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ABSTRACT 

This paper presents some experimental results on the 
performance of distrihuted join algorithms in a local 
nctwol-k. Eight different join methods have been imple- 
mented in an experimental distrihuted system, the Cry- 
seal multicomputcr, and tested for join queries with a 
variety of relation sizes, join selcctivitics, and join 
column value distributions. The results obtained indi- 
cate that pipelined join methods outperform sequential 
methods over a wide range of join queries. II was also 
found that the communications costs in a local network 
environment arc not a dominant factor with rcspcct IO 
performance, and that shipping a whole relation from 
one site to another is not an unreasonahlc dccison as 
long as it is done in the framework 01‘ pipelined algo- 
rithms. l’wo pipelincd variants 01‘ a centralized nested 
loops join algorithm (with an index) wet-c found to per- 
form well lor many oi ~hc queries tested. 

1. INTRODI’CTION 

In relational datahasc systems, qucrics arc typically 
posed in a high-lcvcl, nonprocedural query language 
hascd on the relational calculus such as QUEL or SQL 
[UllmX2]. It is the task of Ihc query optimizer to 
decompose the query into primitive relational operations 
such as selection, prqjcction and join. The join opera- 
tor has attracted a great deal of research intcfest since 
the costs of availahlc join methods tend to vary widely 
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with the characteristics of the data and the availahlc 
access pallis IBlas76, Seli79, DcWiX2a, BrahXJ, 
DcWiX51. The join operation and join orders have also 
heen the primary focus of many query optimization 
algorithms for centralized database systems [Wong76, 
Seli791. The distrihution of data in distrihutcd dabhasc 
syslems l‘urrher incrcascs the complexity and tradeoffs 
associated with the ,join operation. A great deal of 
research work has gone into the problem of developing 
distrihutcd query processing algorithms, particularly 
into finding good methods for performing distrihutcd 
joins. A new operation, the semijoin, was introduced 
as a way 01’ minimizing the communications cost 1b1 
pcrl’orming distrihutcd joins, and a number 01. rcscarch- 
crs have addressed 111~ problem 01. finding optimat scm- 
join scquenccs lor various classes of’ queries (BcrnXla, 
BcrnXlh]. A related method, known as “leech the 
inner cuplc as nccdcd”, is among the algorithms used 
for processing distributed joins in System R” [ScliXO, 
LohmXJ]. 

Along with the dcvclopmcnt 01. new ,join algorithms 
has come rcscarch on 01~ perlormancc 01’ the various 
algnrithm~. Four methods for processing a general 
sckc~ project-join qucrv in a centralized datahasc sys- 
tcm wcrc’ invcstigatcd analytically and their pcrlormance 
was compared in [Blus76]. Thcv l’ound III~I, in most 
cuscs. cithcr the ncstcd loops algorithm OI the sort- 
merge algorithm ol‘lcrcd the hcst (or close IO the best) 
pcrlormancc. Other researchers have anal~zcd altcrna 
tivc centralized join algorithms as well [ Nich76, j ao7X, 
l’ao79, BrahX41. Thcrc have’ also hecn a Iw studies 01’ 
distrihutcd qucr) processing pcrformancc issues. 
Epstein and Stonchrakc*r ICSIC~ 14 vci-sions 111~ 01. Distri- 
hutcd INGRES query processing algorithms IEpsrXO]. 
Their results indicated that cxhaustivc search performs 
consistently hctter than limited search, that dynamic 
optimization is henclicial, and that using a “worst cast” 
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estimate I’or intermediate relation sizes is overly pes- 
simistic. Some simulation results on the performance 
of dif‘l’erent ,join strategies for a distributed database sys- 
tem hased on a star computer network were presented in 
[K(ersX2], and the effects of join selectivity and com- 
munications speed on the optimal algorithm choice were 
investigated in this context. Some results on query 

processing in a locallv distrihuted system were reported 
in [ PagcR?], where query processing costs for the 
INGRES database system were analyzed in the context 
of the LOCUS distrihutcd operating system. 

Compared to the number of‘ distributed query pro- 
cessing nlgorirlz~n papers in the literature, relatively i’ew 
papers have addressed the perforrnar7cc 01‘ distrihuled 
join algorithms. This is one of the ma.jor motivations 
which lead us to periorm this study. We have implc- 
mcnted eight different distributed two-way join methods 
in an experimental locally distrihuted computer system 
31 the tinivcrsity of Wisconsin. The join methods 
examined in our study include methods hascd on both 
traditional joins and semi.joins using several diflercnt 
access methods and daIa transrer strategies. ‘The work 
rrcportcd here dil‘l’er-s from most of the work mentioned 
ahove in the sense that it is an etnpiricnl study - we 
present measurements of actual response times, disk 
activity, and message transfers for the ,join algorithms 
that we consider. 

The organization of the remainder ot‘ the paper is 
as l’ollows. The eight different join algorithms that we 
studied are dcscrihed in section 2. Section 3 provides 
an overview of our experimental environment. Our 
experiments arc dcscrihcd and the results are presented 
in Section 4. Section 5 summarizes what we have 
learned lrom this study and its influence on what WC 
plan to do in the luturc. 

2. DISTRIBIITH) JOIN METHODS 

Given an cqui-join query &,[A= B]/?, in a distri- 
huted datahasc system, where R, and Rh reside at (dif‘- 
Icrcnt) sites S, and Sb, respectively, there arc a 
numher of distrihutcd join methods availahlc ior pro- 
cessing it. Considering all of the possihlc combinations 
01. access paths, local processing algorithms, execution 
paradigms, etc., would lead IO a prohihitivcly large 
search space for an empirical investigation. ‘Thus, to 
r-cducc the numhcr of experiments necessary we 
categorize distributed join methods along three dimcn- 
sions and consider the fbllowing options in each: 

( I) General approach - “traditional” join methods 
versus semi.join-hused methods. 

(2) Execution paradigm - sequential versus pipelined 
execution for the pair of sites involved. 

(3) Local ,join processing - sort-merge versus nested 
loops (with an index). 

In the remainder of this section we elaborate on 
each of’ these dimensions, and we then present descrip- 
IiOnS Of‘ OUT implementations of eight join algorithms 
that are produced hy combining options from these 
dimensions. 

2. I. Join Versus Semijoin 

The semi.join operator was introduced as a pr-im- 
live for processing distributed queries with less data 
transfer than traditional join methods [ Bern 79a, 
Bern79h, BernXla, Bernslh]. Using the scmi.join 
method, only the join column values of one relation and 
then the matching tuples of the second relation need IO 
be translerrcd hctwccn the two sites. II‘ intcrsitc data 
transl’er is expensive, the join field width is relatively 
small compared IO the width of an entire tuplc, and 
there are not many matching tuplcs, the USC of semi- 
joins can result in a signilicant savings. In local area 
networks, howcvcr, the daIir transicr rate hctween sites 
is much higher- - on the same order ol’ magnitude as 
that hctwccn memory and a local disk. It is question 
able whether or not scmijoins will hc hcnclicial in such 
an environment. as using them requires multiple scans 
01‘ one of the source relations and thcrclorc mot-c’ disk 
acccsscs. 

2.2. Sequential Versus Pipelined Prowssing I 

When an operation at a site rcqucsts remote datn, 
as in a distrihuted join, a choice exists - the two sites 
can work in either a sequential lashion or in a pipclincd 
lashion. II’ the sites work sequentially, thc silt recci\‘- 
ing data will not hcgin its processing until all 01 the 
required data has arrived. In the pipelined case, pro- 
cessing will hegin at the receiving site as soon as the 
lirst tuplc or packet of data has arrived. One ad\rantage 
01. the pipelined approach is its parallelism - the two 
sites work in parallel, so the elapsed time for the query 
will hc reduced in proportion IO the amount 01 over- 
Iappcd processing. Second, and perhaps more 
important, is the iact that the r-ecciving site doesn’t acttr- 
ally store the incoming data in iI temporary rcl;tlion, 
thus saving the time and disk iiCCCSSCS rcquircd IO store 
and then rc-retricvc the data received from the rcmolc 

site. 

2.3. Sort-Merge \-ersus Nested Loops Join 

Since any distrihuted join involves local process- 
ing, (hc ,join algorithm and associated ~CCCSS methods 
are still important iactors in a distrihuted datahasc S~S- 
tern. For centralized joins, it was found in (Blas7h] 
that, except for very small relations, 111~ nested loops 
@in or sort-merge ,toin methods were always optimal 01. 
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IICHI optimal. WC thus chose thcsc two local join 
methods IO implement for our distrihutcd join experi- 
ni~nts. l-‘or rhe nested loops join method, we assume 
the availability ol a B+ tree index on the join column 
ol the inner relation, as would likely be the case in Sys- 

tem R * [SeliXO, LohmX4].t If the inner relation is 
shipped IO the outer relation’s site, a B-t- tree index is 
constructed for the inner relation at tbe outer site. 
Bccausc IIIC WiSS system ]Chou83] does not support 
clustered indexes on non-unique (i.e., non-key) attri- 
hu~cs, and in addition it is not always reasonable IO 

assume tl1a1 111~ join column will have a clustered index 
availahlc, oui implementation uses secondary (i.e., 
non-clustct-ed) indexes. 

2.1. Join Algorithm Details 

As described earlier, WC have implemented eight 
join algorithms for our study. The algorithms, classi- 
fied according IO the three dimensions presented ahove, 
are SJSM, SJNL, PJSh4, PJNL, SSSM, SSNL, PSSM, 
and PSNL. For the first letter, “S” stands for scquen- 
tial and “P” stands for pipelined. The second letter, “J” 
or “S”, is used to represent “traditional join” versus 
semi.join. The las~ two letters indicate either sort-merge 
(“SM”) or nested loops (“NL”) join. In the remainder 
of this section we describe each of these methods in 
turn. In our ~esls, site S, initiates the join query and is 
hoth the join site and the result site. 

2.4.1. SJSM and SJNI* 

The sequential join methods SJSM and SJNL arc 

the simplest of the distributed join methods. ‘The remolc 
relation Rh is shipped IO join site S, as a whole. The 
two relations arc then joined at site S, using either the 
sort-merge method (SJSh4) or the nested loops method 
(SJNL). For SJSI\4, the two relations are each sorted al 
their local sites first IO increase parallelism. For SJNL, 
a B+ tree index is built on the Join column 01‘ 111~ 
received relation at site S, before performing the local 
join 

2.4.2. PJSM and PJNL 

Like SJSM and SJNL, the PJSM and PJNL algo- 
rithms transler the whole relation Rh from site Sb IO 
site S,. The difference is that Rt, is not stored as a tem- 

porary relation at site S,. Instead, tuplcs of Rt, are 
joined with R, tuples on the Ily as they arrive. Using 
the PJSM method, hoth relations are sorted ftrst. 
Then, when a group (packet) of Rb tuplcs arrives at site 
S,, a scan cursor on R, is incremented to lind match- 
ing tuplcs. hllatchcs are merged with the tuplcs from 

’ The cost of a nested loops joln without an index for relations 

of reasonable sue is usually prohibitive [Bltt83], so we do not con- 
vdet- this posibiliry. 

the Rb group and wrillcn to me result relation. The 
scan cursor is then reset IO the its las~ starting point in 
R, and the process is repeated for the next group of Rh 
tuples. In the PJNL case, since no temporary relation 
for Rb is stored at site S,, the local relation R, always 
serves as the inner relation and the remote relation Rb 
serves as the outer relation. Both PJSM and PJNL can 
be viewed as distributed executions ol‘ centralized join 
algorithms. 

2.4.3. SSSM and SSNL 

SSSM and SSNL are two implementations of the 
semi.join method. One variation in our implementation 
is that the join column R, .A, which is sent from site 

S, to site Sb, is not stored on disk at site Sh - the 
incoming values are processed on the lly as they arrive. 
Similarly, the relation R,‘, which is translctrrcd hack IO 

site S,, is processed on the fly as it arrives a~ S, instead 
of being stored thcrc as a temporary relation. Altl~ough 
there is therefore some limited pipelining involved in 
111c SSSR4 and SSNL execution strategies, we still 
categorize Ihem as being sequential as compared to the 
truly pipelined PSSM and 
dcscrihcd next. 

2.4.4. J’SSM and PSNL 

The pipelined semi.join 
“i‘elch lhc inner tuple as 

PSNL. algorithms IO he 

methods, rel~crrcd to as 
needed” in System R’ 

(ScliXO], were the most complicated join methods IO 
implement. Relation R, is scanned in a tuplc-hy-tuple 
manner (conceptually), and ,join column values R,.A 
are sent 10 site S,. Upon receiving an R, .A value, site 
Sb sclec~s ~hc matching tuplcs from R, and sends them 
to S,; a null message is sent if‘ there arc no matching 
ruplcs. l‘hc~c tuplcs arc then merged with 111~ 
corresponding tuplc 01 R,,. which is wailing lor them 

tslill in main memory). Our implcmcnliition actually 
processes R, tuplcs in one-page hatches, so one hull’er 
page is allocated t.or keeping IIIC mplcs Iron1 R,, 

2.5. Discussion 

The eight distrihutcd join methods dcscrihed in this 
section represent a range 01‘ possihlc methods. The 
sequential join methods, pipelined join methods, and 
pipelined semijoin methods are all among 111~ methods 
used System R ’ ]SeliXO, LohmX4], althou~lt 0111. implc- 
mcntation may differ in minor- ways. 01 ~hcsc methods, 
sequential join methods arc attractive l.or tltcir simplicity 
and the pipelined methods arc attractive hccausc whey 
allow more concurrency and avoid the cost 01‘ scoring 
and retrieving tuplcs from a temporary relation. T‘hc 

pipeline methods, of course, require some synchroniza- 
tion of the two processing sites (in the form of I‘low con- 
trol, so the receiving site can indeed avoid having IO 



store incoming luplcsl. One IimiUon 01‘ PJNL (the 
piplined ncsled loops join method) is Lhar R, musl be 

the inner rclalion, regardless of how its size compares 
10 1ha1 01. Rb, as the inner relation has lo be available 
for multiple scans. The semijoin methods are attractive 
hccause they reduce communications COSIS. The main 
difl‘crcncc hecwecn the pipelined and sequential semi.join 
mclhods is related IO duplicates - since the pipelined 
version simply scans R, insread of prqjecting on R,.A, 
il will send duplicate ,join column values if they are 
pr-cscni in R,: however, the sequential semijoin 

method requires multiple scans of R,, increasing the 
local processing COSI. Clearly, there are tradeoffs 
;rmong all 01’ thcsc algorithms - these are the tradeoff’s 
10 hc empirically invesligdtcd in Section 4. 

3. THE EXPERIMENTAL TESTBED 

Figure 3.1 depicls the tcsthcd sysrcm used lor our 
pcrt‘ormancc sludy. A collcclion of ICSI programs wcrc 
wrillcn 10 implement (hard-wired) dislrihutcd join 
queries using the diff’erenl mclhods dcscrihcd in seclion 
2. Thcsc programs access a synrhctic daIahasc, ~hc 
Wisconsin datahasc [BirlX3], via WiSS (Ihc Wisconsin 
Sloragc Syslcm) [ChouX3]. The programs run on a 
pair- 01. node machines irom the Crystal mullicompulcr, 
an experimental dislrihulcd compuIcr sysrcm [ DeWiX4j. 
hlonilor programs run on u \‘AS/Unix hosl machine IO 
inilialc IC’SI program cxcculion and IO collcc~ pcrlor- 
mance slrilis~ics afrcr lhc lesl programs Icrminale. Fol 
communications hcrwecn node machines, or hclwecn 
no& machines and ~hc host, wc used a Crystal corn- 
municarions packasc called rhc Simple Applicalion 
Pack;rgcs 154P1. In (his scclion WC’ hriclly descrihc each 
01. lhcsc componcncs 01’ Ihc syslcm. 

NODESa 
1 

HOST I--------- 

NODESb 
--------- 

Figure 3.1: Distrihuled Join Method Tesrhcd 

3.1. The Crystal Multicorn puter 

The Crystal multicompulcr [ DcWiX4] currenlly 
consists of 20 DEC V.4>( I l/750’s interconnected via a 
IO-Mb/see Proleon token ring network. The ring ncl- 
work is also connected 10 several of the Computer Sci- 
ence Department’s research VAXes, each of which can 
serve as a host machine. Crystal multicompuler users 
can claim a number of node machines as a parlilion. 
The partitions of dift’erenc users in Ihe system arc logi- 
cally isolated from each other - each partition is hasi- 
caliy a virtual distributed cornpurer syslem. For OUI 
distributed ,join algorithm experiments, WC used a parli- 
tion of two node machines with 2 megahytcs memory 
and 160 megabyte Fujitsu disks to create a distrihutcd 
database system testbed. 

There are several levels of software availahlc on 
Crystal. WC used ltio of Ihc IOWCSI levels, lhc Cryslal 
Nuggci and the Simple .4pplicalions Package (SAP), 10 
avoid unnecessary ovcrhcad. ‘l‘hc Nuggc~ is a simple 
communicarions kernel thal resides permanenlly on 
each node machine, providing low-level mcssagc- 
passing primilivcs and cnlorcing ihe logical isolalion of 
parlilions. SAP is a se1 of subroutines thal sil on lop of 
111~ Nuggcl, providing hufl’crcd communications using 
I~O qucucs, one lor incoming messages and olhcr lor 
oulgoing mcssagcs. II provides a somcwhar higher-level 
message I‘acilily lor our applications. 

3.2. The \l’isconsin Storage System 

‘fhc Wisconsin StOl-iigC Syslcm, or WiSS. is an 
access-mcihod Icvcl dalii sloragc syslcm thal can run 
eilhcr on lop 01 linix OI- directly on rop of‘ a “raw” disk 
IChouX3]. For our expcrimcnls, ir was inslallcd on ~hc 
Crystal node machines and acccsscd Iheir disks directly. 
WiSS manages devices, deals with physical sloragc allo- 
calion, manages hul‘lcr pages, and provides a primilivc 
concurrency conll-ol mechanism. AI its highest level, 
WiSS implcmcnls lhc access melhods of scqucnlial 
scan, index scan, and long data iicm scan. This level 
also provides routines lor crcaling and destroying liles, 
indcxcs and long daU iccms. Some cxplicil control OVC’I- 

scans, such as ~hc capuhiliry 10 rcscl a scan cursor 
(search pointer,, is also provided. Our ICSI programs 
inlcrfucc with WiSS a( this Icvcl. 

3.3. The kl’isronsin Datab;tse 

TIIC Wisconsin Dalahasc was designed lor USC in 
systematically hcnchmarking rclalional daIah;isc S~SILWS 

IBitlXi]. ‘l’hcrc arc four basic rclaiions in ~hc datahusc, 
called “ihousiup”, “twoihousiup”, “fivcthouslup”, and 
“lcnthouslup”. Thcsc rclaiions conrain 1000, 2000, 
5000, and 10,000 luplcs, rcspecrivcly. Tupl~‘s in all 01‘ 
lhesc relations arc’ 1X2 hytcs long, each consisling 01. 
thirteen 2-hyrc integer ailrihutcs and three 52.hyic 
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string attrihuies. All ol. the integer attributes have uni- 
formly distrihuicd WIUCS, hui the range of their distri- 

butions varies in order IO provide for different selectivi- 
tics and projcctivities. The string attributes were not 
used in our study, so we do not discuss them here. 

3. EXPERIMENTS ANl> RESULTS 

4.1. Some Considerations 

‘l’hc first problem that arose in designing our tests 
was Ihc issue of choosing an appropriale set of test 
quci-ies. In their classic study of join methods for cen- 
tralizcd database systems, Blasgen and Eswaren used a 
query char selected a suhsct of ~uplcs from IWO relations, 
joined these togcthcr, and finally prqjectcd out a subset 
01. the resulting lields as a general query for their ana- 
lyses [Blas7hj. Our initial inclination was to do the 
same for our study of distributed joins. However, since 
WC arc more interested in the effects of data distribution 
on the various join options, and adding the two pre-join 
selections and a post-join prqjcction would only increase 
the fraction of the execution time due to local proccss- 
ing, wc decided IO USC’ the simple two-site join of Figure 
4.1 for our ICSI queries. The sizes of relations R, and 
Rh, the size’ of the result relation R, and the value dis- 
trihutions of the join attrihutcs are varied in our cxpcri- 
mcnts IO ohservc their respcctivc cffccts on pcrfor- 
mance. 

range a is Ra at Sa 
rang b is Rb at Sh 
rclrieve into R(a.all,h.all) at Sa 
where (a.A = h.B) 

Figure 4.1: Gcncral Form of the Test Query. 

Our choice 01 source’ relations fnllowcd ~hc metho- 
dology presented in [ BittX3]. Thcrc are several con- 
siderations hcrc. First, relation sizes should he large 
enough to he realistic, The basic relations used in our 

tests have 1,000 ~uplcs and 10,000 ~uples (the 
“thoustup” and “tenthoustup” relations of the Wiscon- 
sin database), occupying ahout 4h and 4% pages, 
respcctivcly. Second, random attribute value distrihu- 
lions arc desirable in order IO provide an unhiased lrcal- 
ment of each of the join methods. This was particularly 
important in the sort-merge ,join cast. Third, in order 
to insure that the results of the various IC‘SIS were nol 

hiased hy preceeding ones, we had IO ensure that no lesl 
query was likely IO find useful pages sitting in the huffcr 
lrom its predecessors. We used a technique described 
in [BittXJ], where two topics of source relalions arc’ 
maintained (at each site in our case), and allernale 
queries USC allernatc copies of the sourer relations. 

Another important decision for our study was ihc 

choice of an appropriate set of performance metrics and 
a reasonable measurement approach. For our cxperi- 
ments, the elapsed lime of a query was the main metric 
measured. This time is defined as the time interval 
heginning when site S, initiates the query and ending 
when the result is completely stored at site S,. The 
Crystal Nugget provides a timing procedure that is 
accurate to the nearest 10 milliseconds; this procedure 
was used for our elapsed time measurements. For each 
query, we also measured the number of disk accesses 
performed and the numher of messages sent. Our disk 
access measurements were taken using a special version 
of WiSS that is instrumented IO trace disk operations. 
For each disk access, the start and completion times 01 
the access arc recorded. An analysis of the trace 
records from our experiments indicates that an avcragc 
disk access in our test environment takes ahout 25.5 
milliseconds (for a 4K-byte page). To measure network 
traffic, WC’ counted messages in our own communica- 
lions intcrfacc routines. To measure the actual mcssagc 
send and receive times, WC ran scparatc (csts IO send 
and rcccive a large numhcl- of sin@-packcl “null” mcs- 
sags hctwccn IWO nod, machines using the same corn- 
munications intcrl.acc routines used lor our ICSI queries. 
Our results indicate char ~hc avcragc mcssagc translcr 
time is ahout 1h.h milliseconds (IOI- a 2K-hytc packet). 
Finally, while wvc‘ would also lihc IO l~avc measured ~hc 
CPU time used hy OUI- ICSI qucrics, this was noi easily 
done 81 the level al which our expcrimcnts ran (i.c., 
stand-alone on Crystal nodes). 

3.2. The Experiments and Results 

We dcsigncd ICSI qucrics IO investigate the effects 
of a numhcr of different factors on the pcrformancc of 
the alternative distributed join algorithms. The factors 
invcstigatcd include (hc sizes of the source relations and 
the join selectivity (i.c., ~hc rcsulc r-clarion size and the 
distributions of the ,join column values). WC dcscrihv 
our cxperimcnts and the results thaw WC ohtaincd in this 
section. First, however, wc dcscrihc the results 01. one 
of our distributed join executions in greal detail in order 
IO illusrratc the COSIS and hcnclits ol the various 
approaches and IO provide the rcadcr with usdul hack 
ground knowledge for la~cr discussions. 

1.2.1. Queq Resource Demands: A Detailed 
EXil m pk 

The cxamplc thal WC will cxaminc in this seclion 
involves a query whcrc both R, and R,,, arc “thoustup” 
relations and the result relation has 100 ~uplcs. 

Figure 4.2 shows the elapsed lime for the example 
query processed using the dill’ercnt join methods. ‘l‘hc 
elapsed time for sile S, is the actual elapsed time for IhC 
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Figure 4.4: Number of Disk Accesses. 

query, and the elapsed time lor site S, shows the par- 

tion of time during which S, was involved in the query. 
The gcncral trend is that the pipelincd join methods - 
PJSM, PSSM, PJNL, and PSNL - executed the join 
more quickly than the sequential methods did. Of the 
pipelined methods, the nested loops join method outper- 
formed the sort-merge method for this example. (That 
is, PJNL did better than PJSM, and PSNL did hettcr 
than PSSM). This can he explained hy taking a look at 
the resource demands of the various join methods. 

Figure 4.3 shows the number of messages that 
were required to transfer data hetwccn the IWO sites S, 
and Sh (mcasurcd at site S,), illustrating the communi- 
cations COSI of each of the join methods. For each of 
the traditional join methods (SJNL, SJSJ, PJSM and 
PJNL), all of relation Rb is shipped lo site S,, and site 
S, sends no data to site Sb. For the sequential semi,join 

methods (SSNL and SSSM), site S, sends its ,join 
column values lo sile Sb, and site Sb sends hack its 
matching luplcs. In our example, since the tolal size ol 
the join column values of R, is only 2000 hytcs tjusl 
cxcccding the size of a single message packet with cons 
trol information ), and the semi.join sclcctivity is 0.1, the 
communications cost 01‘ the sequential scrni.join mcrhods 
is much lower than that oi- the other join methods. 
However, it is important IO realize ~ha~.thc fractional 
communications cosl (i.e., communications cosl as a 
portion of the total elapsed time) is not high in any of’ 
the ,join methods. For the non-scmijoin mcthodh, 100 
messages wcrc required in all, yielding a total mcssagc 
lime of ahour 1 .h5 seconds. 

The mcssag<’ COSI analysis for the pipclincd semi- 
join methods (PSNL and PSSM) is a hit more compli- 
cated fbr OUI- implcmcnlation. First of all, the numhcr 
of messages for PSNL and PSSM is ai‘lcctcd both hy the 
hulfr space size that is allocated a~ site S, for holding 
R, luplcs, and also hy rhc mcssagc packet size. Our 
implcmcntation allocates onlv one hufler page (22 
tuplcsb lor scanning R,, so wc sent only 22 ,join column 
values each tirnc. That is, WC’ were limited hy hull& 
space, so lhc mcssagc packets wcrc nol fully used. 
(This may indicate that, since one messngc packet can 
hold many join column values, it may hc hcttcr in prac- 
ticc IO SCICCI the numhcr 01. R, hufb pages used 
according 10 ~hc numhcr 01. join column values that fit 
in one’ mcssagc packcl. ) Another complication involved 
in the pipelincd scmijoin mcssagc analysis is that ihc 
numhcr 01‘ messages rcccivcd hy site S, is iniluenccd hy 
the distribution ol the ,join column values. For somt 
messages sent hy S,, many values will hc rcturncd, hur 
other mcssagcs may simply say “no matches” or may 
conmin ,just a few tuples. This is in contrusi IO I~C 
sequential scmijoin case, which will totally fill all hul 
the las~ of the r-~&sages returned from S, IO S,. For all 
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Figure 4.5: Sizes of Relations in Query Groups QGl and QG2. 

of‘ the reasons cited ahove, then, the numher of’ mes- 
sages ~OI- the PSSM and PSNL algorithms usually 
exceeds the numher for SSSM and SSNL, as is Ihe case 
in Figure 4.3. (Again. however, we remind the reader 
that the message cosi is far from hcing the dominant 
cost factor here. ) 

The numher 01’ disk accesses for a join method 
depends on the numher of difl’ercnt pages accessed dur- 
ing the operation tol‘ course), hut it also depends 
strongly on the availahlc huffcr space, on the page 
replaccmont policy used hy the hulfer manager, and on 
the physical allocation of pages in each relation. Figure 
-1.4 shows the measured number of disk accesses lor the 
example query, and provides insight into the disk usage 
of the various distributed join methods. At site Sb, the 
sort-merge join methods (SJSM and SJNL) both require 
the same number of‘ disk accesses - this number is the 
sum of’the ~CCCSSCS required lor sorting relation R, and 
those needed to scan Rb once to send its luplcs to S,. 
The sort-merge scmi,join methods (SSSRI and PSSM) 
rcqulrc a similar numher of‘ disk acccsscs. For the 
nested loops join methods (SJNL and PJNL), ,just one 
scan ol- Rt, is required a~ Sb (to send it IO S, I. For the 
nested loops semijoin methods tSSNL and PSKL), the 
number of disk accc’sscs at site S, dcpcnds on the scm- 
join selectivity of‘ the query. SSNL requires somewhat 
more disk accesses at Sh hecausc it has to store the 
intcrmediatc semijoin result R, .AIA = B]R, and then 
retrieve it again to send it hack to S,. Similar trends 
are ohserved at site S,. As ohservcd in the mcasure- 
mcnts at S,, the sort-merge methods require more disk 
accesses than the nested loops methods due IO sorting. 
Among the nested loops methods, the sequential ones 
have higher disk costs than the pipelined methods due to 
the storage and retrieval of the received relation; this is 
especially true for the sequential join case (SJNL), 
which builds an index on the received relation at S,. 

4.2.2. The Effect of Relation Sizes 

Two groups of queries, QGl and QG2, were tested 
to investigate the behavior of the difl’erent join methods 
as the relation sizes were varied. QGl consists of.joins 
between two relations of the same size; the result rela- 

tion in QGl is the same size as the source relations 
(making the join selectivity simply the inverse of ~hc 
source relation size). QG2 consists of joins hctwccn 
two relations of various differing sizes; the join selec- 
tivity is kept constant in query group QG2 (a~ ;I value 01’ 
10-4). Since the two sites in these queries arc asym- 
metrical, QG2 is further divided into two subgroups 01. 
queries, QG2.a and QG2.h. In QG2.a, the site having 
the larger relation was chosen as the join site; in 
QG2.h, the smaller relation resided at the join site. (As 
hcforc, the result site is taken to he the join site l.or 
these tests.) These query groups arc listed in Figure 
4.5. 

Figure 4.h SIIOWS lhe clapscd time mcasurcd 1.01 
each of lhe QGI qucrics. For the ,join oi‘ IIIC IWO 
“tcnthoustup” relations, all ol’ the nested loops metllods 
lost to the sort-merge methods cvcn though the SOI-TV 
merge methods must sort these large relations. This is 
hccausc the amount 01 work saved through sorting sig- 
nificantlv outweighs the work requir-cd IO pcrlol-m the 
sorts. I%is is illustrated hy Figure 4.9, which shows 
the mcasurcd clapscd times and disk accc’sses for sorting 
the “tenthoustup”, “thoustup” and “hundrcdtup” rcla- 
tions, and hy the lollowing analysis. Figure -1.9 shows 
that it takes h4.89 seconds to SOI-I the “tenthoustup” 
relation, and that this involves 191 1 disk acccsscs. This 
constilutcs lhc per-join “ovcrhcad” portion 01. the sort- 
merge methods lor this cast. After sorting, the merge 
phase acccsscs each page 01’ each relation just once. ln 
contrast, Ibr the ncstcd loops join using a nonclustered 
index, the numher of disk acccsscs is much larger: this 
is due to the number- 01. data pages (randomly) accessed. 
Figure 4.7 shows this clearly. 01‘ the four ncstcd loops 
methods, three ol‘ them rcquircd more than 10,000 disk 
a~ccsscs, which is what was chosen as an upper limit 
for the numher of disk ;~~csscs traced due IO space con- 
siderations. The one cxccption was PSNL (pipclincd 
semijoin-hascd nested loops). which keeps ruplcs in 
memory at site S,, scanning R, only once. Ho:\:c\c~-, 
this method involved a large’ numhcl- of‘ disk acccssc~s ilt 
site Sb (not shown), where R, is searched using the 
index to lind the matching tuples lor the 10,000 join 
attrihute values sent hy R,. The elapsed time was 
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Elapsed 
Number of Disk Acccsscs 

Relation 
Time Total Reads , Writes 

hundredtup 0.54 13 h 7 
thoustup 6.46 196 97 99 
tenthoustup 04.89 1911 95.5 956 

Figure 4.9: Sorting Times Versus Relation Size 

mainly determined hy the processing rate a~ site Sb in 
this cast, which explains its elapsed time as compared 
lo the sort-merge methods. 

Figure 4.6 shows that, as the relation sizes arc 
decreased, the cost of sorting the relations begins to 
outweigh the cost of performing an inner relation disk 

access per outer relation tuple. With smaller relation 
sizes, Figure 4.7 shows that the rotal numhcrs oi’ disk 
accesses for the the pipelined nested loops methods 
(PJNL and PSNLj are lower than those for the sort- 
merge methods. T’hus, the pipelincd nested loops 
methods arc the hcs~ pcrlormcrs except at the largest 
relation size Icstcd lor QGl. 

Figure 4.X shows the roral number of messages 
involved in executing each of the tight Join methods 
tested. Only three curves arc cvidcnt. The highest cost 
hcrc is for the pipclincd semijoin methods, the next 
highest COSI is lor 111~ scqucntial semijoin methods, and 
~hc IOWCSI among the message costs arc the non- 
scmi,join methods. This is hccausc, in this case, the 
join is a “one-to-one join” - each ~uplc ol R, Joins 
with one and only one mplc of Rh. Thus, the use of 
semi,joins here does not rcducc rhc amount of data ulti- 
matcly transl‘crrcd IO the Join site; rather, ;I increases 
the overall mcssagc cost hy the amount of data sent to 
the rcmotc site l.rom the Join site initially. In all cases, 
given our packet transfer time of 1h.h milliseconds, the 
overall mcssagc time is ncvcr more than ahout S-10% 
01‘ the overall elapsed time. (Also, the cffccl of the mes- 
sage time is even less significant for the pipelined algo- 

rithms, as thcrc is processing going on while messages 
are in transil.) 

Figures 4.10 and 4.11 give 111~ measured clapscd 
times l.or the qucrics in query groups QG2.a and 
QG2.h. ‘l’hcsc results clearly illustrate the diflctrcnccs 

hetwccn 111~ various join methods tested. The diversity 
of rhc results can hc cxplainod hased on 111~ discussion 

of‘ the dctailcd cxamplc and analysis given in Section 
4.2. 1. II is evident from the ligurcs that the nested 
loops join methods arc more sensitive to relalion size 
differences than the sort-mcrg methods, parlicularly at 
the larger relation sizes. This is hecause the sort-merge 
methods have a fixed component of their costs due 10 
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sorling the “tcnthoustup” relation (see Figure 4.9 for 
ttlis cost). An extrcmc case is illustrated in Figure 4.11 
I’or the the pipclined join case (PJSM). With the 
smaller relation site as the join site, its cost remains 
nearly constant over the whole size range investigated. 
The main components 01‘ the cost of PJSM are sorting 
R, at site S, and scanning Rb to send it to site S,. 
(Thcsc nvo factors alone account for ahout 90% of the 
elapsed time. I The sort merge methods can never exe- 
cute laster than the time it takes to sort and scan the 
larger ol its relations. The nested loops join methods 
ar? dil‘lerent, however. When the size of one ol‘ the 
source I-clations dccreascs, the number of’ disk accesses 
deercases dramatically ibr at least one of the nested 
loops methods in both query groups, as shown in Fig- 
urc’s -1.12 and 1.13. This is due to the absence of sort- 
ing o\crhrad and the effectiveness of the index for 
smaller outer relation sizes. The winner for query 
group QG2.a is the pipelined join version of nested 
loops (PJNL). The winner for query group QG2.h is 
the pipclincd scmi,join version ol nested loops (PSNL); 
the scqucntial semi.join method ((SSNL) is the next hesl 
choice, with nearly identical pcrlormance fbr the 
smaller relation sizes. While the message counts arc 
not given hcrc’, thcv rcprcscnt an insignilicant portion 
of the overall query processing COSI (as in the previous 
casts examincdt. 

One not? hcrc: II sc’cms to us that the qucrics in 
QG2 :tre rcprcsentativc 01. B class oi’ queries that is 
likely IO al-isc in real datahasc systems - that is, 
qucrics with a small number of’ tuplcs in one relation 
(the rc’sult 01. a st’lcction J being joined with tuplcs l.rom 
a much larger rclatinn. .An importimt ohscrvation from 
the tcsb covcrcd hy qucr! groups QGI and QG2 is thnl, 
when one relation is small, the pipclincd ncstcd loops 
join methods perlorm much hcttcr than their scqucntial 
counterparts or any 01’ the sor-t-mcrgc methods. When 
both lrclations arc large, howcvcr, as when hoth wcrc 
“tcnlhoustup” relations in our tests, the optimal 
methods will he the pipclincd sort-merge methods. 

4.2.3. The Et’tixts ot’ Join Selectivity 

Join sclcctivity, which is the ratio of the size 01‘ the 
result relation to the product of the sizes ol the source 
relations, is an inllucntial factor with rcspct to join 
algorithm pcrlbrmancc. To see just how various join 
selectivilies afl’ect pcrlormancc, WC’ ran tests on the 
eight distrihutud join methods using two relations each 
with 1,000 tuplcs. These wt’rc not the “rhoustup” rcla- 
(ions from the Wisconsin datahasc, howcvcr. Rathc>r, 
the join selectivity was varied to product result sizes nl‘ 
1000 tuplcs, 100 tuplcs, 10 tuplcs, and 1 tuplc in the 
following \vay. A result size of’ ,‘v tuplcs was ohtaincd 
hy selecting R, Irom the “lcnthoustup” relation with 
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Figure 4.14: Ellcct of’ Join Selectivity. 

“unique I ” values in the range [4500..54993, \vhilc 
choosing N 01. Rh’s tuplcs from the “tcnthoustup” rcla 
lion randomly in the same range and choosing the’ 
remainder 01 Rb’s tuplcs randomly I‘rom outside this 
range. 

Figure 1.14 shows the measured elapsed times lor 
the dil‘l.crcnt join methods for the various join sc’lcctivi- 
tics tested. Higher join sclcctivitics (i.e. smaller result 
rclationsj mean that fcwcr tuplcs will match during the 
join, which lcads to several cost savings. First, the 
result relation is smaller, so fewer disk accc’sses are 
nccdcd IO write out the result. Second, lbwcr data 
pages arc accessed for the indexed ncstcd loops .join 
methods. ‘I’hird, I’cwcr tuplcs will he retricvcd from the 
remote site for the scmijoin methods, so the communi- 
cations COSI is rcduccd in their cast. The pipclined 
ncstcd loops join and scmijoin methods were the 
winners in this exprimcnt, with the scmi,join method 
doing somcwha~ worst than the join-hascd method. 
Their piplincd sort-mcrsc counterparts wcrc next hcst 
in terms 01‘ cliipscd tims here. 

4.2.3. The 13tkts of’ Duplicatr Attribute Valurs 

Another l’actor which can inllucncc the pcrlor- 
mancc 01 a join method is the dcgrec 01. join column 
value duplication. In the mcrgc phase ol a sort-mcrgc 
join, duplicate join attrihutc values can cause’ multiple 
scans 01. pages ol one relation. Perhaps more signili- 
cant is the cl‘1Cc1 01. duplicates on sequential versus pipc- 
lined scmi,join pcrformancc. In semi.join methods, site 
S, sends the join column values of‘ R, to site Si,, and 
site S, uses ~hc values to ICtch and return any matching 
tuples in relation Rh. In the sequential variant of’ ~hc 
scmi,join method, duplicate R,.A values arc removed, 
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Figure 4.15: Efl’ec~ of Duplicate Values. 

which has IWO cftcc~s. First, less dala is sent - dupli- 
cate join column values arc avoided in messages from 
S, td S,, and (as a result) each matching Rb tuple is 

sent lo S, jusl once. Second, and related, is the 

avoidance ol multiple disk accesses in Rt, lor a given 
R,.A value. These IWO savings reduce hoth the com- 
munications COSI and the local processing COSI. WC 
tested a group of queries which join two relations on an 
attribute with duplicate values in this expcrimcnt. 

We USC the duplication ficror D of‘ atlrihuic A 01‘ 
relation R, to quantitatively descrihc rhc dcgrcc of 

duplication. This l’actor is defined as the ratio 01. the 
numhcr of ~uples in relation R, to ~hc numhcr 01’ dis- 
tinct values of attrihutc A. Figure 4.15 shows the 
efl.ccts 01’ duplicates on the sequential and pipclincd 
semi.join methods (SSNL and PSNL). In all tests, hoth 
source relations have 1000 tuplcs. Join columns in R,. 
arc‘ chosen with D= 1, 10, and 100, rcspcctively. II can 
hc seen from the figure that duplicates have almost no 
cf’fcci on PSNL. For SSNL, howcvcr, an increase in 
the duplication factor moves it from hcing much worst 
than PSNL to being much helter. Obviously. the hcnc- 
lit due IO the elimination of’ duplicates outweighs the 
usual disadvantages of the scqucntial methods when the 
duplication factor is high. 

1.2.5. Summary of Test Results 

There arc a few observations that WC’ would like IO 
make hcrc. First, if WC set the issue of join site. sclec- 
tion aside, Figures 4.10 and 4. I I show that the three 
nested loops methods PJNL, SSNL and PSNL provide 
the best ptrlbrmancc when joining a large relation with 
a small one. For “medium” similar size relation joins, 
such as those shown in Figurr 4.14, PJNL and PSNL 

1 I/ 0.3500 1 0.3x9.5 j 11.29’, jj 

Figure 4.16: Local versus Distrihutcd Join (IR,( = 1OK) 

also perform the best, and the sequential SSN L algo- 
rithm becomes worst’ than the two pipclincd sort-mergr 
methods (PJSM and PSSM). ‘Illis lcads IO the conclu 
sion thal pipelined join and semijoin methods seem IO 

hc the most promising ot‘ the distrihutcd join methods 
tested. TO join very large relations OF similar size, the 
pipelined sorl-mcr-gc mcbthods stem IO hc the hcst 
choices, as shown in Figure 4.6. ‘fhcse conclllsions 
hold for- the entire rnngc 01. qucrics that WC invcstigatcd. 

Another gcncral conclusion 01’ this study is tllai the 
communications COSI did not play a signiticant IOIC in 
deicrmining algorithm prformance in OUI- cnvil-on 
mcnt. The contribution 01. communications costs to ~hc 
overall measured clapscd times was typically around 
IO-15%. As an illustrative cxamplc, to translcr ~1 
“tenthouslup” relation from one’ site IO another rlquircs 

ahout 1000 mcssagcs, hut it only takes uhout ;h ! 7 
seconds lor this transmission. In queries \vhcr~ such ;1 
transfer might hc ussCull how~vcr. the processing COSI 
may hc as high as scvcral hundred sccnnds. ‘l’llr rela 
tivcl! pool- pcrlormancc 01. the sequential scniijoin 
method is also cvidcncc I~;II communication co51 sav 
ings alone does not help muclt. As ;I more concrctc 
cxamplc, Figure 4. lh compares local ioin costs Lvith 
distrihutcd join COSIS in our environment. In all casC5, 
IR,I = lOk, and the local and distrihutcd join rrcthod< 
used wcrc those ihat gave the Icast elapsed tinlc. It is 
clear from the cxamplc that Ihc mcssagc cost is no1 lh~ 
major determining tactor lor pcrlormancc. 

The IUSI point IO hc made 1s thar cllonsing the rig111 
combination ol‘ a ,join processing site and a join method 
is important. Figul-cs 4. 10 and 3. 1 I indicate thar, il 111~. 
two relations IO hc joined hitvc dillcrc>nt sizes, tltc pipe 
lined nested loops ‘join method (P.tNL) needs IIIC site 
with larger relation IO hc ~hc join site (i.e., it nc‘rds the 
outer relation IO hc tllc smaller of tl~c two snurcc I \.:[;I 
lions). In contrast, rhc scmijoin ncstcd loops nl~‘tllod~ 
(PSNL and SSNL) pcrl’orn; much hcttcl- W~CII tht 
smaller relation site is chosen as the join silt ti.c., they 
also need the outer I-elation IO hc the srnallci- 01 IIIC 
two). The intuition hchind thcsc results is Iail-I) siln 
plc, in rctrospcct: PJNL and PSNL arc basically I~C 
same algorithm il‘ communications cost is ZC’IO. hntil 
being distrihutcd executions 01’ a simple ncstcd loops 
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,join; ihcy have Ihc same local processing COSIS. The 
outer relation should hc the smaller of the two in the 
ccntrvlizcd cast as well [BlasTlh, Seli79]. Note also that 
in a low communications cosl environment such as this, 
WC can switch our join site choice with little or no 
significant impact on performance. For example, sup- 
pose thaw /?, is a small relation, R, is a large relation, 
that S, is IO hc the result site, and therefore that the 
pipclincd scmijoin (PSNL) method is the best choice. 
In this cast, S, ends up hcing the ,join site. If WC 
would prefer to have Sh hc the join site for some rca- 
son, such as load halancing cdnsidcrations [Car&S), 
wc can accomplish this hy doing a pipelined join 
t PJNLI 31 sire S, and shipping the results back lo site 

so 

5. CONCLIISIONS 

In this paper, WC’ have studied the pcrformancc 01 
;1 numher of ‘different join methods for a distrihutcd 
datahasc system. Eight different melhods wc’rc’ imple- 
mcnted on top of the Wisconsin Storage System and run 
on an experimental distrihutcd computer system, ~hc 
Crystal mullicomputcr, at the University of Wisconsin. 
Join queries with various sizes, join selcctivities, and 
attrihute value distrihutions wcrc tcstcd. Our results 
have shown that, in ;i local network, communication 
cost is not the dominant factor. Shipping an cntirc rcla- 
tion from one site to another site is a rcasonahle way IO 
process a distributed join query - as long as in is done 
correctly. Correctly in this case means that a pipclincd 
join algorithm, where the outer relation is shipped IO 
the join site (the inner site) in parallel with the local 
join processing itself, is employed. Allhough traditional 
(sequential) scmi,join methods can reduce the communi- 
cations COSI, and ~hcy pcrlorm well in cases where the 
join column duplication factor is high (many matching 
inner relation tuplcs per outer relation ~uplc), pivlincd 
scmi.join methods wc’rc’ found to hc prefrahlc in most 
01. Ihc test cases examined. Thcsc results hold over a 
wide range of query characlcrislics. For the cast whcrc 
IWO very large relations arc IO hc ,joincd, pipclinc sort- 
merge methods arc recommended. We also lound that 
Ihe comhinalion of Ihc join method and Ihc join site arc 
important, thar it is very important to cnsurc that the 
ouIcr relation for the join is the smaller of the rwo 
SOLII-cc I-clations (as in ccntralizcd datahasc systems). 

Our results are related to several other picccs 01‘ 
work on distrihuted query processing tcchniqucs. First, 
~hc pipclincd scmi.join methods that WC implemented arc 
~hc ones used in System R’ , known there its the “fetch 
~hc inner ~uplc as needed” methods IScliXO]. They 
opted to USC Ihc pipclincd version 01. scmi.join over the 
more‘ IradiIional scquenlial version because they 
hclirvcd IhaI iI would tend IO win in most siIuaIions due 

to lower local processing cosls. Our results indicate 
that this is indeed the case in a local nclwork. Our 
results also concur with the claims of Page, which indi- 
caie that, in a distrihutcd dalahase system hased on a 
local network, it is iar mot-c’ important that joins he 
done in the correci order and with the correct inner and 
outer relations than that they he done at the site which 
minimizes communicaiions [Pagc83]. The key diffcr- 
encc between Page’s results and ours are that his con- 
clusions were hased on a COSI analysis of the INGRES 
database system and the LOCUS distrihutcd operating 
system, whereas ours were obtained from measuring 
the performance of a number of actual distrihutcd join 
queries. Finally, earlier analytical studies have indi- 
caled thaI pipelined query cvaluaiion techniques provide 
the best performance in centralized database systems 
ISmil75, Yao79]. Our resulis in favor of pipelined join 
methods can he vicwcd as showing cxpcrimcnlally thaI 
pipelining is still Ihc method of choice in a locally dis- 
trihutcd dalahasc sysiem. 

Thcrc arc scvcral directions lhal can hc lakcn from 
hcrc in Ierms of luiurc rcscnrch on query processing 
methods Ibr locally dislrihutcd datahasc systems. One 
direction Ihat wc’ arc actively pursuing is the incorpora- 
tion 01. load halancing tcchniqucs into a distrihutcd daLii- 
hasc sysicm [CarcM]. WC inlcnd IO USC the rcsulls 
ohtaincd hcrc IO guide the design of query processing 
algorithms that incorporate such tcchniqucs. WC also 
plan IO use our dctailcd measurements to drive a simu- 
lation model that WC have dcvclopcd for research in Ihis 

area. Another dirccIion that one mighI pursue is a 
study of lhc performance of processing sIraIegics for II- 
way ,joins (whet-c /i > 2). While WC’ feel that our 
results paint a lairlv compleic picture of the rclalive 
merits of the alternative join methods for our environ- 
ment, we have not taken an cxhauslive look at all possi- 
hililics. 

The aulhors wish to acknowlcdgc helpful discus- 
sions with David DcWitt. WC must also thanh Hong- 
l‘ai Chou, who provided us with the inslrumcntcd VW 

sion of WiSS used in ~hcsc cxpcriments. WC also wanI 
to Ihanh Bart Miller, who hclpcd us learn ahouI 

l’nix/lPC for an carlicr implcmcnIation of lhc distri- 
hutcd ,join methods. Finally, wc wish to acknowledge 
Ihc NSF-sponsored Crystal mullicomputcr prqjccl at the 
University 01‘ Wisconsin, which provided the cxpcl-i- 
mental environment lor this work and a helpful group 
of stal‘l‘ memhcrs to aid us in learning how to work in 
the Crystal environmenr. 
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