Translating Aggregate Queries into Iterative Programs

Johann Christoph Freytag!
IBM Almaden Research Center, San Jose, CA 95120
Nathan Goodman
Kendall Square Research Corp., Cambridge, MA 02139

Abstract

Over the last decade, many techniques for optimizing relational
queries have been developed. However, the optimization of queries
with aggregation has received little attention.

This paper investigates possible improvements for aggregate queries
on groups of tuples. We suggest the use of program transformation
methods to systématically generate efficient iterative programs for
their evaluation. Two transformation steps successively translate a
program, which sorts the relation before applying the aggregate
function, into an iterative program which performs the aggregation
while sorting, thus using less time and space than needed for the
execution of the initial program.

1. Introduction

Many database management systems (DBMSs), such as SYSTEM
R and INGRES, permit the computation of counts, sums, averages
and other aggregate quantities [ASTR76, STONE76]. Aggregation
is usually performed over a set of tuples yielding a singleton value.
We can also partition, or group, tuples of a relation into subsets
according to common values of one or more attributes. The ag-
gregation is then performed over each of the subsets yielding a ser
of singleton values. For example, consider the SQL query:

SELECT SUM(Salary) FROM EMP
GROUP BY Department

on Relation EMP (EMP#, Salary, Department). This query com-
putes the sum of salaries for each department in the EMP relation.
As the number of departments is not known in advance, one
possible evaluation strategy is to sort the relation EMP on department
values before the salary sum for each department is computed by
scanning the sorted relation once.

This processing strategy is not optimal. Klug notices that in many
cases the aggregate computation - or at least part of it - may be
performed while sorting [KLUGS82]. For instance, in the above
example, whenever two tuples are compared during the sort and
they agree in their department values, we can merge them into a

new tuple by adding their salaries. The sort then continues with
the newly generated tuple. Applying this change throughout the
sort, the final result is a relation, sorted on the department values,
with exactly one tuple for each department recording its salary. An
additional scan of the relation to perform aggregation becomes
unnecessary. An additional gain in execution speed results from a
decreasing number of tuples during the sort, thus requiring less
time for sorting and less storage space. Klug suggests a specially
designed sort function which implements the combination of sorting
and aggregation [KLUGS82].

In this paper we derive the suggested improvements for aggregate
functions by methods of program transformation [BACK78,
DARL76, BURS77]. We generate the efficient programs, as de-
scribed above, from initial specifications which independently define
the aggregate function and the sort algorithm.

The transformation consists of two phases. The first phase, which
we call the horizontal transformation phase, transforms the initial
program specifications for sorting and aggregation into the desired
optimal program form. Horizontal transformation manipulates high-
level program specifications which are based on Backus’ FP language
[BACK78]. To guarantee fast execution, the second phase, which
we call the vertical transformation phase, translates the high level
specification into an iterative program in a PASCAL-like notation.

To make the discussion of the transformation more concrete, we
choose one sort algorithm and one aggregate function. To implement
sorting we use the sort-merge algorithm [KNUT73). We demonstrate
all transformation steps using the aggregate function sum__by which
performs the summation of values on groups of tuples. Later we
show how the proposed transformation generalizes to other aggregate
functions as well. ‘

The paper is organized as follows. In the next section we provide
some more motivation for using methods of program transformation
to generate efficient programs for the evaluation of aggregate func-
tions. In Section 3 we introduce the notation for describing the
sort and the aggregate function before Section 4 develops the
transformation steps to generate the improved program. In Section
5 we generalize the transformation of Section 4 to other aggregate
functions by introducing a uniform definition which is better suited
for formal manipulation.

t This research was done while the author was a student at Harvard University,
Cambridge, MA 02138. The work was supported by the Office of Naval
Research under grant ONR-N0O0014-83-K-0770.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copyinﬁ is by permission of
the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.

Proceedings of the Twelfth international Con{erence on Very Large Data Bases Kyoto, August, 1986

—138—

2. Motivation

Query languages for relational DBMSs, such as QUEL {STONE76]
or SQL [ASTR76], permit the user to express database requests in
a clear and understandable form that describes properties of the
requested result without considering aspects of an efficient exe-
cution. Therefore it is the DBMS’s responsibility to derive an
evaluation strategy to compute the query efficiently. ‘The com-
ponent of the DBMS which decides on the strategy is called the
query optimizer. Based on the information about the internal rep-
resentation of the data accessed and the available evaluation strat-
egies, the query optimizer produces a query evaluation plan (QEP).
For example, the existence of indices or information about the
physical order of elements in the relation influences the optimizer’s
choice of either an index-join, a merge-join, or a nested-loop join
as the optimal evaluation strategy for a join operator. Jarke and
Koch give a comprehensive overview on various optimization tech-
niques for relational queries [JARK84].

After its generation by the query optimizer, the QEP has to be
executed against the database to compute the requested result. To
perform this task, many DBMSs face a translation problem since
the QEP most often uses operations on sefs of tuples, while the
execution system performs operations on fuples to ensure an efficient
execution [ASTR76, STONE76]. This gap between the generated
QEP and the query execution system introduces the problem of
mapping QEPs into sequencés of operations for the execution
system. We call this problem the query translation problem
[FREY85a, FREY85b).

In many ways, both translation steps, i.e. optimization and query
translation into operations for a specific execution system, resemble
a specialized program transformation_problem. Generally speaking,
program transformation promises to provide a comprehensive solu-
tion to the problem of producing programs which try to solve
several incompatible goals simultaneously: On the one hand, pro-
grams should be correct and clearly structured, thus allowing easy
modification. On the other hand, one expects them to be executed
efficiently. Using languages like C or PASCAL for implementation
of programs, one is immediately forced to conmsider aspects of
efficiency that are often unrelated to their correctness, natural
structure, and clarity. ‘ '

For this reason, the transformational approach tries to separate
these two concerns by dividing the programming task into two
steps: The first step concentrates on producing programs that are
written as clearly and understandably as possible without considering
efficiency issues. If initially the question of efficiency is completely
ignored, the resulting program might be written very comprehensibly,
but might be highly inefficient or even unexecutable. The second
step then successively transforms programs into more efficient ones
- possibly based on additional information - using methods which
preserve the meaning of the original program. o

In our opinion, these intentions exactly guided the design of query
languages for relational DBMSs where queries are expressed in a
data independent manner. We therefore argue that methods which
have been developed in the area of program transformation may
prove useful for the translation of relational queries. In [FREY85b]
we describe the transformation of algebra-based query specifications
into iterative programs which are executable on a tuple-oriented
query execution system. The transformation inyolves the rule-based
manipulation of recursively defined programs and the replacement
of recursion by iteration both of which were the focus of early
research in program . transformation: [DARL76, BURSS77,
COHESB0].

In 1978 John Backus introduced the FP language which motivated
a new kind of programming [BACK78). Much of the current
research in program transformation has centered around this new
approach {BIRD84, BELL84). Many researchers describe their
transformations in terms of rewriting rules or transformation rules
[HUETS80). These provide a uniform description of the intended
transformation without considering implementation details.

The latter approach to program transformation motivated us to
apply those methods and ideas to the translation of relational
queries. The translation of aggregate functions is a nontrivial ex-
ample to demonstrate several aspects of a rule-based translation.
We also argue that the successive translation of the sort function
and the aggregate function into a more efficient program has several
advantages over a hand-coded program to implement the desired
improvement.

First, independently defined functions for sorting and aggregation
support the design of a modular, high-level interface for query
evaluation. Deriving desirable improvements from the combination
of sorting and aggregation relieves the optimizer from considering
another operation during optimization, thus simplifying the opti-
mizer’s task.

Second, the use of rules allows a simple description of the performed
transformation which may easily lead to an experimental implemen-
tation of a query translation system. Each rule performs a sound
transformation which guarantees that the newly generated program
correctly performs the computation initially specified.

Third, the transformation may be effective even if the aggregate
function is not known to the system in advance. The suggested
transformation could be applied to combine a user provided
function with internally defined processing strategies to guarantee
a more efficient query execution.

Our goal for the translation of functions sort__merge and sum__by
is twofold. On the one hand we would like to use the FP notation
to perform high level transformations. On the other hand we have
to guarantee fast execution of user-submitted queries. To accomplish
both goals, we introduce two kinds of transformation: Horizontal
transformation and vertical transformation. During the first transfor-
mation we manipulate programs, specified in an FP-like notation,
to generate the program which performs aggregation while sorting.
The high-level specification simplifies the manipulation of functions
and control structures without considering details of their imple-
mentation. Vertical transformation then translates the high level
program descnptlon into an iterative program to guarantee fast
execution.

3. The Definiti‘(;)n of
Sort_Merge and Sum_By

This section defines the functions sort__merge and sum__by. For
the ‘horizontal transformation we describe the function sort__merge
in an FP-like notation using the 'three¢ operators map, tree, and L.
Operators map and tree specify two different control structures.
They determine how to access sets of tuples during sorting. During
the transformation we create new functions by combining existing
ones. We therefore introduce operator L to express the combination
of functions. Throughout this paper we use /lists instead of relations
to represent sets of tuples. We prefer lists over relations to avoid
confusion-and to guarantee notational uniformity.

—139—

Operator map is motivated by the corresponding Lisp operator
which denotes a loop-like control structure without specifying its
exact implementation. The meaning of the expression (map f list)
with f being a function of arity one is defined as " applying
function f to each element in the list." For example, consider f to
be the square function sqr and list to be the list <1, 5, 3>, then
{map sqr list) returns the three element list <1, 25, 9> without
specifying the order in which we apply function sqr to the initial
list. Intuitively, operator map specifies to access the tuple list by
applying function f to each tuple individually.

In the above example we introduced a list of integers. However,
we may also use lists containing other kinds of elements. For the
definition of sort__merge the elements of a list can be lists of
elements. For example, if list. consists of two lists <5, 1, 3> and
<2, 6, 3>, and if sort denotes the sort function, then (map sort list)
returns a list of sorted lists

<<1,3, 5>, <2, 3, 6>>

by applying function sort to each elemeht, a list of integers, in the
original list.

For the FP-like specification of the sort-merge algorithm, we need
to introduce another control structure operator, called tree, which
denotes a "divide and conquer” control structure. {BACK78,
WILLS82].. (tree flist). with f being a function of arity two divides
a list recursively into. a left and-a right part until the list contains
one element. On-each level of the recursion / is applied to the
results returned form the previous level of recursion. For example,
let + denote the addition function and let.list be <1, 5, 7, 4>,
then (tree + list) performs the computation as shown-in Figure 1
returning the expected result of .17. :

/N

/NI
1 57 .4

Figure 1: Computation tree for (free.+ <1,5,7,4>)

Formally, tree is defined by

list , if the list has one element .

(ree flist) = { (f (tree £ i list)) (tree f (g list)))

where If and rg are functions which divide a list into a left and a
right part of (almost) equal length, i.e.

(f<e, oy ea>) = <ey, o) én/2'>“
(rg<eq, ..., e,>) =< en/241, o L en>

The third operator, L, is used for the combination of functions
during the transformation. Informally, let f; and f; be two functions
of arity m and n, respectively, then (L f1 f) denotes the combination
(fi 2 X1 ... Xg) 2 ... ym) of both functions substituting fz for f1's
first parameter.

We use the operators map and tree to define the sort-merge algorithm
which performs sorting as follows [KNUT73). During the first
phase a list of tuples is divided into runs, i.e. tuples lists of equal
length. Each run is sorted before starting the merge-phase. This
phase begins with pairs of sorted runs that are merged into one

sorted run. Each subsequent phase merges pairs of runs, produced
in the previous phase, into a sorted new run which is twice as long
as the input runs. Figure 2 shows an example of the merge phase.

<1,2,3,4,5,6,7,8,9,10,11,12>

merge
/ \

/N
<1,3,6,8,9,11> <2,4,5,7,10,12>
: merge merge

/ \ / N\

/ \ / \
<1,6,9> <3,8,11> <5,7,12> <2,4,10>

Figure 2: Sort-Merge Computation Tree

The tree operator exactly resembles the computational behavior
performed during the second phase. According to the explanation
we define the merge-sort (merge__sort4 list) by the expression

(tree merge (map sortq (convert list)))

where function convert converts a list of elements into runs, i.e. a
list of tuple lists. Those runs are subsequently sorted on values
of attribute 4 as specmed by (map sorty list) before the merge
phase begins. Whenever merge is applied to two sorted lists, the
result is a sorted list consisting of elementsy of both inputs. The
"tree-like" application of merge uitimately returns one sorted run
of elements.

For'a completé definition of the mérge-sort we need to specify
functions sort, merge, and convert. As function convert is not im-
portant for the fater transformation we do not provxde a detalled
definition. We define’ functlon (sonA list) by another tree expressmn
(tree merge4 hst) which specifies to recurswe]y split the tuple list
into a left and a right part before merging them back again, based
on the A values of the mdmdual tuples. With the definitions of
merge_ . sorty and sorty it remains to define function merge4 Which
we could 1mplement by a PASCAL-like program. However, for
clarity and ease of mampulatlon we ‘prefer a recursive definition
in a Lisp-like notation which uses the following operations on Tists2:

(first list)
" ‘returns the first element of the list.

(rest fist)
returns a new list ‘by removmg the first element of the list.

empty - »
‘returns the empty list

(out ele list)) o
creates a new list whose first element ele is followed by all
elements in list.

(empty? list)
evaluates to true if the list is empty and to false if list is an
expression of the form (out ele list).

To define program merge4 we propose a small functional language
in a Lisp-like notation which is well suited for formal manipulation.
We shall describe the target language informally. The language is

2 These functions resemble the well known Lisp functions car, cdr, (), cons, and
nult?, respectively.

—140—

based on expressions. An expression is either a variable, a function
expression, or a conditional expression. A function expression has
the form (/7 1,...t,), where f is a function symbol and ;, i=1,...,n
are expressions called actual parameters. A conditional expression
has the form (if t; 15 13), where 1y, 2,13 are expressions. If ¢ eval-
uates to true, then the value of # is the value of the expression,
otherwise it is the value of #;.

We define the function (mergeyq /j b) which merges two lists /y, lp,
sorted on attribute A, as follows. Let gry? and eg4? be two
functions comparing two elements ey, e;. If the .4 value of ¢ is
greater (equal) than the A value of e, then the functions return
true, otherwise they return false:

(if (empty? i)
(if (empty?) I,
(if (gr4? (first y) (first Ip))
(out (first b)) (mergey Iy (rest 1))
(if (egq? (first 1) (firsth))
(out (first b) (merge4 1y (rest b)))
(out (first) (merge4 (rest I}) K))))))

The program for (mergey Iy b) first checks if one of the lists is
empty. If so, either /) or f is returned. If both-lists have at least

one element, those are compared on the values of A. If the A4 value

of the first element in /, is less than or equal to the A4 value of
the first element in /j, we output the first element of /, and continue
the merge recursively after having removed the first element from
). In case the A value of the first element in {; is less, that element

is returned followed: by all elements resulting from the recursive .

call (mergeq (restl)) .b). -

Similarly, we define the aggregate function (sum__byg 4 ;) which
computes the sum of the B values for the set of tuples having the
same A values. To compute the result correctly, sum__byp 4 expects
an input list which is sorted on the A values. Its. definition uses
the function (addpe;e;) which adds the B values -of e¢; and e;,
creating a new tuple <by + by,a> with ¢ = <b;, a>.
(sum__byg 4 I) is defined by the expression e)

(if (empty?) *empiy*
(sump 4 (first Iy) (rest 1))

where (surig 4 ele 11} is defined by

(if (empty? 1) (out ele Iy)
(if (eqq? ele (first 1))
(sump 4 (addp ele (first 1)) (rest 1))
(out ele (sump 4 (first It) (rest [)))))

If /y is not empty, sum__byp 4 calls the two parameter function
sump 4. The first parameter serves as.an "accumulator" for summing .

up the B values for the same A value. If a new A value is
encountered, the "accumulated" element is returned followed by
all elements resulting from the recursive call to function sumg 4.

4. The Transformation of
Sort_Merge and Sum_ By

Based on the-definitions of the previous section, this section de-
scribes the transformation of the QEP

(sum__byp 4 (merge__sort list))

into an executable program. The operations, specified by this QEP,
are to first sort the list based on values of attribute A4 before
applying the aggregate function sum__byp 4 which computes the .
same of B values for each 4 value in the list. We carry out the
transformation in two phases. First, horizontal transformation per-
forms structural manipulation using the tree notation for the merge-
sort function. We show how the transformation intertwines both
functions yielding a program which computes the aggregate function
while sorting. Although the tree notation is well suited for the
transformational purposes, its recursive nature does not guarantee
an efficient execution. For this reason the vertical transformation
replaces the "tree recursion' by iteration. We present two trans-
formations into iterative programs which differ in their computa-
tional behavior. The first program generated maintains a tree-
structured computation; the second one resembles a left linear
computation tree. We shall argue that both translation schemes
can guarantee an efficient execution depending on the function
which is performed during iteration.

During horizontal transformation sum__byg 4 and merge,4 are com-
bined by operator L. To translate their combination into an iterative
program during vertical transformation, we generate the new func-
tion sum__mergeg 4 which performs merging and aggregation si-
multaneously. The recursive form of the new function immediately
leads to an iterative program form.

4.1. Horizontal Transformation

The horizontal transformation of
(sum__byp 4 (merge__sort, list))

is based on the following.theorem which provides a sufficient
condition for distributing a function fj over the tree operator.

Theorem 1:

Let f and f; be two functions and let /j, h, /5 be lists. If

Ni(xhhR) =i h) (1 H))

then

(fi (tree fo B)) = (tree (Lfy f2) (map fi b))

The inductive proof of the theorem can be found in [FREY85a}.
Intuitively, the condition of the theorem requires f; and /3 to be
"almost" -independent. Since the two functions do not commute
with each other, f; follows each application of f; in a tree-like
computation. : :)

To apply Theorem 1 to the combination of functions
(sum__byp 4 (merge__sort4 list)), which extends to :

(sum__byg 4 (tree merge, (map sorty (convert lis1))))

by the definition of merge__sort4, we need to show that functions
sum__byp 4 and merge, satisfy the condition of the above theorem.
Notice, that the input to both, mergeqand sum__byg 4, are lists
sorted on attribute A. Informally, if merge4 is applied first, the
result is a sorted list with the same tuples as in the two input lists.
Applying sum__byp 4 yields a sorted list containing one tuple for
each value of A recording the sum of A’s B values.

—141-

On the other hand, if we first apply sum __byg 4 to both sorted
lists I, /;, we obtain two sorted lists /'), 5, each containing one
tuple for each A value recording the sum of all B values. Applying
function mergey to Iy and I'sresults in a sorted list containing at
most two successive tuples for each A value. Applying the aggregate
function again yields the same aggregated list as for the first case.

As sum__byp 4 and merge, satisfy the condition, we can apply the
theorem to the above expression, thus yielding the expression

(tree (L sum__byp 4 merge,)
(map sum__byg 4 (map sort4 (convert list))))

The operations specified by the nested subexpression
(map sum__byg 4...) are to sort all runs before applying the aggregate
function sum__byg 4. However, we can avoid scanning the list of
runs twice by performing the aggregate operation immediately after
sorting the run. We therefore fold the nested map expressions into
one map expression combining the sort and the aggregate function
by operator L: ‘

(tree (L sum__byp 4 merge,)
(map (L sum__byp 4 soriy) (convert list)))

which represents the first result of horizontal transformation. The
expression determines to first convert a list of tuples into runs
before applying the sort and aggregation function to each individual
run. Finally, all runs are merged and aggregated using a tree-like
computation. i g . - :

We continue the horizontal transformation on the combination of
functions

(L sum__byg 4 sorty)

By the definitiofis of sorty and L in Section 3, we rewrite the
combination into the expression ’

(sum_byg 4 (tree merge4 list))

which allows us to apply Theorem 1 again. The fesul(ing expression
is

(tree (L sum__byg 4 merge,) (map sum__byg 4 list))

As the application of sum__byg 4 to each tuple of the run is
superfluous, the previous expréssion reduces to

(tree (L sum__byg 4 merge,) list)

which constitutes the second result of the horizontal transformation.
As each merge is immediately followed by the aggregate function
the final list of tuples consists of ope tuple for each 4 value
recording the sum of its B values,

We may now combine both expressions by substituting the latter
for (L sum__byg 4 sort4) into the former yielding the final expression
of horizontal transformation:

(tree (L sum_byg 4 merge,)
(map (tree (sum_byp _AV mergeq)) (convert list)))

4.2. Vertical Transformation

Since we are concerned with an fast execution of the programs
which we generated in the previous subsection, we suggest to
transform these high-level program specifications into iterative pro-
grams. The final expressions resulting from horizontal transforma-
tion show that we have to develop transformations for the tree
operator, the map operator and the combination of functions merge,4
and sum_byg 4. Operator map simply translates into a loop. We
develop a transformation for the more complex free operator and
the function combination in the next two subsections. Surprisingly,
we can describe both transformations independently. Since the
performed transformations are guite complex, we represent only
the final iterative programs without going into the details of the
transformation itself. The interested reader is referred to
[FREY85al.

4.2.1. Transforming the Tree Operator into
lteration

At the beginning of this section we mentioned that the control
structure operator free has a natural recursive implementation. For
fast execution we would like to replace the '"tree recursion” by
iteration. We derive two different iterative programs with different
computational behavior [FREY85a). The first iterative program
maintains the tree structure by performing the desired computation
in rounds, thus simulating the tree specification in a bottom up
manner. Figure 3 shows the computational behavior of the first
iterative program in case of f being the merge function.

2nd merge o ROUND

____/ _______ \-_..-
/- \
______ /____-..-____\..--___ .
1st merge merge ROUND
=/ \m o [===== \-
/ \ / \

<1,6,9> <3,8,11> <5,7,12> <2,4,10>

Figure 3: The Bottom-Up Computation in Rounds

During each round function f is applied to runs of the same length
before the next round is encountered. If f is the merge function,
then the iterative program exactly performis the computation as
shown in Figure 2. '

In contrast to the first iterative program the second one we generate
performs a computation which resembles a left linear computation
tree. We show the computation tree in Figure 4 for f being the
merge function.

~142—

merge
/ \
/ \
merge \
/ \ \
/ \ \
merge \ \
/ \ \ \
/ \ \ \
<1,6,9> <3,8,11> <5,7,12> <2,4,10>

Figure 4: The Left Linear Computation

During each iteration function f is applied to one initial run and
the "intermediate" result which has been accumulated so far. If f
is the merge function, then the iterative program successively merges
each run with a tuple list whose length increases with every merge.
Clearly, the transformation has changed the n log n complexity of
the initial tree specification into a program which has a n2 com-
plexity with n being the initial number of .tuples.

Despite the disadvantage in this example there may exist. cases
where one would favor the second transformation. To justify. our
claim we examine in more detail the representation of tuple lists
by relations in database systems. Usually, relations are stored on
secondary storage. The DBMS needs to access relations in memory
to perform operations necessary for the query evaluation. For this
purpose, the systems maintains a buffer which keeps part of the
relations in memory. Its contents is changed frequently by reading
from and. writing to secondary storage whenever the DBMS has
finished its operations on one part and needs buffer space for
processing other 'parts. As read and write operations are time
consuming, they often dominate the overall query evaluation time.
Decreasing the number of read and write operations usually im-
proves the overall processing time.

Suppose that the buffer is large enough to’store three initial runs.
Let f be the combination of functions sum__byg 4 and merge,.
Furthermore, assume that the new run resulting from merging and
applying aggregation has (approximately) the same length as the
initial two input runs. The output run then still fits into the
available buffer space. If the condition holds for every application
of f, the second transformation turns out to be superior as far as
read and write operations are concerned. During the execution of
the second iterative program the intermediate run always resides
in memory and is immediately available as input for the next
application 'of .sum__byp 5 and merge,. In contrast, the iterative

program generated by the first transformation writes. out each run .

created in round i before reading it again in round i+ 1. More
formally, if there are n initial runs which need to be processed by
sum__byg 4 and merge,, the first iterative program initiates 2n — 1
read and n — 1 write operations? under the above assumptions. The
program generated by the second transformation uses only n read
operations thus evaluating the aggregate much faster.

The assumptions made above are realistic for the computation of
aggregates. Often, the number of values, which determine the
partition of tuples into subsets, is much smaller than the number
of tuples in the relation. Consider the example introduced in the
introduction of this paper. Assume that the relation EMP contains
10,000 tuples describing employees in 50 different departments. If
each initial run contains more than 50 tuples and if it fits into one
buffer block, the above conditions 'are satisfied. The initial sort,
followed by the aggregate function, results in at most 50 tuples
recording the partial sum for each department existing-in that run.
If the subsequent phase performs merging and aggregation using
the second iterative program the execution resembles a computation

—143—

with one "bucket" for each department always residing in memory.

4.2.2. Transforming Functions Sum_by and
Merge into Iteration

The final expressions resulting from horizontal transformation con-
tain the combination of functions

(L sum__byp 4. merge,)

Using the definition of L of Section 2, we can rewrite the expres-
sion into the more familiar form

(sum__byg 4 (mergeq -1 b))

Based on the recursive definitions of both functions, the iterative
program would consist of two successive loops, one performing the
sort, the other performing aggregation. To avoid the intermediate
sorted list, we would like to-generate a program which consists of
one loop to perform sorting and aggregation at the same time.
Based on recursive definition functions sum__byp 4 and merge,, we
show in [FREY85a] how to generate a new function sum__mergep 4
from the initial function definitions. A nontrivial, laborious trans-
formation yields the new function sum__mergeg 4 which performs
aggregation and sorting simultaneously. (sum__mergep 4 I})
which has the following recursive form:

(if (empty? 1)
(@if (empty?) |y
(if (gra? (first hy) (first b))
(our (first) (sum_mergeA 1l (rest)))
(if (eq? (first It) (first b))
(out (add g (first ly) (first 72)) (sum__merge 1 (rest i)))
(out (first }) (sum__merge, (rest 1)))))))

The sum__mergep 4 program differs from the mergep program only
in case the A4 values of the first elements in both lists are the same.
The newly generated program performs the aggregation by function
addp instead of returning one tuple. Using the transformation
schemes in [BURS77) or [COHE80), the recursive form of the new
program immediately leads to the following iterative program:

result := *empty*;
WHILE not (empty? /;) and not (empty? 4) DO
IF (gr? (first Iy) (first b)) THEN
result := (out (first L) result); b := (rest h);
ELSE
IF (eq4? (first &) (first b)) THEN
result := (out (add, (first /y) (first)) result);
Iy := (rest I}); b := (rest b);
ELSE ‘
result := (out (first /) result); /; := (rest }});
END__DO; . :

IF (empty? ;) THEN
result := (out /4 result)

ELSE
result :

it

(out /; result);

Comparing both forms for function merge _ byp 4, the reader may

3 One may reduce the number of read and write operations slightly for the
computation in rounds. However, the computation in rounds will never perform
as well as the second iterative program.

convince him(her)self that the recursive form is much more suited
for formal manipulation than the iterative version.

5. Generalization of
Transformation

In the previous section we demonstrated horizontal and vertical
transformation using the aggregate function sum__byg 4. In the
following subsection we extend the transformation to other aggregate
functions by introducing two new control structure operators. These
are used to redefine all aggregate functions. The second subsection
then summarizes all transformations by defining four transformation
rules. We apply them to a final example.

5.1. Redefmltlon of Aggregate
Functions '

The major question is what needs to-be changed for the transfor-

mation of other aggregate functions. Clearly, the horizontal trans-

formation rests -on the condition of Theorem 1. Do we have to

repeat vertical transformation for every aggregate function sepa--

rately? The analysis of other aggregate functions, such as "the
minimum (maximum) B value for each value of attribute 4" or
"number of tuples having the same A4 value", reveals that only: the
functional part of the aggregation changes, that is the function
applied while scanning. the list of tuples. The control structure
that dictates how fo scan the list of elements, alwayq remains the
same. This observation leads to the definition of a new control
structure operator, agg_ by4, which clearly separates_the two aspects.
‘Informally, (agg ~ byg f11}) with f; being a function of arity two
and /j being a list implements a computation which "accumulates
the final‘result by applying function f; to 9ub’Sequer’1t elements in

the list /j as’long as they have the same A values More formally; -
: e

we defirie funcuon (agg_bya' fi 1) to'be

(if (empty?)’ ‘emm'
(agga fi Uirst 1)) (rest 1))

where (aggy f1ele) is deﬁne_d by

(if (empty? I}) (out.ele 1))
(if (eqq? ele (first 1))
(agga f1 (1 ele (first) (rest 1))
(outele (aggy f1 (first 1)) (rest))N))

The only difference between functions agg_ byp 4 and sum__byp 4
is that the former 'has an additional parameter spécifying the func-
tion f; which is applied during the scan of I;.

Similarly, we generalize (sum__mergeg 4 Iy h) by introducing‘funé:-
tion)

(agg__mergeq f1 It)

which applies function fj to any two elements with the same A
values while merging. This generalization again distinguishes be-
tween the control structure, used to scan the list of tuples, and the
function performed during the scan. We define
(agg__mergeq f1 Iy 2} by

(if (empty? It)
(if (empty?) I
(if (grq? (first 1)) (first b))

(out (first) (agg__mergey f1 I (rest i)))

(if (egq? (first Iy) (first b))
(out (fy (first I) (first i))

(agg__mergey f1 1 (rest 1))

(out (first hy) (agg__mergey f1 (restit) h)))))

In [FREY85a] we show that the combination of functions
(agg__bya f1 (mergeq I 1)) translates into function
(agg__merge, fi I}) by exactly the same transformation as for
the specialized case (sum__byg 4 (mergeq 11 b)).

Using these more genéral control structure operators, we redefine
(sum__byp 4 list) by

(agg__byu addp list)

where addp is the addition function specialized to add the B values
of two elements in the list. The new definition of sum_ byg 4
nicely shows the distinct use of attributes 4 and B. Values of
attribute A distinguish the different subsets on which to perform
the aggregation. Attributé B determines which values to aggregate
on. no : :

We may define other aggregate functions in a similar way. For
instance, consider the functions (max__byg 4 list) and
(min byg 4 list), which compute the maximum and minimum B
value for each A value in the list, respectively. We redefine both
functions by (agg byA maxpg list) and (agg byy4 ming list) with
functions’ maxp and ming returmng the tuple wnth the larger and
smaﬂer B value, respectively.

The aggregate function (county list), which counts the number of
elements for each 4 value in the list is implemented by

(agg_.by add&m list)

where CNT'is a new attribute whose lmual value is 1. Similarly,
dupllcate elimmauon is defined by

(agg__bva 'oné list)

with A bemg the list of all key attributes and wuh function
(one t) t) returmng either -tuple.

The aggregate function (averag"e_by,, 4 list), which computes the’
average B value for each A value, needs some more attention. As
the average ‘computation is based on couriting and summation, we
need to compute the number of tuples for each A value and the
sum of B valués for each A 'value by (sum__byp 4 list) and
(count__bycnt 4 list) before dividing the sum by the count value.

If we rewrite both functions by their aggregate definitions
(agg__by4 addp list) and (agg__bya addcy list) we recognize that
both functions access the same list using the same control structure.

Instead of accessing the list twice, we may apply both aggregate
functions in "parallel” during one scan, thus leading to the expression

(agg__by4 {addg addcyt} list)

The { } notation is used to denote the simuitaneous application of
a list of functions while scanning the list. Goldberg et al. call the
proposed transformation: horizontal loop fusion [GOLD84]).

—144-

5.2. Transformation by Rules

To describe the translation of aggregate functions more formally,
we introduce four transformation rules which summarize the trans-
formation results of the previous subsections. A transformation
rule has the form (#; -+ ;) which specifies to replace an occurrence
of expression 71 by expression #;. For our transformation we define
the following rules with fj, f> being functions:

Rule I: Combination Rule
({(agg__bya f1list) (agg__bya f2lis0)} ~
(agg__byq i1 fo} list)

Rule II: Tree Rule
((f1 (tree f2 list)) = (tree (Lf; f2) (map fi list)))

Rule I1I: Fusion Rule
((map fy (map f, list)) ~ (map (L fy f2) list))

Rule TV: Aggregate-Merge Rule
((L (agg_bya /1) mergeq) + (agg__mergey f1))

The first rule allows to combine several aggregate functions which
scan the same list using the same control structure. Rule I reflects
the result of Theorem 1. We can only apply the rule if the condition
of the theorem is satisfied. Rule IIl combines two loops into one
by applying both functions simultaneously, thus avoiding the creation
of an intermediate list. The last rule replaces the functional com-
bination of agg_ by4 and merges by the newly derived function

agg.__mergey.
We demonstrate the transformation by rules using the SQL query

SELECT AVG(Salary) FROM EMP
GROUP BY Department

which computes the average salary for each department in the EMP
relation.

Before we can apply the rules in the given order, we translate the
query into the internal form

(average__bysar. pep. (merge__sortpe, EMP))

In the next step we decompose the the average aggregation into
the aggregate functions sum__bysas pep. and countpg, followed by
function DIVsy cnr which divides the sum and the count for each
department value. Using the above definitions for both aggregate
functions and the sort__merge function we obtain the expression

(DIVsq cNT
{(agg__bypep. adds,,.
(tree mergep,p. (map sortpe, (convert EMP))))
(agg__bypep. addchr.
(tree mergepep. (map sortpe, (convert EMP)))) 1)

Applying Rule I once yields the expression

(DIVsar cnr
(agg__bypep ladds,; addcyt}
(tree mergepep. (map sortpe,. (convert EMP)))))

Using Rule II and Rule HI for the next transformation steps, we
generate

(DIVsal,cnr
(tree (L AGG__BYsa1,,CNT,Dep. Mergepep.)
(map (L AGG__BYsa1 CNT,Dep. $0rtpep) (convert EMP))))

with AGG__BYs, cnt,pep. being equal to

(agg__bypep faddsy addcyy})

We apply Rule IV to derive

(DIVsar,cNT
(tree (agg__mergepep fadds,i addcyt})
(map (L AGG__BYsal..CNT,Dep. $0TiDep.) (convert EMP))))

which represents the final result of the rule-based transformation.
The expression defines the following order of operations: first,
convert the list of tuples into runs, then apply sorting and aggre-
gation to each of them. A tree-like computation produces one list
of tuples each of which contains the¢ number of tuples and the
salary sum for each department. Using the definitions of
AGG_BYsa1,cNT.Dep. and the sortp,, , we may complete the trans-
lation by the same transformation as shown in Subsection 4.1.

To guarantee fast execution we could continue the transformation
of the tree expression into an iterative program based on the
definitions for operators map and free as described in Subsection 4.2.

6. Conclusion

We presented a improvement for the computation of aggregate
functions which we derive by successive transformation by rules.
We showed that independently defined programs for the aggregate
and the sort functions can be translated systematically into a more
efficient program which performs aggregation while sorting
[KLUGS82]. We generalize the translation to other aggregate func-
tions as well by introducing a uniform notation which allows us to
specify rules for their transformation.

In subsection 4.2.1. we compared the computational behavior of
the two programs generated. To demonstrate the advantage of
transformation, one would like to compare all three programs, i.e.
the initial program which performs aggregation after sorting and
the two derived programs, on experimental results. We did not
perform such experiments to compare their performances. However,
the results of Bitton et al. who use the idea of eliminating duplicates
while sorting immediately applies to the computation of aggregates
in rounds [BITT83].

7. Acknowledgement

We wish to thank Laura Haas for carefully reading a draft of this
paper. While the first author was a student at Harvard University,
this work was supported by the Office of Naval Research under
grant ONR-N00014-83-K-0770.

—145~-

Bibliography

[ASTR76]

[BACK78]

[BELLS84]

[BIRD84]

[BITT83]

[BURS77]

[COHES80]

[DARL76]

Astrahan, M. et al., SYSTEM R: Relational Approach
to Database Management, ACM Transactions of Da-
tabase Systems 1,2 (June 1976) pp. 97-137.

Backus,J., Can Programming be liberated from the von
Neuman Style? A Functional Style and its Algebra of
Programs, Communications of the ACM 21,8 (August
1978) pp. 613-641.

Bellegarde, F., Rewriting Systems on FP Expressions
that Reduce the Number of Sequences they Yield, ACM
Symposium on LISP and Functional Programming
(August 1984) pp. 63-73.

Bird, R.S., The Promotion and Accumulation Strategies
in Transformational Programming, ACM Transactions
on Programming Languages and Systems 6,4 (October
1984) pp. 487-504. -

Bitton, D. and DeWitt, D.J., Duplicate Record Elimi-
nation in Large Data Files, ACM Transactions of Da-
tabase Systems 8,2 (June 1983) pp. 255-265.

Burstall, R,M. and Darlington, J., 4 Transformation
System for Developing Recursive Programs, Journal of
the ACM 24,1 (January 1977) pp. 44-67.

Cohen, N.H., Source-to Source Improvement of Recur-
sive Programs, PhD Thesis, Harvard University (May
1980).

Darlington, J. and Burstall, R.M., 4 iSj:rtem which
Automatically Improves Programs, Acta Informatica 6,1
(January 1976) pp. 41-60.

[FREY85a]

[FREY85b]

[GOLD84]

[HUET80]

[JARKS84]

[KLUGS82]

[KNUT73]

[STON76]

[WILL82]

—146—

Freytag, J.C., Translating Relational Queries into Iter-
ative Programs, PhD Thesis, Harvard University, also
Technical Report TR-14-85 (September 1985).

Freytag, 1.C., Rule-Based Translation of Relational
Queries into Iterative Programs, IBM Research Report
RJ 4974; also Proceedings SIGMOD ’86 Washington,
D.C. (May 1986) (December 1985).

Goldberg, A. and Paige, R., Stream Processing, ACM
Symposium on LISP and Functional Programming
(August 1984) pp. 53-62.

Huet, G., Confluent Reductions: Abstract Properties and
Applications of Term rewriting Systems, Journal of the
ACM 27,4 (October 1980) pp. 797-821.

Jarke, M. and Koch,J., Query Optimization in Database
Systems, ACM Computing Surveys 16,2 (June 1984).

Klug, A., Access Paths in the Abe Statistical Query
Facility, ACM SIGMOD Conference on Management
of Data (1982).

Knuth, D.E., The Art of Computer Programming Vol.
3, Addison Wesley, Reading, MA (1973).

Stonebraker, M. and Wong, E., et al., The Design and
Implementation of INGRES, ACM Transactions of
Database Systems 1,3 (September 1976) pp. 189-222.

Williams, J.H., Notes on the FP Style of Functional
Programming, J.Darlington, P. Henderson, D.A.
Turner, Functional Programming and its Application,
Cambridge University Press (1982) pp. 193-215.

