 
function, into an iterative program which performs the aggregation 
while sorting, thus using less time and space than needed for the 
execution of the initial program. 

I. Introduction 

Many database management systems (DBMSs), such as SYSTEM 
R and INGRES. permit the computation of counts, sums, averages 
and other aggregate quantities [ASTR76, STONE761. Aggregation 
is usually performed over a set of tuples yielding a singleton value. 
We can also partition, or group, tuples of a relation into subsets 
according to common values of one or more attributes. The ag- 
gregation is then performed over each of the subsets yielding a set 
of singlefon values. For example, consider the SQL query: 

SELECT SUM(Salary) FROM EMP 
GROUP BY Department 

on Relatioh EblP (EMP#, Salary, Department). This query com- 
putes the sum of salaries for each department in the EMP relation. 
As the number of departments is not known in advance, one 
possible evaluation strategy is to sort the relation EMP on department 
values before the salary sum for each ,department is computed by 
scanning the sorted relation once. 

This processing strategy is not optimal. Klug notices that in many 
cases the aggregate coniputation - or at least part of it - may be 
performed while sorfing [KLUG82]. For instance, in the above 
example, whenever two tuples are compared during the sort and 
they agree in their department values, we can merge them into a 

new ruple by adding their salaries. The sort then continues with 
the newly generated tuple. Applying this change throughout the 
sort, the final result is a relation, sorted on the department values, 
with exucf/y one fuple for each department recording its salary. An 
additional scan of the relation to perform aggregation becomes 
unnecessary. An additional gain in execution speed results from a 
decreasing number of tuples during the sort, thus requiring less 
time for sorting and less storage space. Klug suggests a specially 
designed sort function which implements the combination of sorting 
and aggregation [KLUG82]. 

In this paper we derive the suggested improvements for aggregate 
functions by methods of program transformation [BACK78, 
DARL76, BURS771. We generate the efficient programs, as de- 
scribed above, from initial specifications which independently define 
the aggregaie function and the sort algorithm. 

The transformation consists of two phases. The first phase, which 
we call the horizonful trunsfomzation phase, transforms the initial 
program specifications for sorting and aggregation into the desired 
optimal program form. Horizontal transformation manipulates high- 
level program specifications which are based on Backus’ FP language 
[BACK78]. To guarantee fast execution, the second phase, which 
we call the ver~icul transformation phase, translates the high level 
specification into an iterative program in a PASCAL-like notation. 

To make the discussion of the transformation more concrete, we 
choose one sort algorithm and one aggregate function. To implement 
sorting we use the serf-merge algorithm [KNUT73]. We demonstrate 
all transformation steps using the aggregate function sum- by which 
performs the summation of values on groups of tuples. Later we 
show how the proposed transformation generalizes to other aggregate 
functions as well. 

The paper is organized as follows. In the next section we provide 
some more motivation for using methods of program transformation 
to generate efficient programs for the evaluation of aggregate func- 
tions. In Section 3 we introduce the notation for describing the 
sort and the aggregate function before Section 4 develops the 
transformation steps to generate the improved program. In Section 
5 we generalize the transformation of Section 4 to other aggregate 
functions by introducing a uniform definition which is better suited 
for formal manipulation. 
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2. Motivation In 1978 John Backus introduced the FP language which motivated 
a new kind of programming [BACK78]. Much of the current 
research in program transformation has centered around this new 
approach [BIRD84, BELL84]. Many researchers describe their 
transformations in terms of rewriting rules or transformation rules 
[HUETSO]. These provide a uniform description of the intended 
transformation without considering implementation details. 

The latter approach to program transformation motivated us to 
apply those methods and ideas to the translation of relational 
queries. The translation of aggregate functions is a nontrivial ex- 
ample to demonstrate several aspects of a rule-based translation. 
We also argue that the successive translation of the sort function 
and the aggregate function into a more efficient program has several 
advantages over a hand-coded program to implement the desired 
improvement. 

Query languages for relational DBMSs, such as QUEL [STONE761 
or SQL [ASTR76], permit the user to express database requests in 
a clear and understandable form that describes properties of the 
requested result without considering aspects of an efficient exe- 
cution. Therefore it is the DBMS’s responsibility to derive an 
evaluation strategy to compute the query efficiently. The com- 
ponent of the DBMS which decides on the strategy is called the 
query opfimizer. Based on the information about the internal rep- 
resentation of the data accessed and the available evaluation strat- 
egies, the query optimizer produces a query evaluafion plan (QEP). 
For example, the existence of indices or information about the 
physical order of elements in the relation influences the optimizer’s 
choice of either an index-join, a merge-join, or a nested-loop join 
as the optimal evaluation strategy for a join operator. Jarke and 
Koch give a comprehensive overview on various optimization tech- 
niques for relational queries [JARK84]. 

After its generation by the query optimizer, the QEP has to be 
executed against the database to compute the requested result. To 
perform this task, many DBMSs face a translation problem since 
the QEP most often uses operations on sets of tuples, while the 
execution system performs operations on fupfes to ensure an efficient 
execution lASTR76, STONE76]. This gap between the generated 
QEP and the query execution system introduces the problem of 
mapping QEPs into sequences of operations for the execution 
system. We call this problem the query translation problem 
[FREY85a, FREY85bl. 

In many ways, both translation steps, i.e. optimization and query 
translation into operations for a specific execution system, resemble 
a specialized program rrans~ormurion. problem. GeneralJy speaking, 
program transformation promises to provide a comprehensive solu- 
tion to the problem of producing programs which try to solve 
several incompatible goals simultaneously: On the one hand, pro- 
grams should be correct and clearly st.ructured, thus allowing easy 
modification. On the other hand, one expects them to be executed 
efficiently. Using languages like C or PASCAL for implementation 
of programs, one is immediately forced to consider aspects of 
efficiency that are ‘often unrelated to their correctness, natural 
structure, and clarity. 

For this reason, the transformational approach tries to separate 
these two concerns by dividing the programming task into two 
steps: The first step concentrates on producing programs that are 
written as clearly and understandably as possible without considering 
efficiency issues. If initially the question of efficiency is completely 
ignored, the resulting program might be written very comprehensibly, 
but might be highly inefficient or even unexecutable. The second 
step then successively transforms programs into more efficient ones 
- possibly based on additional information - using methods which 
preserve the meaning of the! original program. ,,. 

,I 
In our opinion, these intentions exactly guided the design of query 
languages for relational DBMSs where queries are expressed ,in a 
data independent manner. We therefore argue that methods which 
have been developed in the area of program transformation may 
prove useful for the translation of relational queries. In [FREY85b] 
we describe the transformation of algebra-based query specifications 
into iterative programs which are executable on a tuple-oriented 
query execution system. The transformation involves the rule-based 
manipulation of recursively defined programs and the replacement 
of recursion by iteration both of which were the focus of early 
research in program transformation lDARL76, BURSS77, 
COHE801. 

First, independently defined functions for sorting and aggregation 
support the design of a modular, high-level interface for query 
evaluation. Deriving desirable improvements from the combination 
of sorting and aggregation relieves the optimizer from considering 
another operation during optimization, thus simplifying the opti- 
mizer’s task. 

Second, the use of rules all0ws.a simple description of the performed 
transformation which may easily lead to an experimetital implemen- 
tation of a query translation system. Each rule performs a sound 
transformation which guarantees that the newly generated program 
correctly performs the computation initially specified. 

Third, the transformation may be effective even if the aggregate 
function is not known to the system in advance. The suggested 
transformation could be applied to combine a user provided 
function with internally defined processing strategies to guarantee 
a more efficient query execution. 

Our goal for the translation of functions serf-merge and sum by 
is twofold. On the one hand we would like to use the FP notation 
to perform high level transformations. On the other hand we have 
to guarantee fast execution of user-submitted queries. To accomplish 
both goals, we introduce two kinds of transformation: Horizonfd 
transformation and wrticol ~ran&ormarion. During the fit transfor- 
mation we manipulate programs, specified in an FP-lie notation, 
to generate the program which performs aggregation while sorting. 
The high-level specification simplifies the manipulation of functions 
and control structures without considering details of their imple- 
mentation. Vertical transformation then translates the high level 
program description into an iterative program to guarantee fast 
execution. 

3. The Definition, of 
Sort-Merge and Sum-By 

This section defines the functions sot? mege and sum-by. For 
the ,horizontal transformation we describe the function sorr-merge 
in an FP-like notation using the’three operators map, tree, and L. 
Operators map and tree specify two different control structures. 
They determine how to access sets of tuples during sorting. During 
the transformation we create new functions by’combining existing 
ones. We therefore introduce operator L to express the combination 
of functions. Throughout this paper we use lisrs instead of relations 
to represent sets of tuples. We prefer lists over relations to avoid 
confusion and to guarantee notational uniformity. 
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Operator mop is motivated by the corresponding Lisp operator 
which denotes a loop-like control structure without specifying its 
exact implementation. The meaning of the expression (mupflisf) 
with / being a function of arity one is defined as ” applying 
function f to each element in the fisf.” For example, consider f to 
be the square function sgr and lisf to be the list <l, 5. 3>, then 
(mnpsqr16f) returns the three element list <l, 25, 9> without 
specifying the order in which we apply function sqr to the initial 
list. Intuitively, operator map specifies to access the tuple list by 
applying function f to each tuple individually. 

In the above example we introduced a list of integers. However, 
we may also use lists containing other kinds of elements. For the 
definition of serf -merge the elements of a list can be lists of 
elements. For example, if list consists of two lists <5, 1, 3> and 
<2. 6, 3>, and if serf denotes the sort function, then (mapsorf lisf) 
returns a list of sorted lists 

<<I, 1, 5>, <2, 3, 6>> 

by applying function serf to each element, a list of integers, in the 
original list. 

For the FP-like specification of the sort-merge algorithm, we need 
to introduce ,another control structure operator, called free, which 
denotes a “divide and conquer” control structure ]BACK78, 
WlLL821. (free//isf). with f being a function of arity two divides 
a list recursively into a left and a right part until the list contains 
one element. On each level of the recursion f is applied to the 
results returned form the previous level of recursion. For example, 
let + denote the addition function and let:lisf be. <l, 5, 7, 4>, 
then (tree + lisr) performs the computation as shown in Figure 1 
returning the expected result of 17. 

Figure 1: Computation tree for (hr.,+ <1,5,7,4>) 

Formally, tree ,is defined by 
: 

(free / Iisf) 
Iisr, if the list has one element 

= 
(/(free/(lflisf)) (free/(rg lisf))) 

where lf and rg are functions which divide a list into a left and a 
right part of (almost) equal length, i.e. 

(l/<el, . . . . en>)‘= <el, . ..je./z>” ‘ 

‘. ‘. . . 
(rg < ei. , en>) = < e,/z+l, . . . , en> 

The third operator, L, is used for the combination of functions 
during the transformation. Informally, let/t and/z be two functions 
of arity m and n,.respectively, then (L/t f2) denotes the combination 
(/t (/2x, . ..x.)~ . ..v.,,) of both functions substituting /2 for /t’s 
first parameter. 

We use the operators mnp and rree to define the serf-merge algorithm 
which performs sorting as follows [KNUT73]. During the first 
phase a list of tuples is divided into runs, i.e. tuples lists of equal 
length. Each run is sorted before starting the merge-phase. This 
phase begins with pairs of sorted runs that are merged into one 

sorted run. Each subsequent phase merges pairs of runs, produced 
in the previous phase, into a sorted new run which is twice as long 
as the input runs. Figure 2 shows an example of the merge phase. 

<1,2,3,4,5,6,7,8,9,10,11,12> 
merge 

\ 

/’ 1 
<1,3,6,8,9,11> <2,4,5,7,10,12> 

merge merge 
\ 

/’ \ 

\ 

1’ 1 
<1,6,9> <3,8,11> <5,7,12> <2,4,10> 

Figure 2: Sort-Merge Computation Tree 

The free operator exactly resembles the computational behavior 
performed during the second phase. According to the explanation 
we define the merge-sort (merge_sorfA lisf) by the expression 

(free merge, ‘(map so;i~ (conwrf Esf))) 

where function conwrf converts a list of elements into runs, i.e. a 
list of tupfe jists. Those runs are subsequently ,sorted on values 
of attribute A as specified by (mapsorfA lisf) before the merge 
phase beghts. Whenever merge is applied to two sorted lists, the 
result is a sorted list consisting of elements of both inputs. The 
“tree-like” application of merge ultimately returns one sorted run 
of elements. 

For a complete definition of the merge-sort we need to specify 
functions s&f, merge, and conwn. As function conr& is not im- 
portant for the’later transformation we do not provide a detailed 
definition. We,define function (sori~ /i.rf) by another tree expression 
(freemerge; lisf) which specifies to recursively split the tuple list 
into a left and a right part before merging them back again, based 
on the A values of the ind’ividual tuples. With the definitions of 
merge-sorfi and sorr4 it remains to define function mergeA which 
we could impiement by a PASCAL-like program. However, for 
clarity and ease of manipulation we prefer a recursive definition 
in a Lisp-like notation which uses the following operations on lists? 

(firs/ lisf) 
‘returns the first element of the list. 

(resr Iisr j 
returns a new list by removing the first element of the list. 

l empfy + 
.returns the empty list 

(auf e/e lisf) 
creates a new list’ whose first element eh is followed by al] 
elements in lisf. 

(empfy?.lisf) 
evaluates to true if the lit is empty and to false if list is an 
expression of the form (out ele list). 

To define program merge” we propose a small functional language 
in a Lisp-like notation which is well suited for formal manipulation. 
We shall describe the target language informally. The language is 

2 These funclions resemble the well known Lisp functions car. cdr, 0. cons, and 
null?. respectively. 
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based on expressions. An expression is either a variable, a function 
expression, or a conditional expression. A function expression has 
the form (fl /t ,..f,,), where ft is a function symbol and ri , i = 1, . . . . n 
are expressions called actual parameters, A conditional expression 
has the form (iffl f2 f3), where fl,f2.13 are expressions. If /t eval- 
uates to true, then the value of f2 is the value of the expression, 
otherwise it is the value of /3. 

We define the function (merges It /z) which merges two lists /,,/z, 
sorted on attribute A, as follows. Let gr~? and eqA? be two 
functions comparing two elements ei,~. If the A value of el is 
greater (equal) than the A value of e2, then the functions return 
true, otherwise they return false: 

(if (empfy? 11) 12 

(if (empW? (2) 4 

(if (gr~? (/irsf II) (/irsf l2)) 

(auf uirsf I2) (merge” II (resf 12))) 

(i/(eqA? (firsf 11) @s/12)) 

(out (firsf 12) (merge” 11 (resf 12))) 

(out c/irsf 11) (mergeA (reef 11) 12)))))) 

The program for (merge” /I /2) first checks if one of the lists is 
empty. If so, either 11 or 12 is returned. If both lists have at least 
one element, those are compared on the values of A. If the A value 
of the first element in 12 is less than or equal to the A value of 
the first element in It, we output the first element of 12 and continue 
the merge recursively after having removed the first element from 
12. In case the A value of the first element in It is less,that element 
is returned followed by all elements resulting from the recursive 
call (merge,4 (re.s/ It) /2). 

Similarly, we define the aggregate function (sum-byg,A 11) which 
computes the sum of the B values for the set of tuples having the 
same A values. To compute the result correctly, sum_byB A expects 
an input list which is sorted on the A values. Its definition uses 
the function (adde et e2) which adds the B values of er and ez. 
creating a new tuple <bl + b,a> with ei = <bf, a>. 
(sunt_byBA It) is defined by the expression 

(i/(empfy? 11) l empfy * 

bmff.,4 (/irslI~) (rest II))) 

where (surirfi~ e/e It) is defined by 

(i/(empfy? II) (auf ele 11) 

(if (egA? ele (firsf 11)) 

(sumB,A (addo e/e wrsf 11)) (resf 11)) 

(auf de (sumB4 (/irsf 11) (reef II))))) 

If /t is not empty, Sum-byBA calls the two parameter function 
sumg,+ The first parameter servea as an “accumulator” for summing 
up the B values for the same A value. If a new A value is 
encountered, the “accumulated” element is returned .followed by 
all elements resulting from the recursive call to function sums.“. 

4. The Transformation of 
Sort-Merge and Sum - By 

Based on the definitions of the previous section, this section de- 
scribes the transformation of the QEP 

(sum_byBA (merge-sorfA /iSf)) 

into an executable program. The operations, specified by this QEP, 
are to first sort the lkf based on values of attribute A before 
applying the aggregate function sum_byBn which computes the 
same of B values for each A value in the list. We carry out the 
transformation in two phases. First, horizonfal framfonnafion per- 
forms sfrucfural manipulafion using the tree notation for the merge- 
sort function. We show how the transformation intertwines both 
functions yielding a program which computes the aggregate function 
while sorting. Although the tree notation is well suited for the 
transformational purposes, its recursive nature does not guarantee 
an efficient execution. For this reason the verfical frans~ormafion 
replaces the “tree recursion” by iteration. We present two trans- 
formations into iterative programs which differ in their computa- 
tional behavior. The first program generated maintains a tree- 
structured computation; the second one resembles a left linear 
computation tree. We shall argue that both translation schemes 
can guarantee an efficient execution depending on the function 
which is performed during iteration. 

During horizontal transformation sum_byBA and mergeA are com- 
bined by operator L. To translate their combination into an iterative 
program during vertical transformation, we generate the new func- 
tion sum-mergeB,A which performs merging and aggregation si- 
multaneously. The recursive form of the new function immediately 
leads to an iterative program form. 

4.1. Horizontal Transformation 

The horizontal transformation of 

(sum_byeA (merge_sorfA lisf)) 

is based on the following theorem which provides a sufficient 
condition for distributing a function ft over the tree operator. 

Theorem 1: 

Let /r and fz be two functions and let It, /z, I3 be lists. If 

(rl c/2 4 l2)) = (fl v2 cflh) VI ~2))) 

then 

The inductive proof of the theorem can be found in [FREYUaJ. 
Intuitively, the condition of the theorem requires ft and /z to be 
“almost” independent. Since the two functions do not commute 
with each other, /z follows each application of /I in a tree-like 
computation. 

To apply Theorem 1 to ‘the combination of functions 
(sum_byBA (merge sorf,.r lirf)), which extends to - 

(sum_byBA (free merge” (map sorfA (conwrf lisf)))) 

by the definition of merge sorfA, we need to show that functions 
srrm_bygA and merge” satisfy the condition of the above theorem. 
Notice, that the input to both, mergeAand sum_bygA, are lists 
sorfed on attribute A. Informally, if merge” is applied first, the 
result is a sorted list with the same tuples as in the two input lists. 
Applying sunt-bysA yields a sorted list containing one tuple for 
each value of A recording the sum of A’s B values. 
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On the other hand, if we first apply sum by~,~ to both sorted 
lists It, 12, we obtain two sorted lists 1’1, /z each containing one 
tuple for each A value recording the sum of all B values. Applying 
function rnerge~ to 1’1 and I’zresuits in a sorted list containing at 
most two successive tuples for each A value. Applying the aggregate 
function again yields the same aggregated list as for the first case. 

As .wn-by~~ and mergeA satisfy the condition, we can apply the 
theorem to the above expression, thus yielding the expression 

The operations spetified by the nested subexpression 
(mop swn_byBA...) are to sort all runs before applying the aggregate 
function sum -byBA. However, we can’ avoid scanning the list of 
runs twice by performing the aggregate operation immediofely offer 
sorting the run. We therefore fold the nested map expressions into 
one map expression combining the’sort and the aggregate function 
by operator L: 

4.2. Vertical Transformation 

Since we are concerned with an fast execution of the programs 
which we generated in the previous subsection, we suggest to 
transform these high-level program specifications into iterative pro- 
grams. The final expressions resulting from horizontal transforma- 
tion show that we have to develop transformations for the free 
operator, the mop operator and the combination of functions mergeA 
and sum -byEA. Operator mop simply translates into a loop. We 
develop a transformation for the more complex rree operator and 
the function ‘combination in the next two subsections. Surprisingly, 
we can describe both transformations independently. Since the 
performed transformations are quite complex, we represent only 
the final iterative programs without going into the details of the 
transformation itself. The interested reader is referred to 
[FREY85a]. 

4.2.1. Transforming the Tree Operator into 
Iteration 

(tree (L sum-by&, mergeA) 
(mop (L sum-bye4 SortA) (conwrf list))) 

which represents the first result of horizontal transformation. The 
expression determines to first convert a list of tuples into runs 
before applying the sort and aggregation function to each individual 
run. Finally, all runs are merged and aggregated using a tree-like 
computation. 

We continue the horizontal transformation on the combination of 
functions 

(L .Stlm-by8.A .wrf,,#) 

By the definitioils of sor/h and I: in Section 3, we rewrite the 
combination into the expression 

(sum bY8.A (tree mergeA list)) -. 

which allows us to apply Theorem 1 again. The resulting expression 
is 

(/ret’ (L sltm-bys.A mergeA) (map sum_byoA fisf)) 

As the application of sum byBA to each tuple of the run is 
superfluous, the previous exEession reduces to 

which constitutes the second result of the horizontal transformation. 
As each merge is immediately followed by the aggregate function 
the final list of tuples consists of orte tuple for each A value 
recording the sum of its B values. 

We may now combine both expressions by substituting the latter 
for (L sum-hye,A sortA) hItO the fOrIIW yielding the fiflal eXpreSSiOn 

of horizontal transformation: 

(tree (L sum by&j mergeA) 
(map (tre$m~-by~~ mergeA)) (converf list))) 

At the beginning of this section we mentioned that the control 
structure operator free has a natural recursive implementation. For 
fast execution we would like to replace the “tree recursion” by 
iteration. We derive two different iterative programs with different 
computational behavior [FREY85a]. The first iterative program 
maintains the tree structure by performing the desired computation 
in rounds, thus simulating the tree specification in a bottom up 
manner. Figure 3 shows the computational behavior of the first 
iterative program in case of f being the merge function. 

----------------- 
2nd merge ROUND 

----,-------,---- 

______,!_________!,______ 

1st merge merge ROUND 
-,----\----------,-----\- 

/ \ / \ 
<1,6,9, <3,8,11> <5,7,12> <2,4,10> 

Figure 3: The Bottom-Up Computation in Rounds 

During each round function f is applied to runs of. the same length 
before the next round is encountered. If f is the merge function, 
then the iterative program exactly performs the computation as 
shown in Figure 2. 

In contrast to the first iterative program the second one we generate 
performs a computation which resembles a left linear computation 
tree. We show the computation tree in Figure 4 for / being the 
merge function. 
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merge 
\ 

\ 
merge \ 

\ \ 
\ \ 

merge \ \ 
\ \ \ 

\ \ \ 
<1,6,9’ <3,8,11> <5,7,12> <2,4,10> 

Figure 4: The Left Linear Computation 

During each iteration function / is applied to one initial run and 
the “intermediate” result which has been accumulated so far. If f 
is the merge function, then the iterative program successively merges 
each run with a tuple list whose length increases with every merge. 
Clearly, the transformation has changed the n log n complexity of 
the initial tree specification into a program which has a n2 com- 
plexity with n being the initial number of .tuples. 

Despite the disadvantage in this example there may exist cases 
where one would favor the second transformation. To justify our 
claim we examine in more detail the representation of tuple lists 
by relations in database systems. Usually, relations are stored on 
secondary storage. The DBMS needs to access relations in memory 
to perform operations necessary for the query evaluation. For this 
purpose, the ‘systems maintains a buffer which keeps part of the 
relations in memory. Its contents is changed frequently by reading 
from and writing to secondary storage whenever the DBMS has 
finished its operations on one part and needs buffer space for 
processing other parts. As read and write operations are time 
consuming, they often dominate the overall query evaluation time. 
Decreasing the number of read and write operations usually im- 
proves the overall processing time. 

Suppose that the buffer is large enough to store three initial runs. 
Let / be the combination of functions sum_byBA and mergeA. 
Furthermore, assume that the new run resulting from merging and 
applying aggregation has (approximately) the same length as the 
initial two input runs. The output run then still fits into the 
available buffer space. If the condition holds for every application 
of /. the second transformation turns out to be superior as far as 
read and write operations are concerned. During the execution of 
the second iterative program the intermediate run always resides 
in memory and is immediately available as input for the next 
application ,of, sum_byB,~ and merge4. In contrast, the iterative 
program generated by the first transformation writes out each run 
created in round i before reading it again in round i+ 1. More 
Iormally, if there are n initial runs which need to be processed by 
sunt-by~~ and merge”, lhe first iterative program initiates 2n - 1 
read and n - 1, write operations3 under the above assumptions. The 
program generated by the second transformation uses only n read 
operations thus evaluating the aggregate much faster. ,. 

The assumptions made above are realistic for the computation of 
aggregates. Often, the number of values, which determine the 
partition of tuples into subsets, is much smaller than the number 
of tuples in the relation. Consider the example introduced in the 
introduction of this paper. Assume that the relation EMP contains 
IO.000 tuples describing employees in 50 different departments. If 
each initial run contains more than 50 tuples and if it fits into one 
buffer block, the above conditions ‘are satisfied. The initial sort, 
followed by the aggregate function, results in at most 50 tuples 
recording the partial sum for each department existing in that run. 
If the subsequent phase performs merging and aggregation using 
the second iterative program the execution resembles a computation 

with one “bucket” for each department always residing in memory. 

4.2.2. Transforming Functions Sum-by and 
Merge into Iteration 

The final expressions resulting from horizontal transformation con- 
tain the combination of functions 

(L sum_bYBA mewA) 

Using the definition of L of Section 2, we can rewrite the expres- 
sion into the more familiar form 

Based on the recursive definitions of both functions, the iterative 
program would consist of two successive loops, one performing the 
sort, the other performing aggregation. To avoid the intermediate 
sorted List, we would Iike to generate-a program which consists of 
one loop to perform sorting and aggregation at the same time. 
Based on recursive definition functions sum_byBA and mergeA, we 
show in [FREYIVa] how to generate a new function rum_mergesA 
from the initial function definitions. A nontrivial, laborious trans- 
formation yields the new function sum-mergesA which performs 
aggregation and sorting simultaneously. (sum_mergesA I1 12) 
which has the following recursive form: 

(if (ewy? 4 1 12 

(if (empry? 12) 4 

The sum_mergeeA program differs from the megeE program only 
in case the A values of the first elements in both lists are the same. 
The newly generated program performs the aggregation by function 
adde instead of returning one tuple. Using the transformation 
schemes in [BURS77] or ICOHEBO], the recursive form of the new 
program immediately leads to the following iterative program: 

result := *empty*; 
WHILE not (empty? /I) and not (empty? 12) DO 

IF (@A? (first 11) (first 12)) THEN 
result := (out (first 72) result); 12 := (rest 1-J; 

ELSE 
IF (eqA? (first 11) (first 12)) THEN 

result := (out (odd” (fiit II) (fist 12)) result); 
/I := (rest [I); fz := (rest 12); 

ELSE 
result := (out (first 11) result); I1 := (rest It); 

END-DO; 

IF (empty? 11) THEN 
result : = (out 12 result) 

ELSE 
result :I (out I1 result); 

Comparing both forms for function merge_byBA, the reader may 

3 One may reduce the number of read and write operations slightly for the 
computation in rounds. However, the computation in rounds will never perform 
as well as the second iterative program. 
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convince him(her)self that the recursive form is much more suited 
for formal manipulation than the iterative version. 

5. Generalization of 
Transformation 

In the previous section we demonstrated horizontal and vertical 
transformation using the aggregate function sum-byeA. In the 
following subsection we extend the transformation to other aggregate 
functions by introducing two new control structure operators. These 
are used to redefine all aggregate functions. The second subsection 
then summarizes all transformations by defining four transformation 
rules. We apply them to a final example. 

5.1. Redefinition of Aggregate 
Functions 

The major question is what needs to be changed for the transfor- 
mation of other aggregate functions. Clearly, the horizontal trans- 
formation rests on the condition of Theorem 1. Do we have to 
repeat vertical transformation for every aggregate function sepa- 
rately? The analysis of other aggregate functions, such as “the 
minimum (maximum) B value for each value of attribute A” or 
“number of tuples having the same A value”, reveals that only the 

funcfionol purr of the aggregation changes, that is the,function 
applied while scanning the list of tuples. The, controf structure, 
that dictates how to scan fhe lisf of elekenfs, always remains the 
same. This observation leads to .the definition of a new confrol 
srrucrtrre operoror, ngg-!$A, which clearly’sep’arates the two aspects. 

‘Informally, (egg byA/ It) with fr being a function of arity two 
and 11 being a list implements a computation which “accumulates 
the final result by applying function /t to subsequent elements in 
the list 11 as long as they liave the same A values”: fvfore formally, 
we define function (ugg_byA j-1 11) to ‘be i 

(if(enipty? 11) ‘*emjfj* 

(aggA /I ;(/irsl II ) (rest 11 i)) 

I 

where (ogg4 /t e/e/l) is defined by 

(i/(empfy? 11) (ouf.ele 11) 

(if(eq~? e/e (firs 11)) 

k%Y,4 /I u-1 e/e (firsr 11)) hr II)) 

(our e/e (0ggA /1 (firsf 11) (resf II))))) 

The only difference between functions ogg_bus,A and sum_byBA 
is that the former ‘has an additional parameter specifying the func- 
tion /t which is applied during the scan of 11. 

Similarly, we generalize (sum -mergen*A It 12) by introducing func- 
tion 

which applies function ft to any two elements with the same A 
values while merging. This generalization again distinguishes be- 
tween the control structure, used to scan the list of tuples, and the 
function performed during the scan. We define 

(~a-m+w~ It 11 12) by 

(if (empry? 11) 12 

(if (empty? 12) 11 

(if (gr~? (/irsf 11) c/irsf /2)) 

(our (firsf 12) (ogg_mergeA fl 11 (reef 12))) 

(if (eq,,j? (rirsf 11) cfirsf 12)) 

(auf (fl (firsf 11) (firsf 12)) 

(w-mew-,4 fi 11 (rest 12))) 

(our CTirsf 11) (qg_mergeA fi (rest 11) ~2)))))) 

In [FREY85a] we show that the combination of functions 

(%-byA ft (mergeA 11 hN translates into function 
(agg_mergeA /t It /2) by exactly the same transformation as for 
the specialized case (sum-by&A (merge” 11 12)). 

Using these more general control structure operators, we redefine 
(sUm_byBA lisf) by 

where addB is the addifion function specialized to add the B values 
of two elements in the list. The new definition of Sum-byBA 
nicely shows the distinct use of attributes A and B. Values of 
attribute A distinguish the different subsets on which to perform 
the aggregation. Attribute B determines which values to aggregate 
on. 

We may define other aggregate functions in a similar way. For 
instance, consider the functions (max-bygA lisf) and 
(min_byBA ii&, which dombute the maximum and minimum E 
value for’each A vafue in the lisf, respectively. We redefine both 
functions by (agg-byA maxe lisf) and (ugg-byA minB lisf) with 
functions’maxi and miriB returning the tuple with the larger and 
smalfer B value, respectively. 

The aggregate function (counr~ list), which counts the number of 
elements for each A value in the list is implemented by 

fogg-by ad&m lisr) 

where CNT’is a new attribute whose initial value is 1. Similarly, 
duplicate elfminatibn is defined by 

with A being the list of all key attributes and with function 
(onefl 12) returning either tuple. 

The aggregate function (nwra& bJ$J list), which computes the’ 
average B value for each A valucneeds some more attention. As 
the average komputation is based on counting and su’mmation, we 
need to compute the’ number of tuples for each A value and the 
sum of E values for each A ‘Value by (sUm_byBA lirf) and 
(count-byCNI;A lisf) before dividing the sum by the count value. 
If we rewrite both functions by their aggregate definitions 
(agg-byA’ oddB lisf) and (ugg byA addcm lisr) we recognize that 
both functions access fhe samelisf using fhe same confrol sfrucfure. 
Instead of accessing the lisf twice, we may apply both aggregate 
functions in “parallel” during~one scan, thus leading to the expression 

The [ } notation is used to denote the simultaneous application of 
a list of functions while scanning the lisr. Goldberg et al. call the 
proposed transformation horizonfol loop fusion [GOLD84]. 
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5.2. Transformation by Rules 

To describe the translation of aggregate functions more formally, 
we introduce four fronrfonnotion rules which summarize the trans- 
formation results of the previous subsections. A transformation 
rule has the form (11 -L fz) which specifies to replace an occurrence 
of expression 11 by expression f2. For our transformation we define 
the following rules with fi,fz being functions: 

with AGG~EY~o~,,~~,~+,. being equal to 

Rule I: Combination Rule We apply Rule IV to derive 

Rule II: Tree Rule 
(VI beef2 lid) -, (free (Lfl f2) (mapfi lisO)l 

Rule III: Fusion Rule 

Rule IV: Aggregate-Merge Rule 
((1, (w-by,4 /I) merge,4 - (w-mergeAf~)) 

The first rule allows to combine several aggregate functions which 
scan the same list using the same control structure. Rule II reflects 
the result of Theorem 1. We can only apply the rule if the condition 
of the theorem is satisfied. Rule III combines two loops into one 
by applying both functions simultaneously, thus avoiding the creation 
of an intermediate list. The last rule replaces the functional com- 
bination of agg-byA and merge” by the newly derived function 

w-me%eA. 

which represents the final result of the rule-based transformation. 
The expression defines the following order of operations: first, 
convert the list of tuples into runs, then apply sorting and aggre- 
gation to each of them. A tree-like computation produces one list 
of tuples each of which contains the number of tuples and the 
salary sum for each department. Using the definitions of 
AGG-BY~,,~.,c~,~~. and the scribe... we may complete the trans- 
lation by the same transformation as shown in Subsection 4.1. 

To guarantee fast execution we could continue the transformation 
of the tree expression into an iterative program based on the 
definitions for operators mop and n-ee as described in Subsection 4.2. 

We demonstrate the transformation by rules using the SQL query 

SELECT AVG(Salary) FROM EMP 
GROUP BY Department 

6. Conclusion 

which computes the average salary for each department in the EMP 
relation. 

Before we can apply the rules in the given order, we translate the 
query into the internal form 

(~~ewe-byS,t.,D,p. (~erge_s~rbep, EhfJ’)) 

In the next step we decompose the the average aggregation into 
the aggregate functions sum by&/.,Dep, and cOunfDe,,, followed by 
function DIVS,/.,,-~ which divides the sum and the count for each 
department value. Using the above definitions for both aggregate 
functions and the sort-merge function we obtain the expression 

We presented a improvement for the computation of aggregate 
functions which we derive by successive transformation by rules. 
We showed that independently defined programs for the aggregate 
and the sort functions can be translated systematically into a more 
efficient program which performs aggregation while sorting 
[KLUG82]. We generalize the translation to other aggregate func- 
tions as well by introducing a uniform notation which aIlows us to 
specify rules for their transformation. 

f (W-by&p. adds,/. 

In subsection 4.2.1. we compared the computational behavior of 
the two programs generated. To demonstrate the advantage of 
transformation, one would like to compare all three programs, i.e. 
the initial program which performs aggregation after sorting and 
the two derived programs, on experimental results. We did not 
perform such experiments to compare their performances. However, 
the results of Bitton et al. who use the idea of eliminating duplicates 
while sorting immediately applies to the computation of aggregates 
in rounds [BITT83]. 

Applying Rule I once yields the expression 7. Acknowledgement 

(+x-bm,. Wdso/. odkvrI 

Using Rule II and Rule III for the next transformation steps, we 
generate 
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