
Translating Aggregate Queries into Iterative Programs

Johann Christoph Freytagl
IBM Almaden Research Center, San Jose, CA 95120

Nathan Goodman
Kendall Square Research Corp., Cambridge, MA 02139

Abstract
Over the last decade, many techniques for optimizing relational
queries have been developed. However, the optimization of queries
with aggregation has received little attention.

This paper investigates possible improvements for aggregate queries
on groups of tuples. We suggest the use of program transformation
methods to systematically generate efficient iterative programs for
their evaluation. Two transformation steps successively translate a
program, which sorts the relation before applying the aggregate
function, into an iterative program which performs the aggregation
while sorting, thus using less time and space than needed for the
execution of the initial program.

I. Introduction

Many database management systems (DBMSs), such as SYSTEM
R and INGRES. permit the computation of counts, sums, averages
and other aggregate quantities [ASTR76, STONE761. Aggregation
is usually performed over a set of tuples yielding a singleton value.
We can also partition, or group, tuples of a relation into subsets
according to common values of one or more attributes. The ag-
gregation is then performed over each of the subsets yielding a set
of singlefon values. For example, consider the SQL query:

SELECT SUM(Salary) FROM EMP
GROUP BY Department

on Relatioh EblP (EMP#, Salary, Department). This query com-
putes the sum of salaries for each department in the EMP relation.
As the number of departments is not known in advance, one
possible evaluation strategy is to sort the relation EMP on department
values before the salary sum for each ,department is computed by
scanning the sorted relation once.

This processing strategy is not optimal. Klug notices that in many
cases the aggregate coniputation - or at least part of it - may be
performed while sorfing [KLUG82]. For instance, in the above
example, whenever two tuples are compared during the sort and
they agree in their department values, we can merge them into a

new ruple by adding their salaries. The sort then continues with
the newly generated tuple. Applying this change throughout the
sort, the final result is a relation, sorted on the department values,
with exucf/y one fuple for each department recording its salary. An
additional scan of the relation to perform aggregation becomes
unnecessary. An additional gain in execution speed results from a
decreasing number of tuples during the sort, thus requiring less
time for sorting and less storage space. Klug suggests a specially
designed sort function which implements the combination of sorting
and aggregation [KLUG82].

In this paper we derive the suggested improvements for aggregate
functions by methods of program transformation [BACK78,
DARL76, BURS771. We generate the efficient programs, as de-
scribed above, from initial specifications which independently define
the aggregaie function and the sort algorithm.

The transformation consists of two phases. The first phase, which
we call the horizonful trunsfomzation phase, transforms the initial
program specifications for sorting and aggregation into the desired
optimal program form. Horizontal transformation manipulates high-
level program specifications which are based on Backus’ FP language
[BACK78]. To guarantee fast execution, the second phase, which
we call the ver~icul transformation phase, translates the high level
specification into an iterative program in a PASCAL-like notation.

To make the discussion of the transformation more concrete, we
choose one sort algorithm and one aggregate function. To implement
sorting we use the serf-merge algorithm [KNUT73]. We demonstrate
all transformation steps using the aggregate function sum- by which
performs the summation of values on groups of tuples. Later we
show how the proposed transformation generalizes to other aggregate
functions as well.

The paper is organized as follows. In the next section we provide
some more motivation for using methods of program transformation
to generate efficient programs for the evaluation of aggregate func-
tions. In Section 3 we introduce the notation for describing the
sort and the aggregate function before Section 4 develops the
transformation steps to generate the improved program. In Section
5 we generalize the transformation of Section 4 to other aggregate
functions by introducing a uniform definition which is better suited
for formal manipulation.

t This research was done while the author wn. a student at Harvard University.
Cambridge, MA 02138. The work was supported by the Office of Naval
Research under grant ONR-NOOO14-83-K-0770.

Permission fo copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, Ihe VLDB copyright nolice and the lifle of the publication and its dafe appear, and notice is given that copyin is by permission of
fhe Very Large Data Base Endowment. To cop
Proceedings of the Twelfth International Con erence on Very large Data Bases J

otherwise, or to republish, requires a fee and/or special permission from 1 f e Endowment.
Kyoto. August. 1986

-138-

2. Motivation In 1978 John Backus introduced the FP language which motivated
a new kind of programming [BACK78]. Much of the current
research in program transformation has centered around this new
approach [BIRD84, BELL84]. Many researchers describe their
transformations in terms of rewriting rules or transformation rules
[HUETSO]. These provide a uniform description of the intended
transformation without considering implementation details.

The latter approach to program transformation motivated us to
apply those methods and ideas to the translation of relational
queries. The translation of aggregate functions is a nontrivial ex-
ample to demonstrate several aspects of a rule-based translation.
We also argue that the successive translation of the sort function
and the aggregate function into a more efficient program has several
advantages over a hand-coded program to implement the desired
improvement.

Query languages for relational DBMSs, such as QUEL [STONE761
or SQL [ASTR76], permit the user to express database requests in
a clear and understandable form that describes properties of the
requested result without considering aspects of an efficient exe-
cution. Therefore it is the DBMS’s responsibility to derive an
evaluation strategy to compute the query efficiently. The com-
ponent of the DBMS which decides on the strategy is called the
query opfimizer. Based on the information about the internal rep-
resentation of the data accessed and the available evaluation strat-
egies, the query optimizer produces a query evaluafion plan (QEP).
For example, the existence of indices or information about the
physical order of elements in the relation influences the optimizer’s
choice of either an index-join, a merge-join, or a nested-loop join
as the optimal evaluation strategy for a join operator. Jarke and
Koch give a comprehensive overview on various optimization tech-
niques for relational queries [JARK84].

After its generation by the query optimizer, the QEP has to be
executed against the database to compute the requested result. To
perform this task, many DBMSs face a translation problem since
the QEP most often uses operations on sets of tuples, while the
execution system performs operations on fupfes to ensure an efficient
execution lASTR76, STONE76]. This gap between the generated
QEP and the query execution system introduces the problem of
mapping QEPs into sequences of operations for the execution
system. We call this problem the query translation problem
[FREY85a, FREY85bl.

In many ways, both translation steps, i.e. optimization and query
translation into operations for a specific execution system, resemble
a specialized program rrans~ormurion. problem. GeneralJy speaking,
program transformation promises to provide a comprehensive solu-
tion to the problem of producing programs which try to solve
several incompatible goals simultaneously: On the one hand, pro-
grams should be correct and clearly st.ructured, thus allowing easy
modification. On the other hand, one expects them to be executed
efficiently. Using languages like C or PASCAL for implementation
of programs, one is immediately forced to consider aspects of
efficiency that are ‘often unrelated to their correctness, natural
structure, and clarity.

For this reason, the transformational approach tries to separate
these two concerns by dividing the programming task into two
steps: The first step concentrates on producing programs that are
written as clearly and understandably as possible without considering
efficiency issues. If initially the question of efficiency is completely
ignored, the resulting program might be written very comprehensibly,
but might be highly inefficient or even unexecutable. The second
step then successively transforms programs into more efficient ones
- possibly based on additional information - using methods which
preserve the meaning of the! original program. ,,.

,I
In our opinion, these intentions exactly guided the design of query
languages for relational DBMSs where queries are expressed ,in a
data independent manner. We therefore argue that methods which
have been developed in the area of program transformation may
prove useful for the translation of relational queries. In [FREY85b]
we describe the transformation of algebra-based query specifications
into iterative programs which are executable on a tuple-oriented
query execution system. The transformation involves the rule-based
manipulation of recursively defined programs and the replacement
of recursion by iteration both of which were the focus of early
research in program transformation lDARL76, BURSS77,
COHE801.

First, independently defined functions for sorting and aggregation
support the design of a modular, high-level interface for query
evaluation. Deriving desirable improvements from the combination
of sorting and aggregation relieves the optimizer from considering
another operation during optimization, thus simplifying the opti-
mizer’s task.

Second, the use of rules all0ws.a simple description of the performed
transformation which may easily lead to an experimetital implemen-
tation of a query translation system. Each rule performs a sound
transformation which guarantees that the newly generated program
correctly performs the computation initially specified.

Third, the transformation may be effective even if the aggregate
function is not known to the system in advance. The suggested
transformation could be applied to combine a user provided
function with internally defined processing strategies to guarantee
a more efficient query execution.

Our goal for the translation of functions serf-merge and sum by
is twofold. On the one hand we would like to use the FP notation
to perform high level transformations. On the other hand we have
to guarantee fast execution of user-submitted queries. To accomplish
both goals, we introduce two kinds of transformation: Horizonfd
transformation and wrticol ~ran&ormarion. During the fit transfor-
mation we manipulate programs, specified in an FP-lie notation,
to generate the program which performs aggregation while sorting.
The high-level specification simplifies the manipulation of functions
and control structures without considering details of their imple-
mentation. Vertical transformation then translates the high level
program description into an iterative program to guarantee fast
execution.

3. The Definition, of
Sort-Merge and Sum-By

This section defines the functions sot? mege and sum-by. For
the ,horizontal transformation we describe the function sorr-merge
in an FP-like notation using the’three operators map, tree, and L.
Operators map and tree specify two different control structures.
They determine how to access sets of tuples during sorting. During
the transformation we create new functions by’combining existing
ones. We therefore introduce operator L to express the combination
of functions. Throughout this paper we use lisrs instead of relations
to represent sets of tuples. We prefer lists over relations to avoid
confusion and to guarantee notational uniformity.

- 1.39-

Operator mop is motivated by the corresponding Lisp operator
which denotes a loop-like control structure without specifying its
exact implementation. The meaning of the expression (mupflisf)
with / being a function of arity one is defined as ” applying
function f to each element in the fisf.” For example, consider f to
be the square function sgr and lisf to be the list <l, 5. 3>, then
(mnpsqr16f) returns the three element list <l, 25, 9> without
specifying the order in which we apply function sqr to the initial
list. Intuitively, operator map specifies to access the tuple list by
applying function f to each tuple individually.

In the above example we introduced a list of integers. However,
we may also use lists containing other kinds of elements. For the
definition of serf -merge the elements of a list can be lists of
elements. For example, if list consists of two lists <5, 1, 3> and
<2. 6, 3>, and if serf denotes the sort function, then (mapsorf lisf)
returns a list of sorted lists

<<I, 1, 5>, <2, 3, 6>>

by applying function serf to each element, a list of integers, in the
original list.

For the FP-like specification of the sort-merge algorithm, we need
to introduce ,another control structure operator, called free, which
denotes a “divide and conquer” control structure]BACK78,
WlLL821. (free//isf). with f being a function of arity two divides
a list recursively into a left and a right part until the list contains
one element. On each level of the recursion f is applied to the
results returned form the previous level of recursion. For example,
let + denote the addition function and let:lisf be. <l, 5, 7, 4>,
then (tree + lisr) performs the computation as shown in Figure 1
returning the expected result of 17.

Figure 1: Computation tree for (hr.,+ <1,5,7,4>)

Formally, tree ,is defined by
:

(free / Iisf)
Iisr, if the list has one element

=
(/(free/(lflisf)) (free/(rg lisf)))

where lf and rg are functions which divide a list into a left and a
right part of (almost) equal length, i.e.

(l/<el, en>)‘= <el, . ..je./z>” ‘

‘. ‘. . .
(rg < ei. , en>) = < e,/z+l, . . . , en>

The third operator, L, is used for the combination of functions
during the transformation. Informally, let/t and/z be two functions
of arity m and n,.respectively, then (L/t f2) denotes the combination
(/t (/2x, . ..x.)~ . ..v.,,) of both functions substituting /2 for /t’s
first parameter.

We use the operators mnp and rree to define the serf-merge algorithm
which performs sorting as follows [KNUT73]. During the first
phase a list of tuples is divided into runs, i.e. tuples lists of equal
length. Each run is sorted before starting the merge-phase. This
phase begins with pairs of sorted runs that are merged into one

sorted run. Each subsequent phase merges pairs of runs, produced
in the previous phase, into a sorted new run which is twice as long
as the input runs. Figure 2 shows an example of the merge phase.

<1,2,3,4,5,6,7,8,9,10,11,12>
merge

\

/’ 1
<1,3,6,8,9,11> <2,4,5,7,10,12>

merge merge
\

/’ \

\

1’ 1
<1,6,9> <3,8,11> <5,7,12> <2,4,10>

Figure 2: Sort-Merge Computation Tree

The free operator exactly resembles the computational behavior
performed during the second phase. According to the explanation
we define the merge-sort (merge_sorfA lisf) by the expression

(free merge, ‘(map so;i~ (conwrf Esf)))

where function conwrf converts a list of elements into runs, i.e. a
list of tupfe jists. Those runs are subsequently ,sorted on values
of attribute A as specified by (mapsorfA lisf) before the merge
phase beghts. Whenever merge is applied to two sorted lists, the
result is a sorted list consisting of elements of both inputs. The
“tree-like” application of merge ultimately returns one sorted run
of elements.

For a complete definition of the merge-sort we need to specify
functions s&f, merge, and conwn. As function conr& is not im-
portant for the’later transformation we do not provide a detailed
definition. We,define function (sori~ /i.rf) by another tree expression
(freemerge; lisf) which specifies to recursively split the tuple list
into a left and a right part before merging them back again, based
on the A values of the ind’ividual tuples. With the definitions of
merge-sorfi and sorr4 it remains to define function mergeA which
we could impiement by a PASCAL-like program. However, for
clarity and ease of manipulation we prefer a recursive definition
in a Lisp-like notation which uses the following operations on lists?

(firs/ lisf)
‘returns the first element of the list.

(resr Iisr j
returns a new list by removing the first element of the list.

l empfy +
.returns the empty list

(auf e/e lisf)
creates a new list’ whose first element eh is followed by al]
elements in lisf.

(empfy?.lisf)
evaluates to true if the lit is empty and to false if list is an
expression of the form (out ele list).

To define program merge” we propose a small functional language
in a Lisp-like notation which is well suited for formal manipulation.
We shall describe the target language informally. The language is

2 These funclions resemble the well known Lisp functions car. cdr, 0. cons, and
null?. respectively.

-140-

based on expressions. An expression is either a variable, a function
expression, or a conditional expression. A function expression has
the form (fl /t ,..f,,), where ft is a function symbol and ri , i = 1, n
are expressions called actual parameters, A conditional expression
has the form (iffl f2 f3), where fl,f2.13 are expressions. If /t eval-
uates to true, then the value of f2 is the value of the expression,
otherwise it is the value of /3.

We define the function (merges It /z) which merges two lists /,,/z,
sorted on attribute A, as follows. Let gr~? and eqA? be two
functions comparing two elements ei,~. If the A value of el is
greater (equal) than the A value of e2, then the functions return
true, otherwise they return false:

(if (empfy? 11) 12

(if (empW? (2) 4

(if (gr~? (/irsf II) (/irsf l2))

(auf uirsf I2) (merge” II (resf 12)))

(i/(eqA? (firsf 11) @s/12))

(out (firsf 12) (merge” 11 (resf 12)))

(out c/irsf 11) (mergeA (reef 11) 12))))))

The program for (merge” /I /2) first checks if one of the lists is
empty. If so, either 11 or 12 is returned. If both lists have at least
one element, those are compared on the values of A. If the A value
of the first element in 12 is less than or equal to the A value of
the first element in It, we output the first element of 12 and continue
the merge recursively after having removed the first element from
12. In case the A value of the first element in It is less,that element
is returned followed by all elements resulting from the recursive
call (merge,4 (re.s/ It) /2).

Similarly, we define the aggregate function (sum-byg,A 11) which
computes the sum of the B values for the set of tuples having the
same A values. To compute the result correctly, sum_byB A expects
an input list which is sorted on the A values. Its definition uses
the function (adde et e2) which adds the B values of er and ez.
creating a new tuple <bl + b,a> with ei = <bf, a>.
(sunt_byBA It) is defined by the expression

(i/(empfy? 11) l empfy *

bmff.,4 (/irslI~) (rest II)))

where (surirfi~ e/e It) is defined by

(i/(empfy? II) (auf ele 11)

(if (egA? ele (firsf 11))

(sumB,A (addo e/e wrsf 11)) (resf 11))

(auf de (sumB4 (/irsf 11) (reef II)))))

If /t is not empty, Sum-byBA calls the two parameter function
sumg,+ The first parameter servea as an “accumulator” for summing
up the B values for the same A value. If a new A value is
encountered, the “accumulated” element is returned .followed by
all elements resulting from the recursive call to function sums.“.

4. The Transformation of
Sort-Merge and Sum - By

Based on the definitions of the previous section, this section de-
scribes the transformation of the QEP

(sum_byBA (merge-sorfA /iSf))

into an executable program. The operations, specified by this QEP,
are to first sort the lkf based on values of attribute A before
applying the aggregate function sum_byBn which computes the
same of B values for each A value in the list. We carry out the
transformation in two phases. First, horizonfal framfonnafion per-
forms sfrucfural manipulafion using the tree notation for the merge-
sort function. We show how the transformation intertwines both
functions yielding a program which computes the aggregate function
while sorting. Although the tree notation is well suited for the
transformational purposes, its recursive nature does not guarantee
an efficient execution. For this reason the verfical frans~ormafion
replaces the “tree recursion” by iteration. We present two trans-
formations into iterative programs which differ in their computa-
tional behavior. The first program generated maintains a tree-
structured computation; the second one resembles a left linear
computation tree. We shall argue that both translation schemes
can guarantee an efficient execution depending on the function
which is performed during iteration.

During horizontal transformation sum_byBA and mergeA are com-
bined by operator L. To translate their combination into an iterative
program during vertical transformation, we generate the new func-
tion sum-mergeB,A which performs merging and aggregation si-
multaneously. The recursive form of the new function immediately
leads to an iterative program form.

4.1. Horizontal Transformation

The horizontal transformation of

(sum_byeA (merge_sorfA lisf))

is based on the following theorem which provides a sufficient
condition for distributing a function ft over the tree operator.

Theorem 1:

Let /r and fz be two functions and let It, /z, I3 be lists. If

(rl c/2 4 l2)) = (fl v2 cflh) VI ~2)))

then

The inductive proof of the theorem can be found in [FREYUaJ.
Intuitively, the condition of the theorem requires ft and /z to be
“almost” independent. Since the two functions do not commute
with each other, /z follows each application of /I in a tree-like
computation.

To apply Theorem 1 to ‘the combination of functions
(sum_byBA (merge sorf,.r lirf)), which extends to -

(sum_byBA (free merge” (map sorfA (conwrf lisf))))

by the definition of merge sorfA, we need to show that functions
srrm_bygA and merge” satisfy the condition of the above theorem.
Notice, that the input to both, mergeAand sum_bygA, are lists
sorfed on attribute A. Informally, if merge” is applied first, the
result is a sorted list with the same tuples as in the two input lists.
Applying sunt-bysA yields a sorted list containing one tuple for
each value of A recording the sum of A’s B values.

-141-

On the other hand, if we first apply sum by~,~ to both sorted
lists It, 12, we obtain two sorted lists 1’1, /z each containing one
tuple for each A value recording the sum of all B values. Applying
function rnerge~ to 1’1 and I’zresuits in a sorted list containing at
most two successive tuples for each A value. Applying the aggregate
function again yields the same aggregated list as for the first case.

As .wn-by~~ and mergeA satisfy the condition, we can apply the
theorem to the above expression, thus yielding the expression

The operations spetified by the nested subexpression
(mop swn_byBA...) are to sort all runs before applying the aggregate
function sum -byBA. However, we can’ avoid scanning the list of
runs twice by performing the aggregate operation immediofely offer
sorting the run. We therefore fold the nested map expressions into
one map expression combining the’sort and the aggregate function
by operator L:

4.2. Vertical Transformation

Since we are concerned with an fast execution of the programs
which we generated in the previous subsection, we suggest to
transform these high-level program specifications into iterative pro-
grams. The final expressions resulting from horizontal transforma-
tion show that we have to develop transformations for the free
operator, the mop operator and the combination of functions mergeA
and sum -byEA. Operator mop simply translates into a loop. We
develop a transformation for the more complex rree operator and
the function ‘combination in the next two subsections. Surprisingly,
we can describe both transformations independently. Since the
performed transformations are quite complex, we represent only
the final iterative programs without going into the details of the
transformation itself. The interested reader is referred to
[FREY85a].

4.2.1. Transforming the Tree Operator into
Iteration

(tree (L sum-by&, mergeA)
(mop (L sum-bye4 SortA) (conwrf list)))

which represents the first result of horizontal transformation. The
expression determines to first convert a list of tuples into runs
before applying the sort and aggregation function to each individual
run. Finally, all runs are merged and aggregated using a tree-like
computation.

We continue the horizontal transformation on the combination of
functions

(L .Stlm-by8.A .wrf,,#)

By the definitioils of sor/h and I: in Section 3, we rewrite the
combination into the expression

(sum bY8.A (tree mergeA list)) -.

which allows us to apply Theorem 1 again. The resulting expression
is

(/ret’ (L sltm-bys.A mergeA) (map sum_byoA fisf))

As the application of sum byBA to each tuple of the run is
superfluous, the previous exEession reduces to

which constitutes the second result of the horizontal transformation.
As each merge is immediately followed by the aggregate function
the final list of tuples consists of orte tuple for each A value
recording the sum of its B values.

We may now combine both expressions by substituting the latter
for (L sum-hye,A sortA) hItO the fOrIIW yielding the fiflal eXpreSSiOn

of horizontal transformation:

(tree (L sum by&j mergeA)
(map (tre$m~-by~~ mergeA)) (converf list)))

At the beginning of this section we mentioned that the control
structure operator free has a natural recursive implementation. For
fast execution we would like to replace the “tree recursion” by
iteration. We derive two different iterative programs with different
computational behavior [FREY85a]. The first iterative program
maintains the tree structure by performing the desired computation
in rounds, thus simulating the tree specification in a bottom up
manner. Figure 3 shows the computational behavior of the first
iterative program in case of f being the merge function.

2nd merge ROUND

----,-------,----

______,!_________!,______

1st merge merge ROUND
-,----\----------,-----\-

/ \ / \
<1,6,9, <3,8,11> <5,7,12> <2,4,10>

Figure 3: The Bottom-Up Computation in Rounds

During each round function f is applied to runs of. the same length
before the next round is encountered. If f is the merge function,
then the iterative program exactly performs the computation as
shown in Figure 2.

In contrast to the first iterative program the second one we generate
performs a computation which resembles a left linear computation
tree. We show the computation tree in Figure 4 for / being the
merge function.

--142-

merge
\

\
merge \

\ \
\ \

merge \ \
\ \ \

\ \ \
<1,6,9’ <3,8,11> <5,7,12> <2,4,10>

Figure 4: The Left Linear Computation

During each iteration function / is applied to one initial run and
the “intermediate” result which has been accumulated so far. If f
is the merge function, then the iterative program successively merges
each run with a tuple list whose length increases with every merge.
Clearly, the transformation has changed the n log n complexity of
the initial tree specification into a program which has a n2 com-
plexity with n being the initial number of .tuples.

Despite the disadvantage in this example there may exist cases
where one would favor the second transformation. To justify our
claim we examine in more detail the representation of tuple lists
by relations in database systems. Usually, relations are stored on
secondary storage. The DBMS needs to access relations in memory
to perform operations necessary for the query evaluation. For this
purpose, the ‘systems maintains a buffer which keeps part of the
relations in memory. Its contents is changed frequently by reading
from and writing to secondary storage whenever the DBMS has
finished its operations on one part and needs buffer space for
processing other parts. As read and write operations are time
consuming, they often dominate the overall query evaluation time.
Decreasing the number of read and write operations usually im-
proves the overall processing time.

Suppose that the buffer is large enough to store three initial runs.
Let / be the combination of functions sum_byBA and mergeA.
Furthermore, assume that the new run resulting from merging and
applying aggregation has (approximately) the same length as the
initial two input runs. The output run then still fits into the
available buffer space. If the condition holds for every application
of /. the second transformation turns out to be superior as far as
read and write operations are concerned. During the execution of
the second iterative program the intermediate run always resides
in memory and is immediately available as input for the next
application ,of, sum_byB,~ and merge4. In contrast, the iterative
program generated by the first transformation writes out each run
created in round i before reading it again in round i+ 1. More
Iormally, if there are n initial runs which need to be processed by
sunt-by~~ and merge”, lhe first iterative program initiates 2n - 1
read and n - 1, write operations3 under the above assumptions. The
program generated by the second transformation uses only n read
operations thus evaluating the aggregate much faster. ,.

The assumptions made above are realistic for the computation of
aggregates. Often, the number of values, which determine the
partition of tuples into subsets, is much smaller than the number
of tuples in the relation. Consider the example introduced in the
introduction of this paper. Assume that the relation EMP contains
IO.000 tuples describing employees in 50 different departments. If
each initial run contains more than 50 tuples and if it fits into one
buffer block, the above conditions ‘are satisfied. The initial sort,
followed by the aggregate function, results in at most 50 tuples
recording the partial sum for each department existing in that run.
If the subsequent phase performs merging and aggregation using
the second iterative program the execution resembles a computation

with one “bucket” for each department always residing in memory.

4.2.2. Transforming Functions Sum-by and
Merge into Iteration

The final expressions resulting from horizontal transformation con-
tain the combination of functions

(L sum_bYBA mewA)

Using the definition of L of Section 2, we can rewrite the expres-
sion into the more familiar form

Based on the recursive definitions of both functions, the iterative
program would consist of two successive loops, one performing the
sort, the other performing aggregation. To avoid the intermediate
sorted List, we would Iike to generate-a program which consists of
one loop to perform sorting and aggregation at the same time.
Based on recursive definition functions sum_byBA and mergeA, we
show in [FREYIVa] how to generate a new function rum_mergesA
from the initial function definitions. A nontrivial, laborious trans-
formation yields the new function sum-mergesA which performs
aggregation and sorting simultaneously. (sum_mergesA I1 12)
which has the following recursive form:

(if (ewy? 4 1 12

(if (empry? 12) 4

The sum_mergeeA program differs from the megeE program only
in case the A values of the first elements in both lists are the same.
The newly generated program performs the aggregation by function
adde instead of returning one tuple. Using the transformation
schemes in [BURS77] or ICOHEBO], the recursive form of the new
program immediately leads to the following iterative program:

result := *empty*;
WHILE not (empty? /I) and not (empty? 12) DO

IF (@A? (first 11) (first 12)) THEN
result := (out (first 72) result); 12 := (rest 1-J;

ELSE
IF (eqA? (first 11) (first 12)) THEN

result := (out (odd” (fiit II) (fist 12)) result);
/I := (rest [I); fz := (rest 12);

ELSE
result := (out (first 11) result); I1 := (rest It);

END-DO;

IF (empty? 11) THEN
result : = (out 12 result)

ELSE
result :I (out I1 result);

Comparing both forms for function merge_byBA, the reader may

3 One may reduce the number of read and write operations slightly for the
computation in rounds. However, the computation in rounds will never perform
as well as the second iterative program.

-14s

convince him(her)self that the recursive form is much more suited
for formal manipulation than the iterative version.

5. Generalization of
Transformation

In the previous section we demonstrated horizontal and vertical
transformation using the aggregate function sum-byeA. In the
following subsection we extend the transformation to other aggregate
functions by introducing two new control structure operators. These
are used to redefine all aggregate functions. The second subsection
then summarizes all transformations by defining four transformation
rules. We apply them to a final example.

5.1. Redefinition of Aggregate
Functions

The major question is what needs to be changed for the transfor-
mation of other aggregate functions. Clearly, the horizontal trans-
formation rests on the condition of Theorem 1. Do we have to
repeat vertical transformation for every aggregate function sepa-
rately? The analysis of other aggregate functions, such as “the
minimum (maximum) B value for each value of attribute A” or
“number of tuples having the same A value”, reveals that only the

funcfionol purr of the aggregation changes, that is the,function
applied while scanning the list of tuples. The, controf structure,
that dictates how to scan fhe lisf of elekenfs, always remains the
same. This observation leads to .the definition of a new confrol
srrucrtrre operoror, ngg-!$A, which clearly’sep’arates the two aspects.

‘Informally, (egg byA/ It) with fr being a function of arity two
and 11 being a list implements a computation which “accumulates
the final result by applying function /t to subsequent elements in
the list 11 as long as they liave the same A values”: fvfore formally,
we define function (ugg_byA j-1 11) to ‘be i

(if(enipty? 11) ‘*emjfj*

(aggA /I ;(/irsl II) (rest 11 i))

I

where (ogg4 /t e/e/l) is defined by

(i/(empfy? 11) (ouf.ele 11)

(if(eq~? e/e (firs 11))

k%Y,4 /I u-1 e/e (firsr 11)) hr II))

(our e/e (0ggA /1 (firsf 11) (resf II)))))

The only difference between functions ogg_bus,A and sum_byBA
is that the former ‘has an additional parameter specifying the func-
tion /t which is applied during the scan of 11.

Similarly, we generalize (sum -mergen*A It 12) by introducing func-
tion

which applies function ft to any two elements with the same A
values while merging. This generalization again distinguishes be-
tween the control structure, used to scan the list of tuples, and the
function performed during the scan. We define

(~a-m+w~ It 11 12) by

(if (empry? 11) 12

(if (empty? 12) 11

(if (gr~? (/irsf 11) c/irsf /2))

(our (firsf 12) (ogg_mergeA fl 11 (reef 12)))

(if (eq,,j? (rirsf 11) cfirsf 12))

(auf (fl (firsf 11) (firsf 12))

(w-mew-,4 fi 11 (rest 12)))

(our CTirsf 11) (qg_mergeA fi (rest 11) ~2))))))

In [FREY85a] we show that the combination of functions

(%-byA ft (mergeA 11 hN translates into function
(agg_mergeA /t It /2) by exactly the same transformation as for
the specialized case (sum-by&A (merge” 11 12)).

Using these more general control structure operators, we redefine
(sUm_byBA lisf) by

where addB is the addifion function specialized to add the B values
of two elements in the list. The new definition of Sum-byBA
nicely shows the distinct use of attributes A and B. Values of
attribute A distinguish the different subsets on which to perform
the aggregation. Attribute B determines which values to aggregate
on.

We may define other aggregate functions in a similar way. For
instance, consider the functions (max-bygA lisf) and
(min_byBA ii&, which dombute the maximum and minimum E
value for’each A vafue in the lisf, respectively. We redefine both
functions by (agg-byA maxe lisf) and (ugg-byA minB lisf) with
functions’maxi and miriB returning the tuple with the larger and
smalfer B value, respectively.

The aggregate function (counr~ list), which counts the number of
elements for each A value in the list is implemented by

fogg-by ad&m lisr)

where CNT’is a new attribute whose initial value is 1. Similarly,
duplicate elfminatibn is defined by

with A being the list of all key attributes and with function
(onefl 12) returning either tuple.

The aggregate function (nwra& bJ$J list), which computes the’
average B value for each A valucneeds some more attention. As
the average komputation is based on counting and su’mmation, we
need to compute the’ number of tuples for each A value and the
sum of E values for each A ‘Value by (sUm_byBA lirf) and
(count-byCNI;A lisf) before dividing the sum by the count value.
If we rewrite both functions by their aggregate definitions
(agg-byA’ oddB lisf) and (ugg byA addcm lisr) we recognize that
both functions access fhe samelisf using fhe same confrol sfrucfure.
Instead of accessing the lisf twice, we may apply both aggregate
functions in “parallel” during~one scan, thus leading to the expression

The [} notation is used to denote the simultaneous application of
a list of functions while scanning the lisr. Goldberg et al. call the
proposed transformation horizonfol loop fusion [GOLD84].

144-

5.2. Transformation by Rules

To describe the translation of aggregate functions more formally,
we introduce four fronrfonnotion rules which summarize the trans-
formation results of the previous subsections. A transformation
rule has the form (11 -L fz) which specifies to replace an occurrence
of expression 11 by expression f2. For our transformation we define
the following rules with fi,fz being functions:

with AGG~EY~o~,,~~,~+,. being equal to

Rule I: Combination Rule We apply Rule IV to derive

Rule II: Tree Rule
(VI beef2 lid) -, (free (Lfl f2) (mapfi lisO)l

Rule III: Fusion Rule

Rule IV: Aggregate-Merge Rule
((1, (w-by,4 /I) merge,4 - (w-mergeAf~))

The first rule allows to combine several aggregate functions which
scan the same list using the same control structure. Rule II reflects
the result of Theorem 1. We can only apply the rule if the condition
of the theorem is satisfied. Rule III combines two loops into one
by applying both functions simultaneously, thus avoiding the creation
of an intermediate list. The last rule replaces the functional com-
bination of agg-byA and merge” by the newly derived function

w-me%eA.

which represents the final result of the rule-based transformation.
The expression defines the following order of operations: first,
convert the list of tuples into runs, then apply sorting and aggre-
gation to each of them. A tree-like computation produces one list
of tuples each of which contains the number of tuples and the
salary sum for each department. Using the definitions of
AGG-BY~,,~.,c~,~~. and the scribe... we may complete the trans-
lation by the same transformation as shown in Subsection 4.1.

To guarantee fast execution we could continue the transformation
of the tree expression into an iterative program based on the
definitions for operators mop and n-ee as described in Subsection 4.2.

We demonstrate the transformation by rules using the SQL query

SELECT AVG(Salary) FROM EMP
GROUP BY Department

6. Conclusion

which computes the average salary for each department in the EMP
relation.

Before we can apply the rules in the given order, we translate the
query into the internal form

(~~ewe-byS,t.,D,p. (~erge_s~rbep, EhfJ’))

In the next step we decompose the the average aggregation into
the aggregate functions sum by&/.,Dep, and cOunfDe,,, followed by
function DIVS,/.,,-~ which divides the sum and the count for each
department value. Using the above definitions for both aggregate
functions and the sort-merge function we obtain the expression

We presented a improvement for the computation of aggregate
functions which we derive by successive transformation by rules.
We showed that independently defined programs for the aggregate
and the sort functions can be translated systematically into a more
efficient program which performs aggregation while sorting
[KLUG82]. We generalize the translation to other aggregate func-
tions as well by introducing a uniform notation which aIlows us to
specify rules for their transformation.

f (W-by&p. adds,/.

In subsection 4.2.1. we compared the computational behavior of
the two programs generated. To demonstrate the advantage of
transformation, one would like to compare all three programs, i.e.
the initial program which performs aggregation after sorting and
the two derived programs, on experimental results. We did not
perform such experiments to compare their performances. However,
the results of Bitton et al. who use the idea of eliminating duplicates
while sorting immediately applies to the computation of aggregates
in rounds [BITT83].

Applying Rule I once yields the expression 7. Acknowledgement

(+x-bm,. Wdso/. odkvrI

Using Rule II and Rule III for the next transformation steps, we
generate

We wish to thank Laura Haas for carefully reading a draft of this
paper. While the first author was a student at Harvard University,
this work was supported by the Office of Naval Research under
grant ONR-N00014-83-K-0770.

-l/15-

Bibliography

[ASTR76]

[BACK781

[BELL841

[BIRD841

[BlTT83]

[BURS77]

[COHEI(O]

[DARL76]

Astrahan, M. et al., SYSTEM R: Relational Approach
to Dafabase Managemenr, ACM Transactions of Da-
tabase Systems 1,2 (June 1976) pp. 97-137.

Backus,J., Can Programming be liberated from the van
Neuman Style? A Functional Style and its Algebra of
Programs, Communications of the ACM 21.8 (August
1978) pp. 613-641.

Bellegarde, F., Rewriting Sysfems on FP Expressions
that Reduce the Number of Sequences fhey Yield, ACM
Symposium on LISP and Functional Programming
(August 1984) pp. 63-73.

Bird, R.S., The Promotion and Accumulaiion Strategies
in Transformational Programming, ACM Transactions
on Programming Languages and Systems 6,4 (October
1984) pp. 487-504.

Bitton, D. and Dewitt, D.J., Duplicufe Record Elimi-
n&ion in Large Data Files, ACM Transactions of Da-
tabase Systems 8.2 (June 1983) pp. 255-265.

Burstall, R,M. and Darlington, J., A Transformufion
System for Developing Recursiw Programs, Journal of
the ACM 24,l (January 1977) pp. 44-67.

Cohen, N.H., Source-to Source Improwmenr of Recur-
siw Programs, PhD Thesis, Harvard University (May
1980).

Dariington, J. and Burstall, R.M., A ‘System which
Automatically Improws Programs, Acta lnformatica 6,l
(January 1976) pp. 41-60.

[FREY85a]

[FREY85b]

[GOLD841

[HUETBO]

[JARK84]

[KLUG82]

[KNUT73]

[STON76]

[WILL821

Freytag, J.C., Translating Rekational Queries info Iter-
ative Programs, PhD Thesis, Harvard University, also
Technical Report TR-14-85 (September 1985).

Freytag, J.C., Rule-Based Tronslofion of Relational
Queries info Ilerotiw Programs, IBM Research Report
RJ 4974; also Proceedings SIGMOD ‘86 Washington,
D.C. (May 1986) (December 1985).

Goldberg, A. and Paige, R., Stream Processing, ACM
Symposium on LISP and Functional Programming
(August 1984) pp, 53-62.

Huet, G., ConJ7uenl Reductions: Abstract Properties and
Applicafions o/ Term rewrifing Systems, Journal of the
ACM 27,4 (October 1980) pp. 797-821.

Jarke, M. and Koch,J., Query Optimizarion in Da/abase
Sysfems, ACM Computing Surveys 16.2 (June 1984).

Klug, A., Access Paths in Use Abe Stottitical Query
Facility, ACM SIGMOD Conference on Management
of Data (1982).

Knuth, D.E., The Art of Computer Programming Vol.
3, Addison Wesley, Reading, MA (1973).

Stonebraker, M. and Wang. E., et al., The Design and
Implemenrafion of INGRES, ACM Transactions of
Database Systems 1,3 (September 1976) pp. 189-222.

Williams, J.H., Nofes on the FP SyLe of Functional
Programming, J.Darlington, P. Henderson, D.A.
Turner, Functional Programming and its Application,
Cambridge University Press (1982) pp. 193-215.

-146-

