“Fill-in-the-Form” Programming

Lawrence A. Rowe

1.

Computer Science Division, EECS Department

University of California
Berkeley, CA 94720

ABSTRACT

This paper describes a new style of programming,
called “fill-in-the-form” programming, for the development
of interactive database applications. The applications
being developed and the application development environ-
ment use the same form and menu interface. High level
tools are provided to defire interfaces for database
query/update and for generating reports or graphs. Our
expericnces with two systems that are based on this pro-

gramming paradigm are described.

1. Introduction

A wide variety of computer applications fall into the
category of Intcractive Information Systems (1IS). These
applications allow several people to access and update data
stored in a database. The applications do not involve
much computation but they do involve significant user
interaction with the application. The typical interface is a
form displayed on a video display through which data can
be entered or displayed. Example applications are a
software bug report system, a journal submission tracking

system, or a personnel management system.

For the past several years we have been developing
application development environments (ADE) for writing
these applications that use a style of programming we call
“fill-in-the-form” programming. An application is com-
posed of a collection of frames that contain a form where

data is entered or displayed and a menu of operations the

t This research was supported by the Air Force Office of
Scientific Research under Contract 83-0254.

Permission to copy without fee all or part of this material is
granted provided that the copies are 1ot made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

39k

user can execute. The user moves between different frames
executing operations to perform whatever action is
required. An example frame in a software bug report sys-
tem is shown in figure 1. The frame has operations that
allow a user to retrieve (Query) or enter (Append) bug
reports. To enter a bug report, the user fills in the form
and executes the Append operation. The system provides
built-in commands using a keyboard and/or a pointing
device such as a mouse to move to different fields in the

form, enter and edit data, and to invoke an operation.

The ADE uses the same ‘‘fill-in-the-form” interface as
the applications being developed. In other words, the ADE
is a collection of frames with operations to define frames,
forms, and database relations. The ADE provides frame-
types that a programmer can use to construct an applica-
tion:

1. menu frames for specifying menu interfaccs,

2 query/update frames for specifying data browsers,

3. report frames for specifying interfaces to generate

reports,
Bug Report
Name: o Priority: o
Reported: o Status: -
Module:
Description L
Response
Help Append Cuery End

Figure 1. A sample bug report frame.

4. graph frames for specifying interfaces to generate
graphs, and

5. user-defined frames for specifying interfaces with
application specific operations.

Applications are defined by filling in forms that describe
how a generic frame should be customized for the specific
usage (e.g., for a query/update frame, the form and the
mapping between the form and the datubase). In addition,
the ADE allows frames to be tested while they are being
defined without requiring that the entire application be
compiled and linked.

Two systems have been implemented that are based
on the idea of “fill-in-the-form” programming. The Forms
Application Development System (FADS) was a prototype
system implemented at the University of California, Berke-
ley to test whether this approach to developing IIS's was
viable [R0S82,5ho82]. The prototype was built as a
{ront-end to the INGRES relational database management
system [Sta78]. FADS provided only one type of frame
{user-defined) but it was readily apparent that applications
could be developed quickly and that they were easy to
modify. As a result, a lecal company developed a commer-
cial product, called Application-By-Forms (ABF) [RTI84b],
that was based on and extended the ideas in FADS. ABF
introduced the notion of other higher level frames (e.g.,
query /update, report, and graph).

This “fill-ip-the-form™ approach to developing IIS's
can be contrasted with other approaches that are based on
extending conventional programming languages or report
writer languages. The first approach extends a conven-
tional programming language with constructs to access a
database and do screen 1/0
{Hol\84, RoS83, TAN8G, RTI84a). We call such a language
a databasef/screen programming language. This approach
has several problems. First, programs are much too long
because the programmer is forced to specify too much
detail. As a result, too much time is required to develop
an application and the applications are expensive to main-
tain and extend. Second, conventional programming
languages do not provide support for high-level tools such
as reportwriters and database browsers
[Cat80, Her80, StK82, RTI84¢, Z1075]. Either these high-
level tools must be interfaced to the application program
or recoded for each application. Lastly, a database/screen
language cannot be used by end-users because tco much
programming expertise is required.

The second approach to developing IIS's is to extend
a report writer language with screen I/O constructs
IBI82, NC'S83, Cul83, Cin83, ADR83]. These extended
languages are called Fourth Gencration Languages (4GL).
Because a 4GL has an integrated report writer language,
they make writing some parts of an application easier.
However, the screen 1/O constructs are similar to the low-

level 1/0 commands found in the database/screen
languages. These systems do not provide high-level com-
mands for specifying operation menus, selectin;; the code to
be executed when a user invokes an operation, specifying
help screens, or for specifying other elements of a user
dialogue. The user-interface must be coded in the low-
level constructs. Consequently, a programmer must write
a significant amount of code just to define a simple inter-
face. A second problem with 4GL's is that they are large,
monolithic languages which over time have had more and
more coustructs added to them. The facilities found in
high-level tools are typically added to tke system by
adding the The resulting
languages are large and complex and they require consider-

constructs to language.
able training in order to learn how to use them. Another
problem is that since these languages evolved rather than
being designed, the syntax and semantics are often confus-

ing and inconsistent.

A “fill-in-the-form” ADE is a better approach than
these alternatives for several reasons. First, the system
has a standard interface. All user-interfaces are defined by
frames which standardize how operations are displaycd and
executed acd how data is displayed and entered into the

system.

The second advantage of the forms-based approach is
that the sy-tem supports a collection of high-level tools.
For example, tools can be provided for developing data
browsers and for defining reports and graphs. These high-
level tcols make specifying an application easier because
the tool has been designed to solve a particular problem
(e.g., report writing or graph design). The frame concept
is used to integrate these high-level toals into the ADE. In
contrast to monolithic languages, a “fiil-in-the-form” ADE
has several different languages, each customized to a par-
ticular usage. Systems composed of scveral languages typi-
cally have two problems: 1) learping the system is difficult
The

forms-based interface and online help facilities makes the

and 2) data incompatibility between subsystems.

problera of learning multiple languages less critical. And,
the data incompatibility problem does not arise because all
data is stored in the database and accessed through a stan-
dard query language.

Third, a “fill-in-the-form” ADE zllows applications to
be developed interactively. The programmer can easily
switch between defining an application and running it and
he can test partially completed applications. The system
also supports a source level debugger that makes it easier

to identify and correct bugs.

Another feature of a “fill-in-the-form™ ADE is that
defaults the

specification of an application. For example, given the

numerous are provided to simplify
definition of a relation, the system will automatically define
a form that can be used to query and update data in the
relation. Auvother example is that a default report or
graph definition will be generated for a relation or view.
By using defaults, applications can be developed very
quickly. Morcover, well-designed defaults allow naive users
to generate reasonable applications without requiring them

to learn the entire system.

The rcasons given thus far have focused primarily on
prototype applications in which the objective is to get the
application running as soon as possible. To achieve this
goal, reliability and performance are sacrificed. This
trade-off makes sense unless the application will be used in
a production environment. For production applications
the user-interface must be “‘bullet-proofed” for naive users
and the reports and forms must be fine-tuned to display
the data in the best way possible. Moreover, the perfor-
mance of the application is more critical because it will be
run many times or used simultaneously by many users.
The ADE’s described here have capabilities that allow the
programmer to turn a prototype application into a produc-
tion application. For example, as mentioned above the
svstem allows the programmer to customize a default form
or report. Or, if the programmer is willing to bind features
of the application, it can be compiled to run more
efficiently (e.g., the forms used in an application can be
compiled into an executable program rather than being
loaded from the database at run-time). Ccnsequently, if
the programmer is willing to specify more detail or invest
more time compiling the application, hc can improve its
reliability, performance, and user-interface.

This paper describes the principles behind a ‘‘fill-in-
the-form’ application development environment and
presents examples that show how an application is defined.
The paper is organized as follows. The second section
describes a simple bug report system that will be used to
illustrate this style of program development. Section 3
describes the application development environment and
shows how different types of frames are defined. Section 4
discusses the productivity improvements possible with a
“fill-in-the-form”’ system. The last section summarizes the

paper.

2. A Sample Application

This section describes a sample application. The
application is a simple bug report system. The data for

w

(o2

this example is stored in one relation with the following
schema:

BUG(name = text(15),
priority = (A, B, C),
reported = date,
status = (ENTERED, ASSIGNED, FIXED),
module = text(15),
description = text{512),
response = text(512)

)

The name attribute is a short name for the bug. The
priority, reported, and status attributes describe the rela-
tive importance of the bug, the date on which the bug was
reported, and the current status of the bug. The module
attribute identifies to which system component the bug
belongs (i.e., an indication ¢f what component has a bug in
it). The description attribute is a long text description of
the bug provided by the person who submits the bug
report. The response attribute is a long text description
filled in by the maintenance programmer after the bug is
fixed to indicate how the problem was resolved.

A bug report application is used by many people,
including technical support personnel, maintenance pro-
grammers, and managers, who are responsible for tracking
bugs that are reported and insuring that they are fixed.
Figure 2 shows a directed graph that presents an overview
of the application. Each node in the graph is a frame and
an edge between two nodes indicates that an operation in
the frame at which the edge originates calls the frame at
which the edge points.

Figure 3 shows the top-level menu frame that is
displayed when the application is run. If the user selects
the BrowseBugs opcration, the query/update frame
shown in figure 1 is called. The user can browse ‘A’ prior-
ity bugs entered zince 1 November 1984 by filling in the
form as shown in figure 4 and exccuting the Query opera-
tion. Figure 5 shows the screen after the first qualifying

bug report has been displayed. Notice that the same form
is used to display the data but that a new operation menu
is supplied that allows the user to modify or delete the
currently displayed bug report or to move to the previous
or next bug report. After browsing the bug reports of
interest, the user can return to the frame shown in figure 4
by executing the End operation. Executing the End
operation in this frame returns the user to the top-leve!
menu frame.

Figure 6 shows the frame for producing a report that
lists bugs in a sclected system module that were reported
during some time period. This frame is called when the
user executes the BugReport operation in the menu
frame. To generate the report, the user fills in the report
paramecters and exccutes the RunReport operation. The

top level menu

(BugSysMenu)
browse bug reports browse priority generate report
(BrowseBugs) bugs on bugs
(PriorityBugs) (BugReport)

Figure 2. Bug report application overview.

Bug Report System Bug Report
Name: Priority: A
Help enter help system
Reported: > 1 Nov 1984 Status:
BrowseBugs browse bug reports
Module: L
PriorityBugs summatize priority bugs Description
BugReport run report listing bugs
End exit application Response
Help BrowseBugs PriorityBugs BugReport End Help Append Query End

Figure 3. Top level menu. Figure 4. Query specification to browse bug reports.

Bug Report

Name: char conv error Priority: A
Reported: 17 Jan 1985 Status: ENTERED
Module: scanner

Description

A system error i3 reported when an unprintable
character is entered into a string constant.

Response

Help Delete Modify Next Previous End

Figure 5. Query/update frame after query is executed.

Generate Bug Report

System module:

Bugs reported between

Help RunReport End

Figure 6. A report frame.

report would be displayed on the user’s terminal or spooled
to a printer depending on how the application was defined.
This frame is an example of a repert frame.

This section has described a simple application. The
next section shows how this application is defined.

3. The

Environment

Application Development

This section describes the application development
environment and illustrates how frames are defined. Three
frame types are discussed: menu, query/update, and user-
defined.

The ADE is composed of a collection of frames that
the programmer moves between to define the relations,
forms, frames, reports, and graphs that make up the appli-
cation. Figure 7 shows the edit application frame as it
would appear after the four frames in the simple bug
report application have been defined.

The field labeled Name gives the name of the applica-

tion aud is filled in by the programmer when the applica-
tion is created. The Creator ficld identifies who created

3985

the application. This field is automatically filled in by the
system when the application is created. The Creafed and
Modified ficlds show the dates when the application was
created and when it was last modified. These fields are
also updated automatically by the system. As will he seen
below, this information is kept for every object defined in
an application (e.g., frames, forms, reports, etc.). The
table in the middle of the frame lists the frames that have
been defined for this applicaticn. The pname and type of
cach frame is given. A table such as this cne is ealled a
table ficld and is actually a window on a larger data set.
The user has commands that allow him to scroll forwards
and backwards through the table looking at the vuricus
entries.

The edit application frame has operations to compiie
the application for production use {Bind), to create and
destroy applications (Create and Destroy), to edit the
definition of a frame (Edit), to invoke an ad hoc query
interface (Ingres), and to run tiae application (Run). In
addition, the {rame includes operations to enter the help
system (Help) or to exit the current frame {End).

The programmer can examire the definition of 2
frame hy selecting the desired frame in the table field and

Edit Application
Creator: _Larry

Modified: 10 Nov 1984

Name:_ Bug Report

Created: 5 Jul 1984

Frames
_____ Frame Name Frame Type
BugSyaMenu menu
PriorityBugs user-defined
BrowseBugs query/update
BugReport report

Help Bind Create Destroy Edit Ingres Run End

Figure 7. Application definition frame.

Edit Menu Frame

Name: BugSysMenu Creator: _Larry

Created: 5 Jul 1984 Modified: 10 Sep 1984

Title: Bug Report System

Menu Operations

Op Name Frame Description
Help HelpSys enter help system
BrowseBugs | BrowseBugs |browse bug reports
PriorityBugs | PriorityBugs |summarize priority bugs |
BugReport BugReport |run report listing bugs
End Ezxit exit application

Help Call Edit Ingres End

Figure 8. Definition of menu frame.

exccuting the Edit operation. Suppose the programmer
selected the top-level menu frame, named BugSysMenu,
that was shown in figure 3. The definition of this frame is
shown in figure 8. Notice that the object information (i.e.,
frame name, creator, creation date, and modification date)
is similar to the information displayed in the edit applica-
tion frame. Because a menu frame has a predefined struc-
ture and operations are limited to calling other frames, the
programmer has to specify very little to define the frame.
The programmer specifies the title that will be displayed
across the top of the frame and, for each operation, he
gives the operation name, the frame to call when the
operation is executed, and a brief description of the opera-
tion. In the menu frame being defined, the operation
names are listed across the bottom of the frame and in the
middle of the frame along with the descriptions to show
the user what each operation does (see figure 3).

The operations provided in this frame allow the pro-
grammer to call the frame being defined (Call), to edit
another object (Edit), or to invoke the ad hoc query inter-
face {Ingres). The programmer can change the definition
of an operation or he can add or delete an operation by
modifying the information displayed in the table field that
lists the operations.

A

The structure of a menu frame is fixed by the system.
If the programmer does not like this particular structure,
he can define a menu as a user-defined frame which allows
Lim to specify the form and to write arbitrary code for the
operations. However, the programmer will have to specify
more dctail to define it.

Query/update frames, like the frames shown in
figzures 1, 4, and 5, are common interfaces in IIS's. To
define a query/update frame, the programmer must specify
the form through which the data will be displayed und
entered and the mapping between the form and the rela-
tions in the database. Figure 9 shows the definition of the
BrowseBugs frame shown above. The form used in the
BrowseBugs frame is named BugForm. A form is defined
or modified by invoking the form editor with the For-
mEdit operation. The form editor is a “what-you-scc-is-
what-you-get’' editor for forms. The programmer can con-
trol the definition and placement of fields and descriptive
text (e.g., titles, ficld labels, and other explanatory text) in
the form. The form editor also allows the programmer to
specify field display enhancements (e.g., inverse video and
blinking), edit checks on data entered into a fickl. and
ather attributes that control the user interacticn (e.g.,
manadatory fields). If the programmer had not specified a

Edit Query /Update Frame

Creator: _Larry

LA T

Form: BugForm Interface: record

Relations

__Relation Names

BUG

Help Call DBMap Edit FormEdit Ingres End

Figure 9. Definition of query/update frame.

Query /Update Database Map

Name: BrowseBugs

Relations

Relation Names

BUG

Database/Form Map

Database Value Form Field
BUG.name name

BUG.priority priority

BUG .reported reported

BUG .status status

Help Call Dictionary JoinTerms End

Figure 10. Definition of the database/form map.

form for the query/update frame, the system would
automatically generate onme for the relations identified in
the database mapping.

The nterface field defines the style of interface for
the frame. In this case, a “record” interface is used which
means that only one record in the relation is displayed at a
time. And, the mapping between the form and the data-
base is very simple because the data is taken from only one
relation, the BUG relation.

The mapping is specified in a different frame that is
called by executing the D2Map operation. The database
mapping frame is shown in figure 10. In this simple exam-
ple, the database values do nct involve computation and
the relation attribute names and the form field names are
the same. By filling in the m=pping table field differently,
both constraints can be changed. If a more complex map-
ping between the database and the form is required such as
a join between one or more relations, the programmer can
execute the JoinTerms operation which calls a frame that
allows kim to specify the mapping.

The system supports two other query/update inter-
faces: “table” and ‘“master/detail.” A ‘‘table” interface

displays several records through a table field. A

Loo

“master/detail’” interface simultancously displays one
record from one relation through a record interface and
several records from a secend relation through a table field.
For example, suppose there was a second relation that
maintained information about the modules in the system

with the following definition

MODULE(module==text(15),

responsible=text(20)
)

Figure 11 shows a ‘‘master/dctail”” interface where the
MODULE relation is the master and the BUG relation is
the detail. The mapping between this form and the data-
base must specify that the relations MODULE and BUG
are joined on the module attribute and that only the name,
reported, and priority attributes in BUG are to be
displayed. In additiop, the progrommer must specify
whether the “master” record should be deleted when the
last “‘detail” record is deleted.

The problem of specifying complex mappings such as
this one is equivalent to the view update problem
[Cha75,Day78,Sto75]. ABF solved this problem by con-
straining what mappings can be specified and allowing the
programmer to choose a semantic interpretation. An alter-

Module Bug Summary
Module: Responsible:
Outstanding Bugs
Name Reported Priority
Help Append Query End

Figure 11. Example of a master/detail interface.

Outstanding Bugs By Module
Bug Summary

Module Name Number Bugs
parser 10
query optimizer 8
access methods b
unload utilsty 4

Help BugDetall End

Figure 12. Example of a user-defined frame.

native approach would be to extend the database model so
that the correct semantics could be inferred from the data-

base schema.

Query/update frames have proven to be very useful
building blocks for 1IS's. By providing several choices for
these interfaces, query/update frames can be used in more
places. The alternative is to force the programmer to
specily the interface as a user-defined frame. If a user-
defined frame was used, the programmecr would have to
specify more detail or provide less function at the interface
(e.g., the user might not be able to query on arbitrary
fields). The “fill-in-the-form” programming environment
simplifics the specification of query/update frames and pro-
vides the “glue” for integrating them into an application.

The last frame type that will be discussed is a user-
defined frame. A user-defined frame gives the programmer
complete control over the frame. He specifies the form
using the form editor and codes the operations in a high-
level programming language, called the Operation
Specification Language (OSL). Figure 12 shows an exam-
ple of a user-defined frame. It lists the modules in a
software system and a count of the cutstanding bugs in
each module. The frame has three operations: Help, Bug-
Detail, 2nd End. The Help and End operations are the

401

standard ones found in most frames.! The BugDetail
operation calls apother frame that lists the outstarding
bugs in the selected module. Since this frame does not
correspond to any generic frame type supported by the
ADE, it must be deficed by the programmer 2s a user-
defined frame.

The definition frame for a user-defined frame is shown
in figure 13. The structure of this frame is similar to the
other frames for defining frames. The object name, crea-
tor, creation date, and modification date are shown at the
top. The frame also shows the name of the form used in
the frame and lists the names of the cperations that have
been defined for the frame. The operation list is displayed
through a table field, labeled Op Names. Below that field
is a text field, labeled Operation Definttion, that displays

! Neither FADS nor ABF made these operations mandatory
in every frame. However, they have been included in almost all
application frames. An obvious extension would be to include
them in the frame model support by the ADE so the programemer
would uot have to specify them. Frames could be defined that
would muzke it easier to specify help frames and the help text
could be stored in the database which would make it easier to
manage and allow it to be used in several different contexts (e.g.,
as on-line help or in manuals).

Edit User-Defined Frame

Name: ModuleSummary Creator: _Larry

Created: 5 Jan 1985 Modified: 8 Jan 1985

Form: - BugCount

Op Names
Help

End

Operation Definition

...definition of BugDetasl operation

Help Call Edit FormEdit Ingres End

Figure 13. Definition frame for user-defined frames.

the specification for one of the operations. The program-
mer can edit the specification or select another operation
pame which causes the definition of that operation to be
displayed in the text ficld. Commands are also provided
that allow the programmer to add or delete operations or
to change the name of an cperation.

Operations are coded in OSL. OSL has constructs for
accessing the data in a form or in the database, for calling
other frames similar to the way procedures are called in a
programnming language, and for specifying control-flow for
the application. In addition, procedures coded in a conven-
tional programming language can be called so that there is
a way to escape if OSL does not provide a required
construct. A more detailed description of the features of
OSL is given elsewhere [RTI84b).

As powerful as user-defined frames are, the goal of a
forms-based programming environment is to use them for
only a small percentage of the frames in an aprlication.
The reason for this geal is that high-level frames require
less specification when they are defined and they allow the
programmer to develop his applications in larger ‘‘chunks.”
Consequently, applications can be developed quicker and,
to the extent the programmer does not have to wade

through code, they can be modified more easily.

This section has shown how menu, query/update, and
user-defined frames are defined in a “fili-in-the-form’ ADE.

4. Discussion

This section describes the savings that can be
achieved when using a “fill-in-the-form” ADE. Fecllowing
that, future research directions are discussed.

Qur experience with FADS and ABF indicates that
an application would require 10 to 20 times more lines of
code if it had been coded in a database/screen language or
a 4GlL. This code compaction is due to several factors.
First, the frame model for specifying an application sub-
sumes many lines of code that would have to be specified
for each frame in an application if it were coded in one of
the other languages.

Second, the high-level tools substantially reduce the
amount of code the programmier must specify to define
part of the application. The high-level tool acts as a pro-
gram generator thai the programmer can paramecterize to
meet the needs of his speeific application. The frame
model simplifies the integration of this generated code into
the application.

A third reason fewer lines of code are required is that
database/screen languages and 4GL's typically have thice
names for a data value: 1) a name for the field in the form,
2) a name for the attribute in the relation, and 3) a name
for a variable that the pregram manipulates. Many lines
of code are used to copy these values between the data-
base, the program, and the form. For example, to display
a database wvalue in a form field, two statements are
required: one to copy the value from the database to the
program variable and one to copy it from the variable to
the form ficld. In contrast, in OSL each field in a form has
an implicitly defined variable with the same name as the
field. Each time a value is assigned to this variable, the
value is automaticully displayed to the user through the
form. To display a database value in a form field, the
attribute is assigned to the form field (i.e., the implicit
variable with the same name). Consequently, only one
statement is required rather than two. This saving may
not seem like much, but if you examine sample applica-
tions you will find that is saves many lines of code.

Another way to measure the productivity improve-
ment achieved by a new programming language or system
is to quantify the time required to create an application.
Using ABF, the simple bug report application described
above can be defined in less than 30 minutes. It would
take a very sophisticated and experienced programmer to
produce this application
database/screen language or 4GL.

in the same time with a

As we have gotten more experience with these sys-
tems it has become clear that there are many different

frame types the ADE might support. We are currently
working on a new system that will allow programmers to
define their own frame types (i.e., user-defined frame
types). With this facility, an organization could customize
the frame types for their environment or application.
They would get the productivity gains made possible by a
“fill-in-the-form” programming environment without hav-
ing to give up the flexibility found in a general purpose
programming language.

Other directions we are pursuing are to define high-
level tools for other application domains, such as office
automation [Pro85], and to take advantage of new user-
interface technologies such as bit-mapped display and

mouse interfaces to improve the ADE.

5. Summary

This paper has described a new paradigm for develop-
ing interactive database applications. The paradigm is
based on the idea of filling in forms to define an applica-
tion. Two systems have been implemented and experience
with them shows this approach to application development
to improve programmer productivity and to produce appli-

cations that are easier to maintain and extend.

Acknowledgements

I want to thank Joe Cortopassi, Arthur Hochberg,
and Kurt Shoens who worked on the development of the
ideas presented here and reviewed earlier drafts of this

paper.

[ADRR3]

[Cat80]

[Cha78]

[Cin83]

[Cul83)

[Day76]

{Her80]

{HoK84]

[1B182]

[NCS83]

[Pro85)

[RoS82)

References

ADR[IDEAL - Application Development
Reference Manual, 5S12G-01-00, Applied Data
Research, Inc., Aug. 1983.

R. R. G. Cattell, “An Entity-Based User
Interface”, 1980 ACM-SIGMOD
Conference on Management of Data, May 1980.

Proc.

D. Chamberlin and al, “Views Authorization
and Locking in a Relational Database System",
Proc. NCC, 1975, 425-430.

Series 80 MANTIS User’s Guide, Release 3.5,
Pub. No. P19-0001, Cincom Systems, Inc., 1983.

Application Development System/Online -
Reference Guide, Release 1.1, Cullinet Software,
Aug. 1983.

U. Dayal, *“On the Updatability of Relational
Views”, Proc. 4th VLDDB, 1976, 368-377.

C. Herot, “SDMS: A Spatial Data Base
System’, Trans. Database Systems, Dec. 1980.

E. Horowitz and A. Kemper, High-Level
Input/Output Facilities in a Database
Programming Language, Unpublished

manuscript, Univ. South. Calif., June 1984,

Focus Users Manual, Information Builders, Inc.,
New York, NY, 1982.

NOMAD?2 Reference Manual, National CSS,
Wilton, CT, Jan. 1983.

R. Probst, BOISE: An INGRES-based Office
Information Systemn, MS Report, U.C. Berkeley,
May 1985.

L. A. Rowe and K. A. Shoens, “FADS - A
Forms Application Development Syster', ACM
SIGMOD 1982 Int. Conf. on Mgt of Data, Juze
1982.

[RoS83]

[RTI84a]

[RTI84b]

[RTI84c]

[Sho82]

[Sto75]

[Sta76]

[StK82]

[TANRO]

{Z1075]

Lol

L. A. Rowe and K. A. Shoens, “Programming
Language Constructs for Screen Definition”,
IEEE Trans. on Software Eng. TSE-9, 1 (Jan.
1983).

EQUELfC User’s Guide,
VAX/VMS, Relational
Berkeley, CA, May 1984,

INGRES ABF (Applications By FForms) User’s
Guide, Version 3.0, VAX/VMS, Relational
Technology, Inc., Berkeley, CA, May 1984,

INGRES QBF (Query By Forms) User's Guide,
Version 3.0, VAX/VMS, Relational Technology,
Inc., Berkeley, CA, May 1984.

Version 3.0,

Technology, Inc.,

K. A. Shoens, A Form Application Development
System, PhD Thesis, U.C. Berkeley, Nov. 1982,
M. R.
Integrity Constraints and Views by Query
Modification”, Proc. SIGMOD , 1975, 65-78..
M. R. Stonebraker and al, “The Design and
Implementation of INGRES"”, ACM Trans.
Database Systems , Sep. 1976, 189-222.

M. Stonebraker and J. Kalash, “TIMBER: A
8th

Stonebraker, ‘“Implementation of

Sophisticated Relation Browser”, Proe.

Very Large Data Base Conference, Sep. 1982.

“Tandem 16 Pathway Reference Manual”,
82041, Tandem Computers Inc., Feb. 1980.

M. M. Zloof, “‘Query by Example”, Proc. NCC
44 (1975).

