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Abstract 

In this paper we describe the considerations that led us 
to the design of LDL and nrovide an overview of the 
features of-this language. L$L is designed to combine 
the flexibility of logic programming with the high per- 
formance of the relational database technology. The 
design offers an improved mode of control over the ex- 
isting logic programming languages together with an en- 
riched repertoire of data objects and constructs, includ- 
ing: sets, updates and negation. These advantages are 
realized by means of a compilation technology. 

1. Introduction 

In this paper we describe the considerations that led to 
the design of LDL and provide an overview of the fea- 
tures of this language. The motivation behind the design 
of this language stems from our desire to take advan- 
tage of the current developments in the area of logic 
programming as well as the recent advances in rela- 
tional database systems. 

The advantages of logic as a formal foundation of 
databases and knowledge management systems have 
long been recognized [Ga1178, Gall84], and can be sum- 
marized as follows: 

(1) It offers a high-level, uniform and consistent for- 
malism for data, view and integrity-constraint definition 
that rest on a solid, theoretical foundation. 

(2) it supports reasoning and inferential capabilities. 

(3) It offers an adequate basis for the development of 
an even higher functionality in the future: support for 
temporal, non-monotonic and other forms of reasoning. 
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(4) It is general in the sense that it does not make an a 
priori distinction between stored-knowledge processing 
and general-purpose computing. 

(5) It is amenable to parallel processing. 

For all these potential benefits, logic has been used 
more often as a formal vehicle for specification than as 
a programming language in which to encode al- 
gorithms--predominantly as a consequence of the poor 
performance of early systems that employed logic for 
theorem-proving. Using Kowalski’s celebrated equa- 
tion: Algorithm = Logic + Control [Kowa79], we see that 
the problem of the efficient use of logic in computa- 
tional tasks is tantamount to that of effective control. 
Whereas early theorem provers have failed in providing 
efficient control schemes, relational database theory 
and logic programming have recently provided efficient 
and widely used systems e.g., SQIiDS [IBM811 and 
[Quin85], which use two entirely different control 
paradigms. We compare these next. 

Today’s state of the art in logic programming is 
represented by PROLOG in its various manifestations 
[CiockM, Naish851. We assume some familiarity with 
this language as well as the standard logic terminology. 
Because of the relative popularity of of PROLOG in this 
realm of computing we will use it in this paper for 
comparison with LDL. PROLOG is based on Horn- 
clause logic and a sequential execution-control model. 
Rules are searched and goals are expanded in the very 
order in which they are specified (SLD resolution). 
Thus, the resoonsibilitv for the efficient execution ml 
termination of programs rests with the programmer: an 
improper ordering of the predicates or rules may result 
in poor performance or even in a non-terminating 
program. In addition, a number of extra-logical con- 
structs (such as the cut) have been grafted to the lan- 
guage, turning it into an imperative, rather than a purely 
declarative language. This reduces PROLOG’s 
amenability to parallel implementation and detracts 
from its ease of use and its data independence. The 
execution model of PROLOG, like other logic program- 
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ming languages, simply assumes random access to the 
objects that it manipulates and relies on the virtual 
memory support of the underlying computer system 
when large-volume data is involved. Consequently, it 
employs a &p/e-at-time nested-loop join strategy, which 
is not suitable for data access in secondary storage. 

The query languages of relational databases are also 
based on logic -- the interpretation of a relational 
query amounts to a proof of satisfiability (in th,e model 
theoretic sense) see e.g., [Gall84a]. The control over 
their execution is however the responsibility of the sys- 
tem that, via query optimization and compilation tech- 
niques, ensures efficient performance over a wide range 
of storage structures and database, demographies. A 
great deal of thought and ingenuity has been invested in 
the efficient processing of queries posed in database 
languages. The working assumption is that the volume 
of data to be manipulated is too !arge to be contained in 
the memory of a computer and, hence, that special tech- 
niques for secondary-memory data-access and update 
must be employed. Thus for instance, a relational sys- 
tem is not confined to nested-loop joins when im- 
plementing queries,- but can take full advantage of the 
logically equivalent strategies for joining and accessing 
physical data. 

Relational systems are superior to PROLOG with 
respect to ease of use, data independence, suitability for 
parallel. processing and secondary storage access. 
However, the expressive power and functionality of- 
fered by database query languages is limited compared 
with the logic programming languages. Typically, they 
are designed around a Data Model. In other words, there 
is a distinction, at the application level, between stored 
or base relations and derived relations that can be ob- 
tained through the view mechanisms that these lan- 
guages provide. The distinction between data-model 
and query language limits their expressive power: they 
do not support such constructs as recursion and general 
unification that entails the computation of closures and 
the use of complex structures (as opposed to just for- 
matted records). Even more important, PROLOG, un- 
like relational languages is Turing-completet, and can 
be used as a general-purpose programming language. It 
is in fact being used so with great success in varied 
applications such as symbolic manipulation, rule-based 
expert system and natural language parsing. In contrast, 
relational query languages are often powerless to ex- 
press complete applications, and are thus embedded in 
traditional programming languages. This method is 
known to have its drawbacks: primarily the “impedance 
mismatch” between the relational query and imperative 

languages and the lower programmer productivity when 
these languages are used. 

The comparison between logic programming languages 
and database query languages provides the background 
and motivation for LDL. We want to combine the 
benefits of these two approaches by designing and sup- 
porting a logic-based query language that combines the 
power of PROLOG with the ease of use, the suitability 
for parallel processing and secondary storage manage- 
ment of the relational systems. The language will be 
purely declarative in nature in which the control over 
the execution will be the responsibility of the system. 
We expect that once realized, such systems will be used 
to. suppbrt traditional database queries, data-intensive 
applications, knowledge based and expert applications, 
as well as deductive retritval and inferential queries. 

The design and ‘implementation of this system, which 
we are currently undertaking, poses many research chal- 
lenges. These can be summarized as follows: 

1) A logic-based language must be designed that is free 
of the sequential execution model and other spurious 
constructs of PROLOG, without any loss of 
functionality. 

2) Database compilation and optimization techniques 
must be extended and added to handle the richer 
functionality of the language. 

The desirability of the integration of logic programming 
and relational database technology has been recognized 
for some time [Park84]. Attempts to realize such an 
integration have been so far confined to building inter- 
faces between a PROLOG language-processor and a 
relational database system [Kun82, Jark84, Bocc86]. 
This approach suffers from a mismatch between the 
computational models of these coupled subsystems: 
PROLOG is oriented towards a tuple at a time model of 
computation [Zani84], the relational model is oriented 
towards a set at a time. In the design of LDL we 
remedy this mismatch by adopting a set at a time model 
of computation. We realize this model by means of com- 
pilation i.e., we perform an extensive analysis of the 
source rules and in this process formulate target- 
queries in a relational target language. A similar ap- 
proach to the problem addressed by us is taken in 
[Ul185, Morr86]. By comparison, PROLOG, not even in 
its compiled versions [Camp84], makes the distinction 
between rule-access and data-access and treats these 

‘Turing-complete in this context means that for any iven set of 
base relations R , , . . . ,R, and a computable function I@ there 
an LDL program to compute a dewed relation? such that 

exists 

R=f(RI.....R,) 
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as indistinguishable objects. In this paper we con- 
centrate on the functionality of LDL. The compilation 
techniques are mentioned briefly in sec. 3 and are 
treated in detail in [Zani85, Banc861. 

The remainder of this paper is divided as follows: In 
section 2 we describe the salient features of LDL and 
demonstrate these by means of examples. Section 3 
gives a brief overview of the compilation technique re- 
quired for query translation in LDL and we conclude 
this paper by suggesting some further improvements in 
section 4. 

2. LDL Features. 

The approach we have taken in designing LDL is to, 

(1) Base the design on a well-understood logic founda- 
tion. 

(2) Extend this foundation to support language features 
that are of particular utility to the database applica- 
tion programmer. 

Consequently, the design of LDL is based on Horn- 
clause logic; the logic programming experience has 
amply demonstrated the utility of this logic as a general 
purpose programming language. In addition, the seman- 
tics of Horn-clause logic is well defined and can be 
described in operatiorial as well as fixed-point terms 
[Lloyd84]. 

At the same time, the design of LDL takes the logic- 
programming paradigm beyond PROLOG in the follow- 
ing ways: 

(1) 

(2) 

LDL is based on pure Horn clause logic; i.e., the se- 
quential order of execution of rules in a procedure 
or subgoals within a given rule has been removed. 

Sets have been introduced as primitive data objects 
that can be used directly in the language rather than 
their simulation through lists as in PROLOG. 

(3) A form of negation which is based on set-difference1 
replaces PROLOG’s negation by failure.:! 

(4) Schema-definition and update facilities were in- 
cluded.In the following sections we elaborate on 
each of these features and demonstrate them by 
means of examples. 

2.1 Horn Clause Logic 

The sequential order of execution in PROLOG implies 
that the programmer has the responsibility for the or- 

‘Negation is not in Horn clause logic. This is one instance in 
which the foundation had to be extended so as to support this 
feature. 

dering of rules and subgoals within each rule to reflect 
the problem that he wants to solve. In LDL this respon- 
sibility has been moved into the system. The following 
example is a valid LDL program for the derivation of 
the ancestor relation assuming that parent (x.Y) is the 
base relation. 

% Example 1: Ancestor Relation. 

ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y). 

ancestor(X.Y) <- parent(X,Y). 

If a goal specification would be resolved against the 
rules in this example in PROLOG, then the first clause 
would be tried before the second one and the computa- 
tion would not terminate. The order of specification is 
irrelevant in LDL since both clauses are analyzed at 
compile time, prior to the execution of a query. The 
result of this analysis is an execution strategy that 
implements the general fixpoint semantics of these 
Horn-clauses rather than a strategy which is based on 
their particular order.ing. 

Another feature of LDL, which can be supported by 
Horn-clause logic is the use of complex terms in facts 
and rules. In the following example the emp relation 
contains information about the first and last names, OC- 
cupation and education of employees. The use of com- 
plex terms enables the grouping of the individual facts 
about the education of an employee in a flexible way, 
unlimited by the rigid tuple structure of relational SyS- 
terns. 

96 Example 2: Employee Facts with Complex Terms. 

emp(joe.cool,porter,none). 

Note that the term names used in those facts such as 
high-school, college and school serve as placeholders that 
enable the term-structuring. They do not carry any 
information and could be omitted. Complex terms 
should not be confused with (evaluable) function 
symbols which are not included in the LDL repertoire. 

We can formulate rules that can be resolved using 
complex terms. The following rule specifies the name, 
school and year of graduation for MBA’s who graduated 
after 1981. 
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96 Example 3: New UBA's. 

new-mbas(Last.First,School,Year) <- 

emp(Last,First ,-,college(ms,ba,School.Year)), 

Year > 1981. 

The query new-mbas(L,F, S,Y)? would return the set 
{Cfred, red, mit, 1983)) when applied to the fact base of 
Example 2. Note that the formulation of this problem in 
a conventional database would force the programmer 
either to distinguish between employees having a 
high-school education only and employees having a 
college education or, to specify null values in his 
normalized relations and to cope with problems that 
arise. from joining on null values. Neither of these 
options is very attractive! The rule in Example 3 would 
then be formulated in a way akin to the concept of 
generalization as proposed in [Smith 771. 

Complex terms can be used in recursive rules. The 
following is the (by now famous) example of list 
appending. The list in this example is the complex term 
and would be represented as .(x1, .(x2, . . . .(xn, nil) . ..) 
where ” .” is the list concatenation operator. 

4. Example 4: List Append. 

append(X,nil.X). 

append(X.A,Z.X.B) <- append(A,Z,B). 

As in Example 1, the order of specification of the 
clauses is immaterial. 

2.2 Sets in LDL 

We noted in the introduction that the model of com- 
putation employed by LDL is that of a set at a time. 
Consequently, the response to a query would be to com- 
pute all of the possible answers that can be deduced 
from the base relations. In Example 1 above, the 
response to the query ancestor t j0e.x) 7 would be to 
compute all of joe’s ancestor and not just an ancestor. 
In this respect, sets are used implicitly in the computa- 
tion of LDL queries. LDL provides however an explicit 
form of set manipulation; it enables the user to use sets 
as data objects in the specification of rules and facts. 
The advantages of having sets as a primitive in LDL 
include convenience, expressive power and efficiency. 
In particular, it allows for the support of nested rela- 
tions -- a feature which has been advocated by many 
researchers in the database field e.g., [Banc86a, 
Ram85, Dada86]. Furthermore, the need for aggregate 
operations and relational division like operations is evi- 
dent and supported by most relational systems; these 

are not expressible by Horn clauses. PROLOG systems 
have recognized this need too and answered it with an 
assortment of ad-hoc constructs such as the bagof and 
setof primitives, which feature a semantics totally de- 
pendent on the sequential execution model of that lan- 
guage. These constructs collect all the terms that satisfy 
a certain goal into a list. Since a list is a data structure 
fit for sequential operations only, the potential for 
parallel execution is therefore lost. We will demonstrate 
how these limitations can be overcome by means of the 
three constructs of set-enumeration, set-generation and 
partition. 

The following example illustrates the use of set 
enumeration in facts. 

%Example 5: Set-Oriented Facts. 

children-of(joe,mary,(peter,.john,lisa)). 

employees-of(bill,brown, 

((red,russell,(working,jogging,bicycling]), 

(mac,fat,(cooking,eating)), 

(graham,greene,{spy-novels)), 

. . . ) ). 

In these examples, the first fact states the relationship 
between parent and their children and the second the 
relationship between a manager and his employees. In 
the second example each member of the employee set 
is represented by a tuple which in itself contains a set of 
hobbies of the employee. LDL allows thus for the 
specification of complex terms in facts and rules; these 
complex terms may include sets. The consequence of 
admitting sets as data objects is that the unification 
process which is invoked during goal resolution be- 
comes more complex, i.e., set properties are built in the 
unification algorithm. For a discussion of the theoretical 
issues of this problem the reader is referred to 
[StickSl]. Thus, the query: 
children-of(joe,mary,{john,peter,lisa))? will 
return “yes” for any permutation of the set elements. 
Other set properties, e.g. associativity, commutativity 
and idempotence must be recognized as well. We 
elaborate on these issues in the sequel. Set enumeration 
can be used in rules as in facts. Example 7 
demonstrates the use of set-enumeration in a rule. The 
query children-of (Pa,Ua, (Ch)) 7 when applied to facts 
of the type in Example 5, would assign a value to the 
variable Ch and thus return the set of families with ex- 
actly one child. 

Set-generation is the process of generating all of the 
elements of a set which meet some specification. In 
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standard mathematical notation this would be denoted 
as s = { x 1 p(z) ] where p(x) is a predicate on x. In LDL, 
set generation is specified in rule form, as follows: 

s(< x >) <- p( x ). 

The following example generates a set of items supplied 
by a supplier when the base relation is 
suppl(Sup#.Item#). 

?&Example 6: Set Generation. 

item-set(Sup#,<Item#>) <- suppl(Sup#,Item#). 

The goal: item-set (a,L)? will generate an unnormal- 
ized’ relation which collects from the base relation the 
set of items supplied by each supplier. 

In a similar vein, we can generate the number of items 
supplied by each supplier. The following example 
demonstrates the specification of set-cardinality re- 
quired to do so. 

%Example 7: Counting in Sets. 

item-count(Sup#,Count) <- item-set(SUp#,S). 
cardinality(S,Count). 

cardinality({},O). 

cardinality((X).l). 

cardinality(Set,Value) i- paftition(Set,Setl,Set2), 

cardinality(Setl.Valuel), 

cardinality(Set2.Value2). 

Value = Value1 + Valuel. 

Set cardinality is a second order construct and hence 
unspecifiable in Horn clause logic. Yet it is obvious that 
the concept is of great practical utility. Therefore, to 
include it in the language, we have provided another 
extension in the form of the primitive parti 1 

t ion (s, ~1, ~2) . The partition primitive partitions a set 
s into two disjoint subsets sl and s2 having at least 
one element; the exact form of partitioning is 
transparent to the user. The partition primitive enables 
the specification of the cardinality in a recursive man- 
ner and 
the operation on each of the partitioned subsets can 
proceed in parallel [Banc86a]. Other relationships, 
e.g., aggregates of sets, can be specified in a similar 
fashion. The recursion is grounded for empty and 
singleton sets. The notation { X ) denotes a singleton 
set; this is a reference to all sets having exactly one ele- 
ment. As such it is an instance of set-enumeration and 
must be syntactically differentiated from the notion of a 

set-generator < X > in which we denote a set with an 
unspecified number of elements. 

The comparison value=valuel+valuea in Example 7 il- 
lustrates the treatment of Arithmetic and comparison 
predicates in LDL. The I’=” sign and other comparison 
predicates (>, >=, . ..) are formally viewed as defined by 
infinite sets of facts, on two complex arguments, con- 
taining all of the argument values that satisfy the 
relationship. For instance, the set associated with the 
“<” predicate will not only contain (1.~2, 1.~3, . ..) but 
also (l-4+1, . . . . 1~3-2, . ..) and so on. This view of 
Arithmetic is cleaner than the arbitrary is predicate of 
PROLOG and is not as complex as a full support of 
equational logic as e.g. in EQLOG; of course neither is 
as powerful as the latter since the appearance of func- 
tional reduction does not go beyond comparison predi- 
cates. Indeed, a goal eq(2, I+I)? expressed against a 
unit clause eq(X, X) will fail in LDL. In practice, the 
comparison predicates are implemented as buitt-in 
operators which are only invoked after the binding of 
the necessary arguments is complete. The analysis re- 
quired for the binding-flow is part of the safety check 
of the compiler (ref. sec. 3). 

The following example is another instance of set- 
enumeration. The relation 3-distinotgarts derives 
from the suppl relation all suppliers that supply at 
least 3 distinct parts. 

kExample 8: Set Enumeration. 

3-distinctgarts(Sup#,(X,Y.Z)) <- suppl(SupX.X). 

SUPPl(SUP#,Y), 

suPPl(SuP#,z). 

distinct(X,Y,Z). 

The query, “list all suppliers that supply at least parts 
a, b, and ~11 would be formulated as 3_dis- 

tinctgarts(S,{a,b,c))? Note that sets may be 
specified in a non-minimal fashion. In the previous ex- 
ample, the omission of the distinct predicate in the 
right hand side of the rule would cause the possible 
repetition of elements in the set of the left hand. For 
unification purposes however these non-minimal sets 
are equivalent (and thus unifiable) with minimal sets. In 
the previous example, the assignment {X/a, Y/a, Z/b} 
would be equivalent to {a, b}. 

2.3 Negation. 

The form of negation adopted in LDL is based on the 
computation of set-difference of the relations in the un- 
derlying domain. The semantics and power of this form 
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differs from the familiar negation byfailltre [Lloyd841 of 
PROLOG. The following example demonstrates the use 
of negation. 

%Example 9: Use of Negation. 

orphan(X)<- person(X), 7 fnther(X,Y), _I mother(X,Z). 

Note that this example cannot be handled by NBF since 
NBF is a test, i.e., 7 mother(X.2) does not return any 
bindings for x or z. Even if we execute person(X) 

first, the other two goals contain unbound variables and 
NBF is not defined for goals containing unbound vari- 
ables. (Lloyd has,shown that the soundness of NBF 
breaks down for non-ground goals). 

In our method a given negated subgoal, say -A is trans- 
lated into a relative complement expressidh, i.e. a super- 

set B of A .is found and -A is replaced by B-A. (When 
such a superset cannot be’found the negation is said to 
be Qndefined” or “unsafe”). This notion of supersets, 
briefly, is based on the fMowing: We vievL a relation as 
consisting of a set of tuple objects and each tuple being 
an object. Based on unique identifiers’of tu’pl’e objects, 
we can define a set B to be 2 A if all objects in A are 
included in B. B is then said to be a superset of A. In 
other words, we impose a partial order 5 ‘on, the rela- 
tions of LDL [Naqvi86]. 

Thus, in terms of the underlying relations3 the resuit to 
be computed in the above expression, 

ORPHAN(X) = PERSON(X) - Wx (FATHER(X. Y) u MOTHER(X, 2)) 

The computation is thus performed using set difference. 
The use of negation imposes a partial ordering on the 
comp.utation of the subgoals of a rule: the positive 
literals are computed prior to their negation; an attempt 
to compute the negated literal directly by e.g., comput- 
ing the complement of a set may’result in infinite Set 

and generally, to unsafe results [Zani86]. The .general 
case of set-intersection in the presence of negation is 
typified by the following rule: 

r(X, Y) <- SP, Y). 7 p(Y, 2). 

The underlyirig relational interpretation for this case is, 

R(x, Y) = fm r>,- nxy @(x9 r) Ww w a). 

This case covers also the non-intersecting case in the 
presence of negation. 

3 
We will use upper case italics to denote the underlying relations 
corresponding to the LDL predicates. 

Another example is the path between any pair of nodes 
on a graph where the base relation is the connect(X, Y) 
predicate between a pair of nodes X,Y. The exgath 
relation derives all paths from X to Y excluding the paths 
from node b. 

Example 10: Excluding Paths. 

path(X,Y) <- connect(X.Y). 

path(X,Z) <- connect(X,Y),path(Y,Z) 

exgath(X.Y) <- path(X,Y). 7 path(b,Y). 

This example can be computed using the same inter- 
oretstion of the previous case. To illustrate this process, 
consider the following specific example of an exgath 
computation. Figure 1 depicts a simple graph:3 

Figure 1: A Simple Graph. The Excluded Node is b. 

For this graph, connect(X,Y) = {(u,b), (U&I, (b,c), Kc)}. 
The path relation is the transitive closure over con- 
nect(X,l’J and is:’ puth(X,Y) = {(u,b), (uJ3, (a,~), (bx), 
f&J). Assuming that node b is the excluded node, then, 
puth(b, y) = {(b, c)}.The join of puth(X, Y) and path@, 
Y) yields: {(a, c, b, c), cf, c, d, c), (f, c, b, c)}; and the 
projection over X and Y of the joined relation is {cu., c), 
(f c), (b,c)]. Finally, the set difference between the 
projection and p&(X, y) is {(a, b), (uj)}. 

Note that. a simple set difference between puth(X, Y) 
and puth(b, v yields {(u,b), (a, fl, (a, c), & c)} which is 
wrong since the paths (a, c), (a, fl and (f c) have been 
left in the result. 

2.4 Updates. 

A complete update capability in a logic based data Ian- 
guage supports the updating (adding, deleting, chang- 
ing) of: 

(1) The database schema. 
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(2) Base relations 

(3) Derived relations. 

The present version of LDL provides only a minimal 
facility for updates on schemata and base relations. 
Database schemata can be updated by the following 
primitives: 

create(RelationName, NrArguments). 

destroy(Relation.Name). 

These primitives contain the integrity checks required 
for the maintenance of unique relation names. Relations 
can be loaded/unloaded from/to files by the primitives: 

load(RelationName, File). 

unload(RelationName, File). 

Beyond the atomic updates to relations (insert, delete 
and change a tuple in a base-relation) the problem is 
still open and subject to current research. The issues 
addressed are: 

(1) 

/ 

(2) 

The specification of composite updates. How can 
the (partial) results of an update be committed so 
as to be visible to the subsequent update(s) in a 
composite update? The commitment should be 
data-driven and consistent with the logic-program- 
ming paradigm. 

The parametrization of composite updates. How 
can a composite update be specified so as to avoid 
the re-specification each time a new set of rela- 
tions is involved? This is a software-engineering 
issue as opposed to the previous issue which has to 
do with semantics. 

3. LDL Compilation Techniques 

We noted in the introduction that we have adopted a 
compilation approach to achieve the twofold objective 
of set-at-a-time model of computation support and the 
high performance execution of the queries. In this sec- 
tion we present a brief overview of the compilation 
techniques employed. The reader is referred to the 
referenced work for the details of each of these tech- 
niques. The compilation process proceeds in two 
phases: 

(1) The compilation of the rule-set. 

(2) The compilation and optimization for queries. 

The rule-set is transformed into a predicate connection 

graph. This structure stores the relationships between 
terms and the clause-heads that can (potentially) be 
unified with them. In addition it serves to maintain the 
entry points for individual queries. For a description of 
this structure and its maintenance under a changing rule 
set see [Kell86]. The factors that determine the query 
compilation process are the rule complexity and term 
complexity of the rule(s) and their arguments which are 
invoked by the query. The techniques required for the 
compilation of recursive rules by means of naive evalua- 
tion and magic sets is described in [Banc85, Banc86]. 
The problems addressed by these ‘techniques are the 
propagation of select operations into the recursive struc- 
ture and the early elimination of redundant tuples which 
do not contribute to the result-set. The techniques re- 
quired for the unification of complex terms i.e., terms 
representing unnormalized relations, and their transla- 
tion into an extended relational algebra are described in 
[Zani85]. Another compile-time analysis which i.s re- 
quired is for safety purposes. This analysis, which is of 
special importance in the presence of arithmetic predi- 
cates, ensures that the generated result-sets for a query 
are finite. The following is an example of an unsafe 
rule: 

p(X, Y) <- x = Y. 

The query ~(3. Yj? is safe whereas the query p(x. Y)? is 
unsafe in the sense that it may generate an infinite set 
of answer tup!es; the method for detecting unsafe 
queries and compiling safe ones is described in 
(Zani86]. 

4. Conclusion 

In this paper we have outlined the motives for the 
design and have shown some of the main features of 
LDL. The design of this version of the language is com- 
plete and we have encoded two prototype applications 
in LDL for verification purposes. These applications 
pertain respectively to navigation on a map and an or- 
der-entry system [Keller86]. In the map case the stored 
data contains adjacency relations between streets and 
other pertinent relationships (“Yellow Pages”). Various 
heuristics are formulated in LDL for the improvement 
of the search process over this map. The order entry 
application contains a rule-set for the routing / inven- 
tory maintenance of stock. In addition, a set of standard 
transactions e.g., “new order” are formulated. Ex- 
perience so far demonstrates that the design is indeed 
adequate for the intended, knowledge-intensive aoolica- 
tions. At the same time the accumulated experience 
points to a number of improvements that will be in- 
cluded in the next version of the language. These im- 
provements are: 
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(1) Named attributes: experience shows that the posi- 
tional notation adopted in LDL is occasionally awkward. 
Particularly when the predicates have a large number 

of arguments and only a few need to be specified. We 
will include therefore a capability to name the argu- 
ments. 

(2) A type system: There is a strong need for a built-in 
inheritance capability in the language. Although in- 
heritance can be explicitly encoded in LDL it would be 
more efficient and natural to subsume it in the lan- 
guage. The work on LOGIN [Ait85] is of particular im- 
portance in this respect. 

(3) KBS primitives: LDL contains a number of primi- 
tives such as parfition and the update primitives. More 
of these are required, in particular for such tasks as AI 
knowledge representation: frames and others. 

(4) An expanded update capability: .we noted that our 
update facility is incomplete. We will expand it to in- 
clude updates on derived relations as well as a more 
elaborate schema definition facility. 

To conclude, LDL has been validated as a powerful 
and flexible tool for the specification of knowledge-in- 
tensive applications. The language evolution process in 
which more and more of thi: fundtionality will be 
removed from the users’ responsibility to the system is 
ongoing and.will reflect itself in future designs. 
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