
‘Till-in-the-Form” Programming t

Lawrence A. Rowe

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

ABSTRACT

This paper describes a new style of programming,

callrd “fill-in-the-form” programming, for the development

of interactive database applications. The applications

being developed and the application development environ-

mrnt USC the same form and menu interface. High level

tools arc provided to deGoe interfaces for dat.abase

query/updrtt,e and for generating reports or graphs. Our

expericnccs wit.h two @ems that are based on this pro-

gramming paradigm are described.

I. Introduction

A wide variet,y of computer applications fall into the

category of Intcractirre In/ormalion Systems (IIS). These

app!icat.ions allow scvera! people to access and update dnta

stored in a datrrbaae. The applications do not involve

much computation but they do involve significant user

interaction with the application. The typical interface is a

form displayed on a video display through which data can

br rntrred or disp!nyed. Example app!ications are a

software bug report system, a journal submission tracking

system, or a personnel management system.

For the past scvcrrt! years we have been developing

application dcvclopment environments (ADE) for writing

these app!icat.ions that use a style of programming WC call

“fill-ic-t.hc-form” programming. An application is com-

posed of a collection of /rames that contain a form where

data is entered or displayed and a menu of operations the

7 This research was supported by the Air Force Mice of
Scientific Resezrch under Contract U-0354.

PprruiGon t-o copy without fee all or part of this material is
granted provided that the copies are uot made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
r,f thr pnhlication and its date apprar, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy oflrerwise, or to republish, requires a fee and/or special permis-
ston from the Endowment.

user can execute. The user moves between different frames

executing operations t.0 perform whatever action is

required. An example frame in a software bug report sys-

tem is shown in figure 1. The frame has operations that

allow a user to retrieve (Query) or enter (Append) bug

reports. To enter a bug report, the user fills in the form

and executes the Append operation. The system provides

builtin commands using a keyboard and/or a pointing

device such as a mouse t,o move to different fields in the

form, enter and edit data, and to invoke an operation.

The ADE uses the same “fill-in-the-form” interface as

the applications being developed. In other words, the ADE

is a collection of frames with operations to define frames,

forms, and database relations. The ADE provides frame-

types that a programmer can use to const.ruct an applica-

tion:

1. menu frames for specifying menu interfacrs,

2 query/update frames for specifying data browsers,

3. report frames for specifying interfaces to generate

reports,

Name:

Reported:

hlodule:

Cue Report

Priority:

Status:

~__-

Description

Response

i
1.

Help Append C;ttCTy End

Figure 1. A sample bug report frame.

Proceedings of VLDB 85, Stockholtn 334

4. graph frame3 for specifying interfm3 to generate level I/O commands found in the datab33e,/scrcrn

graphs, and languages. These systems do not provide high-level com-

5. user-defined frames for specifying interfaces with
application specific operation3.

Applications are defined by filling in forms that describe
how a generic frame should be customized for the specific
usage (e.g., for a query/update frame, the form and the
mapping between the form and the dattbase). In addit,ion,
the ADE allow3 francs to be tested while t,hey are being
defined without requiring that the entire application be
compiled and linked.

Two system3 have been implemented that are based
on the idea of “fill-in-the-form” programming. The Forms
.App!icnt ion Dcvc!opmcnt Syst.em (FADS) wva9 a prototype
sys:cm implemented at the University of California, Berke-
ley to test whether this approach to developing IIS’s was
viable [RoSSZ, Sho82]. The prototype way built as a
front-end to the INGRES relational database management
rystem [St.aX]. FADS provided only one type of frame
(u3er-defined) but it was readily apparent that applications
could be deve!opcd quickly and that they were errsy to
modify. As a result, a lccal company developed a commer-
cial product, ca!led Application-By.,Forms (i?BF) !RTIMb],
that w,as based on and extended the idem in FADS. ABF
introduced the notion of other higher level frames (e.g.,
query/update, report, and graph).

This “fill-in-the-form” approach to developing IIS’s
can be contrasted with other approaches that are based on
extending conventioanl programming languages or report
writer languages. The tist approach extends a conven-
tional progammiug language with const,ructs to access a
dat abrrse and do screen I/O
[HoI\84, RoSP3,TAN8G, RTI8Ja]. \Ve call such a language
3 databaaelacreen programming language. This approach
hns several problems. First, programs are much too long
because the programmer is forced to specify too much
detail. As a result, too much time is required t,o develop
an application and the applications are expensive to main-
tain and extend. Second, conventional programming
languages do not provide support for high-level tools such

reportwriters database
Eat80, H&O, StK82, RTI8::fZloi’5].

browsers
Either these high-

level tools must be interfaced to the applicat,ion program
or recoded for each application. Lastly, a database/screen
language cannot. be used by end-users because tco much
programming expertise is required.

The 3econd approach to developing IIS’s is to extend
a report writer language wit.h screen I/O constructs
[IBI82, NCS83, Cu183, Cin83, ADR83]. Theae extended
lm~~a~es arc called Fourth Generation Languages (4GL).
Because a 4GL ha3 an integrated report writer language,
they make writing some parts of an application easier.
However, the screen I/O const.ructs are similar to the low-

mands for specifying operation menus, selectir;; the code to
be executed when a user invokes an operation, sprcifying
help screens, or for specifying other elements of a u3er
dialogue. The user-interface must be coded in the low-
level constructs. Consequent,ly, a programmer must write
a significant amount of code just to define a simple inter-
face. A second problem with 4GL’s is that they are large,
monolithic languages which over time have had more and
more constructs added to them. The facilities found in
high-level tool3 are typically added to the syrtcm by
adding constructs to the language. The resulting
languages are large and complex and they require c<)nsider-

able training in order to learn how to use them. Another

problem is that since these languages evolved rather than

being designed, the syntax and semantics are often confus-

ing ancl inconsistent.

A “fill-in-the-form” .4DE I3 a better approach than

these alternatives for several reasons. First, the system

has a standard interface. All user-interfaces are defined by

frames which standardize how operations are displagcd and

executed and how data is displayed and entered into the

system.

The secorld advantqc of the forms-bwed approach is

that the rry:tem supports a collection of high-level tools.

For example, t,ools can be provided for developing data

browsers and for defining reports and graphs. These high-

level tool3 make specifying an application easier because

the tool ha3 been designed to solve a particular problem

(e.g., report writing or graph design). The frame concept

is used to integrate these high-level tools into the ADE. In

contrast to monolithic languages, a “fii!-in-the-form” ADE

has several different languages, each customized to a par-

ticular usage. Systems composed of several languagrs typi-

cally have two problems: 1) learning the syst.em is diff<

and 2) data incompatibility between subsyst.ems. The

forms-hued interface and online help facilities makes the

problem of learning multiple languages !ess critical. And,

the data incompatibility problem does not arise because all

data is stored in the database and accessed through a stan-

dard query language.

Third, a “fill-in-the-form” ADE allows applications to

be developed interactively. The programmer can eaaity

switch betwren defining an application and running it and

he can test partially complet,ed applications. The system

also 5upport.s a source level debugger that makes it emirr

to identify and correct bugs.

Another feature of a “fill-in-the-form” ADE iy that

numrrouz drfaultz are provided to simplify the

aprrification of an application. For example, given the

definition of a relat.ion, the system will automatically define

a form that can be used to query a,nd update data in the

relation. .Anot,her example is that a default report or

graph tlrfmition will be generated for a relation or view.

By uzing defaults, applications can be developed very

quickly. Morrover, well-tlczigned defaults allow naive users

to grnrrate reasonable applications without requiring them

to lrnrn the entire system.

The rcazons given thus far have focused primarily on

prototype applicat)ionz in which the objective is to get the

application running az YOOLX as possible. To achieve this

9031, reliability and performance are sacrificed. This

trade-off makes sense unless the application will be uzcd in

a production environment. For production applications

t,hr user-interface must be “hullc~proofed” for naive users

and the rrports and forms must be fine-tuned to display

t,hc dat.a in the best way pozzihle. Moreover, the pcrfor-

mance of the application is more critical because it will be

run many times or used simult.aneouzly by many uzers.

The ADE’s described here have capabilities that allow the

programmer to turn a prototype application into a produc-

tion application. For example, as mentioned above the

s:lztem al!owz the programmer to customize a default form

or report. Or, if the programmer is willing to bind features

of the application, it can be compiled to run more
elIicicnt,ly (e.g., the forms used in an application can be
compiled into an executable program rather than being
loaded from the database at run-time). Conaequent!y, if
the programmer is willing to specify more detail or invest
more time compiling the application, he can improve its
reliability, performance, and user-interface.

This paper describes the principles behind a ‘Yill-in-
the-form” application development environment and
presents examples that show how an application is defined.
The paper is organized as follows. The second section
describes a simple bug report system that will be used to
illustrate thiz style of program development. Section 3
describes the application development environment and
shows how different types of frames are defined. Section 4
discusses the productivity improvements possible with a
“fill-in-the-form” system. The last section summarizes the
paper.

2. A Sample Application
This section describes a sample application. The

application is a simple bug report system. The data for

this example is stored in one relation with t,he following
schema:

BUG(name = text(lfi),
priority = (A, B, C),
reported = date,
status = (ENTERED, ASSIGNED, FIXED),
module = text(I5),
description = text(512),
response = text(512)

1

The name attribute is a short name for the bug. The
priority, reported, and status att.ributes describe the rela-
tive importance of the bug, the date on which the bug ~88
reported, and the current stat.us of the bug. The module
attribute ident.ifies to which system component the bug
belongs (i.e., an indication of what component has a bug in
it). The dearription attribute is a long text description of
the bug provided by the person who submits t,he bug
report. The reaponlre attribut,e is a long text description
filled in by t,he maintenance programmer after the hug is
fixed to indicate how the problem was resolved.

A bug report applicat,ion is uzcd by many people,
including technicrl support personnel, maintenance pro-
grammers, and managers, who are responsible for tracking
bugs that arc rrportcd and insuring that they are fixed.
Figure 2 3howz a directed graph t,hat. prre*ents an overview
of the applica.tion. Each node in the graph is a frame and
an edge between two node8 indicates that an operation in
the frame at which the edge originates calls t,he fr:ime at
which the edge points.

Figure 3 zhowz the top-level menu frame that iz
displayed when the applicnt.ion is run. If the user selects
the RrowseRugs operation, the query/update frame
shown in figure 1 is called. The user can browse ‘A’ prior-
ity bugs entered since 1 November 1984 by filling in the
form as shown in figure 4 and executing the Query opera-
tion. Figure 5 shows the Screen after the Erzt qualifying

bug report haz been dizplayed. Notice that the same form
is uzed to display the data but that a new operat,ion menu
is supplied that allows the user to modify or delrte the
currently displayed bug report or to move to the previous
or next bug report. After browsing the bug reports of
int,erest, the user can return LO the frame shown in figure 4
by executing the End operation. Executing the End
operation in this frame returns the user t.o the top-levc!
menu frame.

Figure 6 zhowz the frame for producing a report that
lists hug in a a&cted zyztem module that were reported
during some t,ime period. This frame is called when the
user executes the BugReport operation in the menu
frame. To generate the rrport, the user Gllz in the report
paramct,ers and executes the RunReport opcrat.ion. The

39c

top level menu

(BugSyshlenu)

browse bug reports browse priority

(PriorityBugs)

generate report
on bugs

(BugReport)

Figure 2. Bug report application overview.

Bug Report System

Help enter help system

BrowseBugs browse bug reports

PriorityBugs summarize priority bugs

BugReport run report listing bugs

End exit application

Help BrowreBugr PrlorltyBugr BugReport End

Figure 3. Top level menu.

Bug Report

Name: ~-- ~- Priority: A -__~

Reported: >, 1 Nov 1934 Status:

Module: __-_

Description

I--
Response

Help Append Query End

Figure 4. Query specification to browse bug reports.

Bug Report

Name:.c&r conu error Priority: A

Reported: 17 Jan 1955 Status: EhTERED ~___-

Module: scanner -

Description

A system error is reported when an unprintable

Response

Help Delete Modlfy Next Prevloum End Help

Figure 5. Query/update frame after query is executed.

report would be displn.yed on the user’s terminal or spooled
to a printer depending on how the application we3 defined.
This frame is an example of a report frame.

This section ha3 described a 3imple applicat.ion. The
next sect.ion Show3 how this application is defined.

3. The Application Development
Environment

Thi3 section describes the application development
environment and illu3t.rates how frames are defined. Three
frame type3 are discussed: menu, query/update, and user-
defined.

The ADF i3 composed of a collect,ion of frames that
t.he programmer move3 between t.o define the relations,
forms, framr3,.rrports, and graph3 that make up the appii-
cation. Figure 7 show3 t.he edit application frame as it
would appear after the four frames in the simple bug
report application have been defined.

The field labeled ATame gives the name of the app!ica-
tion and is filled in by the programmer when the applica-
tion is created. The Creator field identifies who created

Generate Bug Report

System module:

Bugs reported between

and ~--_-

RunReport End

Figure 6. A report frame.

the application. This field is automatically filled in by the
3ystcm when the applicat.ion i3 created. The Crested and
Modified Eclcl3 3how t.he dat,es when the application ma3
created and when it was last modified. These field3 are
also updated automatically by the system. As will he Been
below, this information is kept for every object dcfincd in
an appliration (e.g., frames, forms, rcportu, etc.). The
t.able in the middle of the frame lists the frames that have
been defined for thi3 app!icatisn. Thy name and type of
each frame is given. A table 3nrh as t,hi3 one i3 called a
table field and is actually a window on a larger dat.a 3ct.

The u3er ha3 command3 that al!ow him t,o 3cro9 forwards

and backwards through the table looking at the vzriou3
entrie3.

The edit application frame ha3 operatious to compiie
thr applirat.ion for production u3e (Bind), to create and
destroy applications (Crash and Destroy), to edit the
drEnit,ion of a frame (Edit), to invoke an ad hoc query
interface (Ingres). and to run tile application (Run) In
addit,ion. the frame includes operation3 to enter the help
system (Help) or to exit the current frame (End).

The programmer can examine the definition of a
frame by selecting the drsirrd frame in the table Geld and

Edit Application

Name: Bug Report Creator: Larry

Created: 5 Jul 1984 Modified: 10 Nov 1984

Frames

Frame Name Frame Type

I BugSyaA4enu menu

Ielp Bind Create Destroy Edit Ingrer Run End

Edit Menu Frame

Name: BugSyaMenu Creator: Larry

Created: 5 hl 1984 Modified: 10 Sep 1984

Title: Bug Report System

Menu Operations -___ ~-

0 Name P- Frame -I&script ion ._~-~ -

browae bug reports-

PriorityBugs summarize priority buga

run report listing buga

ezi*application

L ..- __- i--.- -~- l--. p--.----.--_I

Help Call Edlt Ingree End

Figure 7. Application definition frame. Figure 8. Definition of menu frame.

executing the Edit operation. Suppose the programmer
selected the top-lcvcl menu frame, uamed BugSysMenu,

that was 3hown in figure 3. The definition of this frame is
shown in figure 8. Notice that the object informat,ion (i.e.,
frame name, creator, creation dat.e, and modification date)
is similar to the information displayed in the edit applica-
t.ion frame. Because a menu frame ha3 a predefined struc-
ture and operations are limit.ed to calling other frames, the
programmrr haa to sperify very lit,tle to define the frame.
The prog:rammer 3pecifies the title that will be displayed
across the top of the frame rind, for each operation, he
gives the operation name, the frame t,o call when t,he
operation is execut.cd, and a b&f description of the oprra-
tion. In the menu frame being defined, the operation
name3 are listed across t.he bot.tom of the frame and in the
middle of t.hr frame along with the descriptions to show
the user what each operation doe3 (sre figure 3).

The operation3 provided in this frame allow the pro-
grammer to call the frame being defined (Call), to edit
another object (Edit), or to invoke the ad hoc query inter-
fare (Ingres). The programmer can change the definition
of an operation or he can add or delete an opera,tion by
modifying the inform&on divplayed in the table field that
lists t,he operation3.

The structure of a menu frame is fixed by the system.
If t.he programmer doe8 not like this particu!ar structure,
he can define a menu a3 a user-defined frame which allow3

him to specify 1’1, form and to write arbitrary code for the

operations. However, t.he programmer will have to specify

more detail to define it.

Query/update frames, like the frames shown in
figures 1, 4, and 5, are common interfaces in IIS‘s. To
define a query/update frame, the programmer must specify
the form through which the data will be displnycd and
entered and the mapping bet,ween the form and the rela-
tions in the dat,nbase. Figure 9 shows the definition of the
DrowrcBugs frame shown above. The form used in the
BrowaeBuga frame is named BugForm. A form is defined
or modified by invoking the form editor with the For-
mEdit operation. The form rdit,or is a “what-you-s~cis-
what-you-get” editor for forms. The programmer can cou-
trol the definition and placement of fields and c!pscriptivc

text (e.g., titles, field labels, and other cxplanat)ory test.) in
the form. The form editor also allows the programmer to
specify field display enhancement3 (e.g., inverse video and
blinking), edit check3 on data entered into n field. ant1
other attributes that control the user interarticn (r g.,
manadatory fields). If the programmer had not *prciGcrl a

Edit Query/Update Frame

Name: ~Rrou~:?eBu~~ -- Creator: &try

Created: 15 Jul 1984 Modified: 8 Dee 1984

Form: ..-&Form Interface: record ___~.

R&&ions __~-

Help CalI DBMap Edit FormEdIt Ingrer End

Query/Update Database hlap

Name:. BrowseBugs

Relations

/ Relation Names /

BUG

I=4

Help Call Dictionar)- JoinTerms End

Figure i). Definition of query/update frame. Figure 10. Definition of the database/form map

foim for the query/update frame, the system would
automat,ically generate one for the relat,ions identified in
the database mapping.

The !nter/ace field defines the style of interface for
the frame. In this case, a “record” interface is used which
means that only one record in the relation is displayed at a

time. And, the mapping between the form and the data-
base is very simple because the data is taken from only one
relat’ion, the l?UC relation.

The mapping is specified in a different frame t,hat is
called by executing the DZMap operation. The database
mapping frame is shown in figure 10. In this simple exam-
ple, the database values do not involve computation and
the relation attribute names and the form field names are
the same. By filling in the m-;pping table field different,ly,
both constraints can be changed. If a more complex map
ping between t.he database and the form is required such as
a join between one or more relations, the programmer can
execute the JoinTerms operation which calls a frame that
allows him to specify the mapping.

The system supports two other query/update inter-
faces: “table” and “master/detail.” A “table” interface
displays several records through a table field. A

“master/detail” interface simultaneously displays one
record from one rrlation through a record interface and
several records from a second relation t.hrough a table field.
For example, suppose there was a second relation tha,t
maint,ained information about the modules in the system
with the following definition

hIODULE(moduie=text(l5),
responsiblc=tex t(20)

1

Figure I1 shows a “mast,cr/dct ail” interface where the
MODULE relation is the master and the B,UG relation is
the detail. The mapping b-tween this form and the data-
base must specify that the relations MODULE and BUG

are joined on the modu!e attribute and that only the name,

reported, and priority attributes in UUC are to be
displayed. In addSor,, the programmer must specify
whether the “m;L9ter” record should be deIet.ed when the
last “detail” record is deleted.

The problem of specifying complex mappings such as
this one is equivalent to t.he view update problem
(Cha75,Day78,St,o75]. ABF solved t.his problem by con-
straining what mappings can be specified and allowing the
programmer to choose a srmantic interpretat,ion. An alter-

Module Bug Summary Outstanding Bugs By Module

Module:

Name

Responsible:

Outstanding Bugs

Reported Priority

I
Bug Summary

I
Module Name

parser

Number Bugs

10

query optimizer 1 8
I

accetu methods I 5 I
unload utility

Help Append Query End Help BugDetall End

Figure 11. Example of a master/detail interface.

native approach would be to extend the database model so
that the correct semantics could be inferred from the data-
base schema.

Query/update frames have proven to be very useful
building blocks for IIS’s. By providing several choices for
these interfaces, query/update frames can be used in more
piaces. The alternative is to force the programmer to
specify the interface as a user-defined frame. If a user-
defined frame was used, t.he programmer would have to
specify more detail or provide less function at the interface
(e.g., the user might not be able to query on arbitrary
fields). The “fill-in-the-form” programming environment

simplifies the specification of query/update frames and pro-
vides the “glue” for integrating them into an application.

The last frame type that will be discussed is a user-
definrd frame. A user-defined frame gives the programmer
complete control over t.he frame. He specifies t.he form
using the form editor and codes t,he operations in a high-
level programming langua:;e, called the Operation
Sperifiration Language (0%). Figure 12 shows an exam-
ple of a user-deEned frame. It lists the modules in a
software system and a count of the outstanding bugs in
each module. The frame has three operat,ions: Help, Bug-
Detail, and End. The lIelp and End operations are the

I

Figure 12. Example of a user-defined frame.

standard ones found in most frames.’ The BugDetail
operation calls another frame that lists the outstanding
bugs in the selected module. Since this frame does not
correspond to any generic frame type supported by the
ADE, it must be deli-ed by the programmer as a user-
defined frame.

The definition frame for a user-defined frame is shown
in figure 13. The structure of this frame is similar to the
other frames for defining frames. The object name, crra-

tor, creation date, and modification date are shown at the

t.op. The frame also shows the name cf the form used in
the frame and lists the names of the operations that have
been defined for the frame. The operation list is displayed
through a table field, labeled Op Namea. Below t!lat field
is a text field, labeled Operation Definition, that displays

’ Neither FADS nor ABF made these operations mandator)
in every frame. However, they have been included in x!mo~t s!l
zpplicstion frames. An obvious extension would be to include
them in the frame model support by the ADE so the programmer
would uot have to specify them. Frames could be defined that

would make it easier to specify help frames and the help text
could be stored in the database which would make it easier to
manage and allow it to be used in several different contexts (e.g..

as on-line help or in manuals).

Edit User-Defined Frame

Name: Modu[eSummory Creator: Larry

Created: 5 Jan 1985 Modified: 8 Jan 1985

Form: BugCount

Help Call Edit FormEdit Ingrea End

Figure 13. Definition frame for user-defined frames.

the sprcification for one of the operations. The program-
mer cs,n edit, the specification or select another operation
name which causes the definition of that operation to be
displayed in the t.ext field. Commands are also provided
that allow the programmer to add or delete operations or
to change the name of an operation.

Operations are coded in OSL. OSL has constructs for
accessing t.he data in a form or in the database, for calling
other frames similar to the way procedures are called in a
programming language, and for specifying control-Ilow for
the application. In addition, procedures coded in a conven-
t.ional programming language can be called so that there is
a way t,o escape if OSL does not provide a required

construct. A more detailed description of t,he feat,ures of

OSL is given elsewhere [RTI84h].

As powerful as user-defined frames are, the goal of a
forms-based programming environment is to use them for
only a small percentage of t,he frames in an application.
The reason for this goal is that high-level frames require
less specification when t,hey are de&red and they allow the
programmer t,o develop his applications in larger “chunks.”
Conarqucntly, applications can be developed quicker and,
to the extent the programmer does not have to wade

through code, t,hey can be modified more easily.

This section has shown how menu, query/update, and
user-defined frames are defined in a “fili-in-the-form” ADE.

4. Discussion
This section describes the savings that can he

achiever1 when using a “fill-in-the-form” ADE. Fcllowing
that, future research dire&on3 are discussed.

Our experience with FADS and ABF indicat.es that
an application would require 10 to 20 times more lines of
code if it had hcen coded in a database/screen language or
a 4GL. This code compaction is due to several factors.
First, the frame model for specifying an application sub-
sumes many lines of code that would have to he specified
for each frame in an application if it were coded in one of
the other languages.

Srcond, the high-lrvrl t.ools substantial!y reduce t.he
amount of code the programmer must spcciYy to c!rfne
part of the application. The high-level tool acts as J. pro-
gram generator th:lL the programmer can paramet.crize to
meet the needs of his specific applicat,ion. The frame
modrl simplifies the integration of this grneratcd code into

t,he application.

A third reason fewer lines of code are required ir that
database/screen languages and 4GL’s typically have th1.ye
names for a data value: 1) a name for the field in the form,
2) a name for the attribute in the relat.ion, and 3) a name
for a variable that the program manipulates. Many lines
of code are used to copy these values between the data-
base, the program, and t.he form. For example, to display
a database -,alue in a form field, two statements Are
required: one to copy the value from the database to the
program variable and one to copy it from the variable t.o
the form field. In cont,rast, in OSL each Geld in a form has
an implicitly defined variable wit,h the same name as the
field. Each time a value is assigned to this variable, the

value is automatically displayed to the user through the
form. To display a database value in a form field, the
attribut.c is assigned to the form field (i.e., the implicit
variable with the same name). Consequently, only one
statement is required rather than two. This saving may
not seem like much, but if you examine sample applica-
tions YOU will find that is saves many lines of code.

.4nother way to measure the productivity improvr-
ment achieved by a new programming language or system
is to quantify the time required to create an application.
Using ABF, the simple bug report application described
above can be defined in less than 30 minutes. It would
take a very sophisticated and experienced programmer t.o
produce this application in the same t,ime with a
database/screen language or 4GL.

As we have gott.en more experience wit,h thrar sya-

terns it has become clear that there are m:my different

frame types the ADE might support. We are currently

working on a new system that will allow programmers to

define their own frame types (i.e., user-defined frame

types). With this facility, an organization could customize

t.he frame types for their environment or application.

They would get the productivity gains made possible by a

“fill-in-the-form” programming environment without hav-

ing to give up the flexibility found in a general purpose

programming language.

Other directions we are pursuing are to define high-

level tools for other application domains, such as oftice

automation [Pro85], and to take advantage of new user-

int.erface t*echnologies such as bit-mapped display and

mouse interfaces to improve the ADE.

5. Summary

This paper has described a new paradigm for develop-

ing interactive database applications. The paradigm is

based on the idea of filling in forms to define an applica-

tion. Two systems have been implemented and experience

with them shows this approach to application development

to improve programmer productivity and to produce appli-

cations that are easier to maintain and extend.

Acknsw4edgements

l want to t.hank Joe Cortopassi, Arthur Ilochbcrg,
and Kurt Shorns who worked on the development of the
ideas presented here and reviewed earlier drafts of this
paper.

References

[ADR83]

[Cat801

[Cha75]

(Cin83]

[Cu183]

Pay74

[k80]

[HoK84]

[IBI82]

[NC%331

[Pro851

[RoS82]

ADRIIDEAL - Application Development

Re$erence Manual, S12G-01-00, Applied Data

Research, Inc., Aug. 1983.

R. R. G. Cattell, “An Entity-Based User

Interface”, Proc. 1980 ACM-SIGMOD

Conference on Management o/Data, May 1980.

D. Chamberlin and al, “Views Authorization

and Locking in a Relational Database System”,

hoc. NCC, 1975, 425-430.

Series 80 MANTIS User’s Guide, Release 3.5,

Pub. No. P19-0001, Cincom Systems, Inc., 1983.

Application Development System/ Online -

Reference Guide, Release 1.1, Cullinet Software,

Aug. 1983.

U. Dayal, “On the Updatability of Relational

Views”, Proc. 4th VLDB, 1976, 368-377.

C. Herot, “SDMS: A Spatial Data Base

System”, Trans. Database Syrtemr, Dec. 1980.

E. Horowitz and A. Kemper, High-Level

Input/Output Facilities in a Database

Programming Language, Unpublished

manuscript, Univ. South. Calif., June 1984.

Focus (Isera Manual, Information Builders, Inc.,

New York, NY, 1982.

NOMAD2 Reference Manual, National CSS,

Wilton, CT, Jan. 1983.

R. Probst, BOISE: An INGRES-based Oflice

Injormation System, MS Report, U.C. Berkeley,

May 1985.

L. A. Rowe and K. A. Shoens, “FADS - A

Forms Application Development Systela”, ACM

SIGMOD 1982 Int. Conf. on Mgt of Data, June

1982.

poS83]

[RTI84a]

(RT184bJ

[RT184c]

[Sho82]

[St0751

[Sta70]

(StK82j

[TANSO]

[Zlo7:,]

L. A. Rowe and K. A. Shoens, “Programming

Language Constructs for Screen Definition”,

IEEE Trans. on Software Eng. TSE-9, 1 (Jan.

1983).

EQUELIC Uaer’r Guide, Version 3.0,
VAX/VMS, Relational Technology, Inc.,

Berkeley, CA, May 1984.

INGRES ABF (Applications By Forma) User’s

Guide, Version 3.0, VAXjVMS, Relat,ional

Technology, Inc., Berkeley, CA, May 1984.

INGRES QBF (Query By Forms) User’8 Guide,

Version 3.0, VAX/VMS, Relational Technology,

Inc., Berkeley, CA, May 1984.

K. A. Shoens, A Form Application Development

System, PhD Thesis, U.C. Berkeley, Nov. 1982.

M. R. Stonebraker, “Implementation of
Integrity Constraints and Views by Query

Modification”, Proc. SIGMOD , 1975, 05-78..

M. R. Stonebraker and al, “The Design and

Implementation of INGRES”, ACM Trona.

Database System8 , Sep. 1976, 184222.

M. Stonebraker and 3. Kalash, “TIMBER: A

Sophist,icated Relation Browser”, Proe. 8th

Very Large Data Base Conference, Sep. 1982.

“Tandem 16 Pathway Reference Manual”,

82041, Tandem Computers Inc., Feb. 1980.

M. M. Zloof, “Query by Example”, Proc. NCC

44 (1975).

