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ABSTRACT 

Object-oriented programming 
environments are increasingly needed 
for programming 01s applications. A 
prototype object-oriented language 
has been implemented, and we are 
refining the language and its imple- 
mentation. The environment 
integrates a number of database and 
operating system concepts, in partic- 
ular, abstract data types, database 
constraints, atomic transactions, data 
persistency, triggering of events, reli- 
ability and crash recovery, and a large 
virtual memory. We outline the object 
model, discuss a number of imple- 
mentation issues, and give some 
examples of objects useful in an 01s 
application environment. 

1. Introduction 
Object-oriented data-modeling and pro- 

gramming techniques have become widely 
publicized in recent years. We believe these 
techniques to be especially important to the 
area of Office Information Systems (OISs). 
Experience has shown us that- OlSs typically 
deal with a variety of long-term objects with 
an often well-defined behaviour. Office 
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activity is generally event-driven and highly 
parallel [HaSi80, ElNu80, HaKu80, MorgSO]. 
Objects such as documents, messages and 
forms generally have a longer lifespan than 
the transactions that manipulate them, and 
they may have non-trivial procedures for 
operating on their contents. Object-oriented 
approaches directly address many of the 
needs of 01s programming [ABBH84]. 

An object-oriented system may be 
thought of as a database in which the intelli- 
gence is associated with the data items, 
rather than with programs that manipulate 
them. Objects assume the responsibility for 
the operations that may be performed upon 
them. Nevertheless we are concerned with a 
number of traditional database issues. The 
system is responsible for enforcing atomicity 
of events (comparable to database transac- 
tions), specified object behaviour (database 
constraints), and reliable object storage. One 
accesses information contained in objects 
through the interface specified by the 
object’s behaviour, however, rather than 
through a standard database interface. Arbi- 
trary interfaces may be provided, depending 
upon the application. 

A prototype object-oriented programming 
environment called Oz was implemented by 
Mooney and Twaites at the University of 
Toronto, and is described in their M.Sc. 
theses [Moon84, Twai84] and in [NiMT83]. An 
overview of the s>*stem and further specula- 
tion are provided in [Nier85]. 

We are currently refining the ideas behind 
Oz on three fronts. First, we are refining the 
concepts; this is most simpl) stated as “what 
is t.he most useful way to think of objects?” 
The concepts manifest themselves in the 
semantics of the language constructs. 
Second, we are investigating efficient ways of 
implementing objects. Ultimately we would 
need an operating system geared especially 
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to supporting an object-oriented environ- 
ment, though for experimental and develop- 
mental purposes it is desirable to use an 
existing operating system such as UNIXt as a 
base. Finally, we are looking at applications. 
What are examples of extremely useful 
objects? How would we program them with 
objects. These three fronts may be thought 
of as different levels. Though they are to 
some extent independent, they clearly 
influence one another. 

In this paper we describe our thoughts in 
these three areas. We are presently 
implementing a successor to Oz, called Son of 
Oz. Oz was intended to demonstrate the wor- 
kability of certain ideas, without necessarily 
inlplementing them as efficiently as possible. 
Son of Oz is intended to be the next step 
towards an object-oriented programming 
environment suitable for building OIS applica- 
tions. 

2. Concepts 
The objects that we will describe here are 

comparable to Smalltalk objects [GoRo83, 
Gold84], Actors [Hewii’7, Ther83]], monitors 
[Hoar74], abstract data types [Gutt?7], and 
modules with persistent data. The word 
“object” is usually used to describe an entity 
that encapsulates some data and the allow- 
able operations on it. Smalltalk objects, for 
example, have a collection of instance vari- 
ables that contain data, and a number of 
methoo?s for manipulating the data. 

The key difference between our object 
model and others in the literature is that 
events are automatically triggered when the 
desired preconditions are met. Events are 
simply the units of action (atomic transac- 
tions) within which participating objects may 
change state. Since the state changes are 
visible after events take place, we obtain a 
powerful event-driven model of computation. 
(For a different view of atomic transactions 
with stable storage of objects, the reader is 
directed towards [LiSc83, Oki83].) 

The object database is maintained by the 
system, giving the illusion that all objects 
reside in a large, persistent virtual memory. 
Furthermore, objects may have quite com- 
plex operations associated with them. Conse- 
quently, rather than having programs that 
interact with a database management sys- 
tem, we simply have objects interacting with 
objects, all within the same, homogeneous 
system. 
t UNIX is a trademark of AT&T Bell Laboratories. 

Since there are many workable no?.ions of 
“objects” in the literature, we shall first 
present a brief overview of our model, and 
then describe some of its features in greater 
detail, with examples. 

2.1. Overview 
An object is an entity with contents and 

behaviour. Objects fall into classes with the 
same generic spec:ification. Object instances 
are distinguished by 
different 

having (possibly) 
contents and unique object 

identifiers (o&s). (Oid is a unique identifier 
for addressing an object at any time, in any 
place, no matter what happens to the object 
during its lifetime.) Object classes in the real 
world would be, for example, books, people, 
bicycle tires, and so on. Contents could be 
properties such as colour and weight, or 
parts such as front derailleurs. In the latter 
case, we have complex objects (like bicycles) 
made up of other objects. Whereas contents 
constitute the internals of an object, 
behaviour constitutes its external appear- 
ance. It tells how an object may change state 
and interact with other objects. Books may 
be opened to an arbitrary page and they may 
be read, but they can’t be pumped up with air 
(usually). 

An object’s behaviour is extremely impor- 
tant because it is the mechanism through 
which it controls its interactions with all 
other objects. Object creation, destruction 
and all updates take place under the con- 
straints of the rules specified in the 
behav-iour. In particular, this means that 
objects cannot be forged. That is, one cannot 
create an object that masquerades as one of a 
known class. An object that claims to be of a 
given class is therefore guaranteed by the 
system to obey the behaviour one expects of 
it. 

Every object class has a speci.cation 
which describes the contents and behaviour 
of instances of the class. The specification is 
not necessarily an object itself, but may be 
represented as an object -- a text object, for 
example. We will describe the contents and 
behaviour portions in turn. 

Figure 1 shows a partial specification for 
an imaginary percolator object. Percolators 
Tire appliances with a certain capacity, that 
can hold a certain amount of grounds, water, 
and coffee. They may be in the pr.ocess of 
brewing, and when the coffee is ready, there 
is a Light_on condition. To make coffee, a 
number of conditions must hold first, for 
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example, the percolator must be clean and 
empty. To tell whether the coffee is ready, 
there is a light-on0 rule which must be 
invoked, since the instance variable lightan 
is internal to the object, and therefore not 
directly visible from the outside. The only 
legitimate interface to an object’s contents is 
through its behaviour. 

percolator : appliance [ 
/* instance variables */ 
capacity : integer; /* in cups */ 
grounds, water, coffee : integer; 
brewing, lightan : boolean; 

/+ rules +/ 
alpha(cups) 1 /* rule for creation */ 

/* creator */ 
N : hacker; 
cups : integer; 

/* a trigger condition: */ 
/* you can’t. have two pots */ 
-.pot() = nil; 
capacity := cups; 
j 

makexoffee( cups) i 
cups : integer; 

/* trigger conditions */ 
/* you want fresh coffee, right? l / 
cups <= capacity; 
grounds = 0; 
water = 0; 
coffee = 0; 
grounds := cups; 
water := cups; 
brewing := TRUE; 
light-on := FALSE; 
j 

/* this rule just tells you if the light’s on */ 
lightnO! 

{(light-on) 

. . . 
/* other rules */ 
1 

figure 1 : A percolator object class 

2.2. Contents 
We call the data portion of an object its 

contents. Data in an object world typically 
consists of other objects. Ultimately all 
objects are made up of simple objects such as 

integers and strings. The contents of the per- 
colator object are all simple objects. The con- 
tents of an object are stored in instance vari- 
ables. Instance variables are not objects 
themselves, just a place to put them. In the 
implementation, an instance variable declara- 
tion allocates space for objects of a certain 
class, just as variable declarations do in pro- 
gramming languages like C or Pascal. 
Instance variables are so named because they 
store the data that distinguish one object 
instance from another. 

Objects that are part of the contents of 
some other object are dependent objects. 

Such an object is called the child of its con- 
taining parent object. Independent objects 
have no parents. According to the 
specification of the objects involved, the 
death of a parent may or may not precipitate 
the death of its children. A dependent object 
whose parent dies would have to be adopted 
by another parent, or possible attain indepen- 
dent status. Simple objects, like integers, are 
always dependent, and are destroyed with 
their parents. 

Objects may communicate with each 
other if they are acquainted. Objects are 
acquainted if they are directly related 
(parent and child), or if one is in possession of 
the oid of the other. By- convention, whenever 
an object makes use of another object’s oid, 
its own oid becomes available to the second 
object. Acquaintance is therefore a reflexive 
relationship within any interaction, as one 
would expect. 

In Oz there was no need for objects to be 
explicitly acquainted. One would simply 
specify the class of the objects one wished to 
have as acquaintances and some trigger 
conditions to limit the selection. The trigger 
condition functioned as a query to select the 
appropriate acquaintance. In Son of 02 ne 
expect objects to maintain a set of oids for 
acquaintances. One can still, as before, select 
acquaintances from a list, but one must be 
properly introduced to acquaintances before 
this can be done. 

In addition, oids may be thought of as 
capabilities, since, being objects, they cannot 
be forged. The system protects against irreg- 
ular creation of objects. One could not, 
therefore, simply generate oids for all objects 
in the system and attempt to initiate event.s 
with them. Objects may exploit this featllre 
by being careful whom they are introduc,ed 
to. 



Since there is an overhead associated 
with oids, we can allow certain simple objects 
to do without them. Such objects could only 
be directly accessed by their parents. 
Integers, characters and oids themselves are 
obvious choices for oid-less objects. 

2.3. Behaviour 
An object’s behaviour describes precisely 

the circumstances under which an object may 
do something. “Doing something” means 
changing state or causing some other object 
to change state. This must happen within an 
event (discussed below). An object changes 
state when it is created or destroyed, or when 
its contents are altered in some way. 

The behaviour of an object may be 
specified by a set of named rules that 
describe what happens, and under what cir- 
cumstances it may happen. If you try to do 
something inappropriate to an object (i.e. 
invoke a non-existent rule) then it will simply 
ignore you. 

A rule invocation looks very much like a 
procedure call, and, in fact, rules themselves 
look very much like procedures, with instance 
variables as static data. Every object class 
has alpha and omega rules for the creation 
and destruction of instances 

An event takes place when several objects 
enter into a mutually satisfactory contract, 
exchange information and change state. The 
nature of the contract and the side-effects is 
completely specified by the rules of the parti- 
cipating objects (purticipunts). The execu- 
tion of an event is very similar to the execu- 
tion of a program, with one rule, a topmde, 
invoking sub-rules of other objects, passing 
objects as arguments and receiving other 
objects in return. There are several impor- 
tant differences, however. 

The execution of an event is atomic -- if 
any of the participants is not satisfied, then 
the event will not take place. Instead, the 
event waits until something happens to allow 
it to continue. Usually, the unsatisfied object, 
or the participant it was not satisfied with, 
must take part in some other event. If the 
side-effects of the other event cause the 
unsatisfied object to “change its mind”, then 
the waiting event may continue. Alterna- 
tively, if one of the participants is destroyed 
in another event, then the waiting event can 
never continue, and it may be cancelled. 

In the example, if a hacker tries to make 
coffee in a dirty pot, the pot will wait until it 

is cleaned. This is presumably accomplished 
by some other rule. 

Events are guaranteed to be seridiza~Jle, 

that is, the participants have read and write 
locks placed on them during the event to 
prevent parallel events from putting the 
objects in an inconsistent state. In this way 
events are similar to database transactions. 
Waiting events, however, may need to roll- 
back actions and release locks if a participant 
is required for some other event. This is 
necessary since a waiting event is effectively 
a stalemate between its participants. Some 
participant must back-out, change state in 
another event, and resolve the stalemate in 
the waiting event. It is also a fairness 
requirement, since there is no guarantee that 
the awaited condition will ever be met, and 
the locks released. 

Top-rules are similar to sub-rules except 
that they are not explicitly invoked. Instead, 
they initiate an event when their trigger con- 
ditions become true. This is always a conse- 
quence of a side-effect of some other event, 
so one may think of events triggering one 
another in a chain-reaction. 

Triggering is especially useful for being 
notified of side-effects in other objects. A 
+,ucker object, for example, can be notified 
when coffee is ready by including the rule in 
figure 2. 

coffee-ready [ 
pot.lighton(); 
/+ notification statements . . +/ 
1 

PQure 2 : A top-rule 

Rules may send and receive lists of 
objects as arguments and return values, as is 
the case with procedure calls. Only top-rules 
never take arguments or return values. Sub- 
rules are passed the oid and class of their 
invoking acquaintance. The rule may insist 
that only objects in certain classes may 
invoke it, or that only certain known acquain- 
tances are acceptable, or even that the rule 
is to be “private” and only invokable by other 
local rules. The oid may also be used to query 
the invoker. This might be done in order to 
perform authentication procedures, for 
example. 

Rules may also have a set of temporary 
variables for manipulating arguments, com- 
puting return values, and so on. Temporary 
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variables, like instance variables, are used to 
hold objects, such as the arguments to a rule, 
or newly-created objects, but their storage 
disappears when the rule finishes. As a conse- 
quence, the objects they hold must. be either 
destroyed or given a new home before the 
rule completes. For convenience’ sake, cer- 
tain objects, like integers, may agree to 
disappear quietly when their storage is deallo- 
cated. Note that temporary variables, like 
instance variables, initially contain no objects 
at all, and must be filled before they can be 
used. 

Rules are invoked by specifying an object 
to be addressed, the name of the rule, a list 
of objects to be sent as arguments, and a list 
of variables or locations for the returned 
objects to be stored. One would be able to 
invoke simple unary and binary rules as 
though they were operations. For example, 
one would be able to write “z := x + 1” instead 
of “z := x.add( 1)“. A similar approach is 
taken in Smalltalk. 

Failure of a rule within an event need not 
always cause the event to wait. Instead, the 
failure may be used to affect control-flow, 
causing the parent event to seek alternatives. 
Success or failure of a rule would decide, for 
example, which branch of an if-then-else to 
execute next. The only important difference 
between control-flow here and in a 
procedure-oriented language, is that if the 
sub-rule fails, then it can cause no side- 
effects. 

2.4. Other Issues 
What we have described above is a very 

basic object model. There are a number of 
other issues that are important if an object 
programming language is to be useful. One 
such issue is the selection of simple objects 
available. A tentative list would include 
integers, floating point numbers, booleans, 
characters, strings, lists, and arrays. A 
variety of complex objects, such as oids, 
object specifications, and compiled object 
specifications should also be available. 

Specialization of objects should be pro- 
vided along the lines of Taxis [GrMy83]. A 
specialized object would have at least the 
contents and behaviour of its superclass, and 
possibly more. In addition, one may further 
restrict the rules and contents by respec- 
tively adding trigger conditions and by speci- 
alizing the classes of the instance variables. 
One must take care that specialized objects 
do not violate the constraints imposed by the 

superclass. This may be done by making the 
instance variables of the superclass private to 
the original rules. New rules belonging to the 
specialized objects could then only access the 
original variables through t.he old, possibly 
restricted, rules. This would prevent, say, a 
programmer from creating specialized oids 
that could alter the unique identifier they 
contain. Such an object would not be an oid, 
but something entirely new. 

An issue that has not been addressed in 
Oz, is flow control within activities. Events, 
being atomic, will typically be very low-level 
transactions within more complex activities. 
Editing a document, for example, may be 
viewed as a long-term activity composed of a 
sequence of short, atomic edit events. Pro- 
grammers will need ways of expressing the 
possible flows from rule to rule as concisely 
as possible. The mechanisms that exist so far 
for describing flow between rules is quite 
primitive: an instance variable could be used 
as a “program counter”, and rules could set 
the counter to indicate what rule fires next. 
An explicit means of indicating flow would also 
simplify the implementation, since the sys- 
tem could tell immediately which rule to try 
next. 

One obvious construct would be to provide 
for “programs” of unnamed top-rules, each 
with a single “main” entry point, where the 
rules trigger each other in sequence. Rules, 
then, would function as atomic statements in 
such a program. 

These, and other language issues, are still 
under investigation. 

3. Implementation Issues 
The object-oriented approach is a syn- 

thesis of many existing ideas, rather than an 
entirely original creation. In building an 
object-oriented system we are concerned with 
many of the same issues that arise when writ- 
ing an operating system, a database system, a 
compiler, and so on. There are consequently 
very few truly new implementation issues 
here A wealth of solutions already exist for 
many of the problems we have. The one 
difference, perhaps, is that we are concerned 
with familiar issues at slightly different levels. 
We provide atomicity of events and stable 
object storage at the system level rather than 
the application level. The system need only 
provide a suitable object environment., not a 
user environment. The user environment is 
provided by the object classes that happen to 
be defined. The system, for example, pro- 
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vides security mechanisms by guaranteeing 
object integrity through atomic events and 
privacy of an object’s contents. The actual 
securit,y policies are provided by the objects 
that exist. We are therefore still concerned 
with the same old issues, but we must con- 
sider them in a different order. 

The virtual machine that we provide must 
give the illusion that all objects are present at 
any time, and that they are always ready to 
spring into action according to their 
prescribed behaviour. Objects must be reli- 
ably backed-up onto stable storage, so that a 
consistent state of the system is recoverable 
after a disaster (a system crash, power 
failure, etc.). In order to accomplish these 
tasks, we require the aid of a number of sys- 
tem objects: 

The event mancLger is responsible for 
scheduling and executing events. Objet t 
rules may be compiled or interpreted. In 
either case, the event manager must keep 
track of the busy and sleeping objects. When 
events take place, it must determine whether 
other events must be run, or whether waiting 
events must be restarted. 

The object manager is responsible for 
reliably backlmg-up objects, for retrieving 
them from stable storage, and for keeping 
track of oids. It should especially provide 
cheap, rapid access to objects that are 
already in memory. 

The memory manager is an object that 
owns all of virtual memory. Memory is carved 
up for creating new objects and for executing 
events. The space is used for instance vari- 
ables and temporary variables. Object rules, 
whether compiled or interpreted, are stored 
as objects too (just as executable programs in 
other domains are stored as files). It is also 
responsible for cleaning up deallocated 
memory. 

Aside from these three system objects, it 
will be necessary to have a number of “device 
driver” objects for talking to the outside 
world. “The outside world” includes not only 
i/o devices but also network connections to 
other object-oriented systems. Objects are 
allowed to migrate to other machines that tire 
willing to run them. 

Since many of our implementation issues 
are well-understood problems, we shall not go 
into too many details here. Rather, we shall 
concentrate on a few of the problems that are 
peculiar to objects. 

3.1. Object Management and Stable Storage 
For events to be serializable and atomic, 

we must be able to store objects reliably and 
update the stable versions atomically. 
Atomic transactions are a familiar notion in 
database management systems, and we can 
use similar techniques here. Reliable storage 
in a similar context is also discussed in 
[MOSSES, Verh?8]. We will briefly describe a 
scheme for managing stable objects. 

We first allow ourselves to think of two 
versions of the object database. The first, is 
the stable version reflected in stable storage. 
We assume that stable storage itself is reli- 
able (or rather, we do not concern ourselves 
with the details at this level). There is a 
second version, the current version of the 
object database, which resides in virtual 
memory. The current version only contains a 
number of busy objects which are currently 
of interest. In the event of a crash, the sw-ap 
area of stable storage is naturally discarded, 
and the system uses the stable version of the 
object database as the last consistent state. 

The object. manager knows which objects 
are busy and which are not. Oids for busy 
objects can be immediately resolved to 
memory pointers. Ilomnunt objects, which 
exist only in stable storage, must be activated 
by bringing them into virtual memory. 
Events may be running, blocked, waiting or 
committed. The objects participating in an 
event are all busy objects in virtual memory. 
Changes to objects caused by a running event 
are made to the busy versions of the object 
only. 

In addition, the side-effects are stored 
separately in an event log for that event. As 
long as the event is running, the busy objects 
are locked. Objects not actually altered by an 
event will only need read locks. The type of 
locks required car be deterrnined at compile 
time. If the event is waiting, it may be can- 
celled, and the sideeffects rolled-back. 
Side-effects should be stored incrementally, 
so that it will be possible to partially roll-back 
an event to a desired point. Rather than 
actually un-doing actions, the simplest way to 
roll-back time is to restore copies of altered 
objects saved before the changes were made. 

Until the event commits, the altered busy 
objects are not formally part of the current 
version of the object database. If the event 
commits, then the event log is committed. 
and the locks are released. At this point, the 
side-effects are part of the current object 
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database. A queue of current logs may be 
maintained as events commit. Any unlocked 
busy object can thus be recovered from the 
stable version plus the current side-effects. 

The next order of business is to update 
the stable version of the object database. We 
accomplish this by partitioning the stable 
version into two parts. The first is the stable 
object repository, and the second part is the 
stable event log queue. Current event logs 
must be written out atomically to the stable 
event log queue. (An atomic write of a single 
event log is not too difficult, if the hardware 
will support single atomic block writes.) Once 
an event log is safely written out, it is no 
longer a current log, but a stable log. One 
may then begin updating the objects in the 
stable object repository. If a crash occurs at 
any point, recovery begins by updating the 
stable objects from the logs in the stable 
event log queue. The updates already made 
before the crash are simply redundantly per- 
formed. The old current logs are lost, and 
execution continues from the stable version. 

Note that the event logs are intended pri- 
marily as a recovery mechanism, and need 
not normally be used for updating objects. 
Instead one might use the busy version of an 
object in virtual memory to re-write the 
stable version (provided that there are no 
other pending current side-effects on that 
busy object). 

Writing out current logs and performing 
the actual updates can be done when the pro- 
cessor is otherwise idle. Only the order of 
updates needs to be preserved. In addition, it 
is not strictly necessary to perform all the 
updates that occur in the events. Objects 
that experience a burst of activity could be 
updated when the activity dies down. Only 
the last current version needs to be written 
out. This corresponds to merging a sequence 
of current logs together before writing out a 
single stable log. 

3.2. Event Searching 
Events are atomic, and take place 

between a collection of participating objects. 
The participants must enter into a mutually 
agreeable contract before the event commits. 
No side-effects are visible unless the event 
commits. 

It is easier to see how one might imple- 
ment event searching and execution by using 
an analogy. Consider that events, while they 
are executing, take place in a “board-room”, 

behind closed doors. An initiator object with 
a top-rule starts the event. As sub-rules dre 
successfully invoked, new participants niay 
enter the room, but none may leave (two- 
phase locking is used to maintain serializabil- 
ity). If at any point in time some rule fails 
(i.e. a trigger condition fails), then negotia- 
tions come to a halt. The event does not 
abort, but the participants are in a stalemate. 

As long as we stay behind closed doors, we 
cannot break the stalemate. What we need is 
for at least one participant to leave the room, 
take part in some other event that changes 
its state, then return and attempt to restart 
negotiations. Since we have, in general, no 
way of predicting exactly what is needed t.o 
break the stalemate, we allow all of the parti- 
cipants of a waiting event to leave the room 
and do something else. Note that no deadlock 
can take place, because the stalemate 
automatically releases -- or rather, “softens” 
-- the locks held. 

An object that leaves a waiting event 
must, however, be rolled-back to the state it 
had before the uncommitted, waiting event 
was started. If it returns to that event, the 
event itself is rolled-back, and the returning 
participant re-enters in its new state. Note 
that waiting events are not actually rolled 
back until they are restarted, since we do not 
know in advance when a participant leaves if 
it will find an event. that commits or not. 

A clear possibility is that an object may 
end up in several waiting events, all 
corresponding to different possible futures. If 
all of them would effect some state change on 
that object, then at most one of them may 
eventually commit. 

For each object, then, we may maintain a 
queue of waiting events. Every new event that 
it joins will eventually either wait or commit. 
If it waits, the event is added to the queue. If 
the event commits, then the object must 
return to each of its old waiting events, roll 
them back to its entry point, and r-e-evaluate 
the event from that point. 

Running events, including restarted wait- 
ing events, may block if a participant is una- 
vailable. If the desired object is part of w,3it- 
ing event, it is simply reclaimed, of course, 
but if it is part of some other running event, 
then the first event blocks. The first event 
continues when the second either commits or 
waits. If the second event also blocks, then 
the process is continued. Obviously, if an 
event is blocked upon a request of a partlci- 
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pant of another blocked event, then we must 
check that no deadlock exists by following the 
chain either to a truly running event (no 
deadlock), or to a blocked event that we have 
already seen (deadlock). Deadlock can be 
resolved by rolling back some blocked event 
far enough to release participants needed 
elsewhere. 

There is, in general, no way of knowing 
what may cause a waiting event to continue 
and commit. We do know that it is necessary 
(but not sufficient) for one of the participants 
to leave, change state, and return. The 
implementation could simply attempt to res- 
tart waiting events whenever participants 
change state elsewhere. We can, however, 
improve on this. We know that the partici- 
pants of a waiting event are stalemated 
because a single trigger condition has failed. 
We can also trace the arguments of the failed 
condition to all the relevant participants of 
the event. For example, if the condition 
“x>y” fails, we can trace the computation of x 
and y within the waiting event to simple 
objects participating in that event. These 
objects are hot, in the sense that the event 
can only continue if one of these hot objects 
is modified. All other participants are cold, 
and can never cause the event to continue, 
even if they are altered in another event. 

Hotness is, of course, a necessary, but not 
sufficient property to determine whether the 
modification of an object can cause a waiting 
event to continue An efficient implementa- 
tion of event-searching would probably have 
to make use of (1.) event analysis along the 
lines of hotness, or (2) explicit direction from 
the programmer indicating what events may 
trigger other events, or (3) some combination 
of (1) and (2). 

4. OIS Applications 
The objects we have described are highly 

structured, persistent and reliable. Objects 
encapsulate data and operations, and they 
cannot be forged. Events involving a collec- 
tion of participating objects are automatically 
triggered, but remain atomic, requiring the 
approval of all participants. These properties 
make objects especially useful for program- 
ming 01s applications 

We shall illustrate the use of objects 
through a number of examples. 

4.1. Roles and secure objects 
Objects enable one to specify flexible 

security environments. If one is primarily 

managing documents, for example, then the 
documents can be stored as objects. Rather 
than associating documents directly with 
users, one may associate them with a set of 
roles [TsGi85]. Users play a particular role in 
order to perform certain functions. Different 
roles may be associated with the owner of a 
document, and the allowable readers, copiers 
and editors. Copies of documents may be 
associated with the same roles, and thus 
prevent information leaking “down” to 
unprivileged roles (this is a crude 
simplification of the Bell and LaPadua secu- 
rity model as described in [Land81]). 

Roles themselves are objects, so it is pos- 
sible to divorce the intelligence regarding 
who is allowed to play which role from the 
actual allowable operations on a document. A 
role object performs the necessary authoriza- 
tion checks to guarantee that a given user is 
allowed to play that role. The role may 
actually store a list of user ids, or it may keep 
track of what other roles may assume that 
role. A user playing one role may then ask to 
play another role. The role objects then 
either act as a filter for operations on owned 
objects (such as documents), or, more likely, 
they authorize users for a single event ses- 
sion, or activity. 

Capabilities may also be represented by 
objects. Since objects are unforgeable, one 
need only specify precisely which objects (or 
objects playing what roles) are allowed to 
create new capabilities. Capabilities may be 
used as currency, allowing an object to take 
part in an event or an activity a limited 
number of times. Capabilities may also be 
used as licenses to create other capabilities. 
One could acquire a capability when playing a 
certain role, and have to give it up when leav- 
ing the role. 

Foreign objects arriving over a network 
can be filtered by an “immigration office”. 
Foreign objects initially have no acquain- 
tances and no capabilities. Such objects have 
to be explicitly sponsored by local objects 
who can grant them capabilities. A foreign 
object can then take part in some limited 
events with a few acquaintances it is intro- 
duced to. Alt.ernatively, it can be accepted 
fully as a naturalized citizen and be granted 
all the capabilities of local objects. 

4.2. Documents 
Since objects have a permanent structure 

associated with them, it is somewhat easier to 
think of documents as being non-linear. One 



may exploit the fact that objects have a 
hierarchical decomposition when designing 
and implementing document types. Further- 
more, since we are specifically concerned 
with persistent objects, there would he no 
need to “load in” a linear representation of a 
hierarchically structured document in order 
to use it. 

There are a number of possibilities which 
would benefit from an object-oriented imple- 
mentation. An object-oriented document 
model would, for example, easily support 
views. One may view an abbreviated docu- 
ment, or one may ask to see just the main 
semantic components and their names 
(chapter and section headings). Documents 
such as manuals could even dispense with any 
basic linear interpretation at all. Pointers to 
articles within the document can be stored at 
arbitrary locations, so that one may peruse 
the document in one’s order of interest 
rather than in an order imposed by the 
author. 

One would similarly be able to store 
several versions of a document as a single 
object. Different versions can then be called 
up as separate views. Components of the 
document would simply need some additional 
information indicating what versions of the 
document they apply to. Since the display of 
a document is not tied to its representation, 
this information is easily hidden. 

Formatting information can also be asso- 
ciated with the various components of the 
document without having to, say, embed for- 
matting commands in the text. It would also 
be possible to store the raw text and the for- 
matted portions in the same object,. One 
could then take advantage of the fact that 
small local changes generally do not affect 
how the rest of a document is formatted. 
Usually only the location of page breaks 
changes. The formatted segments could also 
be useful in the presentation of ad hoc views. 

4.3. Mailing 
Mail messages encoded as objects suggest 

a number of interesting possibilities. First of 
all, mail messages can package other objects, 
without having to translate them into ascii 
text, as is the case in UNIX. A mail message 
might simply cons&t of some header informa- 
tion, and a collection of objects to be mailed. 

Who is allowed to mail what to whom may 
be incorporated into the operations of the 
roles that users are allowed to play. Users 

playing certain roles, for example, m,iy only 
be able to mail or read specific kinds of mes- 
sages. In this way, rnail distribution can be 
controlled and limited [TsGi85]. 

So-called “intelligent messages”, or imes- 
sages [Hogg85] can be implemented using 
objects. Messages of this type enter into a 
dialogue with their recipient when the user 
attempts to read the mail. The dialogue itself 
may be modified by the responses received, 
and the message may automatically forward 
itself to another user based on the informa- 
tion the user supplies. Such messages may 
be used either to distribute responsibilities or 
resources to a set of users, or to track down 
information accordingly to a dynamically 
modified plan. 

Imessages would be instances of a single 
imessage object class, rather than each imes- 
sage being programmed separately as a 
different class. Typically, imessages have a 
list of questions to pose or statements to 
make, a repository for the responses col- 
lected, a set of variables encoding its 
knowledge, and an eventual return address. 
When received, it must initiate a dialogue. 
Each response is evaluated, possibly stored, 
and an action is taken. The action updates 
some variables, and causes more informatlon 
to be displayed, or closes the dialogue and 
chooses a new recipient. 

The dual notion to imessages are 
automatic procedures that process mail upon 
its arrival [HoNT85]. In this case we would 
expect the messages to be passive, and to 
accept the actions of the automatic pro- 
cedures. The automatic triggering of these 
procedures is easily captured by the object 
triggers monitoring incoming messages. Fil- 
ing of messages into different “trays” accord- 
ing to subject or sender can be handled this 
way. Automatic procedures may also alter 
the contents of messages and possibly mail 
responses to the original sender. A totally 
automatic “user” can be specified that takes 
actions based on the mail it receives. An 
example would be an inventory administrator 
that answers queries, accepts orders, notes 
arrival of new stock, and issues warnings if 
stock falls below some threshold. 

4.4. Knowledge collection 
As a final example, we consider kna’s 

[Tsic85]. A k no is cross between an imessage 
and a worm program [ShHu82]. A kno travels 
through an object system, or a network of 
object systems, collecting and processing 
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information. Unlike an imessage, it need not 
be represented as a mail message, nor need it 
ever make its presence felt to most users. Of 
course, for kno’s to have the power to exam- 
ine information at various sites, they must be 
armed with the right capabilities. An unwel- 
come kno may be turned away (or destroyed) 
when it arrives at a new site. 

Objects, when they die, can disappear 
entirely, or they may give up their contents 
to an archive, or database of dead objects. 
The information contained in the original 
object is then still accessible, but the former 
object is stripped of its behaviour. These 
databases of dead objects constitute one suit- 
able domain for kno’s to gather information 
from. 

A kno has the power to sit and wait for 
some event to happen before it begins to do 
its work, or decide what to do next. Monitor- 
ing of existing objects by a foreign (but wel- 
come) kno can be completely transparent in 
an event-driven object world. 

Kno’s may also be thought of as distri- 
buted queries. A user query may initiate a 
number of kno’s that travel from site to site 
(or from database to database) collecting 
information. Kno’s may have the ability to 
clone themselves, if there is a choice of possi- 
ble continuations. Like imessages, kno’s can 
travel according to fixed routing, dynamic 
routing, or even random routing (for sampling 
purposes). Kno’s can automatically return to 
home when they have gathered a certain 
amount of information, or they may be “har- 
vested” by other kno’s sent out to collect 
them at an independently decided time. If 
kno’s are never harvested, we may allow them 
to die of old age or malnutrition. 

5. Conclusions 
We are currently refining the Oz object 

model and its implementation. The succes- 
sor, Son of Oz, is intended to be a general pro- 
gramming system capable of supporting 01s 
applications. Son of Oz is similar to other 
object-oriented languages, such as Smalltalk. 
The main difference is that Son of Oz provides 
for automatically triggered, autonomous 
events. The significant features are: 

1. Objects provide hierarchically structured 
abstract data types; an objet t 
encapsulates data and the permissible 
operations on it. 

2. Events are automaticall), triggered when 
pre-specified conditions become true. It 
is not necessary to explicitly initiate all 
events. 

3. Events are atomic, being a contract 
between a collection of participating 
objects. This is the primary mechanism 
for ensuring the integrity and security of 
objects. 

4. Objects are persistent data, residing in a 
stable and reliable virtual memory. 
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