
Object and File Management
in the EXODUS Extensible Database System

Michae1.J. Carey, David J. Dewitt, Joel E. Richardron, Eugene J. Shekita

Computer Sciences Department I
University of Wisconsin

Madison, WI 53706 -

ABSTRACT provided by no commercial database system at this time). Storing
This paper describes the design of the object-oriented storage

component of EXODUS, an extensible database manaaement~svs-
tern currently under development at the University of-Wiscon&t.
The basic abstraction in the EXODU’S storage system is the storage
object, an uninterpmted variable-length m&z& of arbitrary size;
higher level abstractions such as records and indices am supported
via the storage object abstraction. One of the key design %atums
described here is a scheme,for managing large dynamic objects, as
storage objects can occupy many disk pages and can grow or s.hrink
at arbitrary points. The data structure and algorithmsused to su -
port such objects are described, and nerformance results from a ore s -
iminary prototype of the EXODUS. large-object management
scheme am presented. A scheme for maintainin

K
versions of large

objects is also described. We then describe the fi e structure used in
the EXODUS storage system, which provides a mechanism for
grouping and sequencing through a set of related storage objects. In
addition to object and file management. we discuss the EXODUS
approach to buffer management, &ntcurrency control, and recovery,
both for small and large objects.

1. INTRODUCTION
Until recently, research and development efforta in the data-

base management systems ama have focused on supporting tradi-
tional business applications. The design of database systems capa-
ble of supporting non-traditional application areas, including
engineering applications for CAD/CAM and VLSI data, scientific
and statistical applications, expert database systems, and
image/voice applications, has emerged as an important new dimc-
tion for database system research. These new applications differ
from conventional applications such as transaction processing and
from each other in a number of imnortant wavs. First. each mauires
a different set of data modeling to&. The types of entities andmla-
tionships that must be described for a VLSI circuif desien are auite
different from the data modeling requirements of a bank:ng appjica-
tion. Second, each new application area has a specialized set of
operations that must be supported by the database system. It makes
,little .sense to talk ,about doing joins between satellite images.
Eflicient support for the specialized operations of each of ,these new
aoolication areas reauires new tvoes of storage structures and access
&hods as well. A,ccess and manipulation of VLSI databases is
facilitated bv new access methods such as R-Trees IGutt841.
Storage of image data.is simplified if the database system‘supports
large multidimensional arrays as a basic data type (a capability

/’ ’

‘ : ‘I

Perini&ion f? cbpy withqut fee all or .jmri of this material ‘k
granted promded that thk copies are not made or distributed for
direct comnkrciai advaxtage, the’V.&DB ‘copyright n&ice and the
title of the publication and its date appeai, and, +ce, is g&en
that -copying is by permission of the Ve
Ena’ow,ment, TO copy ~otheriuise; or ,to repu luh, requires a fee

7 +aygt! D$n i Base

andlor special permission from the Endowment.
I

images as tuples in a relational database system is, generally either
impossible or terribly inefficient. Finally, a number of these new
application areas need support for multiple versions of entities
[Daya85, Katx86],

Recently, three new! database system research projects have
been mitiated to address the needs of this emerging class of applica-
tions: EXODUS’ at the University of Wisconsin [Care85a],
PROBE at CCA-[Da
Although the goals o r

a851, and POSTGRES [Ston86] at Berkeley.
these projects am similar, and each uses some

of the same mechanisms to provide extensibility, the overall
approach of .each project is quite -different. For example,
POSTGRES will be a more “complete” database management sys-
tem, with a query language (WSTQUEL), a. prederined way of sup-
porting complex objects (through the use of POSTQUEL and pto-
cedures as II data type), support for, “active” databases via, triggers
and alerters, and inferencing. Extensibility will be provided via new
data types, operators, access methods, and a simplified recovery
mechanism. A stated goq is to “make as few changes as possible to
the relational model”. The objective of the’PROBE project, on the
other hand, is to develop an advanced DBMS with sup

$”
for com-

plex objects and operations’on them, dimensional ata (in both
space and,time,dimensions), and a capability for intelligent’query
processing. Unlike POSTGRES, PROBE will provide a mechanism
for directly representing complex objects. Like ‘EXODUS, PROBE
will use a rule-based approach to query optimization so that the
auerv o&mixer mav be extended to handle new database.ooeratom.
tiew- m&hods for existing operators, and new data type-s. .An
extended version of DAPLEX IShiu811 is to be used as the auerv
language for PROBE,

In contrast to these two efforts, EXODUS is being designed as
a modular (and modifiable) system rather than as a ‘“complete” data-
base system intended to handle all new application areas. 9 The
EXODUS storage system, at the lowest level, is the kernel of the
system. Since it is to be the only fixed component of the EXODUS
system, its design is intended to be.flexible enough to support the
needs of a wide range. of potential applications. Application-
specific access methods, ,operations, and .version management layers
will be constructed using the primitives provided by the storage sys-
tem, and-higher levels of the system will in turn use the primitives
supplied, by these. layers. As mentioned above,.the EXODUS, design
includes a generic query optimizer that optimiqes a.geperalixed
algebraic query tree based on a collection of cost and operator
transformation, rules that implementors of application~specif
DBMS’s will provide. At the top level, EXODUS will ,provide
facilities for, generating .application-specific high-level query
language interfaces, but applications will also be permitted to
interact with the system at lower levels when necesssry. Thu&.the
EXODUS approach ‘might be characterized as the “DBMS genera-
tor” apprciach, with the ,oyerall goal ,of. the project bemg, to imple-
ment .the storage system;, the tools to support development of
appropriate abstract data types, access methods, operations, and ver-
sion .support:, the rule-based optimizer; and the flexible query

I

.J EXODUS!- A dcparhtre,~in this ctee from the ways of the past. Also an
EXtmsible .Objsct-oricntcd Database System We pe offering $5 to the tbst per-
son to figure out lKw&J fit the “U” in gracefllly.

Proceedings of the Twelfth International
Conference on Very Large Data Bases -91- Kyoto. August, 1996

interface generator. To aid application-specific DBMS developers
in their task, we also expect to provide libraries of useful routines
(and rules) for the extensible components of the system.

In this paper we describe object and file management in
EXODUS. We feel that this component, more than any other, is the
key to a successful extensible database system. If the capabilities
provided at this level are not sufficiently flexible and eflicient, then
regardless of how the upper levels of the system are defined or
implemented, the resulting database system will almost certainly
fail to satisfy the requirements of a wide variety of applications.
Furthermore; without‘a suitably powerful storagd system, it seems
that the user’s task of extending the system will be much more
diflicult. In the following paragraphs, we briefly outline the key
characteristics of the EXODUS storage system; we will expand on
this information in later sections of the paper.

In the following section we describe related work on storage
systems designed to facilitate the handling of large storage objects.
Section 3 contains an overview of the interface provided to the
upper levels of EXODUS by the storage manager. In Section 4,
which is the majority of the paper, we present a detailed description
of our design for storaee objects and a meliminarv Derformance
evaluation Gf the algori&ms bat operate bn large sio&ge objects.
Section 4 also describes the techniques employed for versioning,
concurrency control, recovery, and buffer management for such
obiects. Section 51 sketches the techniques used to implement files

1.1. Storage System Characteristics
Storage Objects: The basic unit of stored data in the

EXODUS storaee svstem is the storuRc obiecr, which is an uninter-

of-storage objects. Finally, Section 6 shmmarizes our main conclu-
sions.

preted byte se&e&e of virtually &lim~~ed~size. By providing
capabilities for storing and manipulating storage objects without
regard for their size, a significant amount of generality is obtained.
For example. an access method can be written without any

There have been a number of earlier projects to construct file
and obiect management services similar to those movided bv

knowledgd of the size of the storage objects it is manipulating. Ndt
providing this generality has severely limited the applicability of
WiSS [Chou85b]. While WiSS provides a notion of long objects,
one cannot build a B+ tree on a lile of long objects due to the way
that the system’s implementation differentiates between long and
short objects.

EXODUS. In [Kaeh82], LOOM, a Large Object-Orieited Memo+
for Smalltalk-80, is described. LOOM extends the object stora%T
capabilities of Smalltalk- to allow the manipulation of up to 2
objects instead of 2l’ objects. Large (multi-megabyte) objects are
not supported, and the system provides no facilities for concurrency
control or recovery.

Concurrency Control and Recovery: To further simplify
the user’s’ task of extending the functionality of the database sys-
tem, both concurrency donGo and recovery-mechanisms are fro-
vided in EXODUS for ooerations on shared storage obiects. Lock-

The objectives of the Gemstone database system [Cope841
were similar to those of EXODUS, .POSTGRES, and PROBE.
Gemstone, and its query language OPAL, encapsulated a variety of
ideas from the areas of knowledge representation, object-oriented

ing is used for concur&cy control, and recovery is a-amplished
via a combination of shadowing and logging.

programming, non-procedural programming, set-theoretic data
models, and temporal data modeling. In order to simplify the
implementation of the capabilities desired, each Gemstone object
was decomuosed into a collection of small elements. An “object

Versions: As discussed in IDava851. manv new database
applications require support for m&i$le version; of objects. In
keeoine with the soirit of minimizing the amount of semantics
encap&ated in the’ storage system Gf EXODUS, a generalized
mechanism that can be used to implement a variety of versioning
schemes is provided.

manager” was responsible for clustering related elements together.
While versions of elements were supported, the paper does not
describe how support for large elements is provided. One serious
oroblem with the Dronosed design is that it aooears that there is no
inechanism for ihpiementing -versions via’ ‘differencing. Other
obiect-oriented database svstems lBeec83. Bato84. Lvne84.

Performance: An important performance issue is the amount
of copying that goes on between the-buffer pool and application pro-
grams. If an application is provided direct access into the buffer

Diya85, Lyng86] have also <for the m&t partj ignored the i&u; of
how objects are to be implemented, particularly very large objects.

sool, security r&y become a problem. On the other hand, in a data-
base system supporting a VLSI design system (or many other new
applications), the application may require direct access to the
storage objects in the buffer pool in order to obtain reasonable per-
formance - copying large (multi-megabyte) complex objects
between the database system and the application may be
unacceotable. EXODUS storage system clients are thus given the

2. RELATED WORK

-92-

option bf directly accessing data in-the buffer pool; clients that will
almost certainlv take advantage of this option are the application-

Another related project is the file system for the iMAX-
~01181]. This file system provided support for system-wide surro-
gates to name objects and for atomic actions on objects using a
modification of Reed’s versioning scheme [Reed83]. However, a
majority of the design was based on the premise that objects are
small (less than 500 bytes); rather than worrying about how to han-
dle large objects, special consideration was given to clustering
related objects together and to garbage-collecting deleted objects to
minimize wasted file space.

specific access’ methods and-operations -layers. For apphcations
where direct access poses a security problem, a layer that copies
data from database system space to user space will be provided.

Minimal Semantics: One of our goals is to minimize the
amount of information that the storage system must have in order to
manipulate storage objects. In particular, in order to keep the sys-
tem extensible it does not seem feasible for the storage system lo
know anvthine about the conceptual schema. On the other hand,

The storage system of POSTGRES [Ston86] is based on the
use of tuples and relations. Each tuple is identified by a unique 64-
bit surrogate that never changes. Tuples are not updated in-place.
Rather? the modified tuple, with the same surrogate but a new times-
tamp, 1s inserted elsewhere into the database. A “vacuuming” pro-
cess moves old data to an archival disk for long-term storage. Since
complex objects are implemented through the use of POSTQUEL as
a data type, no explicit mechanisms for supporting the storage or
manipulation of large complex objects are provided.

semantics can sometimes be us&u1 for performance reasons. For’
example, it was shown in [Chou85a] that buffer management per-
formance can be improved by allowing ihe buffer manager to cap-
ture some semantics of the operations being performed. Our solu-

3. THE STORAGE MANAGER INTERFACE

tion is to keep schema infoAation out ofhi storage system; but
then to allow hints to be provided which can help in making deci-
sions that influence performance in important ways. For example,

Before describing the details of how large storage objects and
file objects (collections of storage objects) are handled in the
EXODUS storage system, we must briefly outline the nature of the
interface provided for use by higher levels of EXODUS. In most
cases. we ‘exnect the next level UD to be the. layer that movides the

* Internally, we speak of such “users” as “database implementors” (or DBl’s
for short). We do oat intcnd to imply that EXODUS can be extended by the naive
user. ac we expect EXODUS to be extended for I given application once, by a DBI,
and then modified only occasionally (if at all) for that application.

accesb me&is (and perhaps version support) f& a giv& EXODUS
application. This layer is likely to change from one application to
an&her, although we expect to-provide alibrary of stanbard access
methods and version management code that can be used/extended
by the author(s) of an application-specific DBMS.

the buffer manager accepts hints guiding its choice of replacement
policies; other examples will arise elsewhere throughout the course
of this paper.

1.2. Paper Outline

The EXODUS storage system provides a procedural interface.
This interface includes procedures to create and destroy Iile objects
and to open and close file objects for Iile scans. For scanning pur-
poses, the storage system provides a call to get the object id of the
next object within a file object. It also provides procedures for
creating and destroying storage objects within a file; all storage
objects must reside in some ftle object (residing by default in the
“system” file object if no other file object is specified). For reading
storage objects, the EXODUS storage system provides a call to get a
pointer to a range of bytes within a given storage object; the desired
bvte range is read into the buffers. and a nointer to the bytes there
a;e retuhed to the caller. Another cal] is provided io inform
EXODUS that these bytes are no longer needed, which “unpins”
them in the buffer pool. For writing storage objects, a call is pro-
vided to tell EXODUS that a subrange of the bytes that were read
have been modified (information that% needed for recovery to take
place). For shrinking/growing storage objects, calls to insert bytes
into and delete bytes from a specified offset in a storage object are
provided, as is a call to append bytes to the end of an object (a spe-
cial case of insert). Finally, for transaction management, the
EXODUS storage system provides begin, commit, and abort
transaction calls. (We also anticipate the inclusion of other
transaction-related hooks to aid the access methods layer in imple-
menting concurrent and recoverable operations for new access
methods efliciendy.)

In addition to the functionality outlined above, the EXODUS
storage system is being designed to accept a wide variety of
performance-related hints. For example, the object creation routine
mentioned above accepts hints about where to place a new object
(i.e., “place the new object near the object with id X”) and about
how large the object is expected to be (on the average, if it varies);
it is also possible to hint that an object should be alone on a disk
page and the same size as the page (which will be useful for the
access methods level). In regard to buffer management, hints about
how many buffer blocks to use and what replacement policy to
employ will be accepted by the buffer manager. These hints will be
supported by allowing a stun group to be specified with each object
access. and then havine the buffer manaeer accent these hints on a
per-scan-group basis, &ich will allow biffer ma’nagement policies
like DBMIN to be easilv suonorted IChou85al. Other storaee svs-
tern hints will be mentioned &er as the details bf the storage gystem
design are described.

4. STORAGE OBJECTS
As described in the introduction, sroruge objects are the basic

unit of data in the EXODUS storage system. Storaee obiects can
grow and shrink in size, and their gyowih and shrinkage is-not con-
strained to occur at the end of an object, as the EXODUS storage
system supports insertion and deletion of new portions of a storage
object anywhere within the object. This section of the paper
describes the data structures and algorithms that are used to
efhciently support storage objects, particularly large dynamic
storage objects.

Storage objects can be either small or large, although this dis-
tinction is hidden from clients of the EXODUS storage system.
Small storage obiects reside on a single disk naee. whereas large
storage objects occupy multiple disk pages. ‘It-r- either case, the
object identifier (OID) of a storage object is of the form
@age #, slot #). Pages containing small storage objects ate slotted
naaes. as in INGRES. Svstem R. and WiSS IAstr76. Ston76.
Ch&&b], so the OID of a small storage object is a pointer to the
object on disk. For large storage objects, the OID points to a /urge
object header. This header can reside on a slotted page with other
large object headers and small storage objects, and it contains
pointers to other pages involved in the representation of the large
object. All other pages in a iarge storage object are private to the
object rather than being shared with other small or large storage
objects (except that pages may be shared between various versions
of the same object, as we will see later). When a small storage
object grows to the point where it can no longer be accommodated
on a single page, the EXODUS storage system will automatically
convert it into a large storage object, leaving its object header in
place of the original small object. We considered the alternative of
using surrogates for OID’s rather than physical addresses, as in

other recent proposals [Cope84, Ston86], but we rejected this alter-
native due to what we anticipated would be ita high cost - with
surrogates, it would always be necessary to access objects via a sur-
rogate index.

4.1. Large Storage Objects
The data structure used to represent large objects was inspired

by the ordered relation data structure proposed for use in INGRES
[Ston83], although there are a number of significant differences
between our insertion and deletion algorithms and those of
Stonebraker’s proposal. Figure 1 shows an example of our large
object data structure. Conceptually, a large object is an uninter-
meted seauence of bytes: ohvsicallv. it is tenresented on disk as a
B+ tree index on byte posidon withm. the object plus a collection of
leaf (data) blocks. The root of the tree (the large object header) con-
tains a number of (counr,puge #) pairs, one for each child of the
root. The count value associated with each child pointer gives the
maximum byte number stored in the subtree rooted at t&t child;
the count for the rightmost child pointer is therefore also the size of
the object. Intema] nodes are similar, being recursively defined as
the root of another object contained within its patent node, so an
absolute bvte offset within a child translates to a relative offset
within its parent node. The left child of the root in Figure 1 con-
tains bytes I-421, and the right child contains the rest of the object
(bytes 422-786). The rightmost leaf node in the figure contains 173
bvtes of data. Bvte 100 within this leaf node is byte 192 + 100 =
252 within the right child of the root, and it is byte421 + 292 = 713
within the object as a whole.

OID

HEADER W-JO-0

Figure 1: An example of a large storage object.

The leaf blocks in a large storage object contain pure data -
no control information is required since the parent of a leaf contains
the byte counts for each of its children. The size of a leaf block is a
parameter of the data structure, and it is an integral number of con-
tiguous disk pages. For often-updated objects, leaf blocks will
probably be one page in length so as to minimize the amount of I/O
and byte-shuffling that must be done on updates; for more static
objects, leaf blocks may consist of several contiguous pages to
lower the I/O cost of scanning long sequences of bytes within such
objects. (Leaf block size will be senable on a per-file-object basis
using the hint mechanism.) As in B+ trees, leaf blocks are allowed
to vary from being l/2-full to completely full.

Each internal node of a large storage object corresponds to one
disk page, and contains between n, and 2n,+l (count, pointer)
pairs. We allow a maximum of 2n,+l pairs because our deletion
algorithm works in a top-down manner, and the nature of its top-
down operation requires that it be possible to merge a l/2-full node
of n. entries and a node with n,+l entries into a single full node (as
we will see shortly). Finally, ihe root node corresponds to at most
one disk page, or possibly just a portion of a shared page, and con-
tains between 2 and 2n,+l (count, pointer) pairs.

Table 1 shows examples of the approximate object size ranges
that can be supported by trees of height two and three assuming two
different leaf block sizes. The table assumes 4K-byte disk pages,
4-byte pointers, and 4-byte counts, so the internal pages will have
between 255 and 511 (count, pointer) pairs. It should be obvious
from the table that two or three levels should suffice for most any
large object.

-93-

No. of Tree Levels Leaf Block Size Object Size Range
1 8KB - 2MB

2 4 32KB - 8MB
1 2MB - IGB

3 4 8MB - 4GB

Table 1: Some examples of object sizes.

Associated with the large storage object data structure are
algorithms to search for a range of bytes, to insert a sequence of
bytes at a given point in the object, to append a sequence of bytes to
the end of the object, and to delete a sequence of bytes from a given
point in the obiect. The insert. atmend. and delete ooerations are
quite different-from those in thd’proposal of Stonebraker et al
]Ston83], as the insertion or deletion of an arbitrarv number of bvtes
into a large storage object poses some unique problems compared to
inserting or deleting a single record from an ordered relation.
Inserting or deleting one byte is the analogy in our case to the usual
single record operations, and single byte operations would be far too
inefIicient for bulk inserts and deletes. As for the append operation,
this is a special case of insert that we treat differently in order to
achieve best-case storage utilizations for large objects that are con-
structed via successive appends. We consider each of these algo-
rithms in turn.

4.1.1. Search
The search operation supports the retrieval of a sequence of N

bytes starting at byte position S in a large storage object. (It can
also be used to retrieve a sequence of bytes that are to be modified
and rewritten, of course.) Referring to the (count, pointer) pairs
using the nOtatiOn c [i] and p [i 1, 11i12n,+l, and letting c [O]=O by
convention, the search algorithm can be described as follows:
(1) Let start = S , and read the root page and call it page P .
(2) While P is not a leaf page, do the following: Save P’S

address on the stack, and binary search P to find the smallest
count c [i] such that sfarrlc [il. Set srurr=;rrart-c [i-l], and
read the page associated with p [i] as the new page P .

(3) Once at a leaf, the first desired byte is on page P at location
srurt .

(4) To obtain the rest of the N bytes, walk the tree using the stack
of pointers maintained in (2).
Considering Figure 1 again, suppose we wish to find bytes

250-300. We set srurt=250, binary search the root, and find that
c [1]=421 is the count that we want. We set sturt=sturl-c [0]=250
(since c [O]=O by convention), and then we follow p [l] to the left
child of the root node. We binary search this node, and we find that
c [2]=282 is the count that equals or exceeds start; thus, we set
sturt=sturt-c[l]=l30 and follow p[2] to the leaf page with 162
bytes in it. Bytes 130-162 of this node and bytes 1-18 of its right
neighbor (which is reachable by walking the stack) are the desired
bytes.

4.1.2. Insert
The insert ooeration suonorts the insertion of a seauence of N

bytes after the byie at position S. Since N can be arbhrarily large,
an algorithm that eflicientlv handles bulk insertions is teouired; as
mentkned before, the standard B-tree insertion algorithm only
works for insetting a single byte, which would be too inefhcient for
large insertions. Our insert algorithm can be described as follows:

(1)

(2)

(3)

Traverse the large object tree until the leaf containing byte S
is reached, as in the search algorithm. As the tree is traversed,
update the counts in the nodes to reflect the number of bytes to
be inserted, and save the search path on the stack.
Call the leaf into which bytes are being inserted L. When L is
reached, try to insert the N bytes there. If no overflow occurs,
then the insert is done, as the internal node counts will have
been updated in (1).
If an overflow does occur, allocate as many leaves as neces-
sary to hold the overflow from L, and evenly distribute L’s
bytes and the bytes being inserted among L and the newly
allocated leaves.

(4) Propagate the counts and pointers for the new leaves upward
in the tree using the stack built in (1). If an internal node
overflows, handle it in the same way that leaf overtlows are
handled.
This algorithm appears attractive because it touches the smal-

lest possible number of internal pages and leaf blocks, thus minim-
izing the I/O cost for insertion. Unfortunately, experience with a
prototype implementation of the large storage object data structure
showed that this insert algorithm leads to relatively poor storage
utilization (as we will see shortly). In order to improve the storage
utiiization, step (3) can be changed to:
(3’) Let M be the left or right neighbor of L with the most free

space (which can be determined by examining the count infor-
mation in L ‘s parent node), and let B be the number of bytes
per leaf block. If L and M together have a sufftcient amount
of free space to accommodate N modufo B bytes of data (i.e.,
the overtlow that would remain after filling as many leaves
with new data as possible), then evenly distribute the new data
plus the old contents of L and M evenly between these two
nodes and [NIB] newly allocated nodes. Otherwise, proceed
as in step (3) above.

The motivation for this modification is to avoid creating an
additional node in cases where the overflow can instead be accom-
modated by a neighboring node. This is reasonable here because it
is not necessary to access a neighboring leaf until it is known (from
the patent) that redistribution of data between L and M will indeed
succeed, whereas the neighbors would have to be read from disk
before this could be known in the case of a standard B+ tree. Note
that this modification does increase the I/O cost for insertion in
cases where such redistribution is possible - instead of reading I!,
and then writing back L and a new node created by splitting L
(along with \N/SJ other new nodes), L and M am both read and
written. However, as we will see, the I/O cost increase in this one
case is probably worth it, as the modification leads to a significant
improvement in storage utilization. Also, it might be argued that
the additional cost for reading M is not the whole picture - by
redistributing the data in this way, we avoid having the system go
through the process of allocating an additional node from the free
list to handle the overflow.

4.1.3. Append
The append operation supports the addition of N bytes to the

end of a large obiect. Appending N bytes differs from inserting N
bytes in the way in which data-is redistributed among leaf pages
when an overflow occurs. The append algorithm is as follows:

(1)

c-3

(3)

(4)

Make a rightmost traversal of the large object tree. As the tree
is being traversed, update the counts in the internal nodes to
reflect the effect of the append. As always, save the search
path on the stack.
Call the rightmost leaf R . If R has enough free space to hold
the new bytes, then append the bytes to R . The append opera-
tion is now complete in this case.
Otherwise, call R ‘s left neighbor (if it exists) L. Allocate as
many leaves as necessaty to hold L’s bytes, R’s bytes, plus
the new bytes being appended to the object. Fill L, R , and the
newly allocated leaves in such a way that all but the two right-
most leaves of the tree are completely full. Balance the
remaining data between the two rightmost leaves, leaving each
leaf at least l/2-full. (If L has no free space, we can ignore L
during this step.)
Propagate the counts and pointers for the new leaves upward
in the tree using the stack built in (l), and handle node
overflow as in the insertion algorithm.
The key point of this algorithm is that it guarantees that a

large object which is constructed via successive append operations
will have maxima1 leaf utilization (i.e., all but the last two leaves
will be completely full). This is particularly useful because it
allows lame obiects to be created in steos, something which may be
necessary If thi object being created is’exttemely layge. While*this
algorithm could be improved to yield higher internal node utiliza-
tion by treating the internal nodes the same way that leaves am

-94

treated, we decided not to do this - it would increase the l/O cost
of the algorithm, and internal node utilization is not as critical as
leaf node utilization because of the large fanout of internal nodes.

4.1.4. Delete
The delete operation supports the deletion of N bytes starting

at a specified byte position. In a B+ tree, the analogous problem
would be that of range deletion, i.e., deleting all keys between some
lower and upper bounds. Again, since the traditional B+ tree dele-
tion algorithm removes only one record at a time, it would be unac-
ceptably slow for large deletions. Instead, our bulk delete algorithm
proceeds in two phases. In the first phase, it deletes the specified
range of bytes, possibly leaving the tree in an unbalanced state. The
second phase makes one pass down the tree structure to rebalance
the tree.

Deletion of an arbitrarv rantre of bvtes from the leaves of a
large object will, in generai, im$y the heletion of a number of
entire subtrees, leaving a “raw edge” of damaged nodes. These
nodes form the cur-pa;h of the dehtion. In ge<eral, the left and
right crcr-path will start at the root, include some number of com-
mon nodes, and then split off and proceed down the tree to two dif-
ferent leaves. The node at which the left and right cut-paths diverge
is called the lowest common ance~ror or lea for the delete. Figure 2
illustrates the relationship between the deleted portion of the tree,
the left and right cut-paths, and their lea. Note that if any of the
nodes remaining in the tree have underflowed, they must necessarily
occur along the cut-path. The rebalancing algorithm therefore
traces the cut-path in a top-down fashion, attempting to “zipper up”
the split in the tree.

In order to minimize the I/O cost of the deletion algorithm, we
use a small data structure in memory, path, which describes the
cut-path. The par/r data structure is built during the delete phase of
the algorithm, and it stores the disk address of each cut-path node
DIUS the number of children that it has (includina nodes from both
ihe left and right cut-paths). The inf&mationstored in parh is
sufficient to determine if a node is in danger of underllowing (as
defined shortly). The rebalancing algorithm then examines path in a
ton-down fashion - for each path node, if it is in danger of
underflowing, its corresponding tree node is merged or reshuffled
with a neighboring node until it is safe.

The notion of a node being in danger of undergowing (possi-
bly without actually having underflowed) is what allows the

ATIl

DELETED I’OkTION OP TREE

Figure 2: Terminology for deletion algorithm.

algorithm to operate in one downward pass through the nee. A
node is in this situation if it cannot afford to have a pair of its child
nodes merged into a single child node, as this would cause the node
itself to underflow. To prevent this possibility, all potential
underflows are instead handled on the way down the tree by merg-
ing endangered nodes with neighboring nodes, or else by borrowing
entries from neighboring nodes if such merging is impossible (i.e.,
if both neighbors have more than nr entries). A node is said to have
underfbwed if either of the following conditions holds for the node:
(1) The node is a leaf and it is less than l/2-full.
(2) The node is an internal node and it has fewer than n, entries

(or fewer than two entries if it is the root node).
We say that a node is in danger of underflowing if any of the fol-
lowing three conditions holds:

(1)
(2)

(3)

The node has actually underflowed.
The node is an internal node with exactly nc entries (2 entries
if it is the root), and one of its children along the cut path is in
danger.
The node is the lea , and it has exactly n,+l entries (3 entries
if it is the root), and both of its children along the cut path am
in danger.
Given this background and our definitions of underllowed and

endangered nodes, we can now describe each phase of the deletion
algorithm as follows:

Deletion Phase:
(1) Traverse the object to the left and right limits of the deletion.

All subtrees comnletelv enclosed bv the traversal are deleted,
and the counts in’ all iodes along the cut-path are updated to
show the results of the deletion. Also, for each node along the
cut-path (as the tree is traversed), create a representative node
in the main memory data structure path which records the
address of the node and the number of children that it has left.

(2) Traverse the parh data structure bottom-up, marking each node
that is in danger (as defined above).

Rebalancing Phase:
(1) If the root is not in danger, go to step (2). If the root has only

one child, make this child the new root and go to (1). Other-
wise, merge/reshuffle3 those children of the root that are in
danger and go to (1).

(2) Go down to the next node along the cut-path. If no nodes
remain, then the tree is now rebalanced.

(3) While the current node is in danger, merge/reshuffle it with a
sibling. (For a given node along the cut-path, this will require
either 0, 1, or 2 iterations of the while loop.)

(4) Go to (2).

One additional note is in order with regard to the I/O cost of
the deletion phase of the algorithm - in this phase, only one leaf
block ever has to be touched. Entirely deleted nodes can simply be
handed back to the free space manager directly, as their addresses
are available in their parent node(s); furthermore, deletion can be
accomplished for the partially deleted leaf block on the left cut-path
by simply decrementing the byte count in its parent node. Thus,
only the partially deleted leaf block on the right cut-path needs to be
read and written during the deletion phase.

4.1.5. Preliminary Performance Results
In order to verify that the algorithms indeed work as claimed,

to investigate certain algorithm design decisions and tradeoffs, and
to find out what sort of performance can be expected using the
scheme, we implemented a prototype of our large object design in
the C programming language. Each of the operations (search,
insert, append, and delete) operates as though the prototype was a
real implementation of the design, but these routines am then inter-
faced to a simulated CLOCK (LRU approximation) buffer manager
that counts disk accesses (rather than really accessing pages on
disk). Thus, our prototype‘ implementation actually r&s in main
memorv. simulatinrr the I/O costs involved in the operations. Reads
are counted by keeping track of the number of buffer pool misses,
and writes are counted by noting the number of times pages are dir-
tied (for the first time) in the buffer pool. This subsection of the
naner describes the results of the tests that we conducted using the
b&otype, including an investigation of the level of storage ut%xa-
tion nrovided bv the scheme for two variants of the insert algorithm,
a study of the &deoff between search/scan costs and update-costs as
the leaf block size is varied, and a study of the average costs of the
various tree operations.

In our study, we assumed a 4K-byte page size, and we experi-
mented with both l-page and 4-page leaf blocks. Our experiments
consisted of using the append routine to construct an object of some

s The mergelmshuftle step decide-s whether nodes can be merged or whether
bytes must be reshuffled with a neighbor, does it, and then updatesparh to maintain
a consistent view of the cut-path.

-95-

initial size with approximately 100% storage utilization, and then
running a mix of randomly generated searches, inserts, and deletes
on the object. We experimented with object sizes of IO megabytes
and 100 megabytes, running a query mix consisting of 40%
searches, 30% inserts, and 30% deletes. (Only the 10 megabyte
results will be presented, as the 100 megabyte experiments pro-
duced similar trends except for minor buffer-related differences.)
Equal percentages of inserts and deletes were used in order to
ensure that the object size remained stable, and these update opera-
tions were uniformly distributed throughout the body of the object.
(This uniform distribution assumption is a pessimistic assumption,
as it produces worst-case average storage utilizations.) Two vari-
ants of the insert algorithm were tested, one that always splits a leaf
block on overflow and another that tries to avoid a split by moving
data to the less full of the leaf block’s neighbors if doing so will
help. Several mean operation sizes were tested, where the operation
size is the number of bytes to be searched for, inserted, or deleted;
mean sizes of 100 bytes and IOK bytes were used. (We also ran
experiments with l-byte operations, but the results were basically
the same as those of the loo-byte runs.) Operation sizes were
drawn from a discrete uniform distribution varying plus or minus
50% from the mean. Pointer and count values were assumed to
require four bytes each in computing the capacity of internal nodes.
In our experiments, we assumed the availability of 12 buffer pages
for buffering data for the operations. Finally, we used disk time
estimates of 3,3 milliseconds for disk arm movement plus rotational
latency (for random I/O) and 1 millisecond of transfer time for each
1K bytes transferred; thus, the cost to read a 4K byte page was
taken to be 37 milliseconds, and the cost for a 16K byte block was
49 milliseconds.

The storage utilization results from our experiments are shown
in Figures 3 and 4 for average operation sizes of 100 bytes and 10K
bytes, respectively. The horizontal axis shows the number of opera-
tions executed from the mix, so the figures illustrate how storage
utilization degrades from the initial near-10096 figure as random
insertions and deletions break up the initially full leaf blocks. In
both tigures, it is clear that the insertion algorithm that tries to avoid
splitting provides significant storage utilization improvements -
for example, in Figure 3, the basic insert algorithm gives utilizations
in the high 60% range, whereas the improved insert algorithm pro-
vides utilizations in the low 80% range. It appears in Figure 3 that
l-page leaf blocks provide slightly better storage utilization for the
small operations when insertion does not look at neighboring nodes;
this is because a larger fraction of the leaf blocks are split for a
given number of random update operations in the 4-page case (and
each one leaves more empty space as a fraction of the overall object
size). This difference disappears for the better insert algorithm, as
data is redistributed to avoid splits when possible. In Figure 4, how-
ever, l-page leaf blocks have a large storage utilization advantage
over 4-page leaf blocks. This is due to the average operation size
being large - the average insertion adds 10K bytes, or 2.5 pages of
data. This data is distributed over as few newly allocated l-page
leaf blocks as possible (as well as one or two existing, partially-
tilled leaf blocks), leading to 3-4 nearly full leaf blocks. With 4-
page leaf blocks, however, the average insert is sure to split a leaf
block, creating two relatively empty blocks as a result. If the opera-
tion size were increased further, this difference would diminish, as
much larger operations would create a number of nearly full leaves
at either leaf size.

The I/O cost for search operations.is presented in Figures 5
and 6. In Figure 5, the search cost is basically independent of the
leaf block size and the insert algorithm, with the l-page leaves hav-
ing a tiny advantage over 4-page leaves since 100 byte searches can
almost always be satisfied with data from a single disk page (i.e.,
without the additional transfer time for another 3K bytes of data).
The average I/O cost in this case is in the neighborhood of two disk
accesses, meaning that the root of the object is being successfully
buffeted, and the other two levels are each being read. (The tree
height for a 1OMB object turns out to be 3 - the toot, one other
internal level, and then the leaf blocks.) Turning to Figure 6, which
shows the search cost for 10K bytes of data, it is evident that the 4-
page leaves have a detinite advantage here. This is due to the fact
that much less random I/O is needed to read 2.5 pages of data when
each leaf block contains 2-4 sequential pages worth of data. Figure
6 also shows that the better insert algorithm has a slight advantage

0.70

0.60

I

2 4 6 8 10 12 14 16 18 20
Number of Opernllonr (I 1000)

Figure 3: Storage utilization (loo-byte operations).

0.60

1
L I

1 4 6 B 10 12 14 16 16 20
Number of Operntlonr (x 1000)

Figure 4: Storage utilization (lOK-byte operations).

10 cost (Ills)
100

50

2 4 6 8 10 12 14 16 18 20
Number oloparnllons (x 1000)

Figure 5: Search cost (loo-byte operations).

10 Cost (ml)

200

I1

._ .,*.. ‘..~,b.. ..Q-. . ..a-. . . .’ -.p..o..~

150

100

“5
2 4 6 a 10 12 14 16 18 20

Number of operalIons (x 1000)

Figure 6: Search cost (lOK-byte operations).

here - by providing better storage utilization, it leads to a slight
decrease in the average number of leaf blocks that have to be read to
obtain the desired data. Comparing Figures 5 and 6, of course, the
cost of 10K byte retrieves is higher than the cost of 100 byte
searches because of the extra leaf block I/O for reading the entire

IOK bytes.

We also examined the I/O costs for the insert and delete opera-
tions in our experiments. Space prevents us from presenting the
curves, but we briefly summarize the results hem. For insertion, we
found the improved insert algorithm to be 3-108 more expensive
than the basic algorithm. Since the improved algorithm prefers
redistribution of data over solittine leaf blocks. it sometimes reada . - .~
and writes a neighboring leaf block (rather than just writing a new
leaf block) when doing so avoids the creation of a new leaf. For
large inserts, we found that 4-page leaves had an lo-15% perfor-
mance advantage over l-page leaves; this is because fewer leaves
need to be touched on the average when leaf blocks are 4 pages
long, and the resulting decrease in random I/O outweighs the
increase in sequential I/O. For small inserts, the basic insert algo-
rithm with l-page leaves was found to be the cheapest alternative,
as it avoids the cost of reading neighboring nodes and also avoids
the additional sequential mad/write costs associated with 4-page
leaves. Finally, as expected, the cost of inserting 10K bytes was
found to be significantly higher than the cost for 100 bytes due to
the additional page I/O’s needed to write out the data in the 10K
case. As for deletion, we found that the improved insert algorithm
leads to lower deletion costs (by as much as 20% in some cases).
This is due to the increased storage utilization provided by the
improved insert algorithm, which lowers the probability of having
to borrow data from a leaf page to fill in gaps in partially deleted
leaves. We also found that the l-page leaves had a cost advantage
over 4-page leaves for deletion; this is due to the additional sequen-
tial I/O cost associated with 4-page leaves, both during the deletion
and rebalancing phases. (Recall that the deletion phase never
accesses more than a single leaf block, regardless of the amount of
data being deleted.) This cost advantage was mom pronounced
when the basic insert algorithm was used. It was particularly
signilicant for large deletions, where it averaged about 20% for the
baJa;.insert algorithm and 12% or so for the improved insert algo-

To summarize our experimental results, we found that the
EXODUS large storage obiect mechanism nrovides onerations on
very large dyiamic objectsat relatively low’ cost, and-at a reason-
able level of storage utilization (80% or higher). With respect to the
appropriate choice of leaf block size, there are clearly tradeoffs -
lamer leaf blocks have a delinite. advantage for multi-page searches,
but they also increase the cost somewhat for updates and lead to
somewhat lower storage utilizations. We expect multi-page leaves
to offer the greatest advantages for large, relatively static objects,
where the storage utilization will be close to 100% (because such
objects will be built via appends and not subjected to mixes of fre-
quent and randomly distributed updates). Finally, we should men-
tion that the results presented here are actually pessimistic in some
ways. Our storage utilization results are pessimistic because, for
more static objects, or objects where updates tend to be clustered in
just a few regions of the object, storage utilizations in the 90-100%
range would really be the norm. Our I/O cost results are slightly
pesiimistic because our prototype does not handle leaf blocks as
efficiently as it might - entire leaf blocks are read and written
(rather than partial blocks) even when only the last page or two of a
block is affected by an operation.

4.2. Versions of Storage Objects
As described earlier, the EXODUS storage system also pro-

vides support for versions of storage objects. The support provided
is quite primitive -one version of each storage object is retained as
the current version, and all of the preceding versions are simply
marked (in their object headers) as being old versions. When a
storage object is updated with the versioning option on, the old
object header (or the entire object, in the case of a small storage
object) is copied to a new location on disk as an old version of the
object. The old version of the object header is then overwritten (in
place) by the new version of the header. The OID of the old version
is returned to the updater, and the OID of the new version is the

OID that was originally passed to the update routine (since OID’s
are basically physical addresses). To ensure that the cost of copying
the old version elsewhere is not as prohibitive as it might otherwise
be [Care85b], the old version is placed on the same page of the file
object as the new version, or else on a nearby page, if possible.
(Note that we do not plan on using versions as our recovery
mechanism, or this would be unreasonable.)

The reason for such a primitive level of version support is that
different EXODUS applications may have widely different notions
of how versions should be sueoorted. as evidenced bv the wide
range of version-related propo&?s in the recent literatu& [StonSl,
Dada84, Katz84, Bato85. CliflI5, Klah85, Snod85, Katz861. There-
fore, we leave the maintenance of data structures such as graphs of
the versions and alteratives of objects to a higher level of the sys-
tem, a level that will undoubtedly vary from application to applica-
tion (unlike the EXODUS storage system). The reason that we do
not leave version management out of the EXODUS storage system
altogether is one of efliciency - it would be prohibitively expen-
sive, both in terms of storage space and I/O cost, to maintain ver-
sions of large objects by maintaining entire copies of objects

Versions of large storage objects are maintained by copying
and updating the pages that differ from version to version. Figure 7
illustrates t& by an example. The figure shows two versionsof the
large storage object of Figure 1, the original version, VI, and a
newer version, vs. In this example, V2 was created by deleting the
last 36 bytes from VI. Note. that Vq shams all nodes of VI that are
unchanged, and it has its own copies of each modified node. A new
version of a large storage object will always contain a new copy of
the path from the toot to the new leaf (or leaves); it may also con-
tain copies of other internal nodes if the change affects a very large
fraction of the object. Since the length of the path will usually be
two or three, however, and the number of internal pages is small
relative to the number of pages of actual data (due to high fanout for

Figure 7: Two versions of a large storage object.

internal nodes), the overhead for versioning large objects in this
scheme is small - for a given tree height, it is basically propor-
tional to the difference between ad.iacent versions, and not to the
size of the objects.

Besides allowing for the creation of new versions of large
storage objects, which is supported by allowing the insert, append,
delete, and write (i.e., read and modify a byte range) operauons to
be invoked with the versioning option turned on. the EXODUS
storage system also supports the deletion of versions. Again, this is
necessary from an efficiency standpoint; it is also necessary if the
storage system is to successfully hide the physical representation of
storage objects from its clients. The problem is that, when deleting
a version of a large object, we must avoid discarding any of the
object’s pages that are shared (and thus needed) by other versions of
the same object. In general, we will have a situation like the one
pictured in Figure 8, where we wish to delete a version V which has
a direct ancestor V, (from which V was created) and descendents
V,, through Vdn (which were created from V).

A naive way to insure that no shared pages are discarded
would be to traverse all other versions of V, marking each page as
having been visited, and then traverse V, discarding each unmarked
page. The problem with this approach is that there may be many
versions of V, and consequently the number of pages visited could
be quite large. One way to cut down on the number of pages visited
is to observe that, if an ancestor of version V, shares a page with a
page with V, then V, itself must also share that same page with V.

-97-

I
v,

IV

pages between versions, the algorithm will simply end up visiting
every non-leaf page of every version, which is much better than also
visiting the leaves. (Leaf blocks comprise the vast majority of each
version - with internal node fanouts of several hundred, non-leaf
pages will represent less than 1% of the large object storage require-
ments). In typical cases, however, the algorithm will visit relatively
few pages, as adjacent versions are likely to share the bulk of their
pages.

&”
Figure 8: An example version history.

Likewise, if a descendent of Vdl shares a page with V, V,+, itself
must also share that page with V. Thus, it sufgces to just visit the
pages of the direct ancestor and the direct descendents of an object,
i.e., of the adjacent versions of an object (the version from which
the object was directly created, or versions which were. themselves
directly created from the object).

We can further reduce the number of pages visited by observ-
ing two things. First, if a page is shared by two versions of a large
object, then the entire subtree rooted at that page must be shared by
the two versions. (An example is the leftmost child of the two ver-
sion root pages in Figure 7.) Second, if a subttee is shared by two
versions, then the root of that subtme must have the same height
(i.e., distance above the leaf level) in both versions of the object.
(Again, see Figure 7.) The Iirst observation means that we only
need to visit a shared subtree’s root; there is no need to visit its des-
cendent pages since they will necessarily be shared. The second
observation means that if we scan versions of equal height level by
level, then we will be able to detect the toots of shared-subtrees as
the level is scanned; further, for versions of unequal height, we
need not check for shared pages until we get down io the appropri-
ate level in the taller of the two versions.

Suppose for the moment that we wish to delete version V of
an object, and that V has just one direct descendent, V,. Further,
suppose that V and V,, are the same height. Then, based on these
two observations, the deletion algorithm can be described as fol-
lows:
(1) For each internal level 1 of V, do the following (working

top-down from the root level):

(4 Scan the index nodes at level 1 in V, tentatively mark-
ing all of the page numbers encountered in the nodes at
this level for deletion. (Note that these page numbers
are for pages at level I +I .)

(b) Now scan level 1 in Vd. If a marked page number is
encountered, unmark it and avoid scanning that page
(and the subtree rooted at that page) in subsequent itera-
tions.

(c) Discard the pages from level f+l of V that are still
marked for deletion after step (b).

(2) Finish by discarding the root of V as well.
This algorithm is easily generalized to handle the case where

the heights of versions V and V, are unequal as well. If the height
of V is-greater, then we delay scanning V, until we are scanning the
level in V with the same height as the root of VA; the case where
the height of V, is greater ishandled similarly.-It should also be.
clear that the algorithm can be generalized for the case where there
are several versions adjacent to V (i.e., an ancestor and several des-
cendent versions). In this latter case, step (b) must be performed for
level I of each adjacent version, as a page of V cannot be discarded
unless no adiacent version shares that nape with V. As input, then,
the version deletion operation takes thevOID of the version to be
deleted and the set of OID’s of its adiacent versions:’ it deletes the
specified version while leaving all oi the pages that it shares with
adjacent versions intact. As described earlier, we leave the problem
of maintaining information about adjacent versions, like those in the
example of Figure 8, to a higher level of the system.

A reasonable implementation of this algorithm would use a
breadth-first search to scan the objects and a main-memory hash
table to store the page numbers of the marked pages. Note that it is
never necessary to actually read any leaf pages from the disk with
this algorithm - in the worst case, where there is no sharing of

4.3. Concurrency Control and Recovery
The EXODUS storage system will provide both concurrency

control and recovery services for storage objects. Two-phase lock-
ing [Gray791 of byte ranges within storage objects will be used for
concurrency control, with a “lock the entire object” option being
provided for cases where object (OID) level locking will suffice.
For small storage objects, object level locking will probably be the
norm. For large storage objects, however, byte range locking may
be useful in some applications: For updates that change the con-
tents of a range of bvtes without changing the size of that range (i.e..
updates that-read and then rewrite-a byte range), search& ‘and
updates in disjoint regions of the object will still be able to proceed.
Updates that insert, append, or delete bytes will lock the byte range
from where the operation begins to the end of the object, as the
offsets of the remaining bytes cannot be known until the updater
either commits or aborts. To ensure the integrity of the internal
pages of large storage objects while insert, append, and delete
operations am operating on them (e.g., changing their counts and
pointers), non-two-phase B+ tree locking protocols [Baye77] will be
employed. Searches and byte range updates will descend the tree
structure by chaining their way down with read locks, read-locking
a node at level i +l and then immediately releasing the level i tead-
lock, holding only byte range read or write locks in a two-phase
manner. Since inserts, appends, and deletes will normally affect an
entire root-to-leaf path4, the root and internal pages along the path
for this type of update will be write-locked for the duration of the
operation (e.g.., the insert, delete, or append); again, though, only
byte range wnte locks will be held in a two-phase manner once the
operation has completed.

For recovery, small storage objects will be handled using
before/after-image logging and i&pla&e updating at the object Ieva
[Gray79]. Recovery for large storage objects will be handled using
a combination of shadows and logging - updated internal pages
and leaf blocks will be shadowed up to the root level, with updates
being installed atomically by overwriting the old object header with
the new header [Verh78]. Prior to the installation of the update at
the root level, the other updated pages will be forced to disk; also,
the name and parameters of the operation that caused the update
will be lonaed. with the Ion seauence number (ala IGrav791) of the
log record?& ihe update b;ng placed on the root page oi theobject.
This will ensure that operations on large storage objects can be
undone (by performing the inverse operation) or redone (by re-
performing the operation) as necessary in an idempotent manner.
For versioned objects, the same recovery scheme will be used. In
this case, however, the before-image of the updated large object
header (or the entire small object) will tirst be copied elsewhere to
be maintained as the version from before the updates.

4.4. Buffer Management for Storage Objects
As described in the introduction, one objective of the

EXODUS storage system design was to minimize the amount of
copying from buffer space that is required. A second (related)
objective is to allow sizable portions of large storage objects to be
scanned directly in the buffer pool if this is desired by higher levels
of software. To accommodate these needs, we plan to allocate
buffer space in variable-length buffer blocks, which are integral
numbers of pages, rather than only in single-page units. This will
simplify things for higher-level software, making it possible to read
and then scan a multi-page sequence of bytes without concern for
page boundaries.

’ Recall that inserting, appending, or deleting byes will Cause COU~~J to
change a11 the way up to the mot, unlike a record insertion or deletion in a standard

B+ tree.

-98-

Figure 9 sketches the key aspects of the EXODUS buffering
scheme for large storage objects. When an EXODUS client
requests that a sequence of C, bytes be read from object X, the
non-empty portions of the leaf blocks of X containing the desired
range of bytes (leaf blocks P *, P *, and P 3 in Figure 9) will be read
into one contiguous buffer block. Assuming leaf blocks are the unit
of data transfer between the disk and the buffers, this can be accom-
plished by obtaining a buffer block of the appropriate size from the
buffer space manager and then reading P 1, P,, and lastly P, into
the block - in that order, and so that P2 begins right after the end
of the non-empty portion of P 1, with P 3 being placed similarly.
(While this constrains the order in which the leaf blocks of a large
object can be read into the buffer pool, we do not expect this to be a
serious limitation.) A scan descriptor will be maintained for the
current region of X being scanned, including such information as
the OID of X , a pointer to its buffer block, the length of the actual
portion of the buffer block containing the bytes requested by the
client, a pointer to the first such byte, and information about where
the contents of the buffer block came from (for replacement pur-

X

s
SCAN DESCRIPTOR ’ 1 1 1 cr (1 1 $:P1 1 C& 1 c 3 :P 3

Figure 9: Contiguous buffering in EXODUS.

poses). The client will receive an indirect pointei’ to the buffer con-
tents (S in Figure 9) through which the buffer contents may be
accessed. Free space for the buffer pool will be managed using one
of the standard dynamic storage allocation techniques (with the
smallest unit of allocation being one disk page.) Finally, buffer
space allocation and replacement policy selection will be guided by
the hint mechanism mentioned in Section 3.

5. FILE OBJECTS
File objects in the EXODUS storage system are collections of

storage objects (sets of storage objects, roughly speaking). File
objects are useful for grouping objects together for several purposes.
First, the EXODUS storage system provides a mechanism for
sequencing through all of the objects in a file, so related objects can
be placed in a common file for sequential scanning purposes.
Second, objects within a given file are placed on disk pages allo-
cated to the Iile, so file objects provide support for objects that need
to be co-located on disk.

5.1. File Representation
The representation of file objects in EXODUS is similar in

some respects to the representation of large storage objects. A file
object is identified by its OID, and the OID for a file object is a
pointer to the root page (i.e., the header) of the file object. (Storage
objects and file objects are distinguished by a bit in their object
headers.) Like large storage objects, file objects are represented by
an index structure similar to a B+ tree, but the key for the index is

’ We are still debating whether this should be a direct pointer or an indirect
pointer, So this aspect of the design may change slightly. A level of indirection al-
LOWS bufk blocks to be relocated (in a critical section) for storage management
purposes without interfering with client accesses.

different in this case - a iile object index uses disk page number as
its key. Each leaf page of the file object index contains a collection
of page numbers for the slotted pages contained in the file. (The
actual slotted pages themselves are managed separately, using stan-
dard techniques for page allocation and free space management.)
The file object index thus serves as a mechanism to gather the pages
of a file together, but it also has several other nice properties - it
facilitates the scanning of all of the objects within a given file object
in physical order for efficiency, and it also allows fast deletion of an
object with a given OID from a lile object (as we will see momen-
tarily). We considered several other file designs, including the pos-
sibility of representing files as large storage objects containing a
sequence of OID’s, but none supported fast object deletion as well
as this scheme does. Note that since all of the objects in a file are
directly accessible via their OIDs, file objects are not comparable to
surrogate indices - indices on the objects within a given file object
will contain entries that point directly to the objects being indexed.

Creation of a file object allocates the file object header. Later,
when objects are to be created within the file object, the object crea-
tion routine will be called with an optional hint of the form “place
the new object near X”., where X is the OID of an existing object
within the tile. If this hmt is present, the new object will be inserted
on the same page as X if possible. (Recall that X’s OID identifies
the desired page.) If there is not enough space on X’s page, then a
new page near X’s page on the disk will be allocated for the newly
inserted object and its page number will be inserted into the file
object B+ tree; the OID of the file object will be recorded on the
newly allocated page. If no hint is present, X will be appended to
the tile (i.e., placed on the last page listed in the file object index,
with overflows handled in the manner just described). Object dele-
tion is accomplished by simply removing the object from the page
where it resides. If the page becomes empty as a result, its page
number must be deleted from the file object index and the page
itself must be returned to the free space manager. Lastly, file dele-
tion will lead to the deletion of all of the objects residing on pages
listed in the file object index, the return of those pages to the free
list, and then the removal of the index itself. If a file page contains
one or more large object headers or file object headers, then these
will of course have to be recursively deleted; otherwise, the page
can be freed immediately.

5.2. Other File Object Issues
Concurrency control and recovery for file objects will be han-

dled via mechanisms similar to those used for large storage objects.
Concurrency control (for page number insertions and deletions) will
be provided using B+ tree locking protocols. Recovery will be
accomplished by shadowing changes up to the highest affected level
of the iile object index, logging the before- and after-images of the
highest affected node, and then finally overwriting this node to
atomically install the update. It is important to note that these con-
currency control and recovery protocols will only be exercised when
the iile index is modified via the insertion or deletion of leaf page
entries, as the storage object concurrency control and recovery pro-
tocols will handle slotted page changes that do not cause the tile
object index to be modified. Also, file object index changes can be
deferred until commit time, allowing them to be grouped for
efficiency.

The final non-trivial issue related to lile objects is the question
of how one can sort a Ale object. Since schema information has
been carefully kept out of the EXODUS storage system, the storage
system does not have suflicient information to do this on its own -
it has no idea what fields the storage objects in a given file object
have, nor does it know what the data types for the fields are. Since
sorting is likely to be important for performance in some applica-
tions, and we do not wish the applications to be aware of the way
that storage objects are laid out on disk, the EXODUS storage sys-
tem will provide a generic file object sorting routine. One of the
arguments to this sort routine will be a procedure parameter for an
object comparison routine; the sort utility will call this routine to
compare storage objects as it sorts the file. Sorting will necessarily
move objects from page to page, so their OID’s will be invalidated
when sorting is performed. (This is really the only way in which
OID’s differ from surrogates, as other storage system operations

-99-

preserve the integrity of OID’s by leaving a forwarding address at
an object’s original location when the object must be relocated.)

6. CONCLUSIONS
In this paper we described the design of the object-oriented

storage component of EXODUS, an extensible database manage-
ment system under development at the University of Wisconsin.
The basic abstraction in the EXODUS storage system is the storage
object, an uninterpreted variable-length record of arbitrary size.
File objects are used to group together and sequence through collec-
tions of storage obiects. The data structure and alnorithms used to
support large- storage objects were described, aid performance
results from a preliminarv orototvce of the EXODUS laree object
management sdheme weie -presented. It was shown that-the pro-
posed scheme indeed provides eflicient support for large dynamic
storage objects, both in terms of their storage utilization and perfor-
mance. A scheme was described for maintaining versions of large
obiects by sharing common uages between versions. and an eflicient
version deletionalgorithm b& then presented. Also described in
the paper, albeit briefly, were our design for file obiects and our
aooioaczhes to the oroblems of buffermanaeement.- concurrencv
cbntrol, and recoveb. We are now working%n a &tailed desigh
document for the EXODUS storage system based on the algorithms
and data structures described here, and implementation will com-
mence during the summer of 1986.

ACKNOWLEDGEMENTS
This research was partially supported by the Defense

Advanced Research Projects Agency under contract N00014-85-K-
0788, by the Department of Energy under contract #DE-ACOZ-
81ER10920, by the National Science Foundation under grants
MCSSZ01870 and DCR-8402818, and by an IBM Faculty
Development Award. Also, the authors wish to acknowledge the
contributions of the other members of the EXODUS project, includ-
ing Dan Frank, Goetz Graeb, and M. Muralikrishna.

REFERENCES
[Astr76] Astrahan, M., et. al., “System R: Relational Approach

to Database Management”, ACM Transactions on Data
Systems 1,2, June 1976.

[Bat0851

[Baye77]

[Beec83]

[Care85a]

[Care85b]

[Chou85a]

[Chou85b]

[ClifSS]

[Cope841

Batory, D., and A. Buchmann, “Molecular Objects,
Abstract Data Tvoes. and Data Models: A Framework”,
Proceedings of ;he j984 VLDB Co@erence, Singapore,
August 1984.
Batory, D., and W. Kim, Supportfor Versions of VLSI
CAD Objects, M.C.C. Working Paper, March 1985.
Bayer, R., and Schkolnick, M., “Concurrency of Opera-
tions on B-trees”, Acta Informutica 9, 1977.
Beech, D., Introducing the Integrated Data Model,
Hewlett-Packard Computer Science Laboratory Techni-
cal Note CSL-15, January 1983.
Carev. M. and D. Dewitt, “Extensible Database Sys-
tems<; Proceedings of ‘rh; Islamorada Workshop -on
Lame Scale Knowledge Base and Reasoning Systems,
Febiary 1985. -

_

Carey, M,, and W. Muhanna, “The Performance of
Multiversion Concurrency Control Algorithms”, ACM
Transactions on Computer Systems, to appear.
Chou, H-T., and D. Dewitt, “An Evaluation of Buffer
Management Strategies for Relational Database Sys-
tems”, Proceedings of the 1985 VLDB Conference,
Stockholm, Sweden, August 1985.
Chou, H-T., D. Dewitt, R. Katz, and A. Klug, “Design
and Imnlementation of the Wisconsin Storage System”,
S&e Practice and Experience 15, l?l, October

Clifford, J., and A. Tansel, “On An Algebra for Histori-
cal Relational Databases: Two Views”, Proceedings of
the 1985 SIGMOD Conference, Austin, Texas, May
1985.
Copeland, G. and D. Maier, “Making Smalltalk a Data-
base System”, Proceedings of the 1984 SIGMOD
Conference, Boston, MA, May 1984.

-lOO-

[Dada841

[Daya85]

[Gray791

[Gutt84]

[Kaeh83]

[Katz841

[Katz861

[Klah85]

bwW

bngW

[Poll8 I]

[Reed831

[Ship8 I]

[Snod85]

[Ston76]

[Ston8 l]

[Ston83]

[Ston86]

[Verh78]

Dadam, P., V. Lum, and H-D. Werner, “Integration of
Time Versions into a Relational Database System”,
Proceedings of the 1984 VLDB Conference, Singapore,
August 1984.
Dayal, U. and J. Smith, “PROBE: A Knowledge-
Oriented Database Management System”, Proceedings
of the lslamorada Workshop on Large Scale Knowledge
Base and Reasoning Systems, February 1985.
Gray, J., “Notes On Database Operating Systems”, in
Operating Systems: An Advanced Course, R. Bayer, R.
Graham, and G. Seegmuller, eds., Springer-Verlag,
1979.
Guttman. T.. “R-Trees: A Dynamic Index .%WNre for
Spatial Searching”, Proceedings of the 1984 SIGMOD
Conference, Boston, MA, May 1984.
Kaehler, T. and G. Krasner, “LOOM - Large Object-
Oriented Memory for Smalltalk- Systems”, in
Smalltalk-80: Bits of History, Words of Advice, G.
Krasner, ed. Addison-Wesley, 1983.
Katz, R. and T. Lehman, “Database Support for Ver-
sions and Alternatives of Large Design Files”, IEEE
Transactions on Software Engineering SE-IO, 2, March
1984.
Katz, R., E. Chang, and R. Bhateja, “Version Modeling
Concepts for Computer-Aided Design Databases”,
Proceedings of the 1986 SIGMOD Conference, Wash-
ington, DC, May 1986, to appear.
Klahold, P., G. Schlageter, R. Unland, and W. Wilkes,
“A Transaction Model Supporting Complex Applica-
tions in Integrated Information Systems”, Proceedings
of the 1985 SIGMOD Conference, Austin, TX, May
1985.
Lyngbaek, P. and D. McLeod, “Object Management in
Distributed Information Systems”, ACM Transactions
on Office Information Systems 2,2, April 1984.
Lyngbaek, P. and W. Kent, “A Data Modeling Metho-
doloev for the Desien and Imolementation of Informa-
tion “‘systems”, Przceedings ‘of the 1986 SiGMOD
Conference, Washington, DC, May 1986, to appear.
Pollack, F., ‘K. Kahn, and R. Wilkinson, “The iMAX-
432 Object Filing System”, Proceedings of the 8th Sym-
posium on Operating Systems Principles, Pacific
Grove, CA, December 1981.
Reed, D., “Implementing Atomic Actions on Decentral-
ized Data”, ACM Transactions on Computer Systems 1,
1, March 1983.
Shlpman, D., “The Functional Data Model and the Data
Language DAPLEX”, ACM Transactions on Database
Systems 6, 1, March 198 1.
Snodgrass, R., and I. Ahn, “A Taxonomy of Time in
Databases”, Proceedings of the 1985 SIGMOD Confer-
ence, Austin, TX, May 1985.
Stonebraker, M., G. Wong, P. Kreps, and G. Held, “The
Design and Implementation of INGRES”, ACM Tran-
sactions on Database Systems 1,3, September 1976.
Stonebraker, M., “Hypothetical Data Bases as Views”,
Proceedings of the 1981 SIGMOD Conference, Boston,
MA, May 1981.
Stonebraker, M., H. Stettner, N. Lynn, J. Kalash, and A.
Guttman, “Document Processing in a Relational Data-
base System”, ACM Transactions on OfJice Information
Systems 1,2, April 1983.
Stonebraker, M., and L. Rowe, “The Design of
POSTGRES”, Proceedings of the 1986 SIGMOD
Conference, Washington, DC, May 1986, to appear.
Verhofstad, J., “Recovery Techniques for Database
Systems”, ACM Computing Surveys 10,2, June 1978.

