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ABSTRACT provided by no commercial database system at this time). Storing 
This paper describes the design of the object-oriented storage 

component of EXODUS, an extensible database manaaement~svs- 
tern currently under development at the University of-Wiscon&t. 
The basic abstraction in the EXODU’S storage system is the storage 
object, an uninterpmted variable-length m&z& of arbitrary size; 
higher level abstractions such as records and indices am supported 
via the storage object abstraction. One of the key design %atums 
described here is a scheme,for managing large dynamic objects, as 
storage objects can occupy many disk pages and can grow or s.hrink 
at arbitrary points. The data structure and algorithmsused to su - 
port such objects are described, and nerformance results from a ore s - 
iminary prototype of the EXODUS. large-object management 
scheme am presented. A scheme for maintainin 

K 
versions of large 

objects is also described. We then describe the fi e structure used in 
the EXODUS storage system, which provides a mechanism for 
grouping and sequencing through a set of related storage objects. In 
addition to object and file management. we discuss the EXODUS 
approach to buffer management, &ntcurrency control, and recovery, 
both for small and large objects. 

1. INTRODUCTION 
Until recently, research and development efforta in the data- 

base management systems ama have focused on supporting tradi- 
tional business applications. The design of database systems capa- 
ble of supporting non-traditional application areas, including 
engineering applications for CAD/CAM and VLSI data, scientific 
and statistical applications, expert database systems, and 
image/voice applications, has emerged as an important new dimc- 
tion for database system research. These new applications differ 
from conventional applications such as transaction processing and 
from each other in a number of imnortant wavs. First. each mauires 
a different set of data modeling to&. The types of entities andmla- 
tionships that must be described for a VLSI circuif desien are auite 
different from the data modeling requirements of a bank:ng appjica- 
tion. Second, each new application area has a specialized set of 
operations that must be supported by the database system. It makes 
,little .sense to talk ,about doing joins between satellite images. 
Eflicient support for the specialized operations of each of ,these new 
aoolication areas reauires new tvoes of storage structures and access 
&hods as well. A,ccess and manipulation of VLSI databases is 
facilitated bv new access methods such as R-Trees IGutt841. 
Storage of image data.is simplified if the database system‘supports 
large multidimensional arrays as a basic data type (a capability 
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images as tuples in a relational database system is, generally either 
impossible or terribly inefficient. Finally, a number of these new 
application areas need support for multiple versions of entities 
[Daya85, Katx86], 

Recently, three new! database system research projects have 
been mitiated to address the needs of this emerging class of applica- 
tions: EXODUS’ at the University of Wisconsin [Care85a], 
PROBE at CCA-[Da 
Although the goals o r 

a851, and POSTGRES [Ston86] at Berkeley. 
these projects am similar, and each uses some 

of the same mechanisms to provide extensibility, the overall 
approach of .each project is quite -different. For example, 
POSTGRES will be a more “complete” database management sys- 
tem, with a query language (WSTQUEL), a. prederined way of sup- 
porting complex objects (through the use of POSTQUEL and pto- 
cedures as II data type), support for, “active” databases via, triggers 
and alerters, and inferencing. Extensibility will be provided via new 
data types, operators, access methods, and a simplified recovery 
mechanism. A stated goq is to “make as few changes as possible to 
the relational model”. The objective of the’PROBE project, on the 
other hand, is to develop an advanced DBMS with sup 

$” 
for com- 

plex objects and operations’on them, dimensional ata (in both 
space and,time,dimensions), and a capability for intelligent’query 
processing. Unlike POSTGRES, PROBE will provide a mechanism 
for directly representing complex objects. Like ‘EXODUS, PROBE 
will use a rule-based approach to query optimization so that the 
auerv o&mixer mav be extended to handle new database.ooeratom. 
tiew- m&hods for existing operators, and new data type-s. .An 
extended version of DAPLEX IShiu811 is to be used as the auerv 
language for PROBE, 

In contrast to these two efforts, EXODUS is being designed as 
a modular (and modifiable) system rather than as a ‘“complete” data- 
base system intended to handle all new application areas. 9 The 
EXODUS storage system, at the lowest level, is the kernel of the 
system. Since it is to be the only fixed component of the EXODUS 
system, its design is intended to be.flexible enough to support the 
needs of a wide range. of potential applications. Application- 
specific access methods, ,operations, and .version management layers 
will be constructed using the primitives provided by the storage sys- 
tem, and-higher levels of the system will in turn use the primitives 
supplied, by these. layers. As mentioned above,.the EXODUS, design 
includes a generic query optimizer that optimiqes a.geperalixed 
algebraic query tree based on a collection of cost and operator 
transformation, rules that implementors of application~specif 
DBMS’s will provide. At the top level, EXODUS will ,provide 
facilities for, generating .application-specific high-level query 
language interfaces, but applications will also be permitted to 
interact with the system at lower levels when necesssry. Thu&.the 
EXODUS approach ‘might be characterized as the “DBMS genera- 
tor” apprciach, with the ,oyerall goal ,of. the project bemg, to imple- 
ment .the storage system;, the tools to support development of 
appropriate abstract data types, access methods, operations, and ver- 
sion .support:, the rule-based optimizer; and the flexible query 
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interface generator. To aid application-specific DBMS developers 
in their task, we also expect to provide libraries of useful routines 
(and rules) for the extensible components of the system. 

In this paper we describe object and file management in 
EXODUS. We feel that this component, more than any other, is the 
key to a successful extensible database system. If the capabilities 
provided at this level are not sufficiently flexible and eflicient, then 
regardless of how the upper levels of the system are defined or 
implemented, the resulting database system will almost certainly 
fail to satisfy the requirements of a wide variety of applications. 
Furthermore; without‘a suitably powerful storagd system, it seems 
that the user’s task of extending the system will be much more 
diflicult. In the following paragraphs, we briefly outline the key 
characteristics of the EXODUS storage system; we will expand on 
this information in later sections of the paper. 

In the following section we describe related work on storage 
systems designed to facilitate the handling of large storage objects. 
Section 3 contains an overview of the interface provided to the 
upper levels of EXODUS by the storage manager. In Section 4, 
which is the majority of the paper, we present a detailed description 
of our design for storaee objects and a meliminarv Derformance 
evaluation Gf the algori&ms bat operate bn large sio&ge objects. 
Section 4 also describes the techniques employed for versioning, 
concurrency control, recovery, and buffer management for such 
obiects. Section 51 sketches the techniques used to implement files 

1.1. Storage System Characteristics 
Storage Objects: The basic unit of stored data in the 

EXODUS storaee svstem is the storuRc obiecr, which is an uninter- 

of-storage objects. Finally, Section 6 shmmarizes our main conclu- 
sions. 

preted byte se&e&e of virtually &lim~~ed~size. By providing 
capabilities for storing and manipulating storage objects without 
regard for their size, a significant amount of generality is obtained. 
For example. an access method can be written without any 

There have been a number of earlier projects to construct file 
and obiect management services similar to those movided bv 

knowledgd of the size of the storage objects it is manipulating. Ndt 
providing this generality has severely limited the applicability of 
WiSS [Chou85b]. While WiSS provides a notion of long objects, 
one cannot build a B+ tree on a lile of long objects due to the way 
that the system’s implementation differentiates between long and 
short objects. 

EXODUS. In [Kaeh82], LOOM, a Large Object-Orieited Memo+ 
for Smalltalk-80, is described. LOOM extends the object stora%T 
capabilities of Smalltalk- to allow the manipulation of up to 2 
objects instead of 2l’ objects. Large (multi-megabyte) objects are 
not supported, and the system provides no facilities for concurrency 
control or recovery. 

Concurrency Control and Recovery: To further simplify 
the user’s’ task of extending the functionality of the database sys- 
tem, both concurrency donGo and recovery-mechanisms are fro- 
vided in EXODUS for ooerations on shared storage obiects. Lock- 

The objectives of the Gemstone database system [Cope841 
were similar to those of EXODUS, .POSTGRES, and PROBE. 
Gemstone, and its query language OPAL, encapsulated a variety of 
ideas from the areas of knowledge representation, object-oriented 

ing is used for concur&cy control, and recovery is a-amplished 
via a combination of shadowing and logging. 

programming, non-procedural programming, set-theoretic data 
models, and temporal data modeling. In order to simplify the 
implementation of the capabilities desired, each Gemstone object 
was decomuosed into a collection of small elements. An “object 

Versions: As discussed in IDava851. manv new database 
applications require support for m&i$le version; of objects. In 
keeoine with the soirit of minimizing the amount of semantics 
encap&ated in the’ storage system Gf EXODUS, a generalized 
mechanism that can be used to implement a variety of versioning 
schemes is provided. 

manager” was responsible for clustering related elements together. 
While versions of elements were supported, the paper does not 
describe how support for large elements is provided. One serious 
oroblem with the Dronosed design is that it aooears that there is no 
inechanism for ihpiementing -versions via’ ‘differencing. Other 
obiect-oriented database svstems lBeec83. Bato84. Lvne84. 

Performance: An important performance issue is the amount 
of copying that goes on between the-buffer pool and application pro- 
grams. If an application is provided direct access into the buffer 

Diya85, Lyng86] have also <for the m&t partj ignored the i&u; of 
how objects are to be implemented, particularly very large objects. 

sool, security r&y become a problem. On the other hand, in a data- 
base system supporting a VLSI design system (or many other new 
applications), the application may require direct access to the 
storage objects in the buffer pool in order to obtain reasonable per- 
formance - copying large (multi-megabyte) complex objects 
between the database system and the application may be 
unacceotable. EXODUS storage system clients are thus given the 

2. RELATED WORK 
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option bf directly accessing data in-the buffer pool; clients that will 
almost certainlv take advantage of this option are the application- 

Another related project is the file system for the iMAX- 
~01181]. This file system provided support for system-wide surro- 
gates to name objects and for atomic actions on objects using a 
modification of Reed’s versioning scheme [Reed83]. However, a 
majority of the design was based on the premise that objects are 
small (less than 500 bytes); rather than worrying about how to han- 
dle large objects, special consideration was given to clustering 
related objects together and to garbage-collecting deleted objects to 
minimize wasted file space. 

specific access’ methods and-operations -layers. For apphcations 
where direct access poses a security problem, a layer that copies 
data from database system space to user space will be provided. 

Minimal Semantics: One of our goals is to minimize the 
amount of information that the storage system must have in order to 
manipulate storage objects. In particular, in order to keep the sys- 
tem extensible it does not seem feasible for the storage system lo 
know anvthine about the conceptual schema. On the other hand, 

The storage system of POSTGRES [Ston86] is based on the 
use of tuples and relations. Each tuple is identified by a unique 64- 
bit surrogate that never changes. Tuples are not updated in-place. 
Rather? the modified tuple, with the same surrogate but a new times- 
tamp, 1s inserted elsewhere into the database. A “vacuuming” pro- 
cess moves old data to an archival disk for long-term storage. Since 
complex objects are implemented through the use of POSTQUEL as 
a data type, no explicit mechanisms for supporting the storage or 
manipulation of large complex objects are provided. 

semantics can sometimes be us&u1 for performance reasons. For’ 
example, it was shown in [Chou85a] that buffer management per- 
formance can be improved by allowing ihe buffer manager to cap- 
ture some semantics of the operations being performed. Our solu- 

3. THE STORAGE MANAGER INTERFACE 

tion is to keep schema infoAation out ofhi storage system; but 
then to allow hints to be provided which can help in making deci- 
sions that influence performance in important ways. For example, 

Before describing the details of how large storage objects and 
file objects (collections of storage objects) are handled in the 
EXODUS storage system, we must briefly outline the nature of the 
interface provided for use by higher levels of EXODUS. In most 
cases. we ‘exnect the next level UD to be the. layer that movides the 

* Internally, we speak of such “users” as “database implementors” (or DBl’s 
for short). We do oat intcnd to imply that EXODUS can be extended by the naive 
user. ac we expect EXODUS to be extended for I given application once, by a DBI, 
and then modified only occasionally (if at all) for that application. 

accesb me&is (and perhaps version support) f& a giv& EXODUS 
application. This layer is likely to change from one application to 
an&her, although we expect to-provide alibrary of stanbard access 
methods and version management code that can be used/extended 
by the author(s) of an application-specific DBMS. 

the buffer manager accepts hints guiding its choice of replacement 
policies; other examples will arise elsewhere throughout the course 
of this paper. 

1.2. Paper Outline 



The EXODUS storage system provides a procedural interface. 
This interface includes procedures to create and destroy Iile objects 
and to open and close file objects for Iile scans. For scanning pur- 
poses, the storage system provides a call to get the object id of the 
next object within a file object. It also provides procedures for 
creating and destroying storage objects within a file; all storage 
objects must reside in some ftle object (residing by default in the 
“system” file object if no other file object is specified). For reading 
storage objects, the EXODUS storage system provides a call to get a 
pointer to a range of bytes within a given storage object; the desired 
bvte range is read into the buffers. and a nointer to the bytes there 
a;e retuhed to the caller. Another cal] is provided io inform 
EXODUS that these bytes are no longer needed, which “unpins” 
them in the buffer pool. For writing storage objects, a call is pro- 
vided to tell EXODUS that a subrange of the bytes that were read 
have been modified (information that% needed for recovery to take 
place). For shrinking/growing storage objects, calls to insert bytes 
into and delete bytes from a specified offset in a storage object are 
provided, as is a call to append bytes to the end of an object (a spe- 
cial case of insert). Finally, for transaction management, the 
EXODUS storage system provides begin, commit, and abort 
transaction calls. (We also anticipate the inclusion of other 
transaction-related hooks to aid the access methods layer in imple- 
menting concurrent and recoverable operations for new access 
methods efliciendy.) 

In addition to the functionality outlined above, the EXODUS 
storage system is being designed to accept a wide variety of 
performance-related hints. For example, the object creation routine 
mentioned above accepts hints about where to place a new object 
(i.e., “place the new object near the object with id X”) and about 
how large the object is expected to be (on the average, if it varies); 
it is also possible to hint that an object should be alone on a disk 
page and the same size as the page (which will be useful for the 
access methods level). In regard to buffer management, hints about 
how many buffer blocks to use and what replacement policy to 
employ will be accepted by the buffer manager. These hints will be 
supported by allowing a stun group to be specified with each object 
access. and then havine the buffer manaeer accent these hints on a 
per-scan-group basis, &ich will allow biffer ma’nagement policies 
like DBMIN to be easilv suonorted IChou85al. Other storaee svs- 
tern hints will be mentioned &er as the details bf the storage gystem 
design are described. 

4. STORAGE OBJECTS 
As described in the introduction, sroruge objects are the basic 

unit of data in the EXODUS storage system. Storaee obiects can 
grow and shrink in size, and their gyowih and shrinkage is-not con- 
strained to occur at the end of an object, as the EXODUS storage 
system supports insertion and deletion of new portions of a storage 
object anywhere within the object. This section of the paper 
describes the data structures and algorithms that are used to 
efhciently support storage objects, particularly large dynamic 
storage objects. 

Storage objects can be either small or large, although this dis- 
tinction is hidden from clients of the EXODUS storage system. 
Small storage obiects reside on a single disk naee. whereas large 
storage objects occupy multiple disk pages. ‘It-r- either case, the 
object identifier (OID) of a storage object is of the form 
@age #, slot #). Pages containing small storage objects ate slotted 
naaes. as in INGRES. Svstem R. and WiSS IAstr76. Ston76. 
Ch&&b], so the OID of a small storage object is a pointer to the 
object on disk. For large storage objects, the OID points to a /urge 
object header. This header can reside on a slotted page with other 
large object headers and small storage objects, and it contains 
pointers to other pages involved in the representation of the large 
object. All other pages in a iarge storage object are private to the 
object rather than being shared with other small or large storage 
objects (except that pages may be shared between various versions 
of the same object, as we will see later). When a small storage 
object grows to the point where it can no longer be accommodated 
on a single page, the EXODUS storage system will automatically 
convert it into a large storage object, leaving its object header in 
place of the original small object. We considered the alternative of 
using surrogates for OID’s rather than physical addresses, as in 

other recent proposals [Cope84, Ston86], but we rejected this alter- 
native due to what we anticipated would be ita high cost - with 
surrogates, it would always be necessary to access objects via a sur- 
rogate index. 

4.1. Large Storage Objects 
The data structure used to represent large objects was inspired 

by the ordered relation data structure proposed for use in INGRES 
[Ston83], although there are a number of significant differences 
between our insertion and deletion algorithms and those of 
Stonebraker’s proposal. Figure 1 shows an example of our large 
object data structure. Conceptually, a large object is an uninter- 
meted seauence of bytes: ohvsicallv. it is tenresented on disk as a 
B+ tree index on byte posidon withm. the object plus a collection of 
leaf (data) blocks. The root of the tree (the large object header) con- 
tains a number of (counr,puge #) pairs, one for each child of the 
root. The count value associated with each child pointer gives the 
maximum byte number stored in the subtree rooted at t&t child; 
the count for the rightmost child pointer is therefore also the size of 
the object. Intema] nodes are similar, being recursively defined as 
the root of another object contained within its patent node, so an 
absolute bvte offset within a child translates to a relative offset 
within its parent node. The left child of the root in Figure 1 con- 
tains bytes I-421, and the right child contains the rest of the object 
(bytes 422-786). The rightmost leaf node in the figure contains 173 
bvtes of data. Bvte 100 within this leaf node is byte 192 + 100 = 
252 within the right child of the root, and it is byte421 + 292 = 713 
within the object as a whole. 

OID 

HEADER W-JO-0 

Figure 1: An example of a large storage object. 

The leaf blocks in a large storage object contain pure data - 
no control information is required since the parent of a leaf contains 
the byte counts for each of its children. The size of a leaf block is a 
parameter of the data structure, and it is an integral number of con- 
tiguous disk pages. For often-updated objects, leaf blocks will 
probably be one page in length so as to minimize the amount of I/O 
and byte-shuffling that must be done on updates; for more static 
objects, leaf blocks may consist of several contiguous pages to 
lower the I/O cost of scanning long sequences of bytes within such 
objects. (Leaf block size will be senable on a per-file-object basis 
using the hint mechanism.) As in B+ trees, leaf blocks are allowed 
to vary from being l/2-full to completely full. 

Each internal node of a large storage object corresponds to one 
disk page, and contains between n, and 2n,+l (count, pointer) 
pairs. We allow a maximum of 2n,+l pairs because our deletion 
algorithm works in a top-down manner, and the nature of its top- 
down operation requires that it be possible to merge a l/2-full node 
of n. entries and a node with n,+l entries into a single full node (as 
we will see shortly). Finally, ihe root node corresponds to at most 
one disk page, or possibly just a portion of a shared page, and con- 
tains between 2 and 2n,+l (count, pointer) pairs. 

Table 1 shows examples of the approximate object size ranges 
that can be supported by trees of height two and three assuming two 
different leaf block sizes. The table assumes 4K-byte disk pages, 
4-byte pointers, and 4-byte counts, so the internal pages will have 
between 255 and 511 (count, pointer) pairs. It should be obvious 
from the table that two or three levels should suffice for most any 
large object. 
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No. of Tree Levels Leaf Block Size Object Size Range 
1 8KB - 2MB 

2 4 32KB - 8MB 
1 2MB - IGB 

3 4 8MB - 4GB 

Table 1: Some examples of object sizes. 

Associated with the large storage object data structure are 
algorithms to search for a range of bytes, to insert a sequence of 
bytes at a given point in the object, to append a sequence of bytes to 
the end of the object, and to delete a sequence of bytes from a given 
point in the obiect. The insert. atmend. and delete ooerations are 
quite different-from those in thd’proposal of Stonebraker et al 
]Ston83], as the insertion or deletion of an arbitrarv number of bvtes 
into a large storage object poses some unique problems compared to 
inserting or deleting a single record from an ordered relation. 
Inserting or deleting one byte is the analogy in our case to the usual 
single record operations, and single byte operations would be far too 
inefIicient for bulk inserts and deletes. As for the append operation, 
this is a special case of insert that we treat differently in order to 
achieve best-case storage utilizations for large objects that are con- 
structed via successive appends. We consider each of these algo- 
rithms in turn. 

4.1.1. Search 
The search operation supports the retrieval of a sequence of N 

bytes starting at byte position S in a large storage object. (It can 
also be used to retrieve a sequence of bytes that are to be modified 
and rewritten, of course.) Referring to the (count, pointer) pairs 
using the nOtatiOn c [i] and p [i 1, 11i12n,+l, and letting c [O]=O by 
convention, the search algorithm can be described as follows: 
(1) Let start = S , and read the root page and call it page P . 
(2) While P is not a leaf page, do the following: Save P’S 

address on the stack, and binary search P to find the smallest 
count c [i] such that sfarrlc [il. Set srurr=;rrart-c [i-l], and 
read the page associated with p [i] as the new page P . 

(3) Once at a leaf, the first desired byte is on page P at location 
srurt . 

(4) To obtain the rest of the N bytes, walk the tree using the stack 
of pointers maintained in (2). 
Considering Figure 1 again, suppose we wish to find bytes 

250-300. We set srurt=250, binary search the root, and find that 
c [1]=421 is the count that we want. We set sturt=sturl-c [0]=250 
(since c [O]=O by convention), and then we follow p [l] to the left 
child of the root node. We binary search this node, and we find that 
c [2]=282 is the count that equals or exceeds start; thus, we set 
sturt=sturt-c[l]=l30 and follow p[2] to the leaf page with 162 
bytes in it. Bytes 130-162 of this node and bytes 1-18 of its right 
neighbor (which is reachable by walking the stack) are the desired 
bytes. 

4.1.2. Insert 
The insert ooeration suonorts the insertion of a seauence of N 

bytes after the byie at position S. Since N can be arbhrarily large, 
an algorithm that eflicientlv handles bulk insertions is teouired; as 
mentkned before, the standard B-tree insertion algorithm only 
works for insetting a single byte, which would be too inefhcient for 
large insertions. Our insert algorithm can be described as follows: 

(1) 

(2) 

(3) 

Traverse the large object tree until the leaf containing byte S 
is reached, as in the search algorithm. As the tree is traversed, 
update the counts in the nodes to reflect the number of bytes to 
be inserted, and save the search path on the stack. 
Call the leaf into which bytes are being inserted L. When L is 
reached, try to insert the N bytes there. If no overflow occurs, 
then the insert is done, as the internal node counts will have 
been updated in (1). 
If an overflow does occur, allocate as many leaves as neces- 
sary to hold the overflow from L, and evenly distribute L’s 
bytes and the bytes being inserted among L and the newly 
allocated leaves. 

(4) Propagate the counts and pointers for the new leaves upward 
in the tree using the stack built in (1). If an internal node 
overflows, handle it in the same way that leaf overtlows are 
handled. 
This algorithm appears attractive because it touches the smal- 

lest possible number of internal pages and leaf blocks, thus minim- 
izing the I/O cost for insertion. Unfortunately, experience with a 
prototype implementation of the large storage object data structure 
showed that this insert algorithm leads to relatively poor storage 
utilization (as we will see shortly). In order to improve the storage 
utiiization, step (3) can be changed to: 
(3’) Let M be the left or right neighbor of L with the most free 

space (which can be determined by examining the count infor- 
mation in L ‘s parent node), and let B be the number of bytes 
per leaf block. If L and M together have a sufftcient amount 
of free space to accommodate N modufo B bytes of data (i.e., 
the overtlow that would remain after filling as many leaves 
with new data as possible), then evenly distribute the new data 
plus the old contents of L and M evenly between these two 
nodes and [NIB] newly allocated nodes. Otherwise, proceed 
as in step (3) above. 

The motivation for this modification is to avoid creating an 
additional node in cases where the overflow can instead be accom- 
modated by a neighboring node. This is reasonable here because it 
is not necessary to access a neighboring leaf until it is known (from 
the patent) that redistribution of data between L and M will indeed 
succeed, whereas the neighbors would have to be read from disk 
before this could be known in the case of a standard B+ tree. Note 
that this modification does increase the I/O cost for insertion in 
cases where such redistribution is possible - instead of reading I!, 
and then writing back L and a new node created by splitting L 
(along with \N/SJ other new nodes), L and M am both read and 
written. However, as we will see, the I/O cost increase in this one 
case is probably worth it, as the modification leads to a significant 
improvement in storage utilization. Also, it might be argued that 
the additional cost for reading M is not the whole picture - by 
redistributing the data in this way, we avoid having the system go 
through the process of allocating an additional node from the free 
list to handle the overflow. 

4.1.3. Append 
The append operation supports the addition of N bytes to the 

end of a large obiect. Appending N bytes differs from inserting N 
bytes in the way in which data-is redistributed among leaf pages 
when an overflow occurs. The append algorithm is as follows: 

(1) 

c-3 

(3) 

(4) 

Make a rightmost traversal of the large object tree. As the tree 
is being traversed, update the counts in the internal nodes to 
reflect the effect of the append. As always, save the search 
path on the stack. 
Call the rightmost leaf R . If R has enough free space to hold 
the new bytes, then append the bytes to R . The append opera- 
tion is now complete in this case. 
Otherwise, call R ‘s left neighbor (if it exists) L. Allocate as 
many leaves as necessaty to hold L’s bytes, R’s bytes, plus 
the new bytes being appended to the object. Fill L, R , and the 
newly allocated leaves in such a way that all but the two right- 
most leaves of the tree are completely full. Balance the 
remaining data between the two rightmost leaves, leaving each 
leaf at least l/2-full. (If L has no free space, we can ignore L 
during this step.) 
Propagate the counts and pointers for the new leaves upward 
in the tree using the stack built in (l), and handle node 
overflow as in the insertion algorithm. 
The key point of this algorithm is that it guarantees that a 

large object which is constructed via successive append operations 
will have maxima1 leaf utilization (i.e., all but the last two leaves 
will be completely full). This is particularly useful because it 
allows lame obiects to be created in steos, something which may be 
necessary If thi object being created is’exttemely layge. While*this 
algorithm could be improved to yield higher internal node utiliza- 
tion by treating the internal nodes the same way that leaves am 
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treated, we decided not to do this - it would increase the l/O cost 
of the algorithm, and internal node utilization is not as critical as 
leaf node utilization because of the large fanout of internal nodes. 

4.1.4. Delete 
The delete operation supports the deletion of N bytes starting 

at a specified byte position. In a B+ tree, the analogous problem 
would be that of range deletion, i.e., deleting all keys between some 
lower and upper bounds. Again, since the traditional B+ tree dele- 
tion algorithm removes only one record at a time, it would be unac- 
ceptably slow for large deletions. Instead, our bulk delete algorithm 
proceeds in two phases. In the first phase, it deletes the specified 
range of bytes, possibly leaving the tree in an unbalanced state. The 
second phase makes one pass down the tree structure to rebalance 
the tree. 

Deletion of an arbitrarv rantre of bvtes from the leaves of a 
large object will, in generai, im$y the heletion of a number of 
entire subtrees, leaving a “raw edge” of damaged nodes. These 
nodes form the cur-pa;h of the dehtion. In ge<eral, the left and 
right crcr-path will start at the root, include some number of com- 
mon nodes, and then split off and proceed down the tree to two dif- 
ferent leaves. The node at which the left and right cut-paths diverge 
is called the lowest common ance~ror or lea for the delete. Figure 2 
illustrates the relationship between the deleted portion of the tree, 
the left and right cut-paths, and their lea. Note that if any of the 
nodes remaining in the tree have underflowed, they must necessarily 
occur along the cut-path. The rebalancing algorithm therefore 
traces the cut-path in a top-down fashion, attempting to “zipper up” 
the split in the tree. 

In order to minimize the I/O cost of the deletion algorithm, we 
use a small data structure in memory, path, which describes the 
cut-path. The par/r data structure is built during the delete phase of 
the algorithm, and it stores the disk address of each cut-path node 
DIUS the number of children that it has (includina nodes from both 
ihe left and right cut-paths). The inf&mationstored in parh is 
sufficient to determine if a node is in danger of underllowing (as 
defined shortly). The rebalancing algorithm then examines path in a 
ton-down fashion - for each path node, if it is in danger of 
underflowing, its corresponding tree node is merged or reshuffled 
with a neighboring node until it is safe. 

The notion of a node being in danger of undergowing (possi- 
bly without actually having underflowed) is what allows the 

ATIl 

DELETED I’OkTION OP TREE 

Figure 2: Terminology for deletion algorithm. 

algorithm to operate in one downward pass through the nee. A 
node is in this situation if it cannot afford to have a pair of its child 
nodes merged into a single child node, as this would cause the node 
itself to underflow. To prevent this possibility, all potential 
underflows are instead handled on the way down the tree by merg- 
ing endangered nodes with neighboring nodes, or else by borrowing 
entries from neighboring nodes if such merging is impossible (i.e., 
if both neighbors have more than nr entries). A node is said to have 
underfbwed if either of the following conditions holds for the node: 
(1) The node is a leaf and it is less than l/2-full. 
(2) The node is an internal node and it has fewer than n, entries 

(or fewer than two entries if it is the root node). 
We say that a node is in danger of underflowing if any of the fol- 
lowing three conditions holds: 

(1) 
(2) 

(3) 

The node has actually underflowed. 
The node is an internal node with exactly nc entries (2 entries 
if it is the root), and one of its children along the cut path is in 
danger. 
The node is the lea , and it has exactly n,+l entries (3 entries 
if it is the root), and both of its children along the cut path am 
in danger. 
Given this background and our definitions of underllowed and 

endangered nodes, we can now describe each phase of the deletion 
algorithm as follows: 

Deletion Phase: 
(1) Traverse the object to the left and right limits of the deletion. 

All subtrees comnletelv enclosed bv the traversal are deleted, 
and the counts in’ all iodes along the cut-path are updated to 
show the results of the deletion. Also, for each node along the 
cut-path (as the tree is traversed), create a representative node 
in the main memory data structure path which records the 
address of the node and the number of children that it has left. 

(2) Traverse the parh data structure bottom-up, marking each node 
that is in danger (as defined above). 

Rebalancing Phase: 
(1) If the root is not in danger, go to step (2). If the root has only 

one child, make this child the new root and go to (1). Other- 
wise, merge/reshuffle3 those children of the root that are in 
danger and go to (1). 

(2) Go down to the next node along the cut-path. If no nodes 
remain, then the tree is now rebalanced. 

(3) While the current node is in danger, merge/reshuffle it with a 
sibling. (For a given node along the cut-path, this will require 
either 0, 1, or 2 iterations of the while loop.) 

(4) Go to (2). 

One additional note is in order with regard to the I/O cost of 
the deletion phase of the algorithm - in this phase, only one leaf 
block ever has to be touched. Entirely deleted nodes can simply be 
handed back to the free space manager directly, as their addresses 
are available in their parent node(s); furthermore, deletion can be 
accomplished for the partially deleted leaf block on the left cut-path 
by simply decrementing the byte count in its parent node. Thus, 
only the partially deleted leaf block on the right cut-path needs to be 
read and written during the deletion phase. 

4.1.5. Preliminary Performance Results 
In order to verify that the algorithms indeed work as claimed, 

to investigate certain algorithm design decisions and tradeoffs, and 
to find out what sort of performance can be expected using the 
scheme, we implemented a prototype of our large object design in 
the C programming language. Each of the operations (search, 
insert, append, and delete) operates as though the prototype was a 
real implementation of the design, but these routines am then inter- 
faced to a simulated CLOCK (LRU approximation) buffer manager 
that counts disk accesses (rather than really accessing pages on 
disk). Thus, our prototype‘ implementation actually r&s in main 
memorv. simulatinrr the I/O costs involved in the operations. Reads 
are counted by keeping track of the number of buffer pool misses, 
and writes are counted by noting the number of times pages are dir- 
tied (for the first time) in the buffer pool. This subsection of the 
naner describes the results of the tests that we conducted using the 
b&otype, including an investigation of the level of storage ut%xa- 
tion nrovided bv the scheme for two variants of the insert algorithm, 
a study of the &deoff between search/scan costs and update-costs as 
the leaf block size is varied, and a study of the average costs of the 
various tree operations. 

In our study, we assumed a 4K-byte page size, and we experi- 
mented with both l-page and 4-page leaf blocks. Our experiments 
consisted of using the append routine to construct an object of some 

s The mergelmshuftle step decide-s whether nodes can be merged or whether 
bytes must be reshuffled with a neighbor, does it, and then updatesparh to maintain 
a consistent view of the cut-path. 
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initial size with approximately 100% storage utilization, and then 
running a mix of randomly generated searches, inserts, and deletes 
on the object. We experimented with object sizes of IO megabytes 
and 100 megabytes, running a query mix consisting of 40% 
searches, 30% inserts, and 30% deletes. (Only the 10 megabyte 
results will be presented, as the 100 megabyte experiments pro- 
duced similar trends except for minor buffer-related differences.) 
Equal percentages of inserts and deletes were used in order to 
ensure that the object size remained stable, and these update opera- 
tions were uniformly distributed throughout the body of the object. 
(This uniform distribution assumption is a pessimistic assumption, 
as it produces worst-case average storage utilizations.) Two vari- 
ants of the insert algorithm were tested, one that always splits a leaf 
block on overflow and another that tries to avoid a split by moving 
data to the less full of the leaf block’s neighbors if doing so will 
help. Several mean operation sizes were tested, where the operation 
size is the number of bytes to be searched for, inserted, or deleted; 
mean sizes of 100 bytes and IOK bytes were used. (We also ran 
experiments with l-byte operations, but the results were basically 
the same as those of the loo-byte runs.) Operation sizes were 
drawn from a discrete uniform distribution varying plus or minus 
50% from the mean. Pointer and count values were assumed to 
require four bytes each in computing the capacity of internal nodes. 
In our experiments, we assumed the availability of 12 buffer pages 
for buffering data for the operations. Finally, we used disk time 
estimates of 3,3 milliseconds for disk arm movement plus rotational 
latency (for random I/O) and 1 millisecond of transfer time for each 
1K bytes transferred; thus, the cost to read a 4K byte page was 
taken to be 37 milliseconds, and the cost for a 16K byte block was 
49 milliseconds. 

The storage utilization results from our experiments are shown 
in Figures 3 and 4 for average operation sizes of 100 bytes and 10K 
bytes, respectively. The horizontal axis shows the number of opera- 
tions executed from the mix, so the figures illustrate how storage 
utilization degrades from the initial near-10096 figure as random 
insertions and deletions break up the initially full leaf blocks. In 
both tigures, it is clear that the insertion algorithm that tries to avoid 
splitting provides significant storage utilization improvements - 
for example, in Figure 3, the basic insert algorithm gives utilizations 
in the high 60% range, whereas the improved insert algorithm pro- 
vides utilizations in the low 80% range. It appears in Figure 3 that 
l-page leaf blocks provide slightly better storage utilization for the 
small operations when insertion does not look at neighboring nodes; 
this is because a larger fraction of the leaf blocks are split for a 
given number of random update operations in the 4-page case (and 
each one leaves more empty space as a fraction of the overall object 
size). This difference disappears for the better insert algorithm, as 
data is redistributed to avoid splits when possible. In Figure 4, how- 
ever, l-page leaf blocks have a large storage utilization advantage 
over 4-page leaf blocks. This is due to the average operation size 
being large - the average insertion adds 10K bytes, or 2.5 pages of 
data. This data is distributed over as few newly allocated l-page 
leaf blocks as possible (as well as one or two existing, partially- 
tilled leaf blocks), leading to 3-4 nearly full leaf blocks. With 4- 
page leaf blocks, however, the average insert is sure to split a leaf 
block, creating two relatively empty blocks as a result. If the opera- 
tion size were increased further, this difference would diminish, as 
much larger operations would create a number of nearly full leaves 
at either leaf size. 

The I/O cost for search operations.is presented in Figures 5 
and 6. In Figure 5, the search cost is basically independent of the 
leaf block size and the insert algorithm, with the l-page leaves hav- 
ing a tiny advantage over 4-page leaves since 100 byte searches can 
almost always be satisfied with data from a single disk page (i.e., 
without the additional transfer time for another 3K bytes of data). 
The average I/O cost in this case is in the neighborhood of two disk 
accesses, meaning that the root of the object is being successfully 
buffeted, and the other two levels are each being read. (The tree 
height for a 1OMB object turns out to be 3 - the toot, one other 
internal level, and then the leaf blocks.) Turning to Figure 6, which 
shows the search cost for 10K bytes of data, it is evident that the 4- 
page leaves have a detinite advantage here. This is due to the fact 
that much less random I/O is needed to read 2.5 pages of data when 
each leaf block contains 2-4 sequential pages worth of data. Figure 
6 also shows that the better insert algorithm has a slight advantage 
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here - by providing better storage utilization, it leads to a slight 
decrease in the average number of leaf blocks that have to be read to 
obtain the desired data. Comparing Figures 5 and 6, of course, the 
cost of 10K byte retrieves is higher than the cost of 100 byte 
searches because of the extra leaf block I/O for reading the entire 

IOK bytes. 

We also examined the I/O costs for the insert and delete opera- 
tions in our experiments. Space prevents us from presenting the 
curves, but we briefly summarize the results hem. For insertion, we 
found the improved insert algorithm to be 3-108 more expensive 
than the basic algorithm. Since the improved algorithm prefers 
redistribution of data over solittine leaf blocks. it sometimes reada . - .~ 
and writes a neighboring leaf block (rather than just writing a new 
leaf block) when doing so avoids the creation of a new leaf. For 
large inserts, we found that 4-page leaves had an lo-15% perfor- 
mance advantage over l-page leaves; this is because fewer leaves 
need to be touched on the average when leaf blocks are 4 pages 
long, and the resulting decrease in random I/O outweighs the 
increase in sequential I/O. For small inserts, the basic insert algo- 
rithm with l-page leaves was found to be the cheapest alternative, 
as it avoids the cost of reading neighboring nodes and also avoids 
the additional sequential mad/write costs associated with 4-page 
leaves. Finally, as expected, the cost of inserting 10K bytes was 
found to be significantly higher than the cost for 100 bytes due to 
the additional page I/O’s needed to write out the data in the 10K 
case. As for deletion, we found that the improved insert algorithm 
leads to lower deletion costs (by as much as 20% in some cases). 
This is due to the increased storage utilization provided by the 
improved insert algorithm, which lowers the probability of having 
to borrow data from a leaf page to fill in gaps in partially deleted 
leaves. We also found that the l-page leaves had a cost advantage 
over 4-page leaves for deletion; this is due to the additional sequen- 
tial I/O cost associated with 4-page leaves, both during the deletion 
and rebalancing phases. (Recall that the deletion phase never 
accesses more than a single leaf block, regardless of the amount of 
data being deleted.) This cost advantage was mom pronounced 
when the basic insert algorithm was used. It was particularly 
signilicant for large deletions, where it averaged about 20% for the 
baJa;.insert algorithm and 12% or so for the improved insert algo- 

To summarize our experimental results, we found that the 
EXODUS large storage obiect mechanism nrovides onerations on 
very large dyiamic objectsat relatively low’ cost, and-at a reason- 
able level of storage utilization (80% or higher). With respect to the 
appropriate choice of leaf block size, there are clearly tradeoffs - 
lamer leaf blocks have a delinite. advantage for multi-page searches, 
but they also increase the cost somewhat for updates and lead to 
somewhat lower storage utilizations. We expect multi-page leaves 
to offer the greatest advantages for large, relatively static objects, 
where the storage utilization will be close to 100% (because such 
objects will be built via appends and not subjected to mixes of fre- 
quent and randomly distributed updates). Finally, we should men- 
tion that the results presented here are actually pessimistic in some 
ways. Our storage utilization results are pessimistic because, for 
more static objects, or objects where updates tend to be clustered in 
just a few regions of the object, storage utilizations in the 90-100% 
range would really be the norm. Our I/O cost results are slightly 
pesiimistic because our prototype does not handle leaf blocks as 
efficiently as it might - entire leaf blocks are read and written 
(rather than partial blocks) even when only the last page or two of a 
block is affected by an operation. 

4.2. Versions of Storage Objects 
As described earlier, the EXODUS storage system also pro- 

vides support for versions of storage objects. The support provided 
is quite primitive -one version of each storage object is retained as 
the current version, and all of the preceding versions are simply 
marked (in their object headers) as being old versions. When a 
storage object is updated with the versioning option on, the old 
object header (or the entire object, in the case of a small storage 
object) is copied to a new location on disk as an old version of the 
object. The old version of the object header is then overwritten (in 
place) by the new version of the header. The OID of the old version 
is returned to the updater, and the OID of the new version is the 

OID that was originally passed to the update routine (since OID’s 
are basically physical addresses). To ensure that the cost of copying 
the old version elsewhere is not as prohibitive as it might otherwise 
be [Care85b], the old version is placed on the same page of the file 
object as the new version, or else on a nearby page, if possible. 
(Note that we do not plan on using versions as our recovery 
mechanism, or this would be unreasonable.) 

The reason for such a primitive level of version support is that 
different EXODUS applications may have widely different notions 
of how versions should be sueoorted. as evidenced bv the wide 
range of version-related propo&?s in the recent literatu& [StonSl, 
Dada84, Katz84, Bato85. CliflI5, Klah85, Snod85, Katz861. There- 
fore, we leave the maintenance of data structures such as graphs of 
the versions and alteratives of objects to a higher level of the sys- 
tem, a level that will undoubtedly vary from application to applica- 
tion (unlike the EXODUS storage system). The reason that we do 
not leave version management out of the EXODUS storage system 
altogether is one of efliciency - it would be prohibitively expen- 
sive, both in terms of storage space and I/O cost, to maintain ver- 
sions of large objects by maintaining entire copies of objects 

Versions of large storage objects are maintained by copying 
and updating the pages that differ from version to version. Figure 7 
illustrates t& by an example. The figure shows two versionsof the 
large storage object of Figure 1, the original version, VI, and a 
newer version, vs. In this example, V2 was created by deleting the 
last 36 bytes from VI. Note. that Vq shams all nodes of VI that are 
unchanged, and it has its own copies of each modified node. A new 
version of a large storage object will always contain a new copy of 
the path from the toot to the new leaf (or leaves); it may also con- 
tain copies of other internal nodes if the change affects a very large 
fraction of the object. Since the length of the path will usually be 
two or three, however, and the number of internal pages is small 
relative to the number of pages of actual data (due to high fanout for 

Figure 7: Two versions of a large storage object. 

internal nodes), the overhead for versioning large objects in this 
scheme is small - for a given tree height, it is basically propor- 
tional to the difference between ad.iacent versions, and not to the 
size of the objects. 

Besides allowing for the creation of new versions of large 
storage objects, which is supported by allowing the insert, append, 
delete, and write (i.e., read and modify a byte range) operauons to 
be invoked with the versioning option turned on. the EXODUS 
storage system also supports the deletion of versions. Again, this is 
necessary from an efficiency standpoint; it is also necessary if the 
storage system is to successfully hide the physical representation of 
storage objects from its clients. The problem is that, when deleting 
a version of a large object, we must avoid discarding any of the 
object’s pages that are shared (and thus needed) by other versions of 
the same object. In general, we will have a situation like the one 
pictured in Figure 8, where we wish to delete a version V which has 
a direct ancestor V, (from which V was created) and descendents 
V,, through Vdn (which were created from V). 

A naive way to insure that no shared pages are discarded 
would be to traverse all other versions of V, marking each page as 
having been visited, and then traverse V, discarding each unmarked 
page. The problem with this approach is that there may be many 
versions of V, and consequently the number of pages visited could 
be quite large. One way to cut down on the number of pages visited 
is to observe that, if an ancestor of version V, shares a page with a 
page with V, then V, itself must also share that same page with V. 
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pages between versions, the algorithm will simply end up visiting 
every non-leaf page of every version, which is much better than also 
visiting the leaves. (Leaf blocks comprise the vast majority of each 
version - with internal node fanouts of several hundred, non-leaf 
pages will represent less than 1% of the large object storage require- 
ments). In typical cases, however, the algorithm will visit relatively 
few pages, as adjacent versions are likely to share the bulk of their 
pages. 

&” 
Figure 8: An example version history. 

Likewise, if a descendent of Vdl shares a page with V, V,+, itself 
must also share that page with V. Thus, it sufgces to just visit the 
pages of the direct ancestor and the direct descendents of an object, 
i.e., of the adjacent versions of an object (the version from which 
the object was directly created, or versions which were. themselves 
directly created from the object). 

We can further reduce the number of pages visited by observ- 
ing two things. First, if a page is shared by two versions of a large 
object, then the entire subtree rooted at that page must be shared by 
the two versions. (An example is the leftmost child of the two ver- 
sion root pages in Figure 7.) Second, if a subttee is shared by two 
versions, then the root of that subtme must have the same height 
(i.e., distance above the leaf level) in both versions of the object. 
(Again, see Figure 7.) The Iirst observation means that we only 
need to visit a shared subtree’s root; there is no need to visit its des- 
cendent pages since they will necessarily be shared. The second 
observation means that if we scan versions of equal height level by 
level, then we will be able to detect the toots of shared-subtrees as 
the level is scanned; further, for versions of unequal height, we 
need not check for shared pages until we get down io the appropri- 
ate level in the taller of the two versions. 

Suppose for the moment that we wish to delete version V of 
an object, and that V has just one direct descendent, V,. Further, 
suppose that V and V,, are the same height. Then, based on these 
two observations, the deletion algorithm can be described as fol- 
lows: 
(1) For each internal level 1 of V, do the following (working 

top-down from the root level): 

(4 Scan the index nodes at level 1 in V, tentatively mark- 
ing all of the page numbers encountered in the nodes at 
this level for deletion. (Note that these page numbers 
are for pages at level I +I .) 

(b) Now scan level 1 in Vd. If a marked page number is 
encountered, unmark it and avoid scanning that page 
(and the subtree rooted at that page) in subsequent itera- 
tions. 

(c) Discard the pages from level f+l of V that are still 
marked for deletion after step (b). 

(2) Finish by discarding the root of V as well. 
This algorithm is easily generalized to handle the case where 

the heights of versions V and V, are unequal as well. If the height 
of V is-greater, then we delay scanning V, until we are scanning the 
level in V with the same height as the root of VA; the case where 
the height of V, is greater ishandled similarly.-It should also be. 
clear that the algorithm can be generalized for the case where there 
are several versions adjacent to V (i.e., an ancestor and several des- 
cendent versions). In this latter case, step (b) must be performed for 
level I of each adjacent version, as a page of V cannot be discarded 
unless no adiacent version shares that nape with V. As input, then, 
the version deletion operation takes thevOID of the version to be 
deleted and the set of OID’s of its adiacent versions:’ it deletes the 
specified version while leaving all oi the pages that it shares with 
adjacent versions intact. As described earlier, we leave the problem 
of maintaining information about adjacent versions, like those in the 
example of Figure 8, to a higher level of the system. 

A reasonable implementation of this algorithm would use a 
breadth-first search to scan the objects and a main-memory hash 
table to store the page numbers of the marked pages. Note that it is 
never necessary to actually read any leaf pages from the disk with 
this algorithm - in the worst case, where there is no sharing of 

4.3. Concurrency Control and Recovery 
The EXODUS storage system will provide both concurrency 

control and recovery services for storage objects. Two-phase lock- 
ing [Gray791 of byte ranges within storage objects will be used for 
concurrency control, with a “lock the entire object” option being 
provided for cases where object (OID) level locking will suffice. 
For small storage objects, object level locking will probably be the 
norm. For large storage objects, however, byte range locking may 
be useful in some applications: For updates that change the con- 
tents of a range of bvtes without changing the size of that range (i.e.. 
updates that-read and then rewrite-a byte range), search& ‘and 
updates in disjoint regions of the object will still be able to proceed. 
Updates that insert, append, or delete bytes will lock the byte range 
from where the operation begins to the end of the object, as the 
offsets of the remaining bytes cannot be known until the updater 
either commits or aborts. To ensure the integrity of the internal 
pages of large storage objects while insert, append, and delete 
operations am operating on them (e.g., changing their counts and 
pointers), non-two-phase B+ tree locking protocols [Baye77] will be 
employed. Searches and byte range updates will descend the tree 
structure by chaining their way down with read locks, read-locking 
a node at level i +l and then immediately releasing the level i tead- 
lock, holding only byte range read or write locks in a two-phase 
manner. Since inserts, appends, and deletes will normally affect an 
entire root-to-leaf path4, the root and internal pages along the path 
for this type of update will be write-locked for the duration of the 
operation (e.g.., the insert, delete, or append); again, though, only 
byte range wnte locks will be held in a two-phase manner once the 
operation has completed. 

For recovery, small storage objects will be handled using 
before/after-image logging and i&pla&e updating at the object Ieva 
[Gray79]. Recovery for large storage objects will be handled using 
a combination of shadows and logging - updated internal pages 
and leaf blocks will be shadowed up to the root level, with updates 
being installed atomically by overwriting the old object header with 
the new header [Verh78]. Prior to the installation of the update at 
the root level, the other updated pages will be forced to disk; also, 
the name and parameters of the operation that caused the update 
will be lonaed. with the Ion seauence number (ala IGrav791) of the 
log record?& ihe update b;ng placed on the root page oi theobject. 
This will ensure that operations on large storage objects can be 
undone (by performing the inverse operation) or redone (by re- 
performing the operation) as necessary in an idempotent manner. 
For versioned objects, the same recovery scheme will be used. In 
this case, however, the before-image of the updated large object 
header (or the entire small object) will tirst be copied elsewhere to 
be maintained as the version from before the updates. 

4.4. Buffer Management for Storage Objects 
As described in the introduction, one objective of the 

EXODUS storage system design was to minimize the amount of 
copying from buffer space that is required. A second (related) 
objective is to allow sizable portions of large storage objects to be 
scanned directly in the buffer pool if this is desired by higher levels 
of software. To accommodate these needs, we plan to allocate 
buffer space in variable-length buffer blocks, which are integral 
numbers of pages, rather than only in single-page units. This will 
simplify things for higher-level software, making it possible to read 
and then scan a multi-page sequence of bytes without concern for 
page boundaries. 

’ Recall that inserting, appending, or deleting byes will Cause COU~~J to 
change a11 the way up to the mot, unlike a record insertion or deletion in a standard 

B+ tree. 
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Figure 9 sketches the key aspects of the EXODUS buffering 
scheme for large storage objects. When an EXODUS client 
requests that a sequence of C, bytes be read from object X, the 
non-empty portions of the leaf blocks of X containing the desired 
range of bytes (leaf blocks P *, P *, and P 3 in Figure 9) will be read 
into one contiguous buffer block. Assuming leaf blocks are the unit 
of data transfer between the disk and the buffers, this can be accom- 
plished by obtaining a buffer block of the appropriate size from the 
buffer space manager and then reading P 1, P,, and lastly P, into 
the block - in that order, and so that P2 begins right after the end 
of the non-empty portion of P 1, with P 3 being placed similarly. 
(While this constrains the order in which the leaf blocks of a large 
object can be read into the buffer pool, we do not expect this to be a 
serious limitation.) A scan descriptor will be maintained for the 
current region of X being scanned, including such information as 
the OID of X , a pointer to its buffer block, the length of the actual 
portion of the buffer block containing the bytes requested by the 
client, a pointer to the first such byte, and information about where 
the contents of the buffer block came from (for replacement pur- 

X 
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Figure 9: Contiguous buffering in EXODUS. 

poses). The client will receive an indirect pointei’ to the buffer con- 
tents (S in Figure 9) through which the buffer contents may be 
accessed. Free space for the buffer pool will be managed using one 
of the standard dynamic storage allocation techniques (with the 
smallest unit of allocation being one disk page.) Finally, buffer 
space allocation and replacement policy selection will be guided by 
the hint mechanism mentioned in Section 3. 

5. FILE OBJECTS 
File objects in the EXODUS storage system are collections of 

storage objects (sets of storage objects, roughly speaking). File 
objects are useful for grouping objects together for several purposes. 
First, the EXODUS storage system provides a mechanism for 
sequencing through all of the objects in a file, so related objects can 
be placed in a common file for sequential scanning purposes. 
Second, objects within a given file are placed on disk pages allo- 
cated to the Iile, so file objects provide support for objects that need 
to be co-located on disk. 

5.1. File Representation 
The representation of file objects in EXODUS is similar in 

some respects to the representation of large storage objects. A file 
object is identified by its OID, and the OID for a file object is a 
pointer to the root page (i.e., the header) of the file object. (Storage 
objects and file objects are distinguished by a bit in their object 
headers.) Like large storage objects, file objects are represented by 
an index structure similar to a B+ tree, but the key for the index is 

’ We are still debating whether this should be a direct pointer or an indirect 
pointer, So this aspect of the design may change slightly. A level of indirection al- 
LOWS bufk blocks to be relocated (in a critical section) for storage management 
purposes without interfering with client accesses. 

different in this case - a iile object index uses disk page number as 
its key. Each leaf page of the file object index contains a collection 
of page numbers for the slotted pages contained in the file. (The 
actual slotted pages themselves are managed separately, using stan- 
dard techniques for page allocation and free space management.) 
The file object index thus serves as a mechanism to gather the pages 
of a file together, but it also has several other nice properties - it 
facilitates the scanning of all of the objects within a given file object 
in physical order for efficiency, and it also allows fast deletion of an 
object with a given OID from a lile object (as we will see momen- 
tarily). We considered several other file designs, including the pos- 
sibility of representing files as large storage objects containing a 
sequence of OID’s, but none supported fast object deletion as well 
as this scheme does. Note that since all of the objects in a file are 
directly accessible via their OIDs, file objects are not comparable to 
surrogate indices - indices on the objects within a given file object 
will contain entries that point directly to the objects being indexed. 

Creation of a file object allocates the file object header. Later, 
when objects are to be created within the file object, the object crea- 
tion routine will be called with an optional hint of the form “place 
the new object near X”., where X is the OID of an existing object 
within the tile. If this hmt is present, the new object will be inserted 
on the same page as X if possible. (Recall that X’s OID identifies 
the desired page.) If there is not enough space on X’s page, then a 
new page near X’s page on the disk will be allocated for the newly 
inserted object and its page number will be inserted into the file 
object B+ tree; the OID of the file object will be recorded on the 
newly allocated page. If no hint is present, X will be appended to 
the tile (i.e., placed on the last page listed in the file object index, 
with overflows handled in the manner just described). Object dele- 
tion is accomplished by simply removing the object from the page 
where it resides. If the page becomes empty as a result, its page 
number must be deleted from the file object index and the page 
itself must be returned to the free space manager. Lastly, file dele- 
tion will lead to the deletion of all of the objects residing on pages 
listed in the file object index, the return of those pages to the free 
list, and then the removal of the index itself. If a file page contains 
one or more large object headers or file object headers, then these 
will of course have to be recursively deleted; otherwise, the page 
can be freed immediately. 

5.2. Other File Object Issues 
Concurrency control and recovery for file objects will be han- 

dled via mechanisms similar to those used for large storage objects. 
Concurrency control (for page number insertions and deletions) will 
be provided using B+ tree locking protocols. Recovery will be 
accomplished by shadowing changes up to the highest affected level 
of the iile object index, logging the before- and after-images of the 
highest affected node, and then finally overwriting this node to 
atomically install the update. It is important to note that these con- 
currency control and recovery protocols will only be exercised when 
the iile index is modified via the insertion or deletion of leaf page 
entries, as the storage object concurrency control and recovery pro- 
tocols will handle slotted page changes that do not cause the tile 
object index to be modified. Also, file object index changes can be 
deferred until commit time, allowing them to be grouped for 
efficiency. 

The final non-trivial issue related to lile objects is the question 
of how one can sort a Ale object. Since schema information has 
been carefully kept out of the EXODUS storage system, the storage 
system does not have suflicient information to do this on its own - 
it has no idea what fields the storage objects in a given file object 
have, nor does it know what the data types for the fields are. Since 
sorting is likely to be important for performance in some applica- 
tions, and we do not wish the applications to be aware of the way 
that storage objects are laid out on disk, the EXODUS storage sys- 
tem will provide a generic file object sorting routine. One of the 
arguments to this sort routine will be a procedure parameter for an 
object comparison routine; the sort utility will call this routine to 
compare storage objects as it sorts the file. Sorting will necessarily 
move objects from page to page, so their OID’s will be invalidated 
when sorting is performed. (This is really the only way in which 
OID’s differ from surrogates, as other storage system operations 

-99- 



preserve the integrity of OID’s by leaving a forwarding address at 
an object’s original location when the object must be relocated.) 

6. CONCLUSIONS 
In this paper we described the design of the object-oriented 

storage component of EXODUS, an extensible database manage- 
ment system under development at the University of Wisconsin. 
The basic abstraction in the EXODUS storage system is the storage 
object, an uninterpreted variable-length record of arbitrary size. 
File objects are used to group together and sequence through collec- 
tions of storage obiects. The data structure and alnorithms used to 
support large- storage objects were described, aid performance 
results from a preliminarv orototvce of the EXODUS laree object 
management sdheme weie -presented. It was shown that-the pro- 
posed scheme indeed provides eflicient support for large dynamic 
storage objects, both in terms of their storage utilization and perfor- 
mance. A scheme was described for maintaining versions of large 
obiects by sharing common uages between versions. and an eflicient 
version deletionalgorithm b& then presented. Also described in 
the paper, albeit briefly, were our design for file obiects and our 
aooioaczhes to the oroblems of buffermanaeement.- concurrencv 
cbntrol, and recoveb. We are now working%n a &tailed desigh 
document for the EXODUS storage system based on the algorithms 
and data structures described here, and implementation will com- 
mence during the summer of 1986. 
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