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Abstract 
State-of-the-art optimization approaches for relational 
database systems, e.g., those used in systems such as OBE, 
SQL/DS, and commercial INGRES. when used for queries in 
non-traditional database applications, suffer from two problems. 
First, the time complexity of their optimization algorithms, being 
combinatoric, is exponential in the number of relations to be 
joined in the query. Their cost is therefore prohibitive in situa- 
tions such as deductive databases and logic oriented languages 
for knowledge bases, where hundreds of joins may be required. 
The second problem with the traditional approaches is that, al- 
beit effective in their specific domain, it is not clear whether they 
can be generalized to different scenarios (e.g. parallel evalua- 
tion) since they lack a formal model to define the assumptions 
and critical factors on which their valiclity depends. This paper 
proposes a solution to these problems by presenting (i) a formal 
model and a precise statement of the optimization problem that 
delineates the assumptions and limitations of the previous ap- 
proaches, and (ii) a quadratic-tinie algorithm th& determines 
the optimum join order for acyclic queries. The approach 
proposed is robust; in particular, it is shown that it remains 
heuristically effective for cyclic queries as well. 

1. Introduction: 

In traditional database applications, queries requiring 
more than 1.0 joins are considered improbable. However, 
deductive databases [Kellog 81, Gallaire 841, or logic 
based Ian uages for knowledge applications [Ullman 85, 
Tsur 85 , typically contain hundreds of rules. Trans- f 
lated into relational algebra, these correspond to expres- 
sions (similar to database queries) with hundreds (if not 
thousands) of joins [Zaniolo 85, Kellog 8.51; these num- 
bers underscore the need for efficient optimization algo- 
rithm. 

Optimization of database queries has been extensively 
investigated. Many heuristics have been proposed and 
are still being proposed. For instance, pushing selects, 
preprocessing relations (e.g. sorting), avoiding duplica- 
tion of work due to common subexpressions, composing 
a sequence of operations on a single relation into one 
operation, etc. are a few that are well known. These 
heuristics, though invaluable in the proper context, 
rarely take into account the global picture. That is, they 
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do not individually present a framework in which the 
choices are made; e.g. in what order the heuristics are to 
be used, under what circumstances are they useful, how 
are the conflicting heuristics resolved, how to compare 
them etc. A method, that is both practical as well as 
comprehensive, was proposed in [Sellinger 791 in which 
all possible join orders are, in effect, compared to find 
the optimal execution. The proposed algorithm is func- 
tionally equivalent to an exhaustive search, in which, the 
different alternatives are compared for each element of 
the search space. In our opinion, an important property 
of this approach is that the search space is defined inde- 
pendent of the set of heuristics used in the optimization 
algorithm. As a consequence, this approach provides a 
systematic framework in which the choices for the above 
heuristics (and for any more that may be found to be 
interesting for optimization) can be made in a uniform 
way. 

Although this approach has been proven effective in 
many existing systems (e.g. SQL/D& Commercial 
INGRES, OBE, etc.), there are many questions that are 
unanswered. The algorithm ihcludes a multitude of 
parameters (e.g. cost functions, approximations, etc.) 
whose relevance/effects on the result are very difficult to 
comprehend. The ramifications of the assumptions are 
not easily isolatable. Further, the combinatoric behavior 
of the algorithm is alarming. For ti given query on N 
relations, the worst case time complexity of the algo- 
rithm is O(N!) (or O(2N) if the space requirement is in- 
creased exponentially [Sell 791). This may be acceptable 
for less than 10 relations, but to optimize a query with 
100 relations this approach is prohibitively expensive. 

In this paper we present a model and a formal statement 
of the problem of optimization. In so doing, we delineate 
the assumptions and ramifications on the results of the 
optimizer. The model enables us to isolate the various 
parameters and understand their utility in an optimiza- 
tion algorithm and further indicate the important areas 
of research to be pursued. We import the polynomial 
time optimization algorithm for tree queries, proposed 
by [Ibaraki 841 for a restricted case of query processing, 
to the more general case discussed in this paper. We 
also improve this algorithm to present an O(N2) solution, 
where N is the number of relations in the query. This, 
unlike the exponential algorithm presented in [Sellinger 
791, is capable of handling queries with large number of 
relations. Finally we extend this algorithm to include 
cyclic queries. 

Before we discuss the outline of this paper, we would 
like to emphasize a practical difficulty in designingiim- 
plementing query optimizers. The spectrum of execu- 
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tions that are possible for a given query is vast and the 
worst execution may be many orders of magnitude 
worse than a reasonable, (not necessarily the best) ex- 
ecution. Further, the input to such optimizers (e.g. es- 
timates of the selectivities, cardinalities, etc.) are not 
very accurate for reasons of efficient maintenance of 
these values. Lastly, even when supplied with accurate 
input, the problem of optimization is quite difficult (in 
fact known to be NP-hard), so an approximate algo- 
rithm may be the only feasible alternative. Therefore, it 
is generally accepted by most designers of optimizers, 
that while the coal of an ootimizer is to obtain the 
“best” execution: it is even more important to avoid the 
worst cases. Thus, we propound the following maxim: 
For an optimizer, it is more important to avoid the worst ex- 
ecutions than to obtain the best execution. The obvious 
drawback of this maxim is that it defines what not to do 
but fails to state what an ootimizer should do. We shall -r 

still seek to obtain the best execution at all times in an 
optimizer; but whenever we are not sure of optimality, 
we shall at least ensure the avoidance of the worst cases, 

In Section 2 we set up the terminology. The model is 
described in Section 3. We also define a notion of rooted 
join tree for a query, which is used to develop the 
strategy. Intuitively, the root is the first relation to be 
joined in any resulting execution. In Section 4, we im- 
port/improve on the polynomial time algorithm 
presented in [Ibaraki 841. First, the algorithm is 
presented that optimizes a rooted join tree. Then, all 
possible choices for root are investigated to compute the 
best,execution for tree queries. The specific assumptions 
needed in this section are clearly listed in the beginning 
of this section. All of these assumptions are relaxed in 
Section 5. One important assumption that is used till 
Section 5, is that the database is memory resident - i.e. 
there is no paging to disk during the execution. Most 
knowledge bases of today satisfy this property and we do 
not consider this to be a restrictive assumption. But, as 
discussed in Section 5, this method is also applicable to 
the case of disk resident databases. Although the con- 
tributions of the model are put forth along with the 
development of the model, they are not consolidated in 
any one section. In conclusion, we briefly summarize 
these contributions and propose some interesting direc- 
tions for future research. 

2. Terminology: 

h.t RI, RI, . . . . . R, be the relations defining the database 
DE, and without loss of generality, let us assume that all 
of these relations are referenced in a given query Q. A 
query Q = (QL,TL) on the database DB, is a non- 
procedural request for extracting information from the 
DB: 

QPB) = ‘T~~[C‘Q-( R, XR,XR,X . . . XR” )] 

where u, IT, and x are selection, projection and cross 
product operators respectively; QL is the conjunct of 
predicates that include both join and selection predicates 
(i.e. R,.a = R,.b and R.,. a = constant), and TL is the list 
of attributes required rn the answer. Certain features of 
relational languages like aggregation, set difference, etc. 
are omitted. This is traditionally justified on the basis 
that the join operation is the most expensive operation 

[Sellinger 791. As a matter of fact we go one step further 
and omit the selection predicates which are not joins 
(i.e. of the type, R, .a = constant), and restrict our atten- 
tion to the query with only joins. In Section 5, we relax 
this simplification. We make no use of the projection 
attributes in the optimization. This aspect of the 
problem, even though quite interesting, has been an 
open problem in the literature. In summary, we view a 
query to be a set of join operations (both equality and 
inequality) on the relations. 

Corresponding to a given query, we define a graph 
representing all the joins implied by the query. This join 
graph is an undirected graph on the set of relations (as 
nodes) and an edge between Rr and Ri represents a join 
(e.g. predicate of the type R, .a = R, .b). A query is called 
a tree query if its join graph is acyclic; the corresponding 
graph is called join tree - to emphasize the tree property. 

A rooted join tree is a join tree in which a relation is a 
priori chosen to be the root of the join tree. Although the 
join tree is undirected, any choice of a root for the join 
tree can be viewed as the-process of converting the tree 
into a directed tree. the direction beine defined from the 
parent to the chiih. Consequently, a’ rooted join tree 
defines a partial order or in other words, defines the set 
of total orderings of the joins. In both the partial order- 
ing as well as in each of the total orderings, the root 
relation precedes all other relations; i.e., root relation 
must be the first relation to join. 

The selectivity SII , with respect to the join of ~~ and R, is 
defined to be the expected fraction of tuple pairs from ai 
and RI that will join, quantified as, 

%I’ 
expected no. of tuples in the result of joining R, and R, 

number of tuples in R, t number of tuples in RI 

We make the usual assumptions here, regarding the 
uniformity of the distribution of values and the indepen- 
dence with respect to each other. These assumptions are 
only approximations to the reality and have been tradi- 
tionally adopted for convenience [Sellinger 79, Whang 
83, Ibaraki 841. As a consequence of these assumptions, 
number of tuples satisfying two joins (say R, joins with 
R2 and R2 joins with RJ is n&n, s,, su ; i.e. the product 
of all the cardinalities and selectivities. This can be ex- 
tended in the obvious way for k joins. This property will 
be used in deriving a cost equation for an execution. 

For the sake of symmetry, we associate a unique selec- 
tivity for each relation in a given rooted join tree. Ob- 
viously, a relation may join with many relations and 
therefore has many selectivities associated with it. But 
for a given rooted join tree, each relation Ri has a unique 
parent and the selectivity of the join with the parent is 
deEned to be si . As for the root, the selectivity is defmed 
to be unity. This definition is only to provide a notational 
convenience, without any loss of generality. This obser- 
vation for a rooted join tree also has one more interest- 
ing implication. That is, in any total ordering for a 
rooted join, a non-root relation joins first with its parent. 
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3. Model: 

In any system the query optimizer has to come up with a 
processing strategy in some form. A strategy, modelled 
as ‘processing tree’, includes decisions regarding the 
operations to be performed, the sequence of the opera- 
tions, and the intermediate relations to be materialized. 
Since the most expensive operation is join, it is further 
necessary to prescribe “how” each join must be per- 
formed. Thus, we first classify the methods of perform- 
ing joins into three categories and then give a definition 
for the processing tree which models an execution. This 
model also defines the execution space over which the 
optimization problem is defined. Using this definition, 
we formulate a precise statement for the optimization 
problem. 

3.1. Join Methods: 

Let ni be the cardinality of a,. Binary join methods can 
be categorized as follows: 

1) Nested Loop (NL): Relations Rt, and Ra are scanned in a 
nested fashion to find tuples in the cross product that satisfy the 
join predicate. The estimated cost is nt*na, which is invariant 
even if we commute the two relations. This is true onfy because 
of the database memory resident assumption. 

2) Selective Access @A): Several methods have been proposed 
including indexed methods, link based methods (Blasgen 761 
and hash based methods, having respective cost estimates oI 
n,*log(na), t-r,, and n,‘h, where h is the average chain length. 
Note that the cost estimates for these accesses are not invariant 
over commutation. Thus, one relation is treated as the “outer” 
relation and the other is the relation that is selectively accessed. 

3) Serf-Merge (SM): Here, R, and Ra are sorted on join column 
values, and then the sorted relalions are merged to obtain the 
result. The cost can be estimated by n, + na + n, l log(n,) + na * 
Wn2). 

In order to model an execution in which the decisions 
regarding the join methods are made “independently” of 
the decisions on other parameters, we make the follow- 
ing assumption. We observe that a generic cost function 
for most of the above cases is n,*g(n,), where g(n,) is 
the differential ‘cost incurred per tuple of the outer rela- 
tion and is based on the method used. Obviously, the 
sort-merge technique does’ not fit this category; neither 
is the case when the outer relation is selectively accessed 
(i.e. g(n,)). Initially, we limit our discussion to the class 
of methods whose cost estimates are n,*g(n,). In Section 
5, we relax this assumption to include these’other tech- 
niques. Note that the accuracy of the proposed cost for- 
mulae is debatable. As our intention is to use these for- 
mulae in deriving the cost formulae for an execution, 
the particular formulae used (as long as it is of the 
above type) is an orthogonal issue and therefore, the 
accuracy is not discussed here. We will discuss this issue 
in the context of sort-merge in Section 5. 

3.2 Processing Tree: 

‘In most cases, there are many ways to execute a query. 
An execution of Q is represented by a processing tree 
PT(Q). PT(Q) is a labelled tree where leaf nodes are 
relations in Q and each non-leaf node (represented by a 
square node) is an intermediate relation (i.e. a tem- 
porary relation) resulting from the join of all its children; 
the label specifies the join method. For example, Figure 
la shows a processing tree representing an execution of 

(-JTE: If the labels are omlrted 
t en these h!m PTs define the 
canonical BLPT and PPT resp. 

3 Figure l-a: BLPT 

523...k 

Figure l-b: PPT 

a query on m relations. R, and R2 are joined to obt: n 
R,*; . . . . . . RI,... I and Rt2..(l+t) are joined to obtain 
R,,... (i+ 3 ; . . .;and R,*. (k-1) and Rk are joined to obtain 
the answer to the query. The particular join method used 
for each join operation is a label for the resulting non- 
leaf node in PI(Q); e.g. R,* in Figure la is the result of 
joining R, and R2 using nested loop method. 

Processing trees can be classified according to the na- 
ture of the tree. For example, the tree in Figure l-a has 
a linear structure - so it is termed a Linear Processing 
Tree (LP7J. It has the special property that no more than 
one temporary relation is used as input to any join 
operation. A processing tree will be a binary tree (BPT) 
if all the joins performed are binary in nature, leading to 
an obvious definition of a Binary LPT (BLPlJ. Another 
type of LPT, called Pipelined Processing Tree, PPT, is an 
LPT whose height is unity. An example of a canonical 
PPT is shown in Figure l-b. That is, the answer is 
generated directly from the relations without creating 
any temporary relations. Traditionally, this is known as 
the nested loop n-ary join method. Note that the pipelin- 
ing (and therefore, the joining) takes place in the order 
from left to right - which defines the order of nesting 
and a join method is specified for each level of nesting. 
A particular variation of this method was assumed in 
[Ibaraki 841. It is possible to classify various other types 
of processing trees. For our subsequent discussion, LPTs 
(and in particular, binary LPTs and PPTs) are sufficient. 

A class of PTs defines an execution space over which the 
optimization is defined. For example, LPT execution 
space is the set of all executions whose processing trees 
are LpTs, which is the search space assumed by many 
optimizers [Sellinger 79, Whang 8.51. We use the terms 
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PTs, LPTs, BLPTs, PPIs to refer to the execution space 
as well as the class of processing trees. 

A processing tree also represents the partial order of the 
join operations; i.e.., the lower level joins must be per- 
formed before the Joins above them. In the case of LPTs 
this ordering is a total order, called the LPT sequence. 
Consequently, a given total order has a unique binary 
LPI’ (or PPT). Further, an LPT is said to correspond to a 
rooted join tree in which the root is the first element of 
the LPI sequence. 

Even though all processing trees will produce the same 
answer, some processing trees can be discarded a priori 
(e.g. those trees that require the result of a cross 
product). We formalize this notion here. For a given 
LPI, the LPI sequence is a traversal of the correspond- 
ing rooted join tree (i.e. a directed tree) if and only if 
the following two properties are satisfied: (1) the LPT 
sequence is consistent with the partial order defined by 
the corresponding rooted join tree; (2) that a join opera- 
tion (that is not a cross product) is performed at each of 
the non-leaf node of the LPT. Thus we define an LPT to 
be consistent if the LPT sequence is consistent with the 
partial order implied by the rooted join tree that cor- 
responds to the LPI. For example, executions allowed 
by SQUDS, OBE are limited to consistent LPTs. 

3.3. Cost Equation: 

Given a processing tree, based on the cost of the in- 
dividual joins, we can estimate the cost of the cor- 
responding execution - this is defined to be the cost of 
the processing tree. In this subsection, we compute the 
cost of a given PPT and a given BLPT. In Section 5, we 
handle the case of any general LPT. Note that any 
reference to selectivity si, for the relation Rr is the selec- 
tivity of the join of R, with its parent, based on the rooted 
join tree corresponding to the LPI’. 

In order to compute the cost of joining a relation with 
the result of the join of ali the previous relations, - 
either in the form of a materialized temporary relation, 
or if done in a pipelined fashion - we need to compute 
the cardinality of the result of a series of joins. It is easy 
to see that the cardinality of the result of joining R, and 
R2 (i.e. cardinality of R,, in Figure l-a) is 

n12= s2 l (n2 * n, 1 = (s2 l s1 ) * (n2 * nl ) (1) 

Note that the “dummy” selectivity s, (i.e. the selectivity 
associated with the root of the join tree) was defined to 
be unity. Using n2 we can compute n,23 as follows: 

n123 = s3 * n12 * n3 = (s3 * s2 * s, ) * (n, ’ n2 * n, ) (2) 

In general, n = 
123...] I=1 

6, *n,) 

Note that nr23.,, j .is the size of R,,,. j in a BLPT whereas 

n123.. j is the number of times the pipelined strategy goes 
past the j-th relation in a PPT. The above expression is 
valid for both PPTs and BLPTs, whose canonical execu- 
tions are given in Figure 1, where the labels are omitted. 

The cost for a PPT(Q) is computed as the sum of the 
individual join costs. Intuitively, the cost is measured in 
terms of the number of comparisons made. 

Cost of PPT(Q) = ,~K~ll,...f,-lJ * s,Q)l 
= k[( fi 13, * nil)*g,Fj)] t4) 

j=2 I=1 

where g j (n,) is dependent on the join method used. 

The cost of a given BLPT differs from that of a PPT only 
because the BLPT execution has the extra overhead of 
storing temporary relations. In most systems, insert 
operations would be considerably more expensive than a 
simple retrieve. So the equation has an extra component 
that estimates the cost of materialization. For each tem- 
porary relation created, (say R,2... f ), a cost of c*n12... j , 
is incurred where c is the constant that relates the cost 
of comparison and cost of insert (assuming the cost of 
comparison is unity). Thus the cost of BLPT(Q) is 

Cost of BLPT(Q) 

=,~[(~,,..~,-,~)*g,(n,) 1 + $c” 923 . ..I) (5) 

=,Q,, ..(I-, ,)*9,h)l + ,$Kn12..+11) * c VJ 

*ml) *(q(q) + cq9) ] (6) 

Note that the equ,ations (6) and (4) are identical if we 
redefine the ‘g’ function. This leads us to an interesting 
observation that the cost of materializing the temporary 
(which is a function of the size of the temporary rela- 
tion) does not change the structure of the cost equation. 
Also note that the above cost does include the cost of 
constructing the answer, whereas equation (4) does not. 
As this is a fixed cost per query, neither omitting this 
cost nor including it affect the result of the minimization 
algorithm. 

3.4. Optimization problem: 

We define a query optimization strategy as an algorithm 
used to choose an “optimal” processing tree (including 
the necessary join methods) for a given query. This can 
be formally stated as follows: Given a query Q, and an 
execution space E, find an execution in E that is of minimum 
cost. As the execution space can be abstractly viewed as 
a set of processing trees, the above problem can be res- 
tated to search for the minimum cost processing tree. As 
mentioned before, not all possible executions are al- 
lowed by a given system. For example the execution 
space allowed by QBE, System-R and OBE are all a 
subset of LPTs. Ail these systems choose executions that 
have no more than one temporary relation used in any 
join operation, at any time during the execution. Fur- 
ther, the execution space of the optimization presented 
in [Ibaraki 841 is a subset of PPTs and PPTs c LPTs. 
Thus we restrict our problem as follows: 

LPT Query Optimization Problem: 
Given a query Q, find a processing tree pt in LPT that 
is of minimum cost: i.e. 
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Note that if Q is a tree query then the cost of pt(Q) is 
estimated by equation (4) or (6) as long as the class is 
limited to either BLPT or PPT. As every pt in BLPT and 

MIN [cost of PVQ) 1 
Pt E LPT - 

PPT uniquely correspond to an LPT sequence and vice 
versa, this problem in effect defines the search space to 
be the n! sequences, out of which the optimal sequence 
is chosen. In [Sellinger 791 they suggest searching this 
combinatoric space, with the restriction that only consis- 
tent sequences are checked. Obviously, checking consis- 
tent sequences does not change the worst case size of 
the search space. Although this approach is effective in 
the database domain, unfortunately, in knowledge base 
systems this is not feasible. In the next Section we dis- 
cuss the problem of LPT query optimization where we 
import the polynomial time solution for tree queries 
from [Ibaraki 841 to this general model of ,optimization. 
Further, we also improve on their solution. 

4. Strategy for Tree Queries: 

In this subsection we first develop a strategy for a rooted 
tree query and then find the optimal execution over all 
possible choices for the root. Before we present the 
strategy, we first reiterate the list of assumptions, we 
restate the cost equatioti of the previous section and ob- 
serve some properties. 

4.1. Assumptions: 

We restate the list of significant assumptions here, all of 
which will be relaxed in’ the next section. 

1) The query is restricted to contain only join predicates; i.e. t-16 
selection predicates. 

2) The general cost formula (i.e. nI*g2(n2) ) is applicable for all 
the join methods. 

3) The execution space is restricted to be either PPT or BLF’T in 
the proposed optimization algorithm. 

4) Database is assumed to be memory resident. Therefore, the cost 
functions are based on the processing costs (e.g. comparisons, 
insert operations) instead of number of disk accesses. 

5) Query is assumed lo be a tree query 

The above list is only a partial list of assumptions - i.e. 
those that we consider significant. There are other as- 
sumptions in the definition of the query, definition of the 
selectivity, etc. that are made by most, if not all, pre- 
vious solutions to this problem [Sellinger 79, Ibaraki 84, 
Whang 851. 

4.2. Cost Model: 

The cost of processing a query for a given sequence 

t 
i.e. a BLPT or Pm), which was formulated in equations 
4) and (6) of the previous section, can be recursively 

defined as follows: 

C(A) = 0 for the null sequence A. 
C(Rj) = gj(nj) 

Rj’ 
non-root relation 

C(Rj) = 0 Rj is the root of join tree 

C(S,W =WI ) + -WI) l C& ) any subsequences S, and Sp. 

where T(*) is given by 
T(A) = 1 for the null sequence A. 

T(S) =&&*“I,) for any sequence S. 
k 

It is easy to show that the above recursive definition cor- 
rectly corn 

P 
utes the cost of a consistent sequence as per 

equations 4) and (6). Note that the ‘g’ functions depend 
on the join method specified in the chosen PPT or BLPT. 
For any consistent LPT, corresponding to a given rooted 
join tree, the join of any relation is with its parent. 
Therefore, the best join method for each relation can be 
determined independent of the choice for LPT. Note that 
the independence is a direct consequence of the two as- 
sumptions: 1) tree query; 2) differential cost formulae 
for joins. Interestingly, Ibaraki and Kameda [Ibaraki 841 
started with a model that computes the number of page 
fetches (i.e. the database is disk resident) and derived 
an identical cost equation where gj(nj) is computed only 
for the restricted form of the nested loop. More discus- 
sion on this topic is relegated to the next section when 
we attempt to relax the assumptions. Consequence of 
this similarity is that we can import their polynomial 
time solution to the above general statement of the 
problem and also present an improved version of their 
solution. 

An interesting propert 
served by [Ibaraki 841 7 

of the above equation (as ob- 
is that it satisfies the adjacent 

sequence interchange property (AS1 property for short, 
(Monma 791). Even though it is straightforward, for the 
sake of completeness, we reiterate the following lemma 
and proof from [Ibaraki 841. This lemma identifies the 
AS1 property. 

Lemma 1: Given arbitrary sequences A. B and nonnull se- 
quences U and V, such that AUVB and AVUB are consistent 
with the given rooted join tree. then C(AUVB) 5 C(AVUB) if 
and only if rank(U) < rank(V), where the rank is defined for 
any nonnull sequence as rank(S) = (T(S)-1)/C(S). 

Proof: Using the recursive definition of the cost function, we have 

C(AUVB) = C(A)+T(A)C(U)+ T(A)T(U)C(V)+T(A)T(U)T(V)C(B). 

Thus, we can derive, 
C(AUVB) - C(AVUB) 

= T(A) [ CWlT(U) - 11 - C(U) [T(V) - 111 
= T(A)C(U)C(V) [ rank(U) - rank(V) ] 

The lemma follows directly from the above equation. n 

A corrollary of the above lemma can de stated as fol- 
lows: purely based on the properties of the subsequences U 
and V, their ordering can be decided irrespective of the rest 
of the sequence (i.e. A and B). Thus a cost function is said 
to satisfy the AS1 property if there exists a rank function 
as defined in the above lemma [Monma 791. 

Let us consider an example of Figure 2 in which the 
relation R, joins with R, and R, and the root is assumed 
to be R,. The question of finding the total order is same 
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Join Tree: 

R, 

a:-:::- 
R3 

PT #l: PT #2: 

GJ&fz&J 

Figure 2: A simple example of a query 

as determining which of the two relations, R,or I&, is to 
be joined first. The two PPT cases R, R,R, and RR, R, 
are shown in PT#l and PI#2 respectively. The rank 
function dictates that if rank(R* ) < rank&) then R, 
should join before % . To understand the rank function 
intuitively, let us analyze the case when pT#l is better 
than pf#2. Obviously, from equation (4), we can argue 
that PT#l is better if the following holds. 

n, *g2(nJ + ",2* Q,tn3) < "1 *Q&"a) + ",a*Q2(n2) 

or, "12 - “1 < “13 - “1 
g2(n2) Q3(“3) 

Intuitively, the increase in the ‘intermediate result’, nor- 
malized by the cost of doing the join is to be minimized 
for optimality. Replacing m2 and nrs using equation (3) 
of the previous section, we get, 

n2*s2- 1 
g2(n2) < 

n3*s3- 1 
Q3(n3) I 

or Rank@,) < Rank(R,) 

I”tUitiVely, the rank measures the increase in the intermediate 
result per unit diffeiential cost of doing the join. 

It is known that an optimal sequence based on such a 
cost function can be obtained in O(N log N) time for the 
case of series-parallel order constraints, where N is the 
number of elements to be sequenced &awl-et- 78, 
Monma 79, Abdel-Waheb SO]. Having observed that a 
rooted join tree is a special case of the series-parallel 
constraints, Ibaraki and Kameda [Ibaraki 841 imported 
the solution to find the optimal order of the joins for a 
rooted join tree in O(N log N) time. As there are N 
choices for the,root, they conclude that the time taken to 
compute the optimal sequence for the query is O(N* IOQ 
N). We use the same algorithm to compute the order for 
a rooted tree. Subsequently, we present an O(N2) algo- 
rithm that finds the optimal sequence for the query. 

4.3. A” Example: 

Let us first show the use of the AS1 property on an 
example given in Figure 3. The query consists of 5 rela- 
tions that are joined as given by the join tree. This join 
tree is assumed to be rooted at R,. In the adjoining table 
the values for functions T and C are given for each in- 
dividual relation. Also shown for each relation is the 
computed value for the rank function. The following al- 
gorithm uses a bottom-up approach. Succinctly, the al- 

Note: The numbers next to the nodes 
are the respective ranks. 

Figure 3: Algorithm applied to an example 

gorithm uses the ranks of the individual nodes to order 
the lowest level subtrees, converting each subtree into a 
chain (i.e. a total order). Then the subtrees of the next 
higher level are converted to chains by merging the sib- 
ling chains based on the ranks...... and so on... until the 
tree under the root is converted into a chain. 

First, the subtree rooted at & is converted into a chain 
using the rank function. As rank(&) < rank(&), the total 
order for this subtree is &I&R., which is shown as step 
1. The intuition behind this transformation is that the 
relations & and & are not constrained to be ordered in 
any way. Therefore, we can order them based on their 
ranks. This ordering, by the lemma of the previous sec- 
tion, minimizes the cost. But R, has to precede % and R+ 
due to the partial ordering defined by the rooted join 
tree. 

Next the two subtrees of RI are combined. Note that 
these two subtrees are chains and therefore we can com- 
bine the two chains in any order that preserves the in- 
dividual order of each chain. We do this by merging the 
two chains based on the ranks. In order to merge them 
we must ensure that each chain is ordered by rank to 
begin with. Note that the chain under & is not ordered 
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by rank, but R3 has to be the first element in the chain 
due to the constraints in the rooted join tree. Note that 
only the root of the chain may violate the order. 

To transform this chain into a chain where the nodes are 
ordered by rank, we apply a normalization step in which 
we combine the nodes Ra and Rj into one node and the 
rank is computed for this sequence of nodes as follows: 

rank (R35 ,=m = T(% ) T(R5) - ’ 
C(FP5) 

= 0.99978 
C(R,) + T(R, )W, 1 

We can combine these nodes because it can be shown, 
in general, that no other nodes can be placed between R.-, 
and R, if the cost is to be minimized. The result is shown 
in step 2. This normalization step is repeated until the 
chain containing the merged nodes is ordered by rank. 

In step 3 the two chains are merged and in step 4 the 
final total order for the query is shown where the 
merged nodes have been expanded. 

4.4. Algorithm for rooted tree queries: 

Restating the BLPT (or PPT) optimization probolem: 
given a rooted join tree for a query, the goal is to find 
the total order of relations that minimizes the cost. The 
sequence is constrained by the fact that it be consistent 
with the partial order defined by the rooted join tree. 
The algorithm uses a bottom-up approach of transform- 
ing each subtree (all of whose children are chains) into 
one chain. Thus the result of transforming the join tree 
produces one chain that determines the total order. 

Algorithm OPT: 
Inpuf: rooted tree query Q, including the values for the functions 

,T and C. 
Ou/put: Total Order for the rooted tree query. 

1. If the tree is a single chain then stop. 
2. Find a subtree (say rooted at r) all of whose children are chains. 
3. Merge the chains based on the ranks such that the resulting 

single chain is nondecreasing on the rank. 
4. Normalize the root r of the subtree (i.e. a single chain now) as 

follows: 
a. While the rank of the root is greater than its im- 
mediate child c do; 

Replace root and c by a new node representing the 
subchain r followed by c 

5. Go to 1. 

Intuitively, the algorithm works bottom up, whereby, the 
lowest subtree is converted into a chain; then all the sib- 
ling chains are converted to form a chain under their 
parent, . . . . etc. Thus, the algorithm terminates after 
creating the chain under the root. The total order for the 
query is obtained by decomposing all the composite 
nodes created by the normalization step above. 

For a formal proof of correctness the reader is referred 
to [Monma 791 wherein this is proved in a more general 
context. We present an intuitive argument here. If the 
normalization step is never executed then it is obvious 
from the lemma of subsection 4.2 that the correct total 
order is obtained. In order to show that the creation of 
the composite nodes does not prohibit any interesting 
order we can show the following: if the rank(c) < rank(r) 

1. Original Join Tree 

b. a view of the join 
tree based on the 
chosen total order 

:. a new join tree that 
is rooted at node a. 

7gure 4: Transformation between Join trees 
then any node from the subtrees rooted at the siblings of 
r has to be placed either above r or below c. 

This algorithm can be implemented to run in O(N log N) 
time [Lawler 781. This may not be an interesting bound 
for our case because we will spend O(NZ) time to find the 
optimal rooted tree for which the cost is minimized, 

4.5. Algorithm for Tree queries: 

As mentioned before, one approach to find the rooted 
join tree with the optimal cost (termed the optimal 
rooted join tree) is to compute the cost for each choice 
of the root and choose the one with the minimum cost. 
We present in this section, a more efficient method to 
find the optimal rooted join tree. This approach uses the 
fact that the computation corresponding to two choices 
for the root have a lot in common - especially if the 
roots are adjacent in the join tree. 

In Figure 4-a, a join tree rooted at r (say T, ) is shown 
with its subtrees, one of which is rooted at, say, a. Let us 
compute the optimal order for the join tree rooted at a, 
given the optimal total order for T,. 

We first transform T1 into another tree (as shown in 
Figure 4-b) based on the optimal total order for T, . All 
the nodes al, a2. . . . . etc. (bl, b2, . . . . etc.) are nodes from 
the subtree rooted at a (from the rest of the subtrees). 
Without loss of generality, let the order of ai’s and hi’s 
be the order in the respective subsequences of the op- 
timal order for T,. It is straight forward to show that the 
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transformation to the tree shown in Figure 4-b can be 
done in O(N) time, given the optimal order for T, . 

To compute the optimal order for the join tree rooted at 
a, we have to do the following: (I) Compute the rank of r 
using a as its parent; (2) Merge the two chains (shown in 
Figure 4-c) under a based on their ranks. Obviously, 
these two steps can also be done in O(N) time. There- 
fore, given the optimal order for a join tree rooted at r. 
the optima1 order for a join tree that is rooted at an 
adjacent node to r can be computed in O(N) time. As 
there are (N-l) such transformations to be done to ex- 
haust all possible choices for the root, the total time 
taken is O(N2). 

The correctness of this algorithm can be shown from the 
following observation. If the parent of a node is same in 
two join trees, then the respective ranks remain un- 
changed and therefore their respective ordering also 
remains unchanged. In the proposed transformation, all 
the ai’s, and the bi’s have the same parent. Only a and r 
have different parents. As a is the root of the new join 
tree, it must be the first in the optimal order irrespective 
of its rank. As for r, we compute the new rank. Based on 
these observations, it is straightforward to prove the cor- 
rectness of the above algorithm. 

5. Relaxing the Assumptions: 

In this section we relax the major assumptions we made 
in presenting the strategy of the previous section. First, 
we emphasize a practical difficulty regarding the estima- 
tion of selectivities. Being an estimation, the accuracy is 
an issue. Accurate estimation is quite expensive; there- 
fore, in most systems, accuracy is sacrificed for the sake 
of efficient implementation. Lack of accuracy in the es- 
timation of selectivities is assumed in this paper. The 
consequence of this assumption is that the accuracy of 
computations using the selectivities need only be com- 
parably accurate. 

5.1 Pushing the select: 

Pre-selecting a relation is known to be advantageous in 
many cases. The main drawback of pre-selecting is that 
the existing indices on the original relation cannot be 
used on the selected version of the relation. If pre-selec- 
tion is chosen, then either an index has to be created on 
the selected version or use the selected version without 
any index. Ideally, an optimizer should weigh these al- 
ternatives based on the expected savings. It is easy to 
see that the choice of pre-selecting or not can be made 
in conjunction with the choice of the join method for a 
given rooted join tree. 

5.2. Accommodating other Join Methods: 

We omitted two join methods from our discussion so far. 
These are: i) s’ortlmerge technique, and ii) the join 
method in which an index is created on the temporary 
relation and then the other relation is joined by looking 
up the created index. Both these resulted in a cost for- 
mula that did not correspond to the general formula, 
namely n,’ g(n,). Here we argue that we can find an 
approximation to the cost of these join methods and use 
the proposed strategy using these approximate cost es- 
timates. Note that if all the relations are in memory, 
which is at least the case in most knowledge base sys- 
tems of today, then sort-merge is never an useful join 

method [see Krishnamurthy]. But if database is disk 
resident then sort-merge is an useful technique. 

The main reason for any method to fit the general cost 
formula is that the “differential ” cost per tuple for the 
join of any relation must be computed only on the infor- 
mation from that relation. Mathematically speaking, the 
partial differentiation of the join cost with respect to the 
n, (i.e. number of tuples in the outer relation) is inde- 
pendent of n,. Obviously, if the cost has a nonlinear 
term on n, (e.g. n, log (n,) ) then the differential cost 
will not be independent of n,. We argue here that if we 
can estimate that cost to a reasonable accuracy, then we 
can use that approximation to be the value for g(n) and 
expect to get a reasonably correct result from the op- 
timization algorithm. This argument underscores two 
fundamental maxim/assumption. First, the optimizer 
should avoid the worst cases and attempt to get a 
reasonably good execution. Second, the selectivities are 
themselves estimations with considerable inaccuracies. 
In short, we feel that a simple minded estimations 
should prove to be sufficient to accommodate these join 
methods. 

5.3. LPT Query Optimization: 

Until now we have restricted our attention to either 
BLPT or PF’T query optimization problem. Interestingly, 
we can view BLPT and PPT as the two ends of the 
spectrum of processing trees in LPT. The trees in be- 
tween have some temporary relations materialized and 
others are computing the joins using the pipelined ex- 
ecution approach. So the important question to be 
answered is: under what circumstances, does a tem- 
porary relation have to be materialized? Obviously, if 
all join methods are of the nested loop or selective ac- 
cess then the pipelined strategy is always better - this is 
a direct consequence of the cost equations in (4) and 
(6). As a matter of fact, when all relations are in 
memory, then PFT is the best choice in all but few 
cases. This is an obvious consequence of the uselessness 
of the sort-merge technique. On the other hand if sort- 
merge technique is used, then the temporary relation has 
to be sorted, for which it must be materialized. Thus, we 
need to materialize the temporary relation, if and only if the 
subsequent join operation requires it. Below we ,extend the 
strategy to find an optimal LPT for a given query. 

If we use the approximations of the previous subsections 
for the join methods such as sort-merge, then we can 
find the total order of the execution assuming the 
processing tree to be a PPT. Note the cost of writing the 
temporaries should be included into the cost formula for 
these join methods. We observed in the formulation of 
the cost equation for BLPT that such an inclusion is 
feasible. On obtaining the total order, any relation 
whose join method requires a materialized temporary 
relation is identified and the processing tree is modified 
to reflect the change from the pipelined mode to LPT 
mode. Thus an optimal LPT can be obtained. 

5.4. Disk Resident Databases: 

One of the important claims we make in this paper is 
that the problem of optimization is not complicated by 
the fact that the database is disk resident. The structure 
of the equation in Section 4.2 is solely dependent on the 
fact that the optimization is limited to the LPI execution 
class. The fact that the data is disk resident is reflected 
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in formulating the ‘g’ functions. This is also confirmed 
by the fact that in [Ibaraki 841 they start with a disk 
based model (i.e. computing the number of I/OS) and 
the cost equation developed by them is structurally iden- 
tical. Thus, we claim that extending this proposal to a 
disk based model is a straightforward task. 

The change to disk based model may have some 
ramifications indirectly. For instance, sort-merge tech- 
nique may become more important and a good ap- 
proximation may be desired. Further, the cost estimates 
and discussions in the previous subsections will have to 
be argued on the basis of block accesses and not tuples. 
Nevertheless, it is our contention that the structure of 
the cost equation will remain intact and the strategy will 
be applicable. 

5.5. Optimizing cyclic queries: 

Extending the solution to allow the queries to be cyclic is 
difficult because this problem can be shown to be NP- 
hard. In [Ibaraki 841 they have shown that this problem 
for the restricted case of optimizing in the PPT exe&ion 
space is NP-hard. The reduction from this problem to 
the more general problem is straightforward. Here we 
present a heuriqtic to handle cyclic queries in the context 
of the LPT query optimization problem. As the proposal, 
is based qn heuristics, it is not necessarily an optimal 
solution, ,but we argue that the resulting order is likely to 
be reasonably good. 

The basis of this heuristic depends on the following two 
observations: 

Observation No. I: The answer to a query, corresponding to 
any subgraph of the join graph, is a ,superset of the answer 
to the original query. 

Intuitively, by disregarding a join predicate we get more 
tuples in the answer. Theiefore, if we compute the query 
corresponding to any spanning tree for the graph and 
then check each tuple in the ariswer for the satis~fiability 
of fhe join predicates (i.e. edges) not in the spanning 
tree, the resultirig Set will be the answer to the original 
query. In fact, we can improve ori this. approach by qb- 
serving that we need the tree property only for comput- 
ing the ‘optimal’ order. The subsequent coniputation of 
the query may use all the join predicates and compute 
the final answer directly. The relevant question to be 
answered is 2 how good i-s the chosen order that is com- 
puted based on the spanning tree for the original cyclic 
query. The following observation gives a clue that leads 
us to the proposed heuristic. 

Observation No. 2: A join that has a good selectivity is more 
likely to be influential in choosing the order than a join that 
has poor selectivity. 

Let us take the limiting case of a join that has the worst 
selectivity (i.e. unity), which is the case of a cross 
product. Note that in a join graph, the lack of an edge 
between two relations is by default a cross product. As 
we mentioned in the motivation of the definition of ‘con- 
sistency’, any join is implicitly favored over a cross 
product. This is because, the cross product, in most 
cases, is better if done as late as possible. Therefore, a 
cross product is of no use in dictating the order of the 
joins - as mentioned before, this has been assumed in 

the approach taken by all the optimizer of known sys- 
tems as well as the previous research [Sellinger 79, 
Ibaraki 84, Whang 851. The above observation is a 
straightforward extension of this argument. 

Combining the two observations, we conclude that a 
spanning tree containing the joins with good selectivities 
is possibly a good choice. Thus the following strategy: 

Choose the minimum cost spanning tree from the 
join graph, where the selectivities are the weights 
for the edges. Then use this spanning tree to 
compute the total order, which is used to com- 
pute the original query. 

Here, the total cost of the spanning tree is defined as the 
product of all the selectivities and riot the summation as 
it is commonly stated for the minimum cost spanning 
tree Droblem. Intuitivefv. the DroDosed heuristic finds a 
spanking tree such thai ihe c&d&ality of the answer to 
the query (corresponding to the spanning tree) is mini- 
mized. Thus, the reduction from this intermediate 
answer to the final answer is also minimized. Conse- .- 
quently, the order chosen for the spanning tree, even if 
it is not oDtimal. is’likelv to assure’the maxim outlined 
in the intr’oductibn. ’ 

6. Conclusion: 

We have presented a viable strategy for optimizing 
knowledge bdse queries. In’s0 doing, we have proposed 
a model for the general problem of optimization of 
queries that captures many approaches (e.g. BLPT, PPT 
optimizations). In this model tie have imported and im- 
proved the previously proposed polynomial time algo- 
rithm for ordering the Joins. We have extended this to 
include heuristics such as pushing selects, preprocessing 
of relations, allotiing othei join methods, etc. By these 
examples, we have demonstrated the capability and the 
flexibility of incorporating various heuristics into the op- 
timization strategy without changing the structure of the 
algorithm. In summary, we have presented an algorithm 
for optimization of queries with large number of joins 
that is adaptable i? the new scenario. 

We consider the model to .be a by-product of this 
research. ‘By presenting a formal model for the well- 
known optimization problem, the strengths and 
weaknesses of the traditional approach are made ap- 
parent. We briefly summarize tiiem here. One of the 
advantaee of the traditional aDDroach. as evident from 
the mod<l, is the separation oit’he abstract search space 
and the set of heuristics. This provides the flexibility to 
extend the algorithm to incorporate new heuristics. On 
the other side, although the traditional algorithm is an 
exhaustive search, it is still liniited to the LPT execution 
space. Therefore, the approach is not necessarily op- 
timal, especially if intra-query parallelism is to be ex- 
ploited. Further, pruning effect due to consistent execu- 
tions or branch-and-bound techniques are not neces- 
sarily successful in many cases (e.g. a relation joining 
with 99 other relations in a star-like join graph). 

An interesting observation that can be made from the 
proposed algorithm is the importance of the notion of 
differential cost of a join method. By estimating the join 
cost independent of the join order, the optimization algo- 
rithm is drastically simplified. This is, in our opinion, 
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References: the major deviation from the traditional approach that 
provides the handle for efficient optimization. 

Based on the model, it is clear that if sorting of tem- 
porary results is not required by the processing tree, 
then PPT is the optimal strategy. An observation con- 
firmed by the results from implemented systems (e.g. 
SQL/D& OBE). This leads us to the important conclu- 
sion that pipelined strategy is optimal when database is 
memory resident, because the sort-merge technique is 
useless. As a consequence of this observation, we make 
an important observation in the arena of expert systems. 
A commonly pondered question: is the tuple-at-a-time 
modus operandi a source of poor performance for ex- 
pert systems? Stated otherwise, can the performance be 
improved by taking the approach of a set-at-a-time 
processing? This model answers both these questions in 
the negative as long as the database is in memory, which 
is true in most knowledge base systems. As a matter of 
fact, based on the above cost model, the conclusion is 
that PPT executions may be better to the extent that they 
do not materialize the temporaries. On the other hand if 
database is in disk there is some advantage to 
materializing temporaries. 

Finally, this model clearly puts forth areas of research 
that has not been investigated. First, can we optimize 
over a larger class of executions, namely the entire PT. 
This will allow us to create more than one temporary 
result and thereby allow more parallelism if there are 
resources (e.g. DB machine) to support it. Second, is it 
possible to develop cost functions for other heuristics, 
such as, union/intersection operations, duplicate elimina- 
tion, aggregation etc., such that the recursive cost struc- 
ture is retained. Yet another more difficult problem is to 
extend this approach to optimization of recursive 
queries. Last, can this method be validated? These are 
some of the areas of an on going research by the 
authors. 
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