
LDL: A Logic-Based Data-Language

Shalom Tsur
Carlo Zaniolo

Microelectronics and Computer Technology Corporation
9430 Research Boulevard

Austin, Texas, 78759

Abstract

In this paper we describe the considerations that led us
to the design of LDL and nrovide an overview of the
features of-this language. L$L is designed to combine
the flexibility of logic programming with the high per-
formance of the relational database technology. The
design offers an improved mode of control over the ex-
isting logic programming languages together with an en-
riched repertoire of data objects and constructs, includ-
ing: sets, updates and negation. These advantages are
realized by means of a compilation technology.

1. Introduction

In this paper we describe the considerations that led to
the design of LDL and provide an overview of the fea-
tures of this language. The motivation behind the design
of this language stems from our desire to take advan-
tage of the current developments in the area of logic
programming as well as the recent advances in rela-
tional database systems.

The advantages of logic as a formal foundation of
databases and knowledge management systems have
long been recognized [Ga1178, Gall84], and can be sum-
marized as follows:

(1) It offers a high-level, uniform and consistent for-
malism for data, view and integrity-constraint definition
that rest on a solid, theoretical foundation.

(2) it supports reasoning and inferential capabilities.

(3) It offers an adequate basis for the development of
an even higher functionality in the future: support for
temporal, non-monotonic and other forms of reasoning.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial adoanta e, the VWB copyright notice and the
title of the publication anlits o&e appear and notice is giuen
that copying is by permission of the Ve& Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

-33

(4) It is general in the sense that it does not make an a
priori distinction between stored-knowledge processing
and general-purpose computing.

(5) It is amenable to parallel processing.

For all these potential benefits, logic has been used
more often as a formal vehicle for specification than as
a programming language in which to encode al-
gorithms--predominantly as a consequence of the poor
performance of early systems that employed logic for
theorem-proving. Using Kowalski’s celebrated equa-
tion: Algorithm = Logic + Control [Kowa79], we see that
the problem of the efficient use of logic in computa-
tional tasks is tantamount to that of effective control.
Whereas early theorem provers have failed in providing
efficient control schemes, relational database theory
and logic programming have recently provided efficient
and widely used systems e.g., SQIiDS [IBM811 and
[Quin85], which use two entirely different control
paradigms. We compare these next.

Today’s state of the art in logic programming is
represented by PROLOG in its various manifestations
[CiockM, Naish851. We assume some familiarity with
this language as well as the standard logic terminology.
Because of the relative popularity of of PROLOG in this
realm of computing we will use it in this paper for
comparison with LDL. PROLOG is based on Horn-
clause logic and a sequential execution-control model.
Rules are searched and goals are expanded in the very
order in which they are specified (SLD resolution).
Thus, the resoonsibilitv for the efficient execution ml
termination of programs rests with the programmer: an
improper ordering of the predicates or rules may result
in poor performance or even in a non-terminating
program. In addition, a number of extra-logical con-
structs (such as the cut) have been grafted to the lan-
guage, turning it into an imperative, rather than a purely
declarative language. This reduces PROLOG’s
amenability to parallel implementation and detracts
from its ease of use and its data independence. The
execution model of PROLOG, like other logic program-

Kyoto. August, 1986

ming languages, simply assumes random access to the
objects that it manipulates and relies on the virtual
memory support of the underlying computer system
when large-volume data is involved. Consequently, it
employs a &p/e-at-time nested-loop join strategy, which
is not suitable for data access in secondary storage.

The query languages of relational databases are also
based on logic -- the interpretation of a relational
query amounts to a proof of satisfiability (in th,e model
theoretic sense) see e.g., [Gall84a]. The control over
their execution is however the responsibility of the sys-
tem that, via query optimization and compilation tech-
niques, ensures efficient performance over a wide range
of storage structures and database, demographies. A
great deal of thought and ingenuity has been invested in
the efficient processing of queries posed in database
languages. The working assumption is that the volume
of data to be manipulated is too !arge to be contained in
the memory of a computer and, hence, that special tech-
niques for secondary-memory data-access and update
must be employed. Thus for instance, a relational sys-
tem is not confined to nested-loop joins when im-
plementing queries,- but can take full advantage of the
logically equivalent strategies for joining and accessing
physical data.

Relational systems are superior to PROLOG with
respect to ease of use, data independence, suitability for
parallel. processing and secondary storage access.
However, the expressive power and functionality of-
fered by database query languages is limited compared
with the logic programming languages. Typically, they
are designed around a Data Model. In other words, there
is a distinction, at the application level, between stored
or base relations and derived relations that can be ob-
tained through the view mechanisms that these lan-
guages provide. The distinction between data-model
and query language limits their expressive power: they
do not support such constructs as recursion and general
unification that entails the computation of closures and
the use of complex structures (as opposed to just for-
matted records). Even more important, PROLOG, un-
like relational languages is Turing-completet, and can
be used as a general-purpose programming language. It
is in fact being used so with great success in varied
applications such as symbolic manipulation, rule-based
expert system and natural language parsing. In contrast,
relational query languages are often powerless to ex-
press complete applications, and are thus embedded in
traditional programming languages. This method is
known to have its drawbacks: primarily the “impedance
mismatch” between the relational query and imperative

languages and the lower programmer productivity when
these languages are used.

The comparison between logic programming languages
and database query languages provides the background
and motivation for LDL. We want to combine the
benefits of these two approaches by designing and sup-
porting a logic-based query language that combines the
power of PROLOG with the ease of use, the suitability
for parallel processing and secondary storage manage-
ment of the relational systems. The language will be
purely declarative in nature in which the control over
the execution will be the responsibility of the system.
We expect that once realized, such systems will be used
to. suppbrt traditional database queries, data-intensive
applications, knowledge based and expert applications,
as well as deductive retritval and inferential queries.

The design and ‘implementation of this system, which
we are currently undertaking, poses many research chal-
lenges. These can be summarized as follows:

1) A logic-based language must be designed that is free
of the sequential execution model and other spurious
constructs of PROLOG, without any loss of
functionality.

2) Database compilation and optimization techniques
must be extended and added to handle the richer
functionality of the language.

The desirability of the integration of logic programming
and relational database technology has been recognized
for some time [Park84]. Attempts to realize such an
integration have been so far confined to building inter-
faces between a PROLOG language-processor and a
relational database system [Kun82, Jark84, Bocc86].
This approach suffers from a mismatch between the
computational models of these coupled subsystems:
PROLOG is oriented towards a tuple at a time model of
computation [Zani84], the relational model is oriented
towards a set at a time. In the design of LDL we
remedy this mismatch by adopting a set at a time model
of computation. We realize this model by means of com-
pilation i.e., we perform an extensive analysis of the
source rules and in this process formulate target-
queries in a relational target language. A similar ap-
proach to the problem addressed by us is taken in
[Ul185, Morr86]. By comparison, PROLOG, not even in
its compiled versions [Camp84], makes the distinction
between rule-access and data-access and treats these

‘Turing-complete in this context means that for any iven set of
base relations R , , . . . ,R, and a computable function I@ there
an LDL program to compute a dewed relation? such that

exists

R=f(RI.....R,)

-34-

as indistinguishable objects. In this paper we con-
centrate on the functionality of LDL. The compilation
techniques are mentioned briefly in sec. 3 and are
treated in detail in [Zani85, Banc861.

The remainder of this paper is divided as follows: In
section 2 we describe the salient features of LDL and
demonstrate these by means of examples. Section 3
gives a brief overview of the compilation technique re-
quired for query translation in LDL and we conclude
this paper by suggesting some further improvements in
section 4.

2. LDL Features.

The approach we have taken in designing LDL is to,

(1) Base the design on a well-understood logic founda-
tion.

(2) Extend this foundation to support language features
that are of particular utility to the database applica-
tion programmer.

Consequently, the design of LDL is based on Horn-
clause logic; the logic programming experience has
amply demonstrated the utility of this logic as a general
purpose programming language. In addition, the seman-
tics of Horn-clause logic is well defined and can be
described in operatiorial as well as fixed-point terms
[Lloyd84].

At the same time, the design of LDL takes the logic-
programming paradigm beyond PROLOG in the follow-
ing ways:

(1)

(2)

LDL is based on pure Horn clause logic; i.e., the se-
quential order of execution of rules in a procedure
or subgoals within a given rule has been removed.

Sets have been introduced as primitive data objects
that can be used directly in the language rather than
their simulation through lists as in PROLOG.

(3) A form of negation which is based on set-difference1
replaces PROLOG’s negation by failure.:!

(4) Schema-definition and update facilities were in-
cluded.In the following sections we elaborate on
each of these features and demonstrate them by
means of examples.

2.1 Horn Clause Logic

The sequential order of execution in PROLOG implies
that the programmer has the responsibility for the or-

‘Negation is not in Horn clause logic. This is one instance in
which the foundation had to be extended so as to support this
feature.

dering of rules and subgoals within each rule to reflect
the problem that he wants to solve. In LDL this respon-
sibility has been moved into the system. The following
example is a valid LDL program for the derivation of
the ancestor relation assuming that parent (x.Y) is the
base relation.

% Example 1: Ancestor Relation.

ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

ancestor(X.Y) <- parent(X,Y).

If a goal specification would be resolved against the
rules in this example in PROLOG, then the first clause
would be tried before the second one and the computa-
tion would not terminate. The order of specification is
irrelevant in LDL since both clauses are analyzed at
compile time, prior to the execution of a query. The
result of this analysis is an execution strategy that
implements the general fixpoint semantics of these
Horn-clauses rather than a strategy which is based on
their particular order.ing.

Another feature of LDL, which can be supported by
Horn-clause logic is the use of complex terms in facts
and rules. In the following example the emp relation
contains information about the first and last names, OC-
cupation and education of employees. The use of com-
plex terms enables the grouping of the individual facts
about the education of an employee in a flexible way,
unlimited by the rigid tuple structure of relational SyS-
terns.

96 Example 2: Employee Facts with Complex Terms.

emp(joe.cool,porter,none).

Note that the term names used in those facts such as
high-school, college and school serve as placeholders that
enable the term-structuring. They do not carry any
information and could be omitted. Complex terms
should not be confused with (evaluable) function
symbols which are not included in the LDL repertoire.

We can formulate rules that can be resolved using
complex terms. The following rule specifies the name,
school and year of graduation for MBA’s who graduated
after 1981.

-35-

96 Example 3: New UBA's.

new-mbas(Last.First,School,Year) <-

emp(Last,First ,-,college(ms,ba,School.Year)),

Year > 1981.

The query new-mbas(L,F, S,Y)? would return the set
{Cfred, red, mit, 1983)) when applied to the fact base of
Example 2. Note that the formulation of this problem in
a conventional database would force the programmer
either to distinguish between employees having a
high-school education only and employees having a
college education or, to specify null values in his
normalized relations and to cope with problems that
arise. from joining on null values. Neither of these
options is very attractive! The rule in Example 3 would
then be formulated in a way akin to the concept of
generalization as proposed in [Smith 771.

Complex terms can be used in recursive rules. The
following is the (by now famous) example of list
appending. The list in this example is the complex term
and would be represented as .(x1, .(x2,(xn, nil) . ..)
where ” .” is the list concatenation operator.

4. Example 4: List Append.

append(X,nil.X).

append(X.A,Z.X.B) <- append(A,Z,B).

As in Example 1, the order of specification of the
clauses is immaterial.

2.2 Sets in LDL

We noted in the introduction that the model of com-
putation employed by LDL is that of a set at a time.
Consequently, the response to a query would be to com-
pute all of the possible answers that can be deduced
from the base relations. In Example 1 above, the
response to the query ancestor t j0e.x) 7 would be to
compute all of joe’s ancestor and not just an ancestor.
In this respect, sets are used implicitly in the computa-
tion of LDL queries. LDL provides however an explicit
form of set manipulation; it enables the user to use sets
as data objects in the specification of rules and facts.
The advantages of having sets as a primitive in LDL
include convenience, expressive power and efficiency.
In particular, it allows for the support of nested rela-
tions -- a feature which has been advocated by many
researchers in the database field e.g., [Banc86a,
Ram85, Dada86]. Furthermore, the need for aggregate
operations and relational division like operations is evi-
dent and supported by most relational systems; these

are not expressible by Horn clauses. PROLOG systems
have recognized this need too and answered it with an
assortment of ad-hoc constructs such as the bagof and
setof primitives, which feature a semantics totally de-
pendent on the sequential execution model of that lan-
guage. These constructs collect all the terms that satisfy
a certain goal into a list. Since a list is a data structure
fit for sequential operations only, the potential for
parallel execution is therefore lost. We will demonstrate
how these limitations can be overcome by means of the
three constructs of set-enumeration, set-generation and
partition.

The following example illustrates the use of set
enumeration in facts.

%Example 5: Set-Oriented Facts.

children-of(joe,mary,(peter,.john,lisa)).

employees-of(bill,brown,

((red,russell,(working,jogging,bicycling]),

(mac,fat,(cooking,eating)),

(graham,greene,{spy-novels)),

. . .)).

In these examples, the first fact states the relationship
between parent and their children and the second the
relationship between a manager and his employees. In
the second example each member of the employee set
is represented by a tuple which in itself contains a set of
hobbies of the employee. LDL allows thus for the
specification of complex terms in facts and rules; these
complex terms may include sets. The consequence of
admitting sets as data objects is that the unification
process which is invoked during goal resolution be-
comes more complex, i.e., set properties are built in the
unification algorithm. For a discussion of the theoretical
issues of this problem the reader is referred to
[StickSl]. Thus, the query:
children-of(joe,mary,{john,peter,lisa))? will
return “yes” for any permutation of the set elements.
Other set properties, e.g. associativity, commutativity
and idempotence must be recognized as well. We
elaborate on these issues in the sequel. Set enumeration
can be used in rules as in facts. Example 7
demonstrates the use of set-enumeration in a rule. The
query children-of (Pa,Ua, (Ch)) 7 when applied to facts
of the type in Example 5, would assign a value to the
variable Ch and thus return the set of families with ex-
actly one child.

Set-generation is the process of generating all of the
elements of a set which meet some specification. In

-36-

standard mathematical notation this would be denoted
as s = { x 1 p(z)] where p(x) is a predicate on x. In LDL,
set generation is specified in rule form, as follows:

s(< x >) <- p(x).

The following example generates a set of items supplied
by a supplier when the base relation is
suppl(Sup#.Item#).

?&Example 6: Set Generation.

item-set(Sup#,<Item#>) <- suppl(Sup#,Item#).

The goal: item-set (a,L)? will generate an unnormal-
ized’ relation which collects from the base relation the
set of items supplied by each supplier.

In a similar vein, we can generate the number of items
supplied by each supplier. The following example
demonstrates the specification of set-cardinality re-
quired to do so.

%Example 7: Counting in Sets.

item-count(Sup#,Count) <- item-set(SUp#,S).
cardinality(S,Count).

cardinality({},O).

cardinality((X).l).

cardinality(Set,Value) i- paftition(Set,Setl,Set2),

cardinality(Setl.Valuel),

cardinality(Set2.Value2).

Value = Value1 + Valuel.

Set cardinality is a second order construct and hence
unspecifiable in Horn clause logic. Yet it is obvious that
the concept is of great practical utility. Therefore, to
include it in the language, we have provided another
extension in the form of the primitive parti 1

t ion (s, ~1, ~2) . The partition primitive partitions a set
s into two disjoint subsets sl and s2 having at least
one element; the exact form of partitioning is
transparent to the user. The partition primitive enables
the specification of the cardinality in a recursive man-
ner and
the operation on each of the partitioned subsets can
proceed in parallel [Banc86a]. Other relationships,
e.g., aggregates of sets, can be specified in a similar
fashion. The recursion is grounded for empty and
singleton sets. The notation { X) denotes a singleton
set; this is a reference to all sets having exactly one ele-
ment. As such it is an instance of set-enumeration and
must be syntactically differentiated from the notion of a

set-generator < X > in which we denote a set with an
unspecified number of elements.

The comparison value=valuel+valuea in Example 7 il-
lustrates the treatment of Arithmetic and comparison
predicates in LDL. The I’=” sign and other comparison
predicates (>, >=, . ..) are formally viewed as defined by
infinite sets of facts, on two complex arguments, con-
taining all of the argument values that satisfy the
relationship. For instance, the set associated with the
“<” predicate will not only contain (1.~2, 1.~3, . ..) but
also (l-4+1, 1~3-2, . ..) and so on. This view of
Arithmetic is cleaner than the arbitrary is predicate of
PROLOG and is not as complex as a full support of
equational logic as e.g. in EQLOG; of course neither is
as powerful as the latter since the appearance of func-
tional reduction does not go beyond comparison predi-
cates. Indeed, a goal eq(2, I+I)? expressed against a
unit clause eq(X, X) will fail in LDL. In practice, the
comparison predicates are implemented as buitt-in
operators which are only invoked after the binding of
the necessary arguments is complete. The analysis re-
quired for the binding-flow is part of the safety check
of the compiler (ref. sec. 3).

The following example is another instance of set-
enumeration. The relation 3-distinotgarts derives
from the suppl relation all suppliers that supply at
least 3 distinct parts.

kExample 8: Set Enumeration.

3-distinctgarts(Sup#,(X,Y.Z)) <- suppl(SupX.X).

SUPPl(SUP#,Y),

suPPl(SuP#,z).

distinct(X,Y,Z).

The query, “list all suppliers that supply at least parts
a, b, and ~11 would be formulated as 3_dis-

tinctgarts(S,{a,b,c))? Note that sets may be
specified in a non-minimal fashion. In the previous ex-
ample, the omission of the distinct predicate in the
right hand side of the rule would cause the possible
repetition of elements in the set of the left hand. For
unification purposes however these non-minimal sets
are equivalent (and thus unifiable) with minimal sets. In
the previous example, the assignment {X/a, Y/a, Z/b}
would be equivalent to {a, b}.

2.3 Negation.

The form of negation adopted in LDL is based on the
computation of set-difference of the relations in the un-
derlying domain. The semantics and power of this form

-37-

differs from the familiar negation byfailltre [Lloyd841 of
PROLOG. The following example demonstrates the use
of negation.

%Example 9: Use of Negation.

orphan(X)<- person(X), 7 fnther(X,Y), _I mother(X,Z).

Note that this example cannot be handled by NBF since
NBF is a test, i.e., 7 mother(X.2) does not return any
bindings for x or z. Even if we execute person(X)

first, the other two goals contain unbound variables and
NBF is not defined for goals containing unbound vari-
ables. (Lloyd has,shown that the soundness of NBF
breaks down for non-ground goals).

In our method a given negated subgoal, say -A is trans-
lated into a relative complement expressidh, i.e. a super-

set B of A .is found and -A is replaced by B-A. (When
such a superset cannot be’found the negation is said to
be Qndefined” or “unsafe”). This notion of supersets,
briefly, is based on the fMowing: We vievL a relation as
consisting of a set of tuple objects and each tuple being
an object. Based on unique identifiers’of tu’pl’e objects,
we can define a set B to be 2 A if all objects in A are
included in B. B is then said to be a superset of A. In
other words, we impose a partial order 5 ‘on, the rela-
tions of LDL [Naqvi86].

Thus, in terms of the underlying relations3 the resuit to
be computed in the above expression,

ORPHAN(X) = PERSON(X) - Wx (FATHER(X. Y) u MOTHER(X, 2))

The computation is thus performed using set difference.
The use of negation imposes a partial ordering on the
comp.utation of the subgoals of a rule: the positive
literals are computed prior to their negation; an attempt
to compute the negated literal directly by e.g., comput-
ing the complement of a set may’result in infinite Set

and generally, to unsafe results [Zani86]. The .general
case of set-intersection in the presence of negation is
typified by the following rule:

r(X, Y) <- SP, Y). 7 p(Y, 2).

The underlyirig relational interpretation for this case is,

R(x, Y) = fm r>,- nxy @(x9 r) Ww w a).

This case covers also the non-intersecting case in the
presence of negation.

3
We will use upper case italics to denote the underlying relations
corresponding to the LDL predicates.

Another example is the path between any pair of nodes
on a graph where the base relation is the connect(X, Y)
predicate between a pair of nodes X,Y. The exgath
relation derives all paths from X to Y excluding the paths
from node b.

Example 10: Excluding Paths.

path(X,Y) <- connect(X.Y).

path(X,Z) <- connect(X,Y),path(Y,Z)

exgath(X.Y) <- path(X,Y). 7 path(b,Y).

This example can be computed using the same inter-
oretstion of the previous case. To illustrate this process,
consider the following specific example of an exgath
computation. Figure 1 depicts a simple graph:3

Figure 1: A Simple Graph. The Excluded Node is b.

For this graph, connect(X,Y) = {(u,b), (U&I, (b,c), Kc)}.
The path relation is the transitive closure over con-
nect(X,l’J and is:’ puth(X,Y) = {(u,b), (uJ3, (a,~), (bx),
f&J). Assuming that node b is the excluded node, then,
puth(b, y) = {(b, c)}.The join of puth(X, Y) and path@,
Y) yields: {(a, c, b, c), cf, c, d, c), (f, c, b, c)}; and the
projection over X and Y of the joined relation is {cu., c),
(f c), (b,c)]. Finally, the set difference between the
projection and p&(X, y) is {(a, b), (uj)}.

Note that. a simple set difference between puth(X, Y)
and puth(b, v yields {(u,b), (a, fl, (a, c), & c)} which is
wrong since the paths (a, c), (a, fl and (f c) have been
left in the result.

2.4 Updates.

A complete update capability in a logic based data Ian-
guage supports the updating (adding, deleting, chang-
ing) of:

(1) The database schema.

-38-

(2) Base relations

(3) Derived relations.

The present version of LDL provides only a minimal
facility for updates on schemata and base relations.
Database schemata can be updated by the following
primitives:

create(RelationName, NrArguments).

destroy(Relation.Name).

These primitives contain the integrity checks required
for the maintenance of unique relation names. Relations
can be loaded/unloaded from/to files by the primitives:

load(RelationName, File).

unload(RelationName, File).

Beyond the atomic updates to relations (insert, delete
and change a tuple in a base-relation) the problem is
still open and subject to current research. The issues
addressed are:

(1)

/

(2)

The specification of composite updates. How can
the (partial) results of an update be committed so
as to be visible to the subsequent update(s) in a
composite update? The commitment should be
data-driven and consistent with the logic-program-
ming paradigm.

The parametrization of composite updates. How
can a composite update be specified so as to avoid
the re-specification each time a new set of rela-
tions is involved? This is a software-engineering
issue as opposed to the previous issue which has to
do with semantics.

3. LDL Compilation Techniques

We noted in the introduction that we have adopted a
compilation approach to achieve the twofold objective
of set-at-a-time model of computation support and the
high performance execution of the queries. In this sec-
tion we present a brief overview of the compilation
techniques employed. The reader is referred to the
referenced work for the details of each of these tech-
niques. The compilation process proceeds in two
phases:

(1) The compilation of the rule-set.

(2) The compilation and optimization for queries.

The rule-set is transformed into a predicate connection

graph. This structure stores the relationships between
terms and the clause-heads that can (potentially) be
unified with them. In addition it serves to maintain the
entry points for individual queries. For a description of
this structure and its maintenance under a changing rule
set see [Kell86]. The factors that determine the query
compilation process are the rule complexity and term
complexity of the rule(s) and their arguments which are
invoked by the query. The techniques required for the
compilation of recursive rules by means of naive evalua-
tion and magic sets is described in [Banc85, Banc86].
The problems addressed by these ‘techniques are the
propagation of select operations into the recursive struc-
ture and the early elimination of redundant tuples which
do not contribute to the result-set. The techniques re-
quired for the unification of complex terms i.e., terms
representing unnormalized relations, and their transla-
tion into an extended relational algebra are described in
[Zani85]. Another compile-time analysis which i.s re-
quired is for safety purposes. This analysis, which is of
special importance in the presence of arithmetic predi-
cates, ensures that the generated result-sets for a query
are finite. The following is an example of an unsafe
rule:

p(X, Y) <- x = Y.

The query ~(3. Yj? is safe whereas the query p(x. Y)? is
unsafe in the sense that it may generate an infinite set
of answer tup!es; the method for detecting unsafe
queries and compiling safe ones is described in
(Zani86].

4. Conclusion

In this paper we have outlined the motives for the
design and have shown some of the main features of
LDL. The design of this version of the language is com-
plete and we have encoded two prototype applications
in LDL for verification purposes. These applications
pertain respectively to navigation on a map and an or-
der-entry system [Keller86]. In the map case the stored
data contains adjacency relations between streets and
other pertinent relationships (“Yellow Pages”). Various
heuristics are formulated in LDL for the improvement
of the search process over this map. The order entry
application contains a rule-set for the routing / inven-
tory maintenance of stock. In addition, a set of standard
transactions e.g., “new order” are formulated. Ex-
perience so far demonstrates that the design is indeed
adequate for the intended, knowledge-intensive aoolica-
tions. At the same time the accumulated experience
points to a number of improvements that will be in-
cluded in the next version of the language. These im-
provements are:

-39-

(1) Named attributes: experience shows that the posi-
tional notation adopted in LDL is occasionally awkward.
Particularly when the predicates have a large number

of arguments and only a few need to be specified. We
will include therefore a capability to name the argu-
ments.

(2) A type system: There is a strong need for a built-in
inheritance capability in the language. Although in-
heritance can be explicitly encoded in LDL it would be
more efficient and natural to subsume it in the lan-
guage. The work on LOGIN [Ait85] is of particular im-
portance in this respect.

(3) KBS primitives: LDL contains a number of primi-
tives such as parfition and the update primitives. More
of these are required, in particular for such tasks as AI
knowledge representation: frames and others.

(4) An expanded update capability: .we noted that our
update facility is incomplete. We will expand it to in-
clude updates on derived relations as well as a more
elaborate schema definition facility.

To conclude, LDL has been validated as a powerful
and flexible tool for the specification of knowledge-in-
tensive applications. The language evolution process in
which more and more of thi: fundtionality will be
removed from the users’ responsibility to the system is
ongoing and.will reflect itself in future designs.

Acknowledgement

This paper has greatly benefited from the critical read-
ing and suggested improvements by Shamim Naqvi.
The authors wish to thank him for his efforts in this
respect.

References

[AitSS] Ait-Kaci, H., R. Nasr “LOGlN: A Logic
Programming Language With Built-In In-
heritance”. MCC Technical Report MCC-
AI-068-85, 1985 (To appear in the Journal
of Logic Programming).

[Banc85] Bancilhon, F., “Naive Evaluation of Recur-
sively Defined Relations”, MCC Technical
Report, DB-004-85, 1985.

[Banc86]

[Banc86a]

[Bocc~~]

[Camp841

[Clock841

[Dada861

[Gall781

[Gall841

[Gall84a]

[IBM811

[Jark84]

[Kel186]

Bancilhon, F., D. Maier and J. Ullman,
“Magic Sets and Other Strange Ways to
Implement Logic Programs”, Proc ACM
SIGACT I SIGMOD symposium on Principles
of Database Systems, Washington, 1986.

Bancilhon, F. and S. Khoshafian, “A Cal-
culus for Complex Objects” Proc ACM
SIGACT I SIGMOD Symposium on Principles
of Database Systems, Cambridge, MA.,
1986.

Bocca, J., “On the Evaluation Strategy of
EDUCE”, Proc. SIGMOD Con-
ference on Management of Data,
Washington, D.C., 1986.

Campbell, J. A., Implementations of
PROLOG, Ellis H. Horwood Publ., 1984.

Clockskin, W. F. and C. S. Mellish,
Programming in Prolog, Springer Verlag
Publ., Heidelberg, 1984.

Dadam, P. et al., “A DBMS Prototype to
Support Extended NF 2 Relations: An In-
tegrated View on Flat Tables and Hierar-
chies” Proc. ACM SIGMOD Conf on
Management of Data , Washington, 1986.

Gallaire, H. and J. Minker, Logic and
Databases, Plenum Pub].,
1978.

Gallaire, H., J. Minker and J. Nicolas, Ad-
vances in Database Theory, Vol. 1 & 2,
Plenum Publ., 1984.

Gallaire, H., J. Minker and J. Nicolas,
“Logic and Databases: A Deductive ap-
proach”, Computing Surveys, Vol 16, #2,
June 1984.

“SQUdata system: Concepts and
facilities”, GH24-5013-0, File No.
S370-50, IBM, 1981.

Jarke M., J. Clifford and Y. Vassilou, “An
Optimizing Prolog Front-end to a Rela-
tional Query”, Proc. ACM SIGMOD Con-
ference on Management of Data, Boston,
MA., 1984.

Kellogg, C., A. O’Hare and L. Travis,
“Optimizing the Rule-Data Interface in a
KMS” Submitted for Publication.

-4o-

[Keller861

[Kowa79]

[Kun82]

[Morr86]

[Lloy84] Lloyd, J. W., Foundations of Logic Program-
ming, Springer Verlag Publ., Heidelberg,
1984.

[Naish85] Naish, L., “All Solutions Predicates in
Prolog”, Proc. I985 Symposium on Logic
Programming, Boston, MA., 1985.

[Naqvi86] Naqvi, S., Report in preparation.

[Park841 Parker, D.S., et al. “Logic Programming
and Databases”, Proc. First International
Conference on Expert Database Systems,
Kiawah Island, S.C., Oct. 1984.

[Quin8S]

[Ram851

[Smith771

[Stick811

[U1185]

Keller, T., et al. “ADBS Workloads, Rev.
0.5” MCC Technical Report, DB-006-86,
1986.

Kowalski, R. A., “Algorithm = Logic +
Control”, Comm. ACM,
August 1979.

Kunifuji, S. and H. Yokota, “Prolog and
Relational Databases for 5th Generation
Computer Systems”, Proc. Workrhop on
Logical Bases for Data Bases, Toulouse,
France 1982.

Morris, K. Ullman J.D. and A. Van Gel-
der, “Design Overview of The NAIL! Sys-
tem”, Unpublished Manuscript, Stanford
University, 1986.

“Quintus Prolog Reference Manual”,
Quintus Computer Systems, 234 Yale
Street, Palo Alto, CA., 94306.

Ramakrishnan, R. and A. Silbershatz “The
MR Diagram -- A Model for Conceptual
Database Design”, Proc IIth Conf. Very
Large Data Bases, Stockholm, 1985.

Smith, J.M. and D.C.P. Smith “Database
Abstractions: Aggregation and Generaliza-
tion” ACM Trans database Systems 2, 2, pp.
105-133, 1977.

Stickel, M. E., “A Unification Algorithm
for Associative-Commutative Functions”,
JACM, Vol. 28, #3, July 1981.

Ullman, J.D., “Implementations of Logical
Query Languages for Databases”ACM
Trans on Database Systems Vol 10 #3, Sept
1985.

[Zani85] Zaniolo, C., “The Representation and
Deductive Retrieval of Complex Objects”,
Proc. I Ith Int. Conf. very Large Data Ba.ses,
Stockholm, 1985, pp. 458-459.

[Zani84] Zaniolo, C., “Prolog: A Database Query
Language for All Seasons” Proc. First In-
ternational Conference on Expert Database
Systems, Kiawah Island, S. C., October
1984.

[Zani86] Zaniolo, C. “Safety and Compilation of
Non-Recursive Horn-Clauses” Proc. First
International Conference on Expert Database
Systems Charleston, S.C., 1986.

-41-

