
An Object-Oriented Environment

for 01s Applications

O.M. Xerstrasz
D. C. Tsichritzis

Institute of Computer Science
Research Centre of Crete

ABSTRACT

Object-oriented programming
environments are increasingly needed
for programming 01s applications. A
prototype object-oriented language
has been implemented, and we are
refining the language and its imple-
mentation. The environment
integrates a number of database and
operating system concepts, in partic-
ular, abstract data types, database
constraints, atomic transactions, data
persistency, triggering of events, reli-
ability and crash recovery, and a large
virtual memory. We outline the object
model, discuss a number of imple-
mentation issues, and give some
examples of objects useful in an 01s
application environment.

1. Introduction
Object-oriented data-modeling and pro-

gramming techniques have become widely
publicized in recent years. We believe these
techniques to be especially important to the
area of Office Information Systems (OISs).
Experience has shown us that- OlSs typically
deal with a variety of long-term objects with
an often well-defined behaviour. Office

Permkion to copy without fee aU or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
ion from the Endowment.

activity is generally event-driven and highly
parallel [HaSi80, ElNu80, HaKu80, MorgSO].
Objects such as documents, messages and
forms generally have a longer lifespan than
the transactions that manipulate them, and
they may have non-trivial procedures for
operating on their contents. Object-oriented
approaches directly address many of the
needs of 01s programming [ABBH84].

An object-oriented system may be
thought of as a database in which the intelli-
gence is associated with the data items,
rather than with programs that manipulate
them. Objects assume the responsibility for
the operations that may be performed upon
them. Nevertheless we are concerned with a
number of traditional database issues. The
system is responsible for enforcing atomicity
of events (comparable to database transac-
tions), specified object behaviour (database
constraints), and reliable object storage. One
accesses information contained in objects
through the interface specified by the
object’s behaviour, however, rather than
through a standard database interface. Arbi-
trary interfaces may be provided, depending
upon the application.

A prototype object-oriented programming
environment called Oz was implemented by
Mooney and Twaites at the University of
Toronto, and is described in their M.Sc.
theses [Moon84, Twai84] and in [NiMT83]. An
overview of the s>*stem and further specula-
tion are provided in [Nier85].

We are currently refining the ideas behind
Oz on three fronts. First, we are refining the
concepts; this is most simpl) stated as “what
is t.he most useful way to think of objects?”
The concepts manifest themselves in the
semantics of the language constructs.
Second, we are investigating efficient ways of
implementing objects. Ultimately we would
need an operating system geared especially

Proceedings of VLDB 85, Stockholm ’ 35

to supporting an object-oriented environ-
ment, though for experimental and develop-
mental purposes it is desirable to use an
existing operating system such as UNIXt as a
base. Finally, we are looking at applications.
What are examples of extremely useful
objects? How would we program them with
objects. These three fronts may be thought
of as different levels. Though they are to
some extent independent, they clearly
influence one another.

In this paper we describe our thoughts in
these three areas. We are presently
implementing a successor to Oz, called Son of
Oz. Oz was intended to demonstrate the wor-
kability of certain ideas, without necessarily
inlplementing them as efficiently as possible.
Son of Oz is intended to be the next step
towards an object-oriented programming
environment suitable for building OIS applica-
tions.

2. Concepts
The objects that we will describe here are

comparable to Smalltalk objects [GoRo83,
Gold84], Actors [Hewii’7, Ther83]], monitors
[Hoar74], abstract data types [Gutt?7], and
modules with persistent data. The word
“object” is usually used to describe an entity
that encapsulates some data and the allow-
able operations on it. Smalltalk objects, for
example, have a collection of instance vari-
ables that contain data, and a number of
methoo?s for manipulating the data.

The key difference between our object
model and others in the literature is that
events are automatically triggered when the
desired preconditions are met. Events are
simply the units of action (atomic transac-
tions) within which participating objects may
change state. Since the state changes are
visible after events take place, we obtain a
powerful event-driven model of computation.
(For a different view of atomic transactions
with stable storage of objects, the reader is
directed towards [LiSc83, Oki83].)

The object database is maintained by the
system, giving the illusion that all objects
reside in a large, persistent virtual memory.
Furthermore, objects may have quite com-
plex operations associated with them. Conse-
quently, rather than having programs that
interact with a database management sys-
tem, we simply have objects interacting with
objects, all within the same, homogeneous
system.
t UNIX is a trademark of AT&T Bell Laboratories.

Since there are many workable no?.ions of
“objects” in the literature, we shall first
present a brief overview of our model, and
then describe some of its features in greater
detail, with examples.

2.1. Overview
An object is an entity with contents and

behaviour. Objects fall into classes with the
same generic spec:ification. Object instances
are distinguished by
different

having (possibly)
contents and unique object

identifiers (o&s). (Oid is a unique identifier
for addressing an object at any time, in any
place, no matter what happens to the object
during its lifetime.) Object classes in the real
world would be, for example, books, people,
bicycle tires, and so on. Contents could be
properties such as colour and weight, or
parts such as front derailleurs. In the latter
case, we have complex objects (like bicycles)
made up of other objects. Whereas contents
constitute the internals of an object,
behaviour constitutes its external appear-
ance. It tells how an object may change state
and interact with other objects. Books may
be opened to an arbitrary page and they may
be read, but they can’t be pumped up with air
(usually).

An object’s behaviour is extremely impor-
tant because it is the mechanism through
which it controls its interactions with all
other objects. Object creation, destruction
and all updates take place under the con-
straints of the rules specified in the
behav-iour. In particular, this means that
objects cannot be forged. That is, one cannot
create an object that masquerades as one of a
known class. An object that claims to be of a
given class is therefore guaranteed by the
system to obey the behaviour one expects of
it.

Every object class has a speci.cation
which describes the contents and behaviour
of instances of the class. The specification is
not necessarily an object itself, but may be
represented as an object -- a text object, for
example. We will describe the contents and
behaviour portions in turn.

Figure 1 shows a partial specification for
an imaginary percolator object. Percolators
Tire appliances with a certain capacity, that
can hold a certain amount of grounds, water,
and coffee. They may be in the pr.ocess of
brewing, and when the coffee is ready, there
is a Light_on condition. To make coffee, a
number of conditions must hold first, for

336

example, the percolator must be clean and
empty. To tell whether the coffee is ready,
there is a light-on0 rule which must be
invoked, since the instance variable lightan
is internal to the object, and therefore not
directly visible from the outside. The only
legitimate interface to an object’s contents is
through its behaviour.

percolator : appliance [
/* instance variables */
capacity : integer; /* in cups */
grounds, water, coffee : integer;
brewing, lightan : boolean;

/+ rules +/
alpha(cups) 1 /* rule for creation */

/* creator */
N : hacker;
cups : integer;

/* a trigger condition: */
/* you can’t. have two pots */
-.pot() = nil;
capacity := cups;
j

makexoffee(cups) i
cups : integer;

/* trigger conditions */
/* you want fresh coffee, right? l /
cups <= capacity;
grounds = 0;
water = 0;
coffee = 0;
grounds := cups;
water := cups;
brewing := TRUE;
light-on := FALSE;
j

/* this rule just tells you if the light’s on */
lightnO!

{(light-on)

. . .
/* other rules */
1

figure 1 : A percolator object class

2.2. Contents
We call the data portion of an object its

contents. Data in an object world typically
consists of other objects. Ultimately all
objects are made up of simple objects such as

integers and strings. The contents of the per-
colator object are all simple objects. The con-
tents of an object are stored in instance vari-
ables. Instance variables are not objects
themselves, just a place to put them. In the
implementation, an instance variable declara-
tion allocates space for objects of a certain
class, just as variable declarations do in pro-
gramming languages like C or Pascal.
Instance variables are so named because they
store the data that distinguish one object
instance from another.

Objects that are part of the contents of
some other object are dependent objects.

Such an object is called the child of its con-
taining parent object. Independent objects
have no parents. According to the
specification of the objects involved, the
death of a parent may or may not precipitate
the death of its children. A dependent object
whose parent dies would have to be adopted
by another parent, or possible attain indepen-
dent status. Simple objects, like integers, are
always dependent, and are destroyed with
their parents.

Objects may communicate with each
other if they are acquainted. Objects are
acquainted if they are directly related
(parent and child), or if one is in possession of
the oid of the other. By- convention, whenever
an object makes use of another object’s oid,
its own oid becomes available to the second
object. Acquaintance is therefore a reflexive
relationship within any interaction, as one
would expect.

In Oz there was no need for objects to be
explicitly acquainted. One would simply
specify the class of the objects one wished to
have as acquaintances and some trigger
conditions to limit the selection. The trigger
condition functioned as a query to select the
appropriate acquaintance. In Son of 02 ne
expect objects to maintain a set of oids for
acquaintances. One can still, as before, select
acquaintances from a list, but one must be
properly introduced to acquaintances before
this can be done.

In addition, oids may be thought of as
capabilities, since, being objects, they cannot
be forged. The system protects against irreg-
ular creation of objects. One could not,
therefore, simply generate oids for all objects
in the system and attempt to initiate event.s
with them. Objects may exploit this featllre
by being careful whom they are introduc,ed
to.

Since there is an overhead associated
with oids, we can allow certain simple objects
to do without them. Such objects could only
be directly accessed by their parents.
Integers, characters and oids themselves are
obvious choices for oid-less objects.

2.3. Behaviour
An object’s behaviour describes precisely

the circumstances under which an object may
do something. “Doing something” means
changing state or causing some other object
to change state. This must happen within an
event (discussed below). An object changes
state when it is created or destroyed, or when
its contents are altered in some way.

The behaviour of an object may be
specified by a set of named rules that
describe what happens, and under what cir-
cumstances it may happen. If you try to do
something inappropriate to an object (i.e.
invoke a non-existent rule) then it will simply
ignore you.

A rule invocation looks very much like a
procedure call, and, in fact, rules themselves
look very much like procedures, with instance
variables as static data. Every object class
has alpha and omega rules for the creation
and destruction of instances

An event takes place when several objects
enter into a mutually satisfactory contract,
exchange information and change state. The
nature of the contract and the side-effects is
completely specified by the rules of the parti-
cipating objects (purticipunts). The execu-
tion of an event is very similar to the execu-
tion of a program, with one rule, a topmde,
invoking sub-rules of other objects, passing
objects as arguments and receiving other
objects in return. There are several impor-
tant differences, however.

The execution of an event is atomic -- if
any of the participants is not satisfied, then
the event will not take place. Instead, the
event waits until something happens to allow
it to continue. Usually, the unsatisfied object,
or the participant it was not satisfied with,
must take part in some other event. If the
side-effects of the other event cause the
unsatisfied object to “change its mind”, then
the waiting event may continue. Alterna-
tively, if one of the participants is destroyed
in another event, then the waiting event can
never continue, and it may be cancelled.

In the example, if a hacker tries to make
coffee in a dirty pot, the pot will wait until it

is cleaned. This is presumably accomplished
by some other rule.

Events are guaranteed to be seridiza~Jle,

that is, the participants have read and write
locks placed on them during the event to
prevent parallel events from putting the
objects in an inconsistent state. In this way
events are similar to database transactions.
Waiting events, however, may need to roll-
back actions and release locks if a participant
is required for some other event. This is
necessary since a waiting event is effectively
a stalemate between its participants. Some
participant must back-out, change state in
another event, and resolve the stalemate in
the waiting event. It is also a fairness
requirement, since there is no guarantee that
the awaited condition will ever be met, and
the locks released.

Top-rules are similar to sub-rules except
that they are not explicitly invoked. Instead,
they initiate an event when their trigger con-
ditions become true. This is always a conse-
quence of a side-effect of some other event,
so one may think of events triggering one
another in a chain-reaction.

Triggering is especially useful for being
notified of side-effects in other objects. A
+,ucker object, for example, can be notified
when coffee is ready by including the rule in
figure 2.

coffee-ready [
pot.lighton();
/+ notification statements . . +/
1

PQure 2 : A top-rule

Rules may send and receive lists of
objects as arguments and return values, as is
the case with procedure calls. Only top-rules
never take arguments or return values. Sub-
rules are passed the oid and class of their
invoking acquaintance. The rule may insist
that only objects in certain classes may
invoke it, or that only certain known acquain-
tances are acceptable, or even that the rule
is to be “private” and only invokable by other
local rules. The oid may also be used to query
the invoker. This might be done in order to
perform authentication procedures, for
example.

Rules may also have a set of temporary
variables for manipulating arguments, com-
puting return values, and so on. Temporary

338

variables, like instance variables, are used to
hold objects, such as the arguments to a rule,
or newly-created objects, but their storage
disappears when the rule finishes. As a conse-
quence, the objects they hold must. be either
destroyed or given a new home before the
rule completes. For convenience’ sake, cer-
tain objects, like integers, may agree to
disappear quietly when their storage is deallo-
cated. Note that temporary variables, like
instance variables, initially contain no objects
at all, and must be filled before they can be
used.

Rules are invoked by specifying an object
to be addressed, the name of the rule, a list
of objects to be sent as arguments, and a list
of variables or locations for the returned
objects to be stored. One would be able to
invoke simple unary and binary rules as
though they were operations. For example,
one would be able to write “z := x + 1” instead
of “z := x.add(1)“. A similar approach is
taken in Smalltalk.

Failure of a rule within an event need not
always cause the event to wait. Instead, the
failure may be used to affect control-flow,
causing the parent event to seek alternatives.
Success or failure of a rule would decide, for
example, which branch of an if-then-else to
execute next. The only important difference
between control-flow here and in a
procedure-oriented language, is that if the
sub-rule fails, then it can cause no side-
effects.

2.4. Other Issues
What we have described above is a very

basic object model. There are a number of
other issues that are important if an object
programming language is to be useful. One
such issue is the selection of simple objects
available. A tentative list would include
integers, floating point numbers, booleans,
characters, strings, lists, and arrays. A
variety of complex objects, such as oids,
object specifications, and compiled object
specifications should also be available.

Specialization of objects should be pro-
vided along the lines of Taxis [GrMy83]. A
specialized object would have at least the
contents and behaviour of its superclass, and
possibly more. In addition, one may further
restrict the rules and contents by respec-
tively adding trigger conditions and by speci-
alizing the classes of the instance variables.
One must take care that specialized objects
do not violate the constraints imposed by the

superclass. This may be done by making the
instance variables of the superclass private to
the original rules. New rules belonging to the
specialized objects could then only access the
original variables through t.he old, possibly
restricted, rules. This would prevent, say, a
programmer from creating specialized oids
that could alter the unique identifier they
contain. Such an object would not be an oid,
but something entirely new.

An issue that has not been addressed in
Oz, is flow control within activities. Events,
being atomic, will typically be very low-level
transactions within more complex activities.
Editing a document, for example, may be
viewed as a long-term activity composed of a
sequence of short, atomic edit events. Pro-
grammers will need ways of expressing the
possible flows from rule to rule as concisely
as possible. The mechanisms that exist so far
for describing flow between rules is quite
primitive: an instance variable could be used
as a “program counter”, and rules could set
the counter to indicate what rule fires next.
An explicit means of indicating flow would also
simplify the implementation, since the sys-
tem could tell immediately which rule to try
next.

One obvious construct would be to provide
for “programs” of unnamed top-rules, each
with a single “main” entry point, where the
rules trigger each other in sequence. Rules,
then, would function as atomic statements in
such a program.

These, and other language issues, are still
under investigation.

3. Implementation Issues
The object-oriented approach is a syn-

thesis of many existing ideas, rather than an
entirely original creation. In building an
object-oriented system we are concerned with
many of the same issues that arise when writ-
ing an operating system, a database system, a
compiler, and so on. There are consequently
very few truly new implementation issues
here A wealth of solutions already exist for
many of the problems we have. The one
difference, perhaps, is that we are concerned
with familiar issues at slightly different levels.
We provide atomicity of events and stable
object storage at the system level rather than
the application level. The system need only
provide a suitable object environment., not a
user environment. The user environment is
provided by the object classes that happen to
be defined. The system, for example, pro-

339

vides security mechanisms by guaranteeing
object integrity through atomic events and
privacy of an object’s contents. The actual
securit,y policies are provided by the objects
that exist. We are therefore still concerned
with the same old issues, but we must con-
sider them in a different order.

The virtual machine that we provide must
give the illusion that all objects are present at
any time, and that they are always ready to
spring into action according to their
prescribed behaviour. Objects must be reli-
ably backed-up onto stable storage, so that a
consistent state of the system is recoverable
after a disaster (a system crash, power
failure, etc.). In order to accomplish these
tasks, we require the aid of a number of sys-
tem objects:

The event mancLger is responsible for
scheduling and executing events. Objet t
rules may be compiled or interpreted. In
either case, the event manager must keep
track of the busy and sleeping objects. When
events take place, it must determine whether
other events must be run, or whether waiting
events must be restarted.

The object manager is responsible for
reliably backlmg-up objects, for retrieving
them from stable storage, and for keeping
track of oids. It should especially provide
cheap, rapid access to objects that are
already in memory.

The memory manager is an object that
owns all of virtual memory. Memory is carved
up for creating new objects and for executing
events. The space is used for instance vari-
ables and temporary variables. Object rules,
whether compiled or interpreted, are stored
as objects too (just as executable programs in
other domains are stored as files). It is also
responsible for cleaning up deallocated
memory.

Aside from these three system objects, it
will be necessary to have a number of “device
driver” objects for talking to the outside
world. “The outside world” includes not only
i/o devices but also network connections to
other object-oriented systems. Objects are
allowed to migrate to other machines that tire
willing to run them.

Since many of our implementation issues
are well-understood problems, we shall not go
into too many details here. Rather, we shall
concentrate on a few of the problems that are
peculiar to objects.

3.1. Object Management and Stable Storage
For events to be serializable and atomic,

we must be able to store objects reliably and
update the stable versions atomically.
Atomic transactions are a familiar notion in
database management systems, and we can
use similar techniques here. Reliable storage
in a similar context is also discussed in
[MOSSES, Verh?8]. We will briefly describe a
scheme for managing stable objects.

We first allow ourselves to think of two
versions of the object database. The first, is
the stable version reflected in stable storage.
We assume that stable storage itself is reli-
able (or rather, we do not concern ourselves
with the details at this level). There is a
second version, the current version of the
object database, which resides in virtual
memory. The current version only contains a
number of busy objects which are currently
of interest. In the event of a crash, the sw-ap
area of stable storage is naturally discarded,
and the system uses the stable version of the
object database as the last consistent state.

The object. manager knows which objects
are busy and which are not. Oids for busy
objects can be immediately resolved to
memory pointers. Ilomnunt objects, which
exist only in stable storage, must be activated
by bringing them into virtual memory.
Events may be running, blocked, waiting or
committed. The objects participating in an
event are all busy objects in virtual memory.
Changes to objects caused by a running event
are made to the busy versions of the object
only.

In addition, the side-effects are stored
separately in an event log for that event. As
long as the event is running, the busy objects
are locked. Objects not actually altered by an
event will only need read locks. The type of
locks required car be deterrnined at compile
time. If the event is waiting, it may be can-
celled, and the sideeffects rolled-back.
Side-effects should be stored incrementally,
so that it will be possible to partially roll-back
an event to a desired point. Rather than
actually un-doing actions, the simplest way to
roll-back time is to restore copies of altered
objects saved before the changes were made.

Until the event commits, the altered busy
objects are not formally part of the current
version of the object database. If the event
commits, then the event log is committed.
and the locks are released. At this point, the
side-effects are part of the current object

340

database. A queue of current logs may be
maintained as events commit. Any unlocked
busy object can thus be recovered from the
stable version plus the current side-effects.

The next order of business is to update
the stable version of the object database. We
accomplish this by partitioning the stable
version into two parts. The first is the stable
object repository, and the second part is the
stable event log queue. Current event logs
must be written out atomically to the stable
event log queue. (An atomic write of a single
event log is not too difficult, if the hardware
will support single atomic block writes.) Once
an event log is safely written out, it is no
longer a current log, but a stable log. One
may then begin updating the objects in the
stable object repository. If a crash occurs at
any point, recovery begins by updating the
stable objects from the logs in the stable
event log queue. The updates already made
before the crash are simply redundantly per-
formed. The old current logs are lost, and
execution continues from the stable version.

Note that the event logs are intended pri-
marily as a recovery mechanism, and need
not normally be used for updating objects.
Instead one might use the busy version of an
object in virtual memory to re-write the
stable version (provided that there are no
other pending current side-effects on that
busy object).

Writing out current logs and performing
the actual updates can be done when the pro-
cessor is otherwise idle. Only the order of
updates needs to be preserved. In addition, it
is not strictly necessary to perform all the
updates that occur in the events. Objects
that experience a burst of activity could be
updated when the activity dies down. Only
the last current version needs to be written
out. This corresponds to merging a sequence
of current logs together before writing out a
single stable log.

3.2. Event Searching
Events are atomic, and take place

between a collection of participating objects.
The participants must enter into a mutually
agreeable contract before the event commits.
No side-effects are visible unless the event
commits.

It is easier to see how one might imple-
ment event searching and execution by using
an analogy. Consider that events, while they
are executing, take place in a “board-room”,

behind closed doors. An initiator object with
a top-rule starts the event. As sub-rules dre
successfully invoked, new participants niay
enter the room, but none may leave (two-
phase locking is used to maintain serializabil-
ity). If at any point in time some rule fails
(i.e. a trigger condition fails), then negotia-
tions come to a halt. The event does not
abort, but the participants are in a stalemate.

As long as we stay behind closed doors, we
cannot break the stalemate. What we need is
for at least one participant to leave the room,
take part in some other event that changes
its state, then return and attempt to restart
negotiations. Since we have, in general, no
way of predicting exactly what is needed t.o
break the stalemate, we allow all of the parti-
cipants of a waiting event to leave the room
and do something else. Note that no deadlock
can take place, because the stalemate
automatically releases -- or rather, “softens”
-- the locks held.

An object that leaves a waiting event
must, however, be rolled-back to the state it
had before the uncommitted, waiting event
was started. If it returns to that event, the
event itself is rolled-back, and the returning
participant re-enters in its new state. Note
that waiting events are not actually rolled
back until they are restarted, since we do not
know in advance when a participant leaves if
it will find an event. that commits or not.

A clear possibility is that an object may
end up in several waiting events, all
corresponding to different possible futures. If
all of them would effect some state change on
that object, then at most one of them may
eventually commit.

For each object, then, we may maintain a
queue of waiting events. Every new event that
it joins will eventually either wait or commit.
If it waits, the event is added to the queue. If
the event commits, then the object must
return to each of its old waiting events, roll
them back to its entry point, and r-e-evaluate
the event from that point.

Running events, including restarted wait-
ing events, may block if a participant is una-
vailable. If the desired object is part of w,3it-
ing event, it is simply reclaimed, of course,
but if it is part of some other running event,
then the first event blocks. The first event
continues when the second either commits or
waits. If the second event also blocks, then
the process is continued. Obviously, if an
event is blocked upon a request of a partlci-

3Ll

pant of another blocked event, then we must
check that no deadlock exists by following the
chain either to a truly running event (no
deadlock), or to a blocked event that we have
already seen (deadlock). Deadlock can be
resolved by rolling back some blocked event
far enough to release participants needed
elsewhere.

There is, in general, no way of knowing
what may cause a waiting event to continue
and commit. We do know that it is necessary
(but not sufficient) for one of the participants
to leave, change state, and return. The
implementation could simply attempt to res-
tart waiting events whenever participants
change state elsewhere. We can, however,
improve on this. We know that the partici-
pants of a waiting event are stalemated
because a single trigger condition has failed.
We can also trace the arguments of the failed
condition to all the relevant participants of
the event. For example, if the condition
“x>y” fails, we can trace the computation of x
and y within the waiting event to simple
objects participating in that event. These
objects are hot, in the sense that the event
can only continue if one of these hot objects
is modified. All other participants are cold,
and can never cause the event to continue,
even if they are altered in another event.

Hotness is, of course, a necessary, but not
sufficient property to determine whether the
modification of an object can cause a waiting
event to continue An efficient implementa-
tion of event-searching would probably have
to make use of (1.) event analysis along the
lines of hotness, or (2) explicit direction from
the programmer indicating what events may
trigger other events, or (3) some combination
of (1) and (2).

4. OIS Applications
The objects we have described are highly

structured, persistent and reliable. Objects
encapsulate data and operations, and they
cannot be forged. Events involving a collec-
tion of participating objects are automatically
triggered, but remain atomic, requiring the
approval of all participants. These properties
make objects especially useful for program-
ming 01s applications

We shall illustrate the use of objects
through a number of examples.

4.1. Roles and secure objects
Objects enable one to specify flexible

security environments. If one is primarily

managing documents, for example, then the
documents can be stored as objects. Rather
than associating documents directly with
users, one may associate them with a set of
roles [TsGi85]. Users play a particular role in
order to perform certain functions. Different
roles may be associated with the owner of a
document, and the allowable readers, copiers
and editors. Copies of documents may be
associated with the same roles, and thus
prevent information leaking “down” to
unprivileged roles (this is a crude
simplification of the Bell and LaPadua secu-
rity model as described in [Land81]).

Roles themselves are objects, so it is pos-
sible to divorce the intelligence regarding
who is allowed to play which role from the
actual allowable operations on a document. A
role object performs the necessary authoriza-
tion checks to guarantee that a given user is
allowed to play that role. The role may
actually store a list of user ids, or it may keep
track of what other roles may assume that
role. A user playing one role may then ask to
play another role. The role objects then
either act as a filter for operations on owned
objects (such as documents), or, more likely,
they authorize users for a single event ses-
sion, or activity.

Capabilities may also be represented by
objects. Since objects are unforgeable, one
need only specify precisely which objects (or
objects playing what roles) are allowed to
create new capabilities. Capabilities may be
used as currency, allowing an object to take
part in an event or an activity a limited
number of times. Capabilities may also be
used as licenses to create other capabilities.
One could acquire a capability when playing a
certain role, and have to give it up when leav-
ing the role.

Foreign objects arriving over a network
can be filtered by an “immigration office”.
Foreign objects initially have no acquain-
tances and no capabilities. Such objects have
to be explicitly sponsored by local objects
who can grant them capabilities. A foreign
object can then take part in some limited
events with a few acquaintances it is intro-
duced to. Alt.ernatively, it can be accepted
fully as a naturalized citizen and be granted
all the capabilities of local objects.

4.2. Documents
Since objects have a permanent structure

associated with them, it is somewhat easier to
think of documents as being non-linear. One

may exploit the fact that objects have a
hierarchical decomposition when designing
and implementing document types. Further-
more, since we are specifically concerned
with persistent objects, there would he no
need to “load in” a linear representation of a
hierarchically structured document in order
to use it.

There are a number of possibilities which
would benefit from an object-oriented imple-
mentation. An object-oriented document
model would, for example, easily support
views. One may view an abbreviated docu-
ment, or one may ask to see just the main
semantic components and their names
(chapter and section headings). Documents
such as manuals could even dispense with any
basic linear interpretation at all. Pointers to
articles within the document can be stored at
arbitrary locations, so that one may peruse
the document in one’s order of interest
rather than in an order imposed by the
author.

One would similarly be able to store
several versions of a document as a single
object. Different versions can then be called
up as separate views. Components of the
document would simply need some additional
information indicating what versions of the
document they apply to. Since the display of
a document is not tied to its representation,
this information is easily hidden.

Formatting information can also be asso-
ciated with the various components of the
document without having to, say, embed for-
matting commands in the text. It would also
be possible to store the raw text and the for-
matted portions in the same object,. One
could then take advantage of the fact that
small local changes generally do not affect
how the rest of a document is formatted.
Usually only the location of page breaks
changes. The formatted segments could also
be useful in the presentation of ad hoc views.

4.3. Mailing
Mail messages encoded as objects suggest

a number of interesting possibilities. First of
all, mail messages can package other objects,
without having to translate them into ascii
text, as is the case in UNIX. A mail message
might simply cons&t of some header informa-
tion, and a collection of objects to be mailed.

Who is allowed to mail what to whom may
be incorporated into the operations of the
roles that users are allowed to play. Users

playing certain roles, for example, m,iy only
be able to mail or read specific kinds of mes-
sages. In this way, rnail distribution can be
controlled and limited [TsGi85].

So-called “intelligent messages”, or imes-
sages [Hogg85] can be implemented using
objects. Messages of this type enter into a
dialogue with their recipient when the user
attempts to read the mail. The dialogue itself
may be modified by the responses received,
and the message may automatically forward
itself to another user based on the informa-
tion the user supplies. Such messages may
be used either to distribute responsibilities or
resources to a set of users, or to track down
information accordingly to a dynamically
modified plan.

Imessages would be instances of a single
imessage object class, rather than each imes-
sage being programmed separately as a
different class. Typically, imessages have a
list of questions to pose or statements to
make, a repository for the responses col-
lected, a set of variables encoding its
knowledge, and an eventual return address.
When received, it must initiate a dialogue.
Each response is evaluated, possibly stored,
and an action is taken. The action updates
some variables, and causes more informatlon
to be displayed, or closes the dialogue and
chooses a new recipient.

The dual notion to imessages are
automatic procedures that process mail upon
its arrival [HoNT85]. In this case we would
expect the messages to be passive, and to
accept the actions of the automatic pro-
cedures. The automatic triggering of these
procedures is easily captured by the object
triggers monitoring incoming messages. Fil-
ing of messages into different “trays” accord-
ing to subject or sender can be handled this
way. Automatic procedures may also alter
the contents of messages and possibly mail
responses to the original sender. A totally
automatic “user” can be specified that takes
actions based on the mail it receives. An
example would be an inventory administrator
that answers queries, accepts orders, notes
arrival of new stock, and issues warnings if
stock falls below some threshold.

4.4. Knowledge collection
As a final example, we consider kna’s

[Tsic85]. A k no is cross between an imessage
and a worm program [ShHu82]. A kno travels
through an object system, or a network of
object systems, collecting and processing

34 3

information. Unlike an imessage, it need not
be represented as a mail message, nor need it
ever make its presence felt to most users. Of
course, for kno’s to have the power to exam-
ine information at various sites, they must be
armed with the right capabilities. An unwel-
come kno may be turned away (or destroyed)
when it arrives at a new site.

Objects, when they die, can disappear
entirely, or they may give up their contents
to an archive, or database of dead objects.
The information contained in the original
object is then still accessible, but the former
object is stripped of its behaviour. These
databases of dead objects constitute one suit-
able domain for kno’s to gather information
from.

A kno has the power to sit and wait for
some event to happen before it begins to do
its work, or decide what to do next. Monitor-
ing of existing objects by a foreign (but wel-
come) kno can be completely transparent in
an event-driven object world.

Kno’s may also be thought of as distri-
buted queries. A user query may initiate a
number of kno’s that travel from site to site
(or from database to database) collecting
information. Kno’s may have the ability to
clone themselves, if there is a choice of possi-
ble continuations. Like imessages, kno’s can
travel according to fixed routing, dynamic
routing, or even random routing (for sampling
purposes). Kno’s can automatically return to
home when they have gathered a certain
amount of information, or they may be “har-
vested” by other kno’s sent out to collect
them at an independently decided time. If
kno’s are never harvested, we may allow them
to die of old age or malnutrition.

5. Conclusions
We are currently refining the Oz object

model and its implementation. The succes-
sor, Son of Oz, is intended to be a general pro-
gramming system capable of supporting 01s
applications. Son of Oz is similar to other
object-oriented languages, such as Smalltalk.
The main difference is that Son of Oz provides
for automatically triggered, autonomous
events. The significant features are:

1. Objects provide hierarchically structured
abstract data types; an objet t
encapsulates data and the permissible
operations on it.

2. Events are automaticall), triggered when
pre-specified conditions become true. It
is not necessary to explicitly initiate all
events.

3. Events are atomic, being a contract
between a collection of participating
objects. This is the primary mechanism
for ensuring the integrity and security of
objects.

4. Objects are persistent data, residing in a
stable and reliable virtual memory.

6. References

[ABBH84]M. Ahlsen, A. Bjornerstedt, S. Britts,
C. Hulten, and L. Soderlund, “An
Architecture for Object Management
in OIS”, ACM Transactions on Office
Information Systems, Vol. 2(3), pp.
1’73-196, July 1984.

[ElNu80] C.A. Ellis and G. Nutt, “Computer
Science and Office Information Sys-
tems”, ACM Computing Surveys, Vol.
12(l), pp. 2’7-60, March 1980.

[Gold841 A. Goldberg, Smalltalk 80: the
hteTdC tive Programming Environ-
ment, Addison-Wesley, 1984.

[GoRo83]A. Goldberg and D. Robson,
Smalltalk 80: thee Language and its
Implementation, Addison-Wesley,
May 1983.

[GrMy83]S.J. Greenspan and J. Mylopoulos, “A
Knowledge Representation Approach
to Software Engineering: The Taxis
Project”, Proceedings of the Confer-
ence of the Canadian Information
Processing Society pp. 163-174, May
1983.

[Gutt77] J. Guttag, “Abstract Data Types and
the Development of Data Struc-
tures”, Communications of the ACM,
Vol. 20(6), pp. 396-404, June 1977.

[HaKuBO]M. H ammer and J.S. Kunin, “Design
Principles of an Office Specification
Language”, Proceedings of th.e YCC,
pp. 541-547, 1980.

[HaSi80] M. H ammer and M. Sirbu, “What is
Office Automation?“, Oflice Automa-
tion Conference, Georgia, pp. 37-49.
1980.

[Hewi77] C. Hewitt, “Viewing Control Struc-
tures as Patterns of Passing Mes-
sages”, Artificial Intelligence, Vol.
8(3), pp. 323-364, June 1977.

344

[Hoar74] C.A.R. Hoare, “Monitors: An Operat-
ing System Structuring Concept”,
Communications of the ACM, Vol.
I?(lo), pp. 549-557, Ott 1974.

[Hw85) Jrnyg 1 “Intelligent Message Sys-
I PP. 113-134, in Oflic e

Automation: Concepts and Tools, ed.
D.C. Tsichritzis, Springer Verlag,
Heidelberg, 1985.

[HoNT85 1 J. Hogg, O.M. Nierstrasz, and D.C.
Tsichritzis, “Office Procedures”, pp.
137-166, in Office Automation: Con-
cepts and Tools, ed. D.C. Tsichritzis,
Springer Verlag, Heidelberg. 1985.

[Land813 C.E. Landwehr, “Formal Models for
Compute T Security”, A&i4 Comput-
ing Surveys, pp. 247-278, Sep-
tember 1981.

[I,iSc83] B. Liskov and R. Scheifler, “Guardi-
ans and Actions: Linguistic Support
for Robust, Distributed Programs”,
ACM TOPLAS, Vol. 5(3), pp. 381-404,
July 1983.

[Moon841 J. Mooney, “Oz: An Object-based Sys-
tem for Implementing Office Infor-
mation Systems”, M.Sc. thesis,
Department of Coinputer Science,
University of Toronto, 1984.

[Morg80] H.L. Morgan, “Research and Practice
in Office Automation”, Proceedings
1980 IFIP Congress, pp. 783-789.

[MOSSES] J. Eliot 6. Moss, “Nested Transac-
tions: An Approach to Reliable Distri-
buted Computing”, Ph.D. thesis,
MIT/ LCS/ TR-260, MIT Dept EE and
CS, April 1981.

[Nier85] O.M. Nierstrasz, “An Object-Oriented
System”, pp. 167-190, in Oflice Auto-
mation: Concepts and Tools, cd. D.C.
Tsichritzis, Springer Verlag, Heidel-
berg, 1985.

[NiMT83] O.M. Nierstrasz, J. Mooney, and K.J.
Twaites, “Using Objects to Imple-
ment Office Procedures”, Proceed-
ings of the Canadian Information
ProcQssing Society Conference,
Ottawa, pp. 65-73, May 1983.

[Oki83] B.M. Oki, “Reliable Object Storage to
Support Atomic Actions”, M.Sc.
Thesis, MIT/LCS/TR-308, MIT Dept
EE and CS, May 1983.

[ShHu82]3. Shoch and J. Hupp, “The Worm
Programs - Early Experience with a
Distributed Computation”,
Communications of the ACM, Vol.
25(3), pp. 1’72-180, March 1982.

[Ther83] D.G. Therault, “Issues in the Design
and Implementation of Act2”, M.Sc.
thesis, TR #728, MIT AI Lab, June
1983.

[TsGi85] D.C. Tsichritzis and S.J. Gibbs, Eti-
quett.e Specification in Message Sys-
tems, pp. 93-112, in Office Automa-
tion: Concepts and Tools, ed. U.C.
Tsich,ritzis, Springer Verlag, HeideL-
berg, 1985.

[Tsic85] D.C. Tsichritzis, “Objectworld”. pp.
379-398, in Office Automation: Con-
cepts and Tools, ed. D.C. Tsichritzis,
Springer Verlag, Heidelberg, 1985.

[Twai84] K.J. Twaites, “An Object-based Pro-
gramming Environment for Office
Information Systems”, M.Sc. thesis,
Department of Cornputer Science,
University of Toronto, 1984.

[Verh78] J.S.M. Verhofstad, “Recovery Tech-
niques for Database Systems”, ACM
Computing Surveys, Vol. 10(2), op.
167-l 95, <June 19’78.

345

