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Abstract 

We describe an algorithm to read entire databases with 
locking concurrency control allowing multiple readers or an 
exclusive writer. The algorithm runs concurrently with the 
normal transaction processing (on-the-fly), and locks the en- 
tities in the database one by one (incremental). We prove 
the algorithm produces consistent pictures of the database. 
We also show that the algorithm aborts a minimal number 
of updates in the class of on-the-fly, incremental, consistent 
algorithms. 

On-the-fly, incremental algorithms to read entire data- 
bases consistently can improve system availability and reli- 
ability. Most existing systems either require the transaction 
processing to stop, or produce potentially inconsistent re- 
sults. Our algorithm does not change the database physical 
design, so it can be adapted to existing systems by expand- 
ing their lock table. Finally, we extend the algorithm in a 
straightforward way to read entire distributed databases. 

1 Introduction 

In many situations we would like to read (i.e. access without 
modification) an entire database. For example, a bank offi- 
cer may want to know the total amount of deposits, or a com- 
puter operator may need to make a backup copy of the data- 
base (usually called a checkpoint). The data in a database 
must satisfy certain assertions called consistency conshxints. 
In order to preserve data consistency under concurrent ac- 
cess, the usual locking concurrency control allows multiple 
readers or an exclusive writer. A common assumption in 
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the literature is that a consistent and complete picture can 
be obtained only with a quiescent database. The reason is 
that Z-phase locking [3] -necessary for consistency- would 
require a naive reader of the entire database to lock all data 
at least for a moment, thus updates must stop. 

Our work differs from existing literature for three main 
reasons: 

1. Our algorithm reads the database entities one by one 
(it is incremental), avoiding deadlocks and allowing 
update activities to proceed concurrently (it works on- 
the-fly). 

2. Its interference with update transactions is shown to 
be minimal in the class of incremental, on-the-fly al- 
gorithms. 

3. We extend the algorithm to produce consistent pic- 
tures of entire distributed databases. 

In addition, there are two characteristics facilitating its im- 
plementation. First, our algorithm consumes modest hard- 
ware resources; it does not maintain extra copies of the data- 
base and produces only sequential output. Second, no ad- 
ditional disk storage is required, so only modifications on 
the concurrency control is needed t,o adapt the algorithm to 
existing dat,abase systems. 

We should note that there is no problem checkpointing 
darabases that permit concurrent readem and a writer. In 
principle, any database that maintains two versions of its 
data can provide this level of concurrency [2]. However, for 
efficiency reasons, most practical databases write in-place. 
Our work is aimed at these systems. 

The paper is organized as follows. The algorithm is de- 
scribed in section 2. In section 3, we prove the consistency 
of its output and show the interference with update trans- 
actions is minimal. Section 4 outlines the extensions to dis- 
tributed databases and further improvements. Comparison 
with related work and applications of the algorithm are in- 
cluded in section 5. Finally, the results are summarized in 
section 6. 
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2 The Algorithm 

2.1 Definitions and Introduction 

In order to describe our problem and its solutions more pre- 
cisely, some terms need to be defined. A database is a set 
of entities [3]. Each entity can be individually read through 
shared locks or written under an exclusive lock. We will 
reserve the term checkpoint to denote a query reading the 
enrire database. Normal transactions on the database will be 
referred to as either update transactions or read-only trans- 
actions [S]. 

Consider a naive checkpoint strategy: the entities are 
read one by one. It is easy to see that a checkpoint processed 
this way may not be consistent. For example, suppose we 
want to calculate the total amount of deposits in a bank 
by summing up the checking accounts first and then the 
savings accounts. If a client moved a million dollars from 
his savings to his checking account during the checkpoint, 
the result would be one million short of the real amount. 
The key idea of this paper is that on/y this kind of updates 
can make this naive checkpoint inconsistent,. 

The algorithm has three parts. First, the checkpoint 
reads entities one by one. Second, entities in the database 
are divided by the checkpoint into two subsets: entities not 
yet read (white), and the ones already processed (black). 
Third, update transactions writing both white and black 
entities are not allowed to commit, because they may not be 
serializable with respect to the checkpoint. In this section, 
for simplicity of presentation, the algorithm processes only 
one checkpoint at a time on a centralized database. 

2.2 Basic Checkpoint Algorithm 

The following data structures are needed in the volatile stor- 
age, as an addition to the lock table: 

l One entity color bit per entity. (Entities can only take 
one of two (Lcolorsn, black or white.) 

. One paint bit per database, used in a trick to repaint 
all entity color bits. 

l Accompanying the paint bit we have a checkpoint se- 
maphore to guarantee only one checkpoint runs at any 
time. 

At database (lock table) initialization time, the paint bit 
is copied onto all entity color bits. Checkpoints can start 
only after all entity color bits agree with the paint bit. We 
also assume the update transactions will not start until the 
initialization is complete. In case of a crash, the recovery 
consists simply of a re-initialization. 

The basic checkpoint algorithm in figure 1 has several 
properties. First, the checkpoint locks and reads the enti- 
ties one by one, so the checkpoint, will not cause deadlocks. 
Second, the checkpoint does not use additional disk access 
other than the necessary entity reading. Third, in order 
to adapt the algorithm to an existing database, its physical 
design (disk format) does not have to be changed. 

The basic checkpoint terminates when all entities are 
painted black. This will happen some time because every 
loop in step 2 paints another entity black. The while loop 
will not be blocked until all remaining white entities are 
exclusively locked. At that time, the checkpoint queues a 
lock request and eventually will succeed given a fair lock 
management. 

2.3 Concurrency Control 

As we have seen in our banking example, the naive check- 
point algorithm alone may produce inconsistent pictures. 
The checkpoint’s consistency is maintained by ensuring that 
all update transactions writing both white and black enti- 
ties (gray transactions) are aborted. In order to enforce this 
rule, if a checkpoint is in progress, every update transaction 
needs to pass an additional color tesf before it can execute 

and commit. After the acquisition of all exclusive locks (be- 
fore commit), the color bits of exclusively locked entities 
have to be checked. If all color bits are the same, the up- 
date can proceed, otherwise it is aborted. Please note that if 
no checkpoint is executing, all entity color bits are the same 
and the updates always pass the color t,est,. 

{ Pre-condition: all entity color bits are the same a3 the paint bit (black). } 
step 1: P(semaphore) { Checkpoint runs in a critical section. } 

Change the paint bit. ( This re-paints all entities white. } 
step 2: WHILE there are white entities {This loop paints the white entities black. } 

DO BEGIN 

step 3: 

IF all white entities are exclusively locked { Unordered set optimization. } 
request shared lock on a white entity and wait until lock is granted 

ELSE lock any sharable white entity; 
read entity, change entity color, release entity lock. 

END WHILE { All entity are black, the same as the paint bit. } 
V (semaphore) { Let the next checkpoint go. } 

Figure 1: Basic Checkpoint 



Informally we argue that the remaining transactions and 
the checkpoint are consistent: 

1. When the checkpoint paints all entity color bits white, 
all uncommitted updat,e transactions become white 
(writing only white entities). 

2. All white t,ransactions terminate and are serialized be- 
fore t,he checkpoint. (The checkpoint reads the white 
entities after the white transactions have released their 
exclusive locks.) 

3. When the checkpoint terminates, all uncommitted up- 
dat,e transactions must be black (only black entities 
remain). 

4. All black transactions are serialized after the check- 
point. (The checkpoint has read all black entities be- 
fore they were painted.) 

5. Other read-only transactions do not conflict with the 
read-only checkpoint. 

This informal argument is summarized in table 1. An im- 
portant observation is that once an update transaction has 
the exclusive lock on an entity, that, entity’s color will not 
change during the transaction. This happens because the 
checkpoint can only paint an entity it has a shared lock on. 
A more formal proof of checkpoint consistency follows in 
section 3. 

2.4 Entity Creation and Deletion 

The creation of new entities require special attention from 
the concurrency control mechanism. As we have seen in sec- 
tion 2.3, the gray transactions are aborted. So at commit 
time, we have three possibilities. The entity-creating trans- 
action may be white, black, or colorless. We will consider 
each case in turn. 

First, a white transaction has written on at least a whit.e 
entity. In this case the entities it creates should be painted 
white. Since at least one whit,e entity is exclusively locked 
by the white transaction, the checkpoint will wait for it. and 
read all new white entities when the update commits. 

Second, a black transaction has writt,en on black entities 
only. Since the checkpoint will not come back and read the 
updated black entities, the newly created entities should be 
painted black so the checkpoint will not read t,hem. 

Third, a colorless t,ransaction has not. written on exist- 
ing entit.ies but has created new entities. The nrw entities 
must be painted black so the checkpoint will not read t,hem. 
We should not paint these entities white because of a race 
condition at the checkpoint t,ermination. 

There is no difficulty with deletions. We assume the enti- 
ties being deleted are locked exclusively. White transactions 
are serialized before the checkpoint, so deleted white enti- 
ties will not be seen by the checkpoint, as expected. Black 
transactions are serialized after the checkpoint, so black en- 
tities are deleted after the checkpoint has read them. The 
checkpoint reflects all black entities it has read, as it should. 

3 Proof of Consistency 

3.1 More Definitions 

Eswaran et al. [3] defined formally the terms to be intro- 
duced here. A transaction is a sequence T = ((T, oi, ei))F==, 
of n steps where T is the transaction name, a; is t,he action 
at step i and ei is the entity act,ed upon at step i. Typical 
actions are lock, unlock, read and write. Any sequence ob- 

tained by collating the actions of transactions Tl.. . . , T, is 
called a schedule for Tl , . . . , T,,. A schedule is serial if ac- 
tions from one transaction form a contiguous group without 
interleaving with actions from other transactions. 

Informally, the dependency relation induced by schedule 
S, DEP(S) is a set of ternary relations (‘I’, , e, Tz) such that 
entity e is an output of Tl and an input of T2 where one 
of the transactions Tl or Tz updates the entity e. We say 
that. two schedules, S1 and Sz are equivalent if DEP(Sl) = 
DEP(S2). A schedule S, is consistenf if it has an equivalent 
serial schedule. 

A well-/armed transaction locks an entity e only once, 
works on it, and unlocks it. A two-phase transaction re- 
quests locks during its growing phase, and after entering the 
shrinking phase, signaled by the first unlock, the transac- 
tion cannot issue a lock action on any entity. Finally, in a 

legal schedule, no two transactions can hold the same lock 
at the same time. We will need the theorem 8d from 13): if 
transactions T1, . ., T, are each well-formed and two-phase 
then any legal schedule is consistent. 

3.2 Basic Checkpoint Consistency 

We assume that normal transact,ions are well-formed and 
two-phase in order to avoid foreign inconsistencies. A check- 
point Q is well-formed but not two-phase, because it unlocks 
an ent.ity before it locks the next one. Since the checkpoint 
is a read-only t.ransaction, there is no conflict with other 
read-only transactions so it is sufficient to show t,hat Q can 
be serialized with respect to update t,ransactions except the 
gray ones. The proof divides the act,ions on t,he database 
into three periods: before Q, during t.he execution of Q, 
and after Q. 

Table 1: Summary of Check3oint Serialization 
transaction- 

type read-only white updates black updates gray updates 

checkpoint before after 
, serialization 

concurrent 
checkpoint checkpoint 

incompatible 
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Lemma 1 The Jchedule of transactions committed before 
the checkpoint Q has started is consistent. 

Proof: Since we assumed that all normal transactions are 
well-formed and two-phase, applying theorem 8d from [3] we 
have lemma 1. 

Theorem 1 The schedule So of transactions committeddur- 
ing the ezecution of (and including) Q is consistent. 

The proof of theorem 1 builds a serial schedule SJ based 
on SO and shows that DEP(Ss) = DEP(So), thus prov- 
ing the consistency of SO. The idea is to characterize the 
class of gray transactions and show that their elimination is 
sufficient to achieve a serial schedule. 

We start by extracting a sub-schedule S1 from SO, with 
the elimination of all Q actions. We need to remember the 
dependencies taken out in this occasion. First we define the 
subset DEP(Q). 

Definition 1 DEP(Q) is a set of ternary relation8 
(T1, e, Tq) from DEP(So) satisfying 

either I.l/ Tz = Q and T1 is a white 
transaction writing on e; 

or 1.2) T1 = Q and Tz is a black 
transaction writing on e. 

Now we can capture the checkpoint dependencies in our first 
equality lemma. 

Lemma 2 DEP(Q) = DEP(Sa) - DEP(&) 

Proof: (c) By construction, relations defined by con- 
ditions 1.1) and 1.2) are both members of DEP(So) but not 
DEP(S,). 

(2) Consider any relation (Tl,e,Tz) in DEP(So) but 
not in DEP(S1). Either TI or Tz has to be Q, otherwise it 
would be in DEP(S1). First cast, (Tl,e,Q): TI has to be 
white because e is input to Q. Second case, (Q, e. TJ): TX 
has to be black because e comes from Q. q 

Proceeding in our construction, we observe that by in- 
troducing a checkpoint and aborting some updates, no in- 
consistency is created. 

Lemma 3 The schedule S1 is consistent. 

Proof: The consistency of S1 is guaranteed by the underly- 
ing concurrency control mechanism because all transactions 

in S1 are well-formed and two-phase. In addition, Q does 
not update any entity in the database. q 

The next building block in our construction is the mono- 
tonic color change of entities: 

Lemma 4 There is no relation (Tl,e,TZ) in DEP(Sl), 
8uch that T1 is black and T2 is while. 

Proof: An entity starts white, and Q atomically paints it 
black. So once a black transaction T1 has seen an entity e 
black, no transaction in SO can see it white. q 

Now we can separate white transactions from black ones: 

Lemma 5 There is a serial schedule S2 equivalent to S1, 

such that all white transactions precede all black transac- 
lions. 

Proof: S1 is consistent by lemma 3, so there is an equivalent, 
serial schedule &I. For every entity e, lemma 4 guarantees 
the precedence of white transactions in S11. Moreover, If 
a black transaction happens to precede a white transaction 
in Sll, they certainly access disjoint sets of entities. There- 
fore we can swap their contiguous positions in the schedule 
without changing the dependency. Doing this repeatedly we 
have S2. More concisely, 
S2 = (white transactions, black transactions). q 

The final step in our construction is t,o put the checkpoint 
Q back in the middle, making: 
Ss = (white transactions, Q, black transactions). 
We still need to show that Ss is equivalent to So, so WC ha.vr 
a second equality lemma. 

Lemma 6 DEP(Q) = DEP(Ss) - DEP(S2) 

Proof: (C) Because DEP(S2) = DEP(S,), relat,ions de- 
fined by conditions 1.1) and 1.2) cannot be in DEP(S-). 
However, those relations must be in DEP(Ss) because Q is 
the same. 

(2) Similar to the proof of lemma 2, replacing SO wit.11 
Ss, and S1 with S2. o 

Finally we have theorem 1. Schedule Ss is serial by 
constru&on. Lemmas 2, 5, and F show that DEf’(So) = 

DEP(Ss), SO So and Ss are equivalent. Therefore SO is 
consistent. 

The last theorem guarantees that no problem can occur 
after the checkpoint is complete. 

Theorem 2 The schedule 01 transactions committed after 
Q has terminated is consistent and those transartions can 
be serialized alter Q. 

Proof: Since all remaining transactions are normal, there is 
a consistent schedule. We only have to show that there is no 
white transactions running after Q has terminated. Suppose 
there is a white transaction still running; it must have at 
least one exclusive lock on a white entity. This contradict,s 
the hypothesis that Q has terminated and all entities have 
been painted black. o 

Combining lemma 1, theorems 1 and 2, we conclude that 
the checkpoint can be serialized with respect to all normal 
transactions, except the gray ones which are aborted. 

3.3 Minimal Update Interference 

In the previous section we have shown that there is a price 
in breaking the 2-phase locking, namely that all gray trans- 
actions which write on two or more entities are aborted. 
Update transactions which write only on one entity receive 
the color of that entity and are never aborted because of thr 
checkpoint. Read-only transactions are not aRected by our 
concurrency control modification at all. 

It is not hard to see that this price is necessary for all 
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incremental algorithms that read and write each entity only 
once. 

Theorem 3 In order to obtain a consistent checkpoint of 
the database incrementally, without locking the entire data- 
base, and reading/writing each entity only once, it is neces- 
sary and suficient to distinguish the entities already read by 
the checkpoint (white) from those to be read (black) and abort 
the transactions which update both white and blark entities. 

Proof: The sufficient part has been done in section 3.2. The 
necessary part is based on the earlier banking example. We 
need to show that any incremental (non-two-phase locking) 
checkpoint algorithm, which allows a gray transaction G to 
commit, cannot guarantee the checkpoint consistency. 

Consider such a non-two-phase checkpoint algorithm. 
There must be a part of database that is locked during the 
early stage of a checkpoint Q and unlocked before some other 
part of the database is locked. (Otherwise Q must be two- 
phase and lock the entire database at some time.) Let us 
call the first part being unlocked “black” and the next part 
being locked “white”. The allowed gray transaction G first 
writes on a white entity e, while Q is reading the black 
part, and waits for Q to unlock the black part, then writes a 
black entity eg. Since the checkpoint reads and writes every 
entity only once, we have both (Q,eb,G) and (G,e,,Q) 
in DEE’(G). Consequently G cannot be serialized either 
before or after Q. 

4 Extensions 

4.1 Distributed Databases 

In this section we extend the basic checkpoint algorithm to 

read a distributed database. Again we assume an under- 
lying concurrency control which handles the consistency of 
logical entities. Issues such av physical replication and par- 
tial unavailability of database are beyond the scope of this 
paper. 

The basic checkpoint can be processed in parallel by di- 
viding the set of entities into subsets. A coordinator (fig- 
ure 2) would start t,he checkpoint and the server processes 
(figure 3) to read the subsets; the coordinator then waits and 
synchronizes the completion of server processes. The initial- 
ization and concurrency control modifications are similar to 
the centralized case. 

Although we have replicated the paint bit using the crit- 
ical section created by the checkpoint semaphore, there is 
only one paint bit value. Only one paint value implies that 
only one checkpoint can execute at any time in the dis- 
tributed database. 

The modification on the concurrency control is the same 
as in the centralized system. Since Section 2.3 applies di- 
rectly to centralized concurrency control methods, we need 
only look at what is added by the distributed concurrency 
control. The distributed color test is a straightforward cx- 
t,ension. All local processes test their own entity color bits 
for uniformity. At commit time, the transaction manager re- 
ceives the commit votes with their colors. The transaction 
is committed only if all votes have the same color. Other 
possible extensions in a distributed concurrency control like 
replication do not impact our algorithm, which assumes that 
the possession of a shared lock is sufficient to guarantee en- 
tity consistency. 

A harder quest,ion is what to do when a part of the dis- 
tributed database is not available or crashed. As stated, 
our coordinat.or process will block, waiting for the server to 

{ Pre-condition: all entity color bits are the same as the paint bit. } 
step 1: P(semaphore) { Checkpoint runs in a critical section. ) 

Change the paint bit. ( Painting all entities white. ) 
step 2: Send the new paint bit to the server processes, starting them. See figure 3. 

Wait for their completion. 
step 3: All servers terminated: merge the results if necessary; 

V(checkpoint semaphore) { Let the next checkpoint go. } 

Figure 2: Coordinatcr Process 

step 1: Receive the new paint bit from the coordinator. See figure 2. 
step 2: WHILE there are white entities { Entity color bit different from new paint bit. } 

DO BEGIN 
IF all white entities are exclusively locked 

request a shared lock on a white entity and wait until lock is grant,ed 
ELSE lock any sharable white entity; 

read ent,ity, change entity color, release entity lock. 
END WHILE { All ent,ity are black, the same as t.he paint. bit. ) 

step 8: Ret,um to the coordinator. 

Figure 3: Server Processes 
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read the unavailable part. If the definition of “entire data- 
base” includes t,he unavailable part, this is the correct pro- 
cedure. When the unavailable part is reincorporated to the 
distributed database, a new server process should be started 
to complete the checkpoint. The recovery from a coordina- 
tor crash consists of certifying that the coordinator is indeed 
dead (which may be non-trivial) and initializing a new one. 

4.2 Further Extensions 

In this paper we have described algorithms to take a consis- 
tent picture of centralized and distributed databases. There 
are some restrictions that will be relaxed in a future report 
(121. For example, the algorithm can be extended to handle 
concurrent checkpoints with multiple sets of data structures 

drscribed in Section 2.2. Similarly, it is possible to use the 
same idea to read predefined partitions of a database. 

Another optimization is based on the observation that 
the gray transactions which started as black transactions 
and request some white entities need not be aborted. They 
can be delayed until the requested white entities have been 
read by the checkpoint, painted black, and then continue as 
black transactions. Finally, a new family of algorithms can 
be derived by imposing a total order on the entities. The ba- 
sic checkpoint marks its database traversal with entity color 
bits. The new algorithms need only a watermark to keep 
track of their progress, thus releasing the memory occupied 
by the entity color bits. 

5 Comparison and Applications 

5.1 Comparison with Related Work 

There are two related areas of research: database check- 
points and replicated dat,abases. Checkpointing a database 
has received considerable at,tention, including optimal check- 
point policies, on-the-fly checkpoints, and an early attempt 
on incremental checkpoint. 

Studies on t,he performance of backup procedures [10,14] 
have assumed that (update) transaction processing is not 
allowed during the backup copying time. Several optimiza- 
tion criteria and optimal checkpoint policies are based on the 
above assumption [9], trading interrnpled transaction time 
for short recovery time. In contrast, on-the-fly, incremental 
algorithms provide overall available consistency by limiting 
the distribution of entities being updated. 

Two known on-the-fly algorithms to checkpoint data- 
bases are Lorie’s shadow pages [ll] and Gray’s fuzzy dump 
[7]. However, these methods are specific to media recovery 
of databases and are not concerned with consistency con- 
straints. An early attempt on incremental checkpoint algo- 
rithms (called dynamic dumps) was made by Rosrnkrantz 
[13]. However, it is not clear that the dumps produced by 
his algorithms will always be transaction-consistent. 

Replication can add availability and performance to (dis- 
tributed) systems. A replica is created by copying from the 
original and kept consistent by propagating updates from 
the original. Attar et al. [l] use a read transaction locking 

the entire replica database to stop the updates and avoid 
deadlocks by delaying write locks. Fischer et al. [s] simu- 
late a copy transaction system “forked” from the normal 
transaction system. The copy system completes ongoing 
transactions and refuses to start new transactions, obtaining 
consistency when updates cease. This technique would re- 
quire considerable additional hardware investment for large 
databases in order to perform the updates on the copy at 
(roughly) the same speed as the original. More seriously, 
for distributed databases, significant communications cost 
must be added. In comparison, our algorithm does not up- 
date database entities and produces only sequential output. 

5.2 Applications 

Fischer et al. [4] have mentioned several applications us- 
ing checkpoints, such as checking consistency constraint,s in 
a database, and media recovery. However, like their global 
checkpoint, our checkpoint is consistent but may not re- 
flect any schedule based on chronological order. Consider a 
checkpoint that started at t.ime tl and terminated at 12. The 
checkpoint will reflect all updates committ,ed before tl. plus 
all whit,e transactions which must terminate before tz. In 
other words, the checkpoint may include ‘later” white trans- 
actions but not “earlier” black transactions. This character- 
istic should not affect applications like totals, stat,istics or 
consistency checking, where the actual t,ransaction schedul- 
ing is not important. 

In order to use a backup copy made by our checkpoints 
t.o recover from media failures, a log containing the com- 
mitted transactions is still necessary. Logs in both shadow 
pages and fuzzy dump methods are logs of actions on “phys- 
ical addresses” because their backup copies are not neccs- 
sarily consistent. Since a backup copy made with our al- 
gorithms is transaction-consistent, we need only logs t,hat 
contain transaction actions. There are two possibilities for 
recovery. First,, we can redo the black transactions onto the 
backup copy to reach the database at tz. Alternatively, one 
can undo the white transactions from the backup to find the 
database at tl. In either case, in addition to actions, the log 
must in&de each transaction’s color. 

6 Conclusion 

Highly available databases [8] have become increasingly pop- 
ular, making batch operations decreasingly desirable. Gray 
et al. [S] mentioned typical dumping times of 10 minutes 
for a lOO-megabyte database. Consistent checkpoinbs on en- 
tire databases processed on-the-fly can eliminate the down 
time due t,o backup copies. An inrerrsting area of research 
is the performance al:d availability evaluations of on-t,he-fly, 
incremental algorithms according to different distributions 
of update pattern. Other applications include consiat,ency 
checks, totals, and statistics over entire databases. 

We have presented an algorithm which does not volun- 
tarily abort, does not cause deadlocks, does not produce 
excess writes to disk, and terminates given a fair lock man- 
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agement. The basic algorithm introduces little interference 
into the transaction processing, wit,h a minimal number of 
updates being aborted. Assuming an in-core lock table, this 
algorithm requires n bits of additional main memory for an 
n-ent,ity database. The algorithm is extended to handle dis- 
tributed databases wit,h little additional overhead. 

The adaptation of this algorithm to existing databases 
requires only modifications to the concurrency control. The 
physical design, specifically the disk format, need not be 
changed. The concurrency control checks the update trans- 
actions to avoid confhcts with the checkpoint. The simplicity 
of the data structures, crash recovery, concurrency control 
modification, and the checkpoint itself makes t,his algorit.hm 
and derivat,ives an attract,ive way to increase database avail- 
ability. 
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