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ABSTRACT

This paper presents some experimental resulis on the
performance of distributed join algorithms in a local
network.  Eight different join methods have been imple-
mented in an experimental distributed system, the Cry-
stal multicomputer, and tested for join queries with a
varicty of relation sizes, join selectivities, and join
column valuc distributions. The results obtained indi-
cate that pipelined join methods outperform sequential
methods over a wide range of join queries. It was also
found that the communications costs in a local network
environment are not a dominant factor with respect (o
performance, and that shipping a whole relation from
onc¢ site to another is nol an unrcasonable decison as
long as it is donc in the framework of pipelined algo-
rithms. Two pipelined variants of a centralized nested
joops join algorithm (with an index) were found to per-
form well tor many of the queries tested.

1. INTRODUCTION

In relational database systems, queries are lypically
posed in a high-level, nonprocedural query language
based on the relational calculus such as QUEL or SQL
[Ullm82]. It is the task of the query oplimizer (o
decompose the query into primitive relational operations
such as selection, projection and join. The join opera-
tor has atiracted a great deal of rescarch interest since
the costs of available join methods 1end to vary widely
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with the characteristics of the data and the available
access  paths  [Blas76, Seli79, DeWi82a, Brah84,
DeWi83]. The join operation and join orders have also
been the primary focus of many query oplimization
algorithms for centralized databasc systems [Wong76,
Seli79]. The distribution of data in distributed database
systems further increases the complexity and tradeoffs
associated with the join operation. A great deal of
research work has gone into the problem of developing
distributed query  processing  algorithms,  particularly
into finding good methods for performing distribuled
joins. A ncw operation, the semijoin, was introduced
as a way ol minimizing the communications cost for
performing distributed joins, and a number of rescarch-
ers have addressed the problem of finding optimal semi-
join sequences for various classes of queries [Bern8la,
Bern81b]. A related method, known as “feich the
inner tple as needed”, is among the algorithms used
for processing distributed joins in Systen R" [Scligo,
Lohm&4].

Along with the development of new join algorithms
has come rescarch on the performance of the various
algorithms.  Four methods for processing a general
sclect-project-join query in a centralized database sys-
tem were investigated analviically and their performance
was compared in [Blas76]. They found that, in most
cases, cither the nested toops algorithm or the sori-
merge algorithm oflered the best (or close o the hest)
performance. Other rescarchers have analvzed alierna
tive centralized join algorithms as well [Nich76, Yao78,
Ya079, Brab84]. Therce have also been a few studies of
distributed  guery  processing  performance  issucs.
Epstcin and Stoncebraker tested 14 versions the of Distri-
buted INGRES query processing algorithms [Epst80].
Their results indicated that exhaustive search performs
consistently beter than hmited search, that dynamic
optimization is bencficial, and that using a "worst casc”
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estimate for intermediate relation sizes is overly pes-
simistic. Some simulation results on the performance
of different join strategies for a distributed database sys-
tem based on a star computer network were presented in
[Kers82], and the effects of join selectivity and com-
munications speed on the optimal algorithm choice were
investigated in this context. Some results on query
processing in a locally distributed sysiem were reporied
in  [Page83], where query processing costs for the
INGRES database system were analyzed in the context
of the LOCUS distributed operating sysiem.

Compared to the number of distributed query pro-
cessing algorithm papers in the literature, relatively few
papers have addressed the performance of distributed
join algorithms. This is one of the major motivations
which lead us 1o perform this study. We have imple-
mented cight different distributed two-way join methods
in an cxperimental locally distributed computer system
al the University of Wisconsin.  The join methods
examined in our study include methods based on both
traditional joins and semijoins using several different
access methods and data transfer strategics.  The work
reporied here ditfers from most of the work mentioned
above in the sense that 1t is an empirical study — we
present measurements of actual response times, disk
activity, and message transfers for the join algorithms
that we consider.

The organization of the remainder of the paper is
as follows. The cight different join algorithms that we
studied are described in section 2. Scction 3 provides
an overview of our experimental environment. Our
experiments are described and the results are presented
in Scction 4. Scction 5 summarizes whal we have
fcarned from this siudy and its influence on what we
plan to do in the future.

2. DISTRIBUTED JOIN METHODS

Given an equi-join query Ry JA=B|R, in a distri-
buted database system, where R, and R, reside at (dif-
ferenty sites S, and S, respectively, there are a
number of distributed join methods available for pro-
cessing it.  Considering all of the possible comhinations
ol access paths, local processing algorithms, excecution
paradigms, etc., would Icad to a prohibitively large
scarch space for an empirical investigation.  Thus, to
reduce the number of experiments necessary  we
categorize distributed join methods along three dimen-
sions and consider the following options in cach:

(1) General approach — "traditional” join methods

versus semijoin-based methods.
(2) Exccution paradigm — scquential versus pipelined
execution for the pair of sites involved.
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(3) Local join processing — sort-merge versus nested
loops (with an index).

In the remainder of this section we claborate on
cach of these dimensions, and we then present descrip-
tions of our implementations of eight join algorithms
that are produced by combining options from these
dimensions.

2.1. Join Versus Semijoin

The semijoin operator was introduced as a primi-
ive for processing distributed queries with less data
transfer  than  traditional join methods [Bern79a,
Bern79b, Bern&la, Bern81b].  Using the semijoin
method, only the join column values of one relation and
then the maiching wples of the second relation need 1o
be transferred between the two sites. I intersite data
transfer is expensive, the join field width is relatively
small compared 10 the width of an entire twple, and
there are not many matching tuples, the usc of semi-
joins can result in a significant savings. 1In local arca
networks, however, the data transfer rate between sites
is much higher — on the same order of magnitude as
that between memory and a local disk. 1t is question-
able whether or not semijoins will be heneficial in such
an cnvironment, as using them requires multiple scans
of onc of the source relations and therelore more disk
4cCesses.

2.2. Sequential Versus Pipelined Processing

When an operation at a sile requests remote data,
as in a distribuled join, a choice exists — the two sites
can work in either a sequential fashion or in a pipelined
fashion. 1f the sites work sequentially, the site receiv-
ing data will not begin its processing until all of the
required data has arrived.  In the pipelined case, pro-
cessing will begin at the receiving site as soon as the
first tuple or packet of data has arrived. One advantage
of the pipelined approach is its parallelism — the two
siles work in parallel, so the clapsed time for the query
will he reduced in proportion to the amount of over-
lapped  processing.  Scecond, and perhaps more
important, is the fact that the receiving site doesn’t actu-
ally store the incoming data in a temporary relation,
thus saving the time and disk accesses required 1o store
and then re-retrieve the data received from the remote
sie.

2.3. Sort-Merge Versus Nested Loops Join

Since any distributed join involves local process-
ing, the join algorithm and associated access methods
are still important factors in a distributed databasc sys-
tem. For centralized joins, it was found in [Blas76]
that, except for very small relations, the nested loops
join or sort-merge join methods were always optimal or



near optimal.  We thus chose these two local join
methods 1o implement for our distributed join experi-
ments.  For the nested loops join method, we assume
the availability of a B+ trec index on the join column
of the inner relaton, as would likely be the case in Sys-
iem R [Sclig0, Lohn184].] If the inner relation is
shipped 1o the outer relation’s site, a B+ tree index is
construcied for the inner relation at the outer site.
Because the WiSS sysiem [Chou83] does not supporl
clusicred indexes on non-unigue (i.c., non-key) atiri-
butes, and in addition it is not always reasonable 10
assume that the join column will have a clusiered index
available, our implementation uses secondary (i.c.,
non-clustered) indexes.

2.4. Join Algorithm Details

As described carlier, we have implemented cight
join algorithms for our study. The algorithms, classi-
fied according to the three dimensions presented above,
are SISM, SINL, PISM, PINL, SSSM, SSNL, PSSM,
and PSNL. For the first leuer, "S” stands for sequen-
tial and "P” stands for pipelined. The second leuer, "1
or "S”, is used to represent “traditional join” versus
semijoin. The last two letters indicate cither sort-merge
("SM ") or nested loops ("NL") join. In the remainder
of this scction we describe cach of these methods in
rn. In our lests, site S, initiates the join query and is
hoth the join site and the result site.

2.4.1. SJSM and SJNL

The sequential join methods SISM und SINL arc
the simplest of the distributed join methods. The remolte
relation R, is shipped 10 join site S, as a whole. The
two relations are then joined at site S, using cither the
sorl-merge method (SISM) or the nested loops method
(SINL). For SISM, the two relations are cach sorted al
their local sites first to increase parallelism. For SINL,
a B+ tree index is built on the join column of the
received relation at site S, before performing the local
join.

2.4.2. PJSM and PJNL

Like SISM and SINL, the PJSM and PINL algo-
rithms transfer the whole relation R, from site S, to
site S,. The difference is that R, is not stored as a tem-
porary relation at sitc S,. Insicad, tuples of Ry arce
joined with R, wples on the fly as they arrive. Using
the PJSM mcthod, both relations are sorted first.
Then, when a group (packet) of Ry, tuples arrives at site
S,, a scan cursor on R, is incremented to find maich-
ing tuples. Matches are merged with the twples from

! The cost of a nested loops join without an index for relations
of reasonable size is usually prohibitive [Bitt83], so we do not con-
sider this possibility.
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the Ry, group and wrilicn (o the result relation.  The
scan cursor is then reset 1o the its last starting point in
R, and the process is repeated for the next group of R,
wples. In the PINL case, since no temporary relation
for R, is stored at site S, the local relation R, always
serves as the inner relation and the remote relation Ry
serves as the outer relation. Both PJSM and PINL can
be viewed as distributed executions of centralized join
algorithms.

2.4.3. SSSM and SSNL

SSSM and SSNL are two implementations of the
semijoin method. One variation in our implementation
is that the join column R,.A, which is sent from site
S, 1o site S,, is not stored on disk at site S, — the
incoming values are processed on the fly as they arrive.
Similarly, the relation R,’, which is transferred back to
site S,, is processed on the fly as it arrives at S, instcad
of being stored there as a temporary relation. Although
there is therefore some limited pipelining involved in
the SSSM and SSNL cxccution strategics, we  still
categorize them as being sequential as compared to the
ruly pipelined PSSM and PSNL algorithms 0 bhe
described next.

2.4.4. PSSM and PSNL

The pipelined semijoin methods, referred 10 as
"fetch the inner tple as needed” in System R
{Scli80], were the most complicated join methods 10
implement.  Relation R, is scanned in a tuple-by-tuple
manner (conceptually), and join column values R,.A
are senl o site §,. Upon receiving an R, A4 value, site
Sy selects the matching wples from R, and sends them
10 S,; a null message is sent if there are no matching
tuples.  These  tples then merged  with  the
corresponding tuple of R,, which is waiting for them
(stdl in main memory). Our implementation actually
processes R, tuples in one-page batches, so one buffer
page is allocated for keeping the tuples from R,

are

2.5. Discussion

The cight distributed join methods described in this
section represent a range of possible methods.  The
sequential join methods, pipelined join methods, and
pipclined semijoin methods are all among the methods
used System R’ [SeliR0, Lohm&4], although our imple-
mentation may differ in minor ways. Of these methods,
sequential join methods are attractive for their simplicity
and the pipelined methods are attractive because they
allow morc concurrency and avoid the cost of storing
and retricving tuples from a temporary relation.  The
pipeline methods, of course, require some synchroniza-
tion of the two processing sites (in the form of flow con-
trol, so the receiving site can indeed avoid having (o



store incoming tples). Once limitation of PINL (the
pipelined nested loops join method) is that R, must be
the inner relation, regardless of how its size compares
1o that of Ry, as the inner relation has to be available
for muluple scans. The semijoin methods are attractive
because they reduce communications costs. The main
difference between the pipelined and sequential semijoin
methods is related to duplicates — since the pipelined
version simply scans R, instcad of projecting on R, .4,
it will send duplicate join column values if they are
present in R, however, the sequential semijoin
method requires multiple scans of R,, increasing the
local processing cost.  Clearly, there are tradeoffs
among all of these algorithms — these are the tradeoffs
10 be empirically investigated in Section 4.

3. THE EXPERIMENTAL TESTBED

Figure 3.1 depicts the testbed system used for our
performance study. A collection of test programs were
written to implement (hard-wired) distributed  join
queries using the different methods described in section
2. These programs access a synthetic database, the
Wisconsin database [Bitt83], via WiSS (the Wisconsin
Storage System) {Chou83}. The programs run on a
pair of node machines from the Crystal multicomputer,
an experimental distributed computer system [DeWig4],
Monilor programs run on a VAX/Unix host machine to
initiate test program cxecution and to collect perfor-
mance statistics after the est programs terminate.  For
communications between node machines, or bhetween
node machines and the host, we used a Crystal com-
munications package called the Simple  Application
Package (SAP). In (his section we hriefly describe cach
of these components of the system.

NODE Sa NODE Sb
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L e HOST L Ty
' ! Tttt | i
W e B
' ! ONITOR ! |
\ ~ | ' Pl}:ogR:MS : : o~ |
: ' ; il ! ! '
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i |PROGRAMS | | NUGGET . : PROGRAMS | |
1 1 ! .1 ' | i1 !
! - - - )
|| SAP | : ] : SAP |
) i
| |_NUGGET | ! | | NUGGET |
. ]
[ ‘; - : | e o
3 ' L
' ’

TOKEN RING NETWORK

Figure 3.1: Distributed Join Method Testbed.
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3.1. The Crystal Multicom puter

The Crystal multicompuier  [DeWi84] currently
consists of 20 DEC VAX 11/750’s interconnected via a
10-Mb/sec Proteon token ring network. The ring nel-
work is also connected to several of the Computer Sci-
ence Department’s rescarch VAXes, each of which can
serve as a host machine. Crystal multicomputer users
can claim a number of node machines as a partition.
The partitions of different users in the system are logi-
cally isolated from cach other — ecach partition is basi-
cally a virtual distributed computer sysiem. For our
distributed join algorithm experiments, we used a parli-
tion of two node machines with 2 megabytes memory
and 160 megabyte Fujitsu disks to create a distributed
databasc system testbed.

There are several levels of software available on
Crystal. We used two of the lowest levels, the Crystal
Nugget and the Simple Applications Package (SAP), to
avoid unnecessary overhead. The Nugget is a simple
communications kernel that resides permanently on
cach node machine, providing low-level message-
passing primitives and enforcing the logical isolation of
partiions. SAP is a sct of subroutines that sit on top of
the Nuggel, providing buffered communications using
Iwo queues, onc for incoming messages and other for
oulgoing messages. 11 provides a somewhat higher-level
message facility for our applications.

3.2. The Wisconsin Storage System

The Wisconsin Storage System, or WiSS, is an
access-mcethod level data storage system that can run
cither on top of Unix or directly on top of a "raw” disk
[Chou&3]. For our experiments, it was installed on the
Crystal node machines and accessed their disks directly.
WiSS munages devices, deals with physical storage allo-
cation, manages bufler pages, and provides a primitive
concurrency control mechanism. At its highest level,
WiSS implements the access methods of scequential
scan, index scan, and long data item scan. This fcvel
also provides routines for creating and destroying files,
indexes and long data items.  Some explicit control over
scans, such as the capahility 1o reset a scan cursor
(scarch pointery, is also provided. Our lest programs
interface with WiSS at this fevel.
3.3. The Wisconsin Database
The Wisconsin Database was designed for use n
systematically benchmarking relational database sysiems
[Biu&3]). There are four basic relations in the database,
called "thoustup”, "twothoustup”, "fivethoustup”, and
"tenthoustup”.  These relations contain 1000, 2000,
5000, and 10,000 tuples, respectively.  Tuples in all of
these relations are 182 bytes long, cach consisting of
thirteen 2-hyle integer atiributes and three  52-byie



siring altribuies.  All of the integer auributes have uni-
formly distributed values, but the range of their distri-
butions varies in order 1o provide for different selectivi-
ties and projectivities. The string attributes were not
used in our study, so we do nol discuss them here.

4. EXPERIMENTS AND RESULTS

4.1. Some Considerations

The first problem that arose in designing our tests
was the issue of choosing an appropriale set of test
queries. In their classic study of join methods for cen-
ralized database sysiems, Blasgen and Eswaren used a
query that selected a subset of tuples from two relations,
joined these together, and finally projected out a subset
of the resulting fields as a general query for their ana-
lyses [Blas76].  Our initial inclination was to do the
same for our study of distributed joins. However, since
we are more interested in the effects of data distribution
on the various join options, and adding the two pre-join
selections and a post-join projection would only increase
the fraction of the excecution time due to local process-
ing, we decided 1o use the simple two-site join of Figure
4.1 for our test queries. The sizes of relations R, and
Ry, the size of the result relation R, and the value dis-
tributions of the join attributes are varied in our experi-
ments o observe their respective effects on perfor-
mance.

range a is Ra at Sa
range b is Rb at Sh
retrieve into Ra.all,b.all) at Sa
where (4.A = b.B)

Figurc 4.1: Genceral Form of the Test Query.

Qur choice of source relations followed the metho-
dology presented in [Bit83]. There are several con-
siderations here.  First, relation sizes should be large
enough 1o be realistic. The basic relations used in our
tests  have 1,000 wples and 10,000 tples (the
"thoustup” and "tenthoustup” relations of the Wiscon-
sin database), occupying about 46 and 456 pagces,
respectively.  Second, random auribuie value distribu-
tions arc desirable in order to provide an unbiased treat-
ment of each of the join methods. This was particularly
important in the sort-merge join case. Third, in order
to insure that the results of the various tests were nol
hiased by preceeding ones, we had to ensure that no test
query was likely 1o find useful pages sitting in the buffer
from its predecessors. We used a technique described
in [Biug3], where two copies of source rcelations are
maintained (at cach site in our case), and allernate
queries use alternate copies of the source relations.
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Another important decision for our study was the
choice of an appropriate set of performance meirics and
a reasonable measurement approach. For our cxperi-
ments, the elapsed time of a query was the main metric
measured. This time is defined as the time interval
beginning when site S, initiates the query and ending
when the result is completely stored at site S,. The
Crystal Nugget provides a timing procedurc that is
accurate to the nearest 10 milliseconds; this procedure
was used for our elapsed time measurements. For cach
query, we also measured the number of disk accesses
performed and the number of messages sent. Our disk
access measurements were taken using a special version
of WiSS that is instrumented to trace disk operations.
For each disk access, the start and completion times of
the access are recorded.  An analysis of the trace
records from our experiments indicates that an average
disk access in our test environment takes about 25.5
milliseconds (for a 4K-byte page). To measure network
traffic, we counted messages in our own communica-
tions interface routines. To measure the actual message
send and receive times, we ran separate tests o send
and receive a large number of single-packet "null” mes-
sages between two node machines using the same com-
munications interface routines used for our test queries.
Our results indicate that the average message transfer
time is about 16.6 milliscconds (for a 2K-byte packet).
Finally, while we would also like 1o have measured the
CPU ume used by our test queries, this was not casily
done at the level at which our experiments ran (i.c.,
stand-alone on Crystal nodes).

4.2. The Experiments and Results

We designed test queries to investigate the effects
of a number of different factors on the performance of
the alternative distributed join algorithms. The factors
investigated include the sizes of the source relations and
the join sclectivity (i.e., the result relation size and the
distributions of the join column values). We describe
our experiments and the results that we obtained in this
scction.  First, however, we describe the resulis of one
of our distributed join executions in great detail in order
to illustratc the costs and benefis of the various
approaches and to provide the reader with useful back-
ground knowledge for later discussions.

4.2.1. Demands: A Detailed

Example

Query Resource

The example that we will examine in this section
involves a query where both R, and R, are "thoustup”
relations and the result relation has 100 wples.

Figure 4.2 shows the clapsed time for the example
query processed using the different join methods. The
elapsed time for site S, is the actual clapsed time for the
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query, and the clapsed time for siie S, shows the por-
tion of time during which S, was involved in the query.
The general trend is that the pipelined join methods —
PJSM, PSSM, PINL, and PSNL — executed the join
more quickly than the sequential methods did. Of the
pipelined methods, the nested loops join method outper-
formed the sort-merge method for this example. (That
is, PINL did bettcr than PJSM, and PSNL did beter
than PSSM). This can be explained by taking a look al
the resource demands of the various join methods.

Figure 4.3 shows the number of messages thal
were required o transfer data between the two sites S,

» (measured at site S,), illustrating the communi-
methods. For cach of
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S, sends no data to site §,. For the sequential semijoin
methods (SSNL and SSSM), site S, sends its join
column values 1o sile S, and site S, sends back its
matching tuples. In our example, since the total size of
the join column values of R, is only 2000 bytes (just
exceeding the size of a single message packet with con-
trol information), and the semijoin selectivity is 0.1, the
communications cost of the sequential semijoin methods
is much lower than that of the other join methods.
However, it is important o realize that the fractional
communications cost (i.¢., communications cosl as a
portion of the total ¢lapsed time) is not high in any of
the join methods. For the non-semijoin methods, 100
messages were required in all, vielding a total message
time of about 1.65 scconds.

The message cost analysis for the pipelined semi-
join methods (PSNL and PSSM) is a bit more compli-
cated for our implemenuation. First of all, the number
of messages for PSNL and PSSM is atfected both by the
buffer space size that is allocated at site S, for holding
R, tples, and also by the message packet size. Our
implementation  allocales only once buffer page (22
tuples) for scanning R,, so we sent only 22 join column
values cach ume. That is, we were limited by buffer
space, so the message packets were nol fully used.
(This may indicale that, since one message packet can
hold many join column values, it may he betier in prac-
tice to sclect the number of R, buffer pages used
according (o the number of join column values that fit
in onc message packel.) Another complication involved
in the pipelined semijoin message analysis is that the
number of messages reccived by site S, is influenced by
the distribution of the join column values, For some
messages sent by S,, many values will be returned, but
other messages may simply say “no matches” or may
contain just a few wples. This s in contrast to the
sequential semijoin case, which will totally fill all bui
the last of the messages rewrned from S, 10 S,. For all
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of the reasons cited above, then, the number of mes-
sages for the PSSM and PSNL algorithms usually
exceeds the number for SSSM and SSNL, as is the case
in Figurc 4.3, (Again, however, we remind the reader
that the message cost is far from being the dominant
cost factor here.)

The number of disk accesses for a join method
depends on the number of different pages accessed dur-
ing the operation (of course), but it also depends
strongly on the available buffer space, on the page
replacement policy used by the buffer manager, and on
the physical allocation of pages in each relation. Figure
4.4 shows the measured number of disk accesses for the
example query, and provides insight into the disk usage
of the various distributed join methods. At site Sp, the
sort-merge join methods (SJISM and SINL) both require
the same number of disk accesses — this number is the
sum of the accesses required [or sorting relation Ry, and
those necded 1o scan R, once o send its tuples 10 §,.
The sort-merge semijoin methods (SSSM and PSSM)
require a similar number of disk accesses. For the
nested loops join methods (SINL and PINL), just one
scan of Ry, is required at S, (to send it 1o S,). For the
nested loops semijoin methods (SSNL and PSNL), the
number of disk accesses at site S, depends on the semi-
join sclectivity of the query. SSNL requires somewhat
morce disk accesses at S, because it has to store the
intermediate semijoin result R, .A}A= B]R, and then
retricve it again to send it back to S,. Similar trends
are observed at site §,. As observed in the measure-
ments at S, the sort-merge methods require more disk
accesses than the nested loops methods due 1o sorting.
Among the nested loops methods, the sequential ones
have higher disk costs than the pipelined methods due to
the storage and retrieval of the received relation;  this is
especially true for the sequential join case (SINL),
which builds an index on the received relation at S, .

4.2.2. The Effect of Relation Sizes

Two groups of queries, QG1 and QG2, were tested
lo investigate the behavior of the different join methods
as the relation sizes were varied. QG1 consists of joins
hetween two relations of the same size; the result rela-
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tion in QGI is the same size as the source relations
(making the join selectivity simply the inverse of the
source relation size). QG2 consists of joins hetween
two relations of various differing sizes; the join selee-
livity is kept constant in query group QG2 (at a valuc of
1079%). Since the two sites in these queries are asym-
metrical, QG2 is further divided into two subgroups of
queries, QG2.a and QG2.b. In QG2.4, the site having
the larger relation was chosen as the join sile;  in
QG2.h, the smaller relanon resided at the join site. (As
before, the result site is taken 10 be the join site for
these tests.) These query groups are listed in Figure
4.5.

Figure 4.6 shows the clapsed time measured for
cach of the QGI querics. For the join of the two
“tenthoustup” relations, all of the nested loops methods
lost 10 the sort-merge methods even though the sort-
merge methods must sort these large relations.  This is
because the amount of work saved through sorling sig-
nificantly outweighs the work required to perform the
sorts. This is illustrated by Figurc 4.9, which shows
the measured clapsed times and disk accesses for sorling
the "tenthoustup”, “thoustup” and "hundrediup” rela-
tions, and by the following analysis. Figure 4.9 shows
that it 1akes 64.89 seconds 1o sort the "enthoustup”
relation, and that this involves 1911 disk accesses. This
constitutes the per-join “overhead” portion ol the sori-
merge methods for this case.  After sorting, the merge
phase accesses cach page of cach relation just once. In
contrast, for the nested loops join using a nonclustered
index, the number of disk accesses is much larger: this
is due 1o the number of data pages (randomly) accessed.
Figure 4.7 shows this clearly. Of the four nested loops
mcthods, three of them required more than 10,000 disk
accesses, which is what was chosen as an upper limit
for the number of disk accesses iraced due o space con-
sidcrations.  The one exception was PSNL (pipelined
semijoin-based nested loops), which keeps tuples in
memory at siie S,, scanning R, only once. However,
this method involved a large number of disk accesses at
site S, (not shown), where Ry, is scarched using the
index 1o find the matching tuples for the 10,000 join
attribute values sent by R,. The clapsed time was
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. Elapsed Number of Disk Accesses
Relation
| Time Total | Reads | Writes
hundredtup 0.54 13 6 7
thoustup 6.46 196 97 99
tenthoustup 64.89 1911 955 956

Figure 4.9: Sorting Times Versus Relation Size.

mainly determined by the processing rate at site S, in
this case, which explains its elapsed time as compared
to the sort-merge methods.

Figurc 4.6 shows that, as the relation sizes are
decreased, the cost of sorting the relations begins to
outweigh the cost of performing an inner relation disk
access per outer relation wple. With smaller relation
sizes, Figure 4.7 shows that the total numbers of disk
accesses for the the pipelined ncsted loops methods
(PJINL and PSNL) are lower than those for the sort-
merge methods.  Thus, the pipelined nesied loops
methods are the best performers except at the largest
relation size tested for QGI.

Figure 4.8 shows the total number of messages
involved in executing cach of the cight join methods
tested.  Only three curves are evident. The highest cost
here is for the pipelined semijoin methods, the next
highesi cost is for the sequential semijoin methods, and
the lowest among the message costs arc the non-
semijoin methods.  This is because, in this case, the

join is a “onc-to-one join” — cach wple of R, joins

with one and only one tuple of Ry,. Thus, the usce of
semijoins here does not reduce the amount of dats ulti-
malely transferred 1o the join site; rather, it increases
the overall message cost by the amount of data sent to
the remote site from the join site initially. In all cases,
given our packet transfer time of 16.6 milliseconds, the
overall message time is never more than about 5-10%
of the overall clapsed time.  (Also, the effect of the mes-
sage lime is even less significant for the pipelined algo-
rithms, as there is processing going on while messages
are in transit.)

Figures 4.10 and 4.11 give the measured elapsed
times lor the queries in query groups QG2.a and
QG2.b. These results clearly illustrate the differences
between the various join methods tested. The diversity
of the results can be explained based on the discussion
of the dewiled example and analysis given in Section
4.2.1. 1t is evident from the figures that the nested
loops join methods arc more sensitive 1o relation size
differences than the sort-merge methods, particularly at
the larger relation sizes. This is because the sort-merge
methods have a fixed component of their costs duc 10
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sorling the “tenthoustup” relation (sce Figure 4.9 for
this cost). An extreme case is illustrated in Figure 4.11
for the the pipelined join case (PJSM). With the
smaller relation site as the join site, its cost remains
nearly constant over the whole size range investigated.
The main components of the cost of PISM are sorting
R, at site S, and scanning R, to send it (o sitc S,.
(These wwo factors alone account for about 90% of the
clapsed ume.) The sort merge methods can never exe-
cute faster than the time it takes to sort and scan the
larger of its relavons.  The nested loops join methods
are different, however. When the size of one of the
source relanons decreases, the number of disk accesses
decreases dramatically for at least one of the nested
loops methods in both query groups, as shown in Fig-
ures 4.12 and 4.13. This is duc 1o the absence of sort-
ing overhead and the effectiveness of the index for
smaller outer relation sizes.  The winner for query
group QG2.a is the pipelined join version of nested
loops (PINL). The winner for query group QG2.b is
the pipelined semijoin version of nested loops (PSNL);
the sequential semijoin method ((SSNL) is the next best
choice, with nearly identical performance for  the
smaller relation sizes. While the message counts are
nol given here, they represent an insignificant portion
of the overall query processing cost (as in the previous
cases examined).

Onc nolte here: 1t seems to us that the querices in
QG2 are representative of a class of queries that is
likely to arise in rcal database sysiems — that s,
queries with @ small number of tuples in one relation
(the result of a selection) being joined with tuples from
a much larger relation.  An important obscrvation from
the tests covered by query groups QGIL and QG2 s that,
when one relation 1s small, the pipelined nested loops
join mcthods perform much better than thetr sequential
counterparts or any of the sort-merge methods. When
both relations are large, however, as when both were
“tenthoustup”  relations  in our tests, the optimal
mcthods will be the pipelined sort-merge methods.

4.2.3. The Effects of Join Selectivity

Join sclectivity, which is the ratio of the size of the
result relation 1o the product of the sizes of the source
relations, is an influential factor with respect to join
algorithm performance.  To see just how various join
sclectivities  affect performance, we ran tests on the
cight distributed join methods using two relations each
with 1,000 tuples. These were not the "thoustup” rela-
tions {rom the Wisconsin database, however.  Rather,
the join selectivity was varied to produce result sizes of
1000 tuples, 100 twples, 10 tuples, and I wple in the
following way. A result size of N tuples was obtained
by sclecting R, from the “tenthousiup” relation wilh
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“uniquel” values in the range [4500..5499], while
choosing N of R,’s wples from the “tenthoustup” rela
tion rundomly in the same range and choosing the
remainder of Rp's tuples randomly from outside this
range.

Figurce 4.14 shows the measured elapsed times for
the diflerent join methods for the various join selectivi-
ties tested. Higher join sclectivities (i.¢. smaller resuht
retations) mean that fewer tuples will match during the
join, which lcads to several cost savings.  First, the
result relation is smaller, so fewer disk accesses are
needed 1o write out the result. Second, fewer data
pages are accessed for the indexed nested loops join
methods. Third, fewer wples will be retrieved from the
remole site for the semijoin methods, so the communi-
cations cosl is reduced in their case. The pipelined
nested loops join  and semijoin methods  were  the
winners in this experiment, with the semijoin method
doing somewhat worse than the join-based method.
Their pipelined sori-merge counterparts were next hest
in terms of clapsed time here.

4.2.4. The Effects of Duplicate Attribute Values

Another factor which can influence the perfor-
mance ol a join method is the degree of join column
vatue duplication. In the merge phase of a sort-merge

join, duplicate join attribute values can cause multiple

scans of puges ol onc relation.  Perhaps more signifi-
cant is the effect of duplicates on sequential versus pipe-
lined semijoin performance.  In semijoin methods, site
S, sends the join column values of R, to sile S, and
site Sy uses the values to fetch and return any matching
tuples in relation R,. In the sequential variant of the
semijoin method, duplicate R,;.A values are removed,
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which has two cffects. First, less data is sent — dupli-
cale join column values are avoided in messages from
Sz 10 Sp, and (as a result) each matching R, tuple is
senl 1o S, just once. Second, and related, is the
avoidance of muliple disk accesses in R, for a given
R,.A value. These two savings reduce both the com-
munications cost and the local processing cost. We
tested a group of querics which join two relations on an
altribuie with duplicate values in this experiment.

We use the duplication factor D of auribuiec A of
relation R, to quantitatively describe the degree of

duplication. This faclor is defined as the raiio of the
number of wples in relation R, 1o the number of dis-
tinct values of auribute A, Figure 4.15 shows the
effects of duplicates on the sequential and pipelined
semijoin methods (SSNL and PSNL). in all tests, both

source relations have 1000 tuples. Join columns in R,

are chosen with D=1, 10, and 100, respectively. 1t can
be scen from the figure that duplicates have almost no
effect on PSNL. For SSNL, however, an increase in
the duplication factor moves it from heing much worse
than PSNL 1o being much better.  Obviously, the bene-
{it duc to the elimination of duplicates outweighs the
usual disadvantages of the sequential methods when the
duplication factor is high.

4.2.3. Summary of Test Results

There are a few observations that we would like 1o
make here. First, if we set the issue of join site sclec-
tion aside, Figures 4.10 and 4.11 show that the three
nested loops methods PINL, SSNL and PSNL provide
the best performance when joining a large relation with
a small one. For "medium” similar sizc relation joins,
such us those shown in Figure 4.14, PJNL and PSNL
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Figure 4.16: Local versus Distributed Join (|Ry| = 10K).

also perform the best, and the sequential SSNL algo-
rithm becomes worse than the two pipelined sorl-merge
methods (PISM and PSSM). This feads 10 the conclu
sion thal pipelined join and semijoin methods seem (o
be the most promising of the distributed join methods
tested. To join very large relations of similar size, the
pipclined sort-merge methods seem to be the bhes
choices, as shown in Figure 4.6, These conclusions
hold for the entire range of queries that we investigated.

Another general conclusion of this study is that the
communications cost did not play a significant role in
determining  algorithm  performance in our cnviron-
ment. The contribution of communications costs o the
overall measured clapsed times was typicalty around
10-15% . As an illustrative example, to transfer a
"tenthoustup” relation from once site 1o another requires
about 1000 messages, but it only takes about i6-17
sceonds for this transmission. In querics where such a
transfer might be uscful, however, the processing cosl
may be as high as several hundred seconds. The rela
tively poor performance of the sequential semijoin
mcthod is also cvidence that communication cost sav
ings alone does not help much.  As a more concrele
example, Figure 4.16 compares local join costs with
distributed join costs in our environment. In all cases,
|R,| = 10K, and the local and distributed join methods
used were those that gave the least elapsed tme, 1t
clear from the example that the message cost is not the
major determining fuctor for performance.

The last point to be made 1s that choosing the right
combination of a join processing site and a join method
is important. Figures 4.10 and 4.11 indicate that, il the
two relations 10 be joined have different sizes, the pipe
lined nesied Joops join method (PINL) needs the site
with larger relation to be the join site (1., it needs the
ouler relation to be the smaller of the two source rela
tions). In contrasi, the semijoin nested loops micthods
(PSNL and SSNL) perform much betier when the
smaller relaiton site is chosen as the join site ti.c., they
also need the outer relation to be the smaller of ihe
two). The inwition behind these results is fairly sim
ple, in retrospect:  PINL and PSNL are hasically the
same algorithm if communications cost is zero, both
being distributed executions of a simple nesied loops



join; ihey have the same local processing costs. The
outer relation should be the smaller of the two in the
centralized case as well {Blas76, Seli79). Noite also that
in a low communications cost environment such as this,
we can swilch our join site choice with litile or no
significant impact on performance. For example, sup-
posc that R, is a small relation, R, is a large relation,
that S, is to be the result site, and thercfore that the
pipelined semijoin (PSNL) method is the best choice.
In this case, S, ends up being the join site. I we
would prefer to have §, be the join site for some rea-
son, such as load balancing considerations [Care85],
we can accomplish this by doing a pipelined join
(PIJNL) at site S, and shipping the results back to site
Sa-

5. CONCLUSIONS

In this paper, we have studied the performance of
a number of ‘different join methods for a distributed
database system. Eight different methods were imple-
mented on top of the Wisconsin Storage System and run
on an experimental distributed computer sysiem, the
Crystal multicomputer, at the University of Wisconsin.
Join queries with various sizes, join sclectivities, and
attribute value distributions were tested. Our results
have shown that, in a local network, communication
cosl is not the dominant factor. Shipping an cntire rela-
tion from one site 10 another site is a reasonablie way 10
process a distributed join query — as long as it is done
correctly. Correctly in this case means that a pipelined
join algorithm, where the outer relation is shipped 10
the join site (the inner site) in parallel with the local
join processing itself, is employed. Although (raditional
(secquential) semijoin methods can reduce the communi-
cations cosl, and they perform well in cases where the
join column duplication factor is high (many matching
inner relation tuples per outer relation tuple), pipelined
semijoin methods were found to be preferable in most
of the test cases examined. These results hold over a
wide range of query characieristics.  For the case where
two very large relations are to be joined, pipeline sort-
merge methods are recommended. We also found that
the combination of the join method and the join site are
important, that it is very important o ¢nsurc that the
outer relation for the join is the smaller of the two
source relations (as in centralized database sysiems).

Our results are related to several other picces of
work on distributed query processing techniques.  First,
the pipelined semijoin methods that we implemented are
the ones used in System R", known there as the “fetch
the inner tple as needed” methods [Seli®0].  They
opted 1o use the pipehined version of semijoin over the
more  traditional  sequential  version  because  they
helieved that it would tend 10 win in most situations duc
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to Jower local processing costs.  Our results indicate
that this is indeed the case in a local network. Our
results also concur with the claims of Page, which indi-
cate that, in a distributed database sysiem based on a
tocal network, it is far more important that joins he
done in the correct order and with the correct inner and
outer relations than thal they be donc at the site which
minimizes communications [Page83]. The key differ-
ence between Page’s results and ours are that his con-
clusions were based on a cost analysis of the INGRES
databasc system and the LOCUS distributed operating
system, whereas ours were obtained from measuring
the performance of a number of actual distributed join
queries.  Finally, carlier anaiytical studies have indi-
caled that pipelined query evaluation techniques provide
the best performance in centralized database systems
[Smit75, Yao79]. Our results in favor of pipelined join
methods can be viewed as showing experimentally that
pipelining is still the method of choice in a locally dis-
tributed database sysiem. )

There are several directions that can be taken [rom
here in terms of future rescarch on query processing
methods for locally distributed databasce sysiems.  Onc
dircction that we arce actively pursuing is the incorpora-
tion of load balancing techniques into a distributed data-
base sysiem [Carc85). We intend to use the resulis
obtained here 1o guide the design of query processing
algorithms that incorporaie such wchniques. We also
plan 10 usc our detailed measurements 0 drive a simu-
lation model that we have developed for rescarch in this
arca.  Another dircction that one might pursuc is a
study of the performance of processing strategics for n-
way joins (where n > 2). While we feel that our
results paint a fairly complete picture of the relative
merits of the alternative join methods for our environ-
ment, we have not taken an exhaustive look at all possi-
bilities.
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