
The MR Diagram - A Model for Conceptual Database 
Design 

Raghu Ramakrishnan 
Avi Silberschatz 

Department of Computer Science 
The University of Texas 

Austin, TX 78712. 

ABSTRACT 

Traditional database models are not sufficiently 
expressive for a variety of standard and non-standard 
database applications. Several models supporting greater 
abstraction have been proposed to 611 this gap, but no 
one model has gained wide acceptance. This paper 
delnes a model, based on the notion of molecules and 
non-jirat normal /arm relations, that provides a power- 
ful abstraction mechanism using aggregation. The model 
also provides a simple pictorial representation that allows 
a compact and clear specitlcation of a database. We 
illustrate the model with several examples and show how 
it can be used in the design of databases. 

I. Introduction 

It has long been recognised that database modelling 
and knowledge representation share the objective of 
representing some abstraction of the real world. While 
there are important diflerences, both stand to gain much 
from a synthesis, and as a first step towards such a syn- 
thesis, data models must support greater abstraction (1). 
Several applications such as Computer Aided Design 
would also benefit from such abstraction capabilities. 
This has sparked a growing trend towards the develop 
mrnt of data models (2, 3, 4, 5, 6, 7) that support 
abstraction but no one model has gained wide accep- 
tance. 

Semantic data models allow us to model abstractions 
by providing a mechanism for defining new abstractions 
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in terms of other, already defined, abstractions, usin!: 
aggregation and generalization. Informally, if A is .,I, 
aggregation of B and C, an instance of A is a compnsi- 
tion of an instance of B and an instance of C. If A is .ti 
generalization of B and C, an instance of A is either ~1 
instance of B or an instance of C. A more powerful 
notion of aggregation allows us to view an instance of A 
as a composition of a set of instances of B and a set of 
instances of C. Classification allows us to group all 
instances of A together. 

In the Relational model (9), aggregation is supported 
by associating a sequence of attributes with a relation 
name, and classification groups all tuples of a given rela- 
tion. Generalization is not supported directly. Smith and 
Smith (10, 11) extend the notion of aggregation by allow- 
ing an attribute to be a tuple from another relation, and 
Batory and Buchmann (4) take this a step further by 
allowing an attribute to be a set of tuples from another 
relation. Our contribution is to provide a uniform 
representation for abstraction using an extension of the 
Relational model which supports generalization and 
aggregation in the form described by (4). Our scheme has 
the advantages of a simple pictorial representation and 
an extended form of the relational query language. 

The paper is organised as follows. Section 2 introduces 
the notion of a molecule, in particular the way aggrega- 
tion is used to define the structure of an abstract object. 
Section 3 discusses how we attach meaning to this struc- 
ture so that our representation is a natural model of the 
abstraction being modelled. lo section 4 ,we present our 
model and illustrate it with several examples. Subsequent 
sections discuss operators and procedural extensions to 
make the model more expressive, to achieve a clean 
separation between levels of abstraction, and to clarify 
the definition of structure and semantics. We then 
demonstrate how a database can be designed in a top- 
down fashion. There is a brief discussion of bottom-up 
design and its relation to view modelling and schema 
integration. Finally, we consider related work and 
present our conclusions. 
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2. The Concept of a Molecule 

Our model rests upon the notion of a molecule type 
which describes a type of object or a type of relationship 
between objects at some level of abstraction. A molecule 
type is defined as a non-first normal form relation. Each 
tuple in this relation represents a molecule of this type, 
and describes an object or a relationship. 

An ‘object’ is some abstraction that is of interest to us. 
It could be a VLSI chip layout, a corporation, or a cat. 
I,ike the word ‘entity’, it is intuitively defined. It is 
important to note that our model does not distinguish 
between entities and the relationships among them. 
Rather, an object and a relationship between objects are 
both viewed as abstractions, and it is entirely possible 
that a relationship at one level is an object at a higher 
level. The model provides a uniform representation for 
all abstractions, and they may be viewed as objects or 
relationships, whichever is more appropriate, in dilferent 
contexts 

A molecule type M is defined in terms of other 
molecule types. Intuitively, a molecule of type M is a col- 
lection of molecules of the component types. There is a 
set-valued attribute corresponding to each component 
molecule type, and in a tuple describing a molecule of 
type M, these sets contain the keys of all component 
molecules of the corresponding type. The definition of a 
molecule type may also include ‘atomic’ or non-set 
valued attributes which, in a given molecule, are used to 
describe the molecule as a whole. 

Pictorially, a molecule type is represented by an 
ellipse. The ellipse for molecule type h4 is labelled ‘M’ 
and has the list of M’s atomic attributes listed beside it 
in parentheses. 

If M is defined in terms of molecule types Mi, an arrow 
is drawn from the ellipse for M to the ellipse for each Mi. 
Thus, outgoing arrows indicate the structure of a 
molecule type and may be labelled with the correspond- 
ing component names. Incoming arrows at the ellipse 
representing molecule type M indicate the molecule types 
which are defined using M as a component type. 

We present a few examples to clarify these concepts 
before defining them formally. 

Example 1: Supplier-Parts-Projects 

Figure 1 describes the familiar Suppliers-Parts- 
Projects relationship. We describe this using a molecule 
type called ‘Orders’. Figure 1.a describes ‘Orders’ 
pictorially, Figure 1.b shows instances of t.he underlying 
rrbl:ltions for Suppliers, Parts and Projects. and Figure 1.c 
\hows an instance of the relation for ‘Orders’. 

The key for this molecule IS order-#. An ‘Orders’ 
tuple could be interpreted as follows: the set of suppliers 
jointly supply the set of parts to the set of projects. 
There are other possible interpretations, and in general, 
the intended interpretation is not clear from the above 
definition of a molecule. [] 

Example 2: Univerrity Departments 

Figure 2.a partially describes a department in a 
university. A department is described by its faculty, stu- 
dents and the courses it offers. At this level of abstrac- 
tion, it is not known how courses are described. Figure 
2.b shows instances of the relations for ‘Faculty’, ‘Stu- 
dents’ and ‘Courses’. To completely describe the 
molecule type ‘Dept’ one need only know the key attri- 
butes of the molecule type ‘Courses’. Figure 2.b describes 
an instance of the relation for ‘Courses’ partially and 
Figure 2.c shows an instance of the relation for ‘Dept’ 
under the assumption that courses have unique names. 

This example illustrates two points. One is that a 
molecule type can be defined using other molecule types. 
The second is that WC only need to know the keys of the 
underlying molecules to define a molecule type. This 
implies that the relation describing a molecule will not 
change even if the relations describing some of its under- 
lying molecule types change (ie the structures of some 
components change) so long as their keys continue to be 
valid. I] 

We need to be more precise about the nature of a 
molecule type. We therefore formalize this intuition. A 
molecule type could represent a type of object or a rela- 
tionship between objects. In either case, it is defined in 
terms of other molecule types. If molecule type M is 
defined in terms of molecule types M,, M,,...hfn, then a 
molecule of type M is a collection of mol&ules of types 
M, through Mn. Each molecule type has an associated 
sequence of atomic (indivisible, non-set-valued) attributes 
whose values, for a given molecule, describe the proper- 
ties of that molecule taken as a whole. 

Mathematically, a molecule type M is defined as fol- 
lows: 

where the A. s are atomic attributes, the M.‘s are 
molecule type;: and m,n >= 0. and not m=n=‘0. The 
Ai,s are called the atomic or scalar components of M and 
the hli’s are called the molecular components. 

This represents a non-N normal form relation with 
tuptes 

where the keys in a given sel. (ki) arp distinct 



(order-#) 

Figure 1.a. MR diagram for Suppliers-Parts-Projects 

Suppliers Parts Projects 

Figure 1.b. Relations for Suppliers, Parts and Projects 

Order-# Suppliers Parts Projects 

1 is11 {Pl! P3, P4) {PrlJ 

2 1521 (Pl) br2, pr3) 

Figure l.c. Relation for the Orders molecule type 



(name) 

(name) 22 Courses 

Figure 2.a. The Dept molecule type 

Faculty Students Courses 

c-x c-x . . . . . . 

cs304 cs304 . . . . . . 

cHY301 cHY301 . . . . . . 

cHY104 cHY104 . . . . . . 

Figure 2.b. Relations for Faculty, Students and Courses 

d-name faculty students courses 

cs {Smith, Brown} {Tom, Ken, Nick} (CS304) 

CHY {Jones, Black} {Sue, Nick) (CHY301, CHY104) 

Figure 2.~. Relation for the Dept molecule type 



A molecule of type M is described by a tuple in this 
relation, and is composed of a collection of tuples lrom 
the relations that describe molecule types Mi, i = 1 to n. 
These underlying tuples are specified by sets of keys (ki}, 
some of which may be null. The a’s are attributes 
describing molecule M and are atomic. Note that some of 
the Mi’s may be identical. This means that objects of 
these types play more than one role in the relation (or 
abstract object) defined by molecule type M. For exam- 
ple, consider the following molecule definition: 

People = [name] 

Father-of = [People, People] 

People is a molecule type with the atomic attribute 
name and no set-valued attributes. Father-of is a 
molecule type with no atomic attributes and two set- 
valued attributes. 

Thus, the tuple [{John}, {Jim, Susan, Joe}] in the 
relation for Father-of means that John, Jim, Susan and 
Joe are people and that John is the father of Jim, Susan 
and Joe. 

We also define a navigation operator as follows: 

Given a molecule m (of type M, say), mli refers to the 
set {ki} in the tuple defining m, and m1i.k refers to the 
molecule of type Mi with the key k (ie, the tuple with 
key k in the relation defining Mi). We used mli instead 
of mlM. to avoid the ambiguity that arises when some 
of the d. s are identical. To make this more readable, we 
add some! syntactic sugar: 

Molecule type M is defined by [Al, .:, 
and [Ml, . . , 

Am, C,, , C,I 
M ] where the C’s are distinct component 

names. The se&d part of the deEnit.ion specifies the 
underlying molecule type of component Ci. The molecule 
type Father-of may now be deEned by [Father, Children] 
and [People, People]. 

How do we describe the traditional concepts of entity 
and relation in terms of molecules? An entity is simply a 
molecule type with no underlying molecule types. The 
sets {k.} are absent from the definition of a molecule 
represeAting an entity. A traditional Erst-normal form 
relation between entities can also be represented as a 
molecule with no underlying molecules. We call such 
molecules independent molecules. Thus, as in the rela- 
tional model, we have a uniform representation for 
objects and relations between objects. An entity is just a 
special case of an object, and a traditional relation is just 
a special case of a relation between objects. 

Example 3: Courree in a Department 

Figure 3 shows a refined version of the ‘Dept’ 
molecule type. The point to note is that a given object 
(in this example, the independent molecule types ‘Facul- 

ty’ 
and ‘Students’) can be used to describe more than one 
molecule type. [] 

Example 4: Projectr 

This example shows how a molecule type may be 
defined recursively in terms of itself. A project is 
described by its name, which is unique, the faculty 
members and students who are working on it, and a set 
of sub-projects (Figure 4.a). 

Figure 4.b shows an instance of the relation for the 
‘Project” molecule types, using the ‘Faculty’ and ‘Stu- 
dent’ relations defined in Figure 2.b. This could also be 
used to associate a list of related projects with the 
definition of a project. In fact, the semantics of the ‘Pro- 
ject” molecule type is ambiguous in that the molecule 
type deEnitiou does not tell us which of the above two 
roles a component project plays. We expect, however, 
that the role played by a component of a molecule type 
is the same in all molecules of this type. [] 

3. The Semanticr krociated With a Molecule 

The above definition of a molecule type specifies 
only its structure. How do we interpret this structure? 
Let us examine various examples to clarify this point. 
Reconsider the Suppliers-Parts-Projects example. The 
meaning of the ‘Orders’ 
molecule 11, {sl}, {pl, p2, p4}, {prl}] is clear. Supplier 
sl supplies parts pl, p2 and p4 to project prl. This does 
not mean that pl, p2 and p4 are the only parts he sup- 
plies to prl. If we wish to enforce the semantic? that 
these are the only parts hesupplies to prI, we could do 
so by making ‘Suppliers’ a key for ‘Orders’. 

Now consider the ‘Orders’ molecule 12. (s2.s3}, 
{pl,p6}, (pr2)]. Does this mean that both sl and s2 
supply the named parts or that they supply them jointly? 
The first interpretation means that this molecule is just a 
compact representation for the t.wo molecules 12. (s2), 
{pl,p6}, {pr2)] and 12, {s3}, (pl,p6}, {pr2)]. The second 
treats {s2.s3} as a composite supplier, a single indivisible 
unit. So the semantics depend on the nature of the aggre- 
gation represented by {s2,s3}. 

We thus distinguish between two kinds of components, 
unit components and complex components. In the above 
example, viewing Suppliers as a complex component 
leads to the Erst interpretation and viewing it as a unit 
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(name) 

v 

Room 

Figure 3. Tbe Dept molecule type refined 

Faculty Faculty 

(P-name) (P-name) 

Figure 4.a. Tbe Project molecule type 

P-name Faculty 

CAD {Smith, Jones} 

Chemical-design, {Jones, Black} 

Computer-analysis {Brown} 

Students 

{Tom, Nick} 

{Sue, Nick} 

{Tom, Ken} 

Sub-projects 

{Chemical-design 
Computer-analysis) 

WJLLJ 

{NULL) 
3 

Figure 4.b. Relation for the Project molecule type 
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component leads to the second. As we saw in the exam- 
ple above, a molecule with complex components is really 
a set of molecules. If molecule type M has complex com- 
ponents Mi...Mj, then a molecule of type M with nk keys 
in the set corresponding to complex component Mk really 
represents a collection of ni*...*n. molecules, each of 
molecule type M’ where the defim Ion of molecule type 2. 
Xl‘ is identical to the definition of molecule type M, 
except that all the complex components are now unit 
components (In fact, the set corresponding to one of 
these components in a molecule of type M’ is singleton.). 
An instance of M is just a compact representation for an 
instance of M’ where each molecule of M stands for 
n.*...*n. molecules of M’, and it is really the molecules of 
t;pe d, that describe objects of interest to us. However, 
defining a molecule type with more than one complex 
component obscures the nature of the abstraction that is 
of interest to us, and we strongly discourage it. 

1. The Proposed Model 

A database definition is a collection of molecule 
type definitions and a database instance is a set of in- 
stances of the underlying molecule types. Database 
design is the process of defining these molecule types. 

For example, a database may contain information 
about all legal firms in a city. The design of this data- 
base is essentially the definition of the molecule type 
‘Law-Firm’. This can be done hierarchically, using a 
topdown approach. This molecule type may also be 
thought of as a view of the lower-level molecule types in 
this database, and the process of database design may be 
thought of as the process of building this view from a set 
of independent molecules. These two approaches are dis- 
cussed separately in later sections. 

The central concept in our model of a database is the 
molecule. The definition of a molecule includes our 
notion of aggregation. A molecule is an aggregate object, 
described by a collection of molecules from a predefined 
set of molecule types, and may contain an arbitrary 
number of molecules from any one type. Classifiration is 
implicit in that molecules of a given type are represented 
hy tuples in a relation. 

If molecule type M is a generalization of molecule 
typrs M., we define M as if the Mi: were its component 
types. d owevcr. we know that a given molecule of type , 
hf is a single molecule of one of the types Mi, and so in a 
tuple representing a molecule of type M, all sets {k.}, 
exrcpt one, will be empty and the exception will be a s/n- 
glrton set. 

If we know that (ki} is always either singleton or null, 
we represent component C. by a broken arrow. Thus if 
hi IF a generalization of molecule types Mi, the arrows to 
all these components are broken. Further, only one of 

these sets is non-null. We represent this pictorially by 
drawing an arc through these arrows. In general, an arc 
through a set of arrows, broken or solid, indicates that 
only one of the components associated with these arrows 
is non-null in any given molecule of this type. 

Example 5: Modelling Vehicles 

Figure 5.a models the molecule type ‘Vehicle’ as a 
generalization of the molecule types ‘Car’ and ‘truck. All 
vehicles have a license number. The 
broken arrows indicate that a molecule of type ‘Vehicle’ 
has at most one component molecule of type ‘Truck’ and 
one of type ‘Car’. The arc through these arrows indicates 
that at most one of these sets is non-null, in other words, 
a vehicle is a car or a truck but not both! 

Figure 5.b models ‘Vehicle’ as a molecule type with the 
underlying molecules ‘Car’ and ‘Truck’. This does not 
reflect the above semantics. For instance, this definition 
allows a ‘Vehicle’ to be a collection of cars and trucks, an 
abstraction that we would normally think of as a collec- 
tion of vehicles rather than as a single vehicle. 

Figure 5.c models ‘Vehicle’ as being either a collection 
of cars or a collection of trucks, again not the int,ended 
semantics. [I 

Example 6: Modelllng Verslonn of Cars 

In Figure 6 we illustrate how similar objects can be 
classed together to reflect the fact that they are identical 
at some level of abstraction. 
A molecule of type ‘Car’ is one of the named cars. Thus, 
while detailed descriptions of these cars may he stored at 
some level, we are able toepresent the fart t.hat t,hey 
are instances of the same abstract object and store those 
properties that are relevant to this abstracted vies [I 

Example 7: Modelling Variant Structures 

This example illustrates how to define several vcr- 
sions of a molecule or to define a molecule whose struc- 
ture has variants. 

In Figure 7, addresses have two components, a city 
name and a local address. The local address is either a 
post-box address or a street address. This esnmple 
shows how an arc through some of the arrows can he 
used to realize a variant structure. Sinr,e the arrows for 
the molecule types ‘PO-box’ and ‘Street-address’ are 
linked by an arc, a given address molecule has at most 
one of these. The component ‘City-name’ is always 
present since no arc pass through the arrow linking it to 
the address molecule type. 

This technique can also be used to generalize some 
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(licence,#) 

a 

Vehicles 

(g-~ 

Figure 5.a. Vehicles defined using generalization 

(licence-#) 

Figure 5.b. Vehicles as a collection of cars and trucks 

(licence-#) 

Figure 5.~. Vehicles as a collection of either cars or trucks 



Figure 6. Different versions of cars 

Figure 7. A molecule type with variant structure 

Family 0 relation 

Figure 8. Generalization of relationship 



objects (the arrows pointing to these are linked by an 
arc). I1 

Example 8: Generalizing Relatlonrhlpr 

The previous examples showed how molecule types 
representing structured entities could be generalized. 
This example shows that the 
concept of generalization extends naturally to relations. 

Figure 8 models molecule types describing the father, 
mother, daughter, son and married-to relationships. An 
instance of the ‘Family-relation’ molecule is a molecule 
from one of the above types, reflecting the fact that any 
of these relationships is a family relationship. [I 

6. Operationr on Moleculea 

One of the strengths of the Relational model is its 
powerful query language. In this section, we show how 
the relational operators can be extended to non-first nor- 
mal 
form relations as we use them, tbus providing our model 
with an elegant and natural query language. 

When a relational operator is applied to a molecule 
type M that has complex components, the relation for 
this molecule type is first expanded to the relation for its 
underlying molecule type IM’. Thus we onIy need to 
define the extension 01 these operators to molecule types 
with no complex components, which are represented by 
non-first normal form relations with each set valued com- 
ponent viewed as a single indivisible unit. 

The extension of the union, Cartesian product and pro- 
jection operators is straightforward. Extending the selec- 
tion, intersection and join operators involves testing set 
equality and containment. A set {kj} is a subset of set 
{k.) if every element in {k.) is also m {kj}. Two sets are 
eqbal if each is a subset of ihe other. 

We can also use the navigational operator, defined ear- 
lier, in specifying queries but its use within a relational 
operator is expensive. 

The operations discussed so far are retrieval opera- 
tions. How do we insert, update and delete molecules? 
IVe insert a molecule of type M by inserting a tuple for it 
in the relation for M. When we do this, the tuples 
corresponding to the keys in sets {ki} should already be 
in the relations corresponding to to molecule types Mi. 
M’e delete a molecule by removing the tuple that 
describes it. Thus a delete is local to the relation for the 
given molecule type and does not propagate to the rela- 
tions for the underlying molecule types. This has two 
irrtport,ant elTects. First, suppose we delete a tuple tl 
whose km, i,s part of some set {ki} in another tuple t2. if 

we now retrieve the components of t2 using the naviga- 
tion operator, we find that there is no tuple with the key 
for tl. We assume that this key refers to a null tuple. 
Thus, a delete at one level may update the structure of a 
tuple at a higher level, and this change is noticed only 
when we attempt to retrieve the components of the 
latter. This may not always reflect the intended seman- 
tics of a molecule, and care must be exercised in this 
regard in the definition of a molecule type. Second, the 
components of a deleted molecule are not removed. 
Again, this may not reflect the intended semantics of a 
molecule. 

This provides the motivation for owned molecule 
types. A molecule type may ‘own’ one of its component 
molecule types. This owned molecule type will not 
appear as a component anywhere else. It is introduced 
solely to help define the owner. Let molecule type M, 
own molecule type M . 
inserted, deleted or % 

Molecules of type M2 are 
up ated only when a molecule of 

type M, (which owns them) is inserted, deleted or 
updated. Any changes in a molecule of type M, are 
immediately reflected in the molecules it owns. 

There is one subtle problem associated with owned 
molecule types. Each key must represent a unique 
molecule, so there cannot be two identical molecules. 
Now how do we handle the case when two molecules of 
the owner type wish to own the same molecule? If we let 
the molecule be shared, deleting it from.one owner will 
cause it to be removed which means it is delet,ed from 
the other owner too. To avoid this, we associate some 
extra fields with the definition of an owned molecule 
type. These could be either system-generated unique 
keys, such as tuple id numbers, or the key fields of the 
owner molecule type. These fields serve as the key for 
the owned molecule type. 

We represent an owned molecule type by a bold 
ellipse. Note that an owned molecule type may be 
defined in terms of molecule types that are not owned, 
either by it or its owner, and that ‘owns’ is transitive. 
We will see examples of owned molecule types when we 
discuss top-down design. 

We update a molecule by changing the tuple that 
represents it. Details of how this is done should be obvi- 
ous from the above discussion since an update may be 
thought of as a delete followed by an insert. 

Although the motivation for introducing owned 
molecules was to make the model more expressive, they 
also permit more efficient implementations since all 
owned molecules can be stored with their owner 
molecules. 

We may wish to provide a user with a limited view of 
a molecule type. This is made possible by associating a 
set of views with each molecule. A view is a subset of the 
components that define the molecule type. A view may 
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hr thought of as another molecule type, but no inserts, 
deletes or updates on views are allowed. Views are 
intended to be a window on the parent molecule type, 
and tuples in a view are changed only when the 
corresponding tuples (molecules) in the parent molecule 
type are changed. 

8. Procedural Extensions to fhe Model 

Abstract data types have proved to be a powerful 
and clean abstraction mechanism in programming 
languages. We now consider how abstract data types can 
be realized in our model by associating a set of pr& 
cedures with each 
molecule type. These procedures represent the only 
operations permitted on molecules of this type. 

The intention is that a molecule type, as defined.by its 
relation schema and associated procedures, should com- 
pletely represent an abstract object type at the desired 
level of abstraction, in analogy with abstract data types 
in programming languages. The relation for this molecule 
type is a collection of abstract objects, each tuple being 
one such object. 

Typically, we would include procedures ‘insert’, 
‘delete’, ‘update’ and perhaps a sophisticated retrieval 
operation, reflecting the semantics of the molecule in a 
natural way. The ‘insert’, ‘delete’ and ‘update’ pro- 
cedures reelect the intended semantics of the molecule. 
All these procedures have the corresponding system 
operations as defaults, and their definition could be omit- 
ted if we chose to do so. 

Consider a molecule type Ml defined with molecule 
type M2 as a component. The procedures associated 
with M, may only manipulate molecules of type M, 
using the set of procedures (or defaults, if some of them 
are not defined) associated with Mq. The definition of 
these procedures may be done bottom-up or top-down. In 
the top-down approach we assume the existence of prc+ 
cedures which implement the intended semantics at lower 
levels, and define each of these later on in hierarchical 
fashion. 

The navigational operator may be used in these pro- 
cedures to locate appropriate components but not to 
navigate within them. These procedures now provide a 
rlcan separation between various levels of abstraction. 
The implementation of a molecule type in terms of com- 
ponents using aggregation, classification or generalization 
is captured by these procedures and is opaque to higher 
Irvrls so long as these procedures retain the same inter- 
fnres. 

These procedures thus allow us to define the semantics 
of a molecule type procedurally, complementing the 
drclnrative semantics described in section 3. The declara- 

tive semantics are reflected by the system-provided 
default procedures for ‘insert’, ‘delete’, etc. 

These procedures may be used to enforce semantic 
constraints, by having the insert and update procedures 
perform various checks. 

They also allow us to define fields which are function- 
ally determined by other fields. These fields are com- 
puted by the insert procedure, automatically insuring 
that any dependencies are satisfied. There is one problem 
however. If a component which is .not owned is specified 
as one of the determining fields, any changes in this com- 
ponent must be propagated upwards. Thus insert, delete 
and update procedures at one level could depend on the 
specified functional dependencies at a higher level. 
Clearly, this problem does not arise if all determining 
components are owned. These functionally determined 
fields provide a powerful tool for defining meaningful 
views (see section 5) of a molecule type while maintain- 
ing as much information hiding as desired. 

7. Top - Down D&abase Design 

The design of a database begins with the 
identificarion of the abstract objects we wish to describe. 
We refine each of these objects in steps, int,roducing 
more detail at each stage unlit the description of each 
object 
in the database has been taken down to the lowest 
desired level of abstraction 

At this stage, we will probably discover, among other 
things, that components of some molecule types appear 
as p3rt of some of their other components and can be 
migrated down. We may also find that several referrnces 
to molecule types can be replaced by references to some 
of their components or views, sometimes even prompting 
us to redefine some molecule types. 

Next, we identify owned molecule types. A molecule 
type can be made the owner of a component type if the 
latter is not a component of any other molecule type 
and, further, we do not wish to talk about it as an 
abstract object in its own right. By now, the design 
should also be sufficiently advanced to enable us to make 
a choice of keys. 

Next, we bring the database into 3’NF by moving 
down some molecule types. A non 1NF relation is in 
3’NF if it is in 3NF when each of its components is 
viewed as a single atomic unit. We consider molecule 
types M with complex components in terms of their 
underlying molecule types M’. Violat,ions of 3’NF are 
caused by dependencies in which non-key components 
determine other components. If non-key components C, 
and C2 determine component C3 in molecule 
create a new molecule type M2 with components 
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and C1 and key (C , C2). M is redefined with com- 
,P;;;;; a,, kand d, replace with a single component d 

1s approach to database design is similar 
to that diszussed in (10). 

Example 9: Deslgn of a Databeae for Vehicle 
Sales 

We illustrate the top-down apdroacb by designing a 
database that describes vehicle sales. We begin with the 
abstractions we wish to model - manufacturers, 
dealers and buyers - and refine each in turn. Figure 9.1.a 
shows the database at this stage. Note that we do not 
know precisely bow they are related as yet. 

.4 manufacturer is described by the vehicles be has 
produced and sold in the current year. We associate 
attributes ‘name’ and ‘year’ with this molecule type and 
refine it in terms of components tbat describe what this 
manufacturer produced and sold in the given year (Fig- 
urc 9.1.b). 

The products are vehicles, and so a manufacturer’s 
output can be described in terms of the number of vebi- 
clrs of each type that be produces. The ‘Products’ 
molecule type is used to associate the number produced 
with the vehicle type. A collection of these molecules can 
thus express a manufacturer’s output. 

A manufacturer’s sales can be described by the 
number of vehicles of each type that he sells to each of 
his dealers. We use a molecule type ‘Inventory’ to 
repress the number of vehicles of a given type that are 
sold to a given dealer. This is shown in Figure 9.l.c. It is 
easy to see that ‘Products’ and ‘Inventory’ are identical 
since they have the same structure and describe the same 
abstraction _ the number of vehicles of a given type that 
participate in some transaction or are part of some struc- 
ture. So we can use just one molecule type, say ‘lnven- 
tory’, for this purpose (Figure 9.1.d). However, this may 
not be the best possible design since using two molecule 
types allows us to make each of them an owned 
molecule. 

We now refine ‘Dealer’. A dealer is described by the 
number of vehicles of each type that he has in stock and 
his kales for the given year (Figure 9.2). The description 
of the vehicles be has in stock is similar to the ‘Inven- 
tory’ molecule type. The only difference is that an extra 
attribute has been added to show the price charged by 
t hr dealer. His sales are described by the sale date, vehi- 
cle and customer. 

molecule types representing these descriptions, in order 
to keep this example brief. 

A customer may be a person or a corporation, but 
is, for tbe purposes of this abstraction (bis or its role in a 
sale) completely characterised by his or its address. This 
insight may be used to guide the design of the molecule 
types representing tbem. We illustrate this by partially 
expanding ‘People’ (Figure 9.4.a). The information that 
is iiewed as an abstract object in the ‘d.Sales’ molecule 
type is made a distinct component. Figure 9.4.c shows 
the molecule types for ‘d.Sales’ and ‘People’ at this stage. 
However this has a subtle Eaw - the semantics of the 
‘People’ molecule type makes it desirable to make the 
‘Name and address’ component an owned type. This 
makes it impossible for us to use this as a component in 
‘d.Sales’, so we really need to use another molecule type 
with the same structure to define ‘d.Sales’. Thus it turns 
out that the insight gained with regard to the structure 
of the ‘d.Sales’ molecule type is inapplicable, but this 
may not always be so. 

Examining our design so far, it is easy to see that 
all vehicles have a name, so the name attributes for ‘Car’ 
and ‘Truck’ can be moved up. 

At this stage we can identify the owned molecule 
types using the criteria discussed earlier. This is a fairly 
obvious exercise and we show the resultant design at this 
stage (Figure 9.5). 

If we assume that the social security number is a 
key for ‘People’, then our design is not ih 3’NF since 
name and address is also a key and hence determines the 
third component, ‘Occupations’. This can be rectified by 
moving ‘Occupations’ down to the ‘Name and address’ 
molecule type. This requires ‘Occupations’ to be owned, 
which means we bave to store details about engineers for 
each engineer. The solution to this problem is to make 
‘Occupation name’ an owned molecule, and store details 
of each occupation in a separate molecule type. The final 
design for ‘People’ is shown in Figure 9.4.b. 

There is one last point that is instructive. Each 
molecule type may be used to define part of a user’s 
view. Given this, we may wish to restrict, the amount of 
detail visible from a given molecule type. For example, 
the ‘Manufacturer’ type need only contain the dealer’s 
name. Details of his business are none of the 
manufacturer’s business. We could enforce this by mak- 
irlg ‘Dealer-name’ an independent molecule (owned by 
‘Sales’ and NOT ‘Dealer’) and replacing ‘Dealer’ in the 
definition of ‘Sales’ with ‘Dealer-name’. (1 

To complete this design we need to describe the 
rnl~lecules ‘Vehicle’ and ‘Customer’. A vehicle is either a 
car or a truck (Figure 9.3) and each of these is character- 
I<(Y! hy a name and a description. Cars and trucks may 
h:l\,a diflrrent descriptions. We don’t expand t,l e 
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g. Bottom - Up Database Design 

The top-down approach is probably the best way to 
design a database if we are designing it from scratch. 
tlowever, if several objects at the 
lower levels of abstraction have already been designed, as 
for instance when we wish to integrate some given sche- 
mas or build some abstractions on top of them, a 
bottom-up approach may be desirable. 

In bottom-up design, we may think of the database as 
a set of underlying objects - independent molecules, at 
the lowest level - with a set of user views on top. The 
design process consists of identifying these objects and 
then constructing the user views. When we apply this 
technique to schema integration, there is the further 
problem of ensuring that the given schemas are con- 
sistrnt with each other. This is a difficult problem which 
we do not discuss. It is possible that attempting to build 
the desired user views bottom-up, and restructuring 
ronflictmg schemas top-down will prove fruitful, but this 
is an area where a great deal of work needs to be done 
before we can come up with good answers. 

VVe give a simple example of how views can be built on 
top of a set of given schemas. Consider the database in 
example 8. We may wish to define an abstract molecule 
type to represent a family. The ‘Family’ molecule type 
could be defined with ‘Family-relation’ as a component, 
and attributes such as the family address. (We could also 
drfinc it in several other ways, with components 
‘Father-of’, and ‘Married-to’, for instance.) 

9. Relationehip to Other Models 

Our definition of a molecule is equivalent to that 
given in (4). The important differenre between the two is 
that we establish the correspondence between a molecule 
of type M and its underlying molecules of type M. 
in the relation defining hl. Batory and Buchmanh estab- 
lish this correspondence by associating with each 
molecule of type Mi the keys of all molecules of type M 
that it helps to describe. They do this in order to achieve 
a separation between the abstract specification of a 
molecule type and its actual implementation, in keeping 
with the programming language paradigm of abstract 
data types. This makes it difficult to define a molecule 
precisely and to refer to its components. Our approach 
avoids these problems, and it also supports the abstrac- 
trou paradigm, as we demonstrated in sections 5 and 7. 

The use of non-first normal forms in VERSO (2, 3) is 
similar to our approach, but it differs in the following. 
Suppose we say that a molecule type M, is ‘used’ in the 
drfnition of molecule type M, if it is a component type 
r~f hf., or ‘used’ in the definytion of one of M2’s com- 
r~~~n~*r;t types. Then, in the \‘ERSO approach, a molecule 

type M cannot be defined with component types M, and 
M2 if there is some M\d\s-lS\s+l\u such that it is used 
in the definition of both M and M Essentially, this res- 
triction forces all their MRldiagrar& to be trees in which 
the sub-trees at each level are disjoint. 

For example, the database design in Figure 9.l.c is ibe- 
gal in VERSO because ‘Manufacturer’ is defined in terms 
of ‘Products’ and ‘Sales’ and both of these are defined 
using ‘Vehicle’. 

All their ‘molecules’, to use our terminology, are 
owned molecules and are stored with their owner 
molecules. 

Also, they view the atomic attributes ‘a’ as being 
drawn from underlying att,ribute types, which may be 
shared between two molecule types. Thus the ‘a’s differ 
from the components (ki} only in that they are atomic. 
In our model, they are intended to describe the molecule 
as a whole, and are distinct from the components {ki} in 
that they are independent of other molecule types, 

Smith and Smith aggregation (10, 11) also imposes a 
tree structure on the aggregates but without the restric- 
tion that the sub-trees be disjoint. However, their notion 
of aggregation does not allow us to group several tuples 
of a single component type. In terms of our definition of 
a molecule type, the sets {ki} are always singleton or 
null. In fact, the Smith and Smith model may be viewed 
as a generalization of the Relational model, where an 
attribute in a relation may be a tuple from another rela- 
tion. Our model goes one step further and allows an 
attribute to be a set of tuples from an underlying rela- 
tion. 

Clearly, our model subsumes the Relational and ER 
models. It may be appropriate to stress the differences in 
the pictorial representations of molecule types and the 
ER model. MR diagrams use ellipses to represent 
molecule types with molecular components. Such 
molecule types have no count.erpart in ER diagrams. 
Rectangles are used to represent independent molecules, 
which may be either entities or relationships in the ER 
model. In other words, the MR diagram represents just 
the structure of the molecules. Their semantics must be 
defined elsewhere, although an appropriate choice of 
molecule names often helps. Arrows here dchnr structure, 
not relationships. So although MR and ER diagrams may 
look similar, they are interpreted in totally different 
ways. 

10. Conclusions 

The hlR model provides a natural tool for database 
modelling. Object,s in this model have a uniform and sim- 
ple description, and can be expressed clearly in diagrams. 
The model provides a high level of abstraction and 
supports both top-down and bottom-up drsign of a data- 
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b:ise. The hfR model is built around the concept of a 
molrcuie. Defining a molecule in terms of non-first nor- 
m:il form relations provides a precise representation as 
well 3~ the basis for a relational query language. Further, 
it allows us to express generalization of objects and rela- 
tion.\hips between objects in a natural way. Our 
approach is clearly object-oriented, and, with the pro- 
cedural extensions discussed in section 6, completely cap 
tures the programming language concept of abstract 
data types. 

The fact that bottom-up design is similar to building a 
set of views suggests that this might be an appropriate 
model for view modelling and view integration. This, 
however, is beyond the scope of this paper. 
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