
SOME EXPERIMENTAL RESULTS ON
DISTRIBUTED JOIN ALGORITHMS IN A LOCAL NETWORK

Hongjun Lu
Michael J. Carey

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT

This paper presents some experimental results on the
performance of distrihuted join algorithms in a local
nctwol-k. Eight different join methods have been imple-
mented in an experimental distrihuted system, the Cry-
seal multicomputcr, and tested for join queries with a
variety of relation sizes, join selcctivitics, and join
column value distributions. The results obtained indi-
cate that pipelined join methods outperform sequential
methods over a wide range of join queries. II was also
found that the communications costs in a local network
environment arc not a dominant factor with rcspcct IO
performance, and that shipping a whole relation from
one site to another is not an unreasonahlc dccison as
long as it is done in the framework 01‘ pipelined algo-
rithms. l’wo pipelincd variants 01‘ a centralized nested
loops join algorithm (with an index) wet-c found to per-
form well lor many oi ~hc queries tested.

1. INTRODI’CTION

In relational datahasc systems, qucrics arc typically
posed in a high-lcvcl, nonprocedural query language
hascd on the relational calculus such as QUEL or SQL
[UllmX2]. It is the task of Ihc query optimizer to
decompose the query into primitive relational operations
such as selection, prqjcction and join. The join opera-
tor has attracted a great deal of research intcfest since
the costs of availahlc join methods tend to vary widely

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

with the characteristics of the data and the availahlc
access pallis IBlas76, Seli79, DcWiX2a, BrahXJ,
DcWiX51. The join operation and join orders have also
heen the primary focus of many query optimization
algorithms for centralized database systems [Wong76,
Seli791. The distrihution of data in distrihutcd dabhasc
syslems l‘urrher incrcascs the complexity and tradeoffs
associated with the ,join operation. A great deal of
research work has gone into the problem of developing
distrihutcd query processing algorithms, particularly
into finding good methods for performing distrihutcd
joins. A new operation, the semijoin, was introduced
as a way 01’ minimizing the communications cost 1b1
pcrl’orming distrihutcd joins, and a number 01. rcscarch-
crs have addressed 111~ problem 01. finding optimat scm-
join scquenccs lor various classes of’ queries (BcrnXla,
BcrnXlh]. A related method, known as “leech the
inner cuplc as nccdcd”, is among the algorithms used
for processing distributed joins in System R” [ScliXO,
LohmXJ].

Along with the dcvclopmcnt 01. new ,join algorithms
has come rcscarch on 01~ perlormancc 01’ the various
algnrithm~. Four methods for processing a general
sckc~ project-join qucrv in a centralized datahasc sys-
tcm wcrc’ invcstigatcd analytically and their pcrlormance
was compared in [Blus76]. Thcv l’ound III~I, in most
cuscs. cithcr the ncstcd loops algorithm OI the sort-
merge algorithm ol‘lcrcd the hcst (or close IO the best)
pcrlormancc. Other researchers have anal~zcd altcrna
tivc centralized join algorithms as well [Nich76, j ao7X,
l’ao79, BrahX41. Thcrc have’ also hecn a Iw studies 01’
distrihutcd qucr) processing pcrformancc issues.
Epstein and Stonchrakc*r ICSIC~ 14 vci-sions 111~ 01. Distri-
hutcd INGRES query processing algorithms IEpsrXO].
Their results indicated that cxhaustivc search performs
consistently hctter than limited search, that dynamic
optimization is henclicial, and that using a “worst cast”

This research was partially supported by the Wisconsin Alblm-

ni Research Foundation, .National Science Foundarm Granl
Number DCR-8402SlS, and an IBM Faculty Development Award.

Proceedings of VLDB 85, Stockholm 292

estimate I’or intermediate relation sizes is overly pes-
simistic. Some simulation results on the performance
of dif‘l’erent ,join strategies for a distributed database sys-
tem hased on a star computer network were presented in
[K(ersX2], and the effects of join selectivity and com-
munications speed on the optimal algorithm choice were
investigated in this context. Some results on query

processing in a locallv distrihuted system were reported
in [PagcR?], where query processing costs for the
INGRES database system were analyzed in the context
of the LOCUS distrihutcd operating system.

Compared to the number of‘ distributed query pro-
cessing nlgorirlz~n papers in the literature, relatively i’ew
papers have addressed the perforrnar7cc 01‘ distrihuled
join algorithms. This is one of the ma.jor motivations
which lead us to periorm this study. We have implc-
mcnted eight different distributed two-way join methods
in an experimental locally distrihuted computer system
31 the tinivcrsity of Wisconsin. The join methods
examined in our study include methods hascd on both
traditional joins and semi.joins using several diflercnt
access methods and daIa transrer strategies. ‘The work
rrcportcd here dil‘l’er-s from most of the work mentioned
ahove in the sense that it is an etnpiricnl study - we
present measurements of actual response times, disk
activity, and message transfers for the ,join algorithms
that we consider.

The organization of the remainder ot‘ the paper is
as l’ollows. The eight different join algorithms that we
studied are dcscrihed in section 2. Section 3 provides
an overview of our experimental environment. Our
experiments arc dcscrihcd and the results are presented
in Section 4. Section 5 summarizes what we have
learned lrom this study and its influence on what WC
plan to do in the luturc.

2. DISTRIBIITH) JOIN METHODS

Given an cqui-join query &,[A= B]/?, in a distri-
huted datahasc system, where R, and Rh reside at (dif‘-
Icrcnt) sites S, and Sb, respectively, there arc a
numher of distrihutcd join methods availahlc ior pro-
cessing it. Considering all of the possihlc combinations
01. access paths, local processing algorithms, execution
paradigms, etc., would lead IO a prohihitivcly large
search space for an empirical investigation. ‘Thus, to
r-cducc the numhcr of experiments necessary we
categorize distributed join methods along three dimcn-
sions and consider the fbllowing options in each:

(I) General approach - “traditional” join methods
versus semi.join-hused methods.

(2) Execution paradigm - sequential versus pipelined
execution for the pair of sites involved.

(3) Local ,join processing - sort-merge versus nested
loops (with an index).

In the remainder of this section we elaborate on
each of’ these dimensions, and we then present descrip-
IiOnS Of‘ OUT implementations of eight join algorithms
that are produced hy combining options from these
dimensions.

2. I. Join Versus Semijoin

The semi.join operator was introduced as a pr-im-
live for processing distributed queries with less data
transfer than traditional join methods [Bern 79a,
Bern79h, BernXla, Bernslh]. Using the scmi.join
method, only the join column values of one relation and
then the matching tuples of the second relation need IO
be translerrcd hctwccn the two sites. II‘ intcrsitc data
transl’er is expensive, the join field width is relatively
small compared IO the width of an entire tuplc, and
there are not many matching tuplcs, the USC of semi-
joins can result in a signilicant savings. In local area
networks, howcvcr, the daIir transicr rate hctween sites
is much higher- - on the same order ol’ magnitude as
that hctwccn memory and a local disk. It is question
able whether or not scmijoins will hc hcnclicial in such
an environment. as using them requires multiple scans
01‘ one of the source relations and thcrclorc mot-c’ disk
acccsscs.

2.2. Sequential Versus Pipelined Prowssing I

When an operation at a site rcqucsts remote datn,
as in a distrihuted join, a choice exists - the two sites
can work in either a sequential lashion or in a pipclincd
lashion. II’ the sites work sequentially, thc silt recci\‘-
ing data will not hcgin its processing until all 01 the
required data has arrived. In the pipelined case, pro-
cessing will hegin at the receiving site as soon as the
lirst tuplc or packet of data has arrived. One ad\rantage
01. the pipelined approach is its parallelism - the two
sites work in parallel, so the elapsed time for the query
will hc reduced in proportion IO the amount 01 over-
Iappcd processing. Second, and perhaps more
important, is the iact that the r-ecciving site doesn’t acttr-
ally store the incoming data in iI temporary rcl;tlion,
thus saving the time and disk iiCCCSSCS rcquircd IO store
and then rc-retricvc the data received from the rcmolc

site.

2.3. Sort-Merge \-ersus Nested Loops Join

Since any distrihuted join involves local process-
ing, (hc ,join algorithm and associated ~CCCSS methods
are still important iactors in a distrihuted datahasc S~S-
tern. For centralized joins, it was found in (Blas7h]
that, except for very small relations, 111~ nested loops
@in or sort-merge ,toin methods were always optimal 01.

293

IICHI optimal. WC thus chose thcsc two local join
methods IO implement for our distrihutcd join experi-
ni~nts. l-‘or rhe nested loops join method, we assume
the availability ol a B+ tree index on the join column
ol the inner relation, as would likely be the case in Sys-

tem R * [SeliXO, LohmX4].t If the inner relation is
shipped IO the outer relation’s site, a B-t- tree index is
constructed for the inner relation at tbe outer site.
Bccausc IIIC WiSS system]Chou83] does not support
clustered indexes on non-unique (i.e., non-key) attri-
hu~cs, and in addition it is not always reasonable IO

assume tl1a1 111~ join column will have a clustered index
availahlc, oui implementation uses secondary (i.e.,
non-clustct-ed) indexes.

2.1. Join Algorithm Details

As described earlier, WC have implemented eight
join algorithms for our study. The algorithms, classi-
fied according IO the three dimensions presented ahove,
are SJSM, SJNL, PJSh4, PJNL, SSSM, SSNL, PSSM,
and PSNL. For the first letter, “S” stands for scquen-
tial and “P” stands for pipelined. The second letter, “J”
or “S”, is used to represent “traditional join” versus
semi.join. The las~ two letters indicate either sort-merge
(“SM”) or nested loops (“NL”) join. In the remainder
of this section we describe each of these methods in
turn. In our ~esls, site S, initiates the join query and is
hoth the join site and the result site.

2.4.1. SJSM and SJNI*

The sequential join methods SJSM and SJNL arc

the simplest of the distributed join methods. ‘The remolc
relation Rh is shipped IO join site S, as a whole. The
two relations arc then joined at site S, using either the
sort-merge method (SJSh4) or the nested loops method
(SJNL). For SJSI\4, the two relations are each sorted al
their local sites first IO increase parallelism. For SJNL,
a B+ tree index is built on the Join column 01‘ 111~
received relation at site S, before performing the local
join

2.4.2. PJSM and PJNL

Like SJSM and SJNL, the PJSM and PJNL algo-
rithms transler the whole relation Rh from site Sb IO
site S,. The difference is that Rt, is not stored as a tem-

porary relation at site S,. Instead, tuplcs of Rt, are
joined with R, tuples on the Ily as they arrive. Using
the PJSM method, hoth relations are sorted ftrst.
Then, when a group (packet) of Rb tuplcs arrives at site
S,, a scan cursor on R, is incremented to lind match-
ing tuplcs. hllatchcs are merged with the tuplcs from

’ The cost of a nested loops joln without an index for relations

of reasonable sue is usually prohibitive [Bltt83], so we do not con-
vdet- this posibiliry.

the Rb group and wrillcn to me result relation. The
scan cursor is then reset IO the its las~ starting point in
R, and the process is repeated for the next group of Rh
tuples. In the PJNL case, since no temporary relation
for Rb is stored at site S,, the local relation R, always
serves as the inner relation and the remote relation Rb
serves as the outer relation. Both PJSM and PJNL can
be viewed as distributed executions ol‘ centralized join
algorithms.

2.4.3. SSSM and SSNL

SSSM and SSNL are two implementations of the
semi.join method. One variation in our implementation
is that the join column R, .A, which is sent from site

S, to site Sb, is not stored on disk at site Sh - the
incoming values are processed on the lly as they arrive.
Similarly, the relation R,‘, which is translctrrcd hack IO

site S,, is processed on the fly as it arrives a~ S, instead
of being stored thcrc as a temporary relation. Altl~ough
there is therefore some limited pipelining involved in
111c SSSR4 and SSNL execution strategies, we still
categorize Ihem as being sequential as compared to the
truly pipelined PSSM and
dcscrihcd next.

2.4.4. J’SSM and PSNL

The pipelined semi.join
“i‘elch lhc inner tuple as

PSNL. algorithms IO he

methods, rel~crrcd to as
needed” in System R’

(ScliXO], were the most complicated join methods IO
implement. Relation R, is scanned in a tuplc-hy-tuple
manner (conceptually), and ,join column values R,.A
are sent 10 site S,. Upon receiving an R, .A value, site
Sb sclec~s ~hc matching tuplcs from R, and sends them
to S,; a null message is sent if‘ there arc no matching
ruplcs. l‘hc~c tuplcs arc then merged with 111~
corresponding tuplc 01 R,,. which is wailing lor them

tslill in main memory). Our implcmcnliition actually
processes R, tuplcs in one-page hatches, so one hull’er
page is allocated t.or keeping IIIC mplcs Iron1 R,,

2.5. Discussion

The eight distrihutcd join methods dcscrihed in this
section represent a range 01‘ possihlc methods. The
sequential join methods, pipelined join methods, and
pipelined semijoin methods are all among 111~ methods
used System R ’]SeliXO, LohmX4], althou~lt 0111. implc-
mcntation may differ in minor- ways. 01 ~hcsc methods,
sequential join methods arc attractive l.or tltcir simplicity
and the pipelined methods arc attractive hccausc whey
allow more concurrency and avoid the cost 01‘ scoring
and retrieving tuplcs from a temporary relation. T‘hc

pipeline methods, of course, require some synchroniza-
tion of the two processing sites (in the form of I‘low con-
trol, so the receiving site can indeed avoid having IO

store incoming luplcsl. One IimiUon 01‘ PJNL (the
piplined ncsled loops join method) is Lhar R, musl be

the inner rclalion, regardless of how its size compares
10 1ha1 01. Rb, as the inner relation has lo be available
for multiple scans. The semijoin methods are attractive
hccause they reduce communications COSIS. The main
difl‘crcncc hecwecn the pipelined and sequential semi.join
mclhods is related IO duplicates - since the pipelined
version simply scans R, insread of prqjecting on R,.A,
il will send duplicate ,join column values if they are
pr-cscni in R,: however, the sequential semijoin

method requires multiple scans of R,, increasing the
local processing COSI. Clearly, there are tradeoffs
;rmong all 01’ thcsc algorithms - these are the tradeoff’s
10 hc empirically invesligdtcd in Section 4.

3. THE EXPERIMENTAL TESTBED

Figure 3.1 depicls the tcsthcd sysrcm used lor our
pcrt‘ormancc sludy. A collcclion of ICSI programs wcrc
wrillcn 10 implement (hard-wired) dislrihutcd join
queries using the diff’erenl mclhods dcscrihcd in seclion
2. Thcsc programs access a synrhctic daIahasc, ~hc
Wisconsin datahasc [BirlX3], via WiSS (Ihc Wisconsin
Sloragc Syslcm) [ChouX3]. The programs run on a
pair- 01. node machines irom the Crystal mullicompulcr,
an experimental dislrihulcd compuIcr sysrcm [DeWiX4j.
hlonilor programs run on u \‘AS/Unix hosl machine IO
inilialc IC’SI program cxcculion and IO collcc~ pcrlor-
mance slrilis~ics afrcr lhc lesl programs Icrminale. Fol
communications hcrwecn node machines, or hclwecn
no& machines and ~hc host, wc used a Crystal corn-
municarions packasc called rhc Simple Applicalion
Pack;rgcs 154P1. In (his scclion WC’ hriclly descrihc each
01. lhcsc componcncs 01’ Ihc syslcm.

NODESa
1

HOST I---------

NODESb

Figure 3.1: Distrihuled Join Method Tesrhcd

3.1. The Crystal Multicorn puter

The Crystal multicompulcr [DcWiX4] currenlly
consists of 20 DEC V.4>(I l/750’s interconnected via a
IO-Mb/see Proleon token ring network. The ring ncl-
work is also connected 10 several of the Computer Sci-
ence Department’s research VAXes, each of which can
serve as a host machine. Crystal multicompuler users
can claim a number of node machines as a parlilion.
The partitions of dift’erenc users in Ihe system arc logi-
cally isolated from each other - each partition is hasi-
caliy a virtual distributed cornpurer syslem. For OUI
distributed ,join algorithm experiments, WC used a parli-
tion of two node machines with 2 megahytcs memory
and 160 megabyte Fujitsu disks to create a distrihutcd
database system testbed.

There are several levels of software availahlc on
Crystal. WC used ltio of Ihc IOWCSI levels, lhc Cryslal
Nuggci and the Simple .4pplicalions Package (SAP), 10
avoid unnecessary ovcrhcad. ‘l‘hc Nuggc~ is a simple
communicarions kernel thal resides permanenlly on
each node machine, providing low-level mcssagc-
passing primilivcs and cnlorcing ihe logical isolalion of
parlilions. SAP is a se1 of subroutines thal sil on lop of
111~ Nuggcl, providing hufl’crcd communications using
I~O qucucs, one lor incoming messages and olhcr lor
oulgoing mcssagcs. II provides a somcwhar higher-level
message I‘acilily lor our applications.

3.2. The \l’isconsin Storage System

‘fhc Wisconsin StOl-iigC Syslcm, or WiSS. is an
access-mcihod Icvcl dalii sloragc syslcm thal can run
eilhcr on lop 01 linix OI- directly on rop of‘ a “raw” disk
IChouX3]. For our expcrimcnls, ir was inslallcd on ~hc
Crystal node machines and acccsscd Iheir disks directly.
WiSS manages devices, deals with physical sloragc allo-
calion, manages hul‘lcr pages, and provides a primilivc
concurrency conll-ol mechanism. AI its highest level,
WiSS implcmcnls lhc access melhods of scqucnlial
scan, index scan, and long data iicm scan. This level
also provides routines lor crcaling and destroying liles,
indcxcs and long daU iccms. Some cxplicil control OVC’I-

scans, such as ~hc capuhiliry 10 rcscl a scan cursor
(search pointer,, is also provided. Our ICSI programs
inlcrfucc with WiSS a(this Icvcl.

3.3. The kl’isronsin Datab;tse

TIIC Wisconsin Dalahasc was designed lor USC in
systematically hcnchmarking rclalional daIah;isc S~SILWS

IBitlXi]. ‘l’hcrc arc four basic rclaiions in ~hc datahusc,
called “ihousiup”, “twoihousiup”, “fivcthouslup”, and
“lcnthouslup”. Thcsc rclaiions conrain 1000, 2000,
5000, and 10,000 luplcs, rcspecrivcly. Tupl~‘s in all 01‘
lhesc relations arc’ 1X2 hytcs long, each consisling 01.
thirteen 2-hyrc integer ailrihutcs and three 52.hyic

295

string attrihuies. All ol. the integer attributes have uni-
formly distrihuicd WIUCS, hui the range of their distri-

butions varies in order IO provide for different selectivi-
tics and projcctivities. The string attributes were not
used in our study, so we do not discuss them here.

3. EXPERIMENTS ANl> RESULTS

4.1. Some Considerations

‘l’hc first problem that arose in designing our tests
was Ihc issue of choosing an appropriale set of test
quci-ies. In their classic study of join methods for cen-
tralizcd database systems, Blasgen and Eswaren used a
query char selected a suhsct of ~uplcs from IWO relations,
joined these togcthcr, and finally prqjectcd out a subset
01. the resulting lields as a general query for their ana-
lyses [Blas7hj. Our initial inclination was to do the
same for our study of distributed joins. However, since
WC arc more interested in the effects of data distribution
on the various join options, and adding the two pre-join
selections and a post-join prqjcction would only increase
the fraction of the execution time due to local proccss-
ing, wc decided IO USC’ the simple two-site join of Figure
4.1 for our ICSI queries. The sizes of relations R, and
Rh, the size’ of the result relation R, and the value dis-
trihutions of the join attrihutcs are varied in our cxpcri-
mcnts IO ohservc their respcctivc cffccts on pcrfor-
mance.

range a is Ra at Sa
rang b is Rb at Sh
rclrieve into R(a.all,h.all) at Sa
where (a.A = h.B)

Figure 4.1: Gcncral Form of the Test Query.

Our choice 01 source’ relations fnllowcd ~hc metho-
dology presented in [BittX3]. Thcrc are several con-
siderations hcrc. First, relation sizes should he large
enough to he realistic, The basic relations used in our

tests have 1,000 ~uplcs and 10,000 ~uples (the
“thoustup” and “tenthoustup” relations of the Wiscon-
sin database), occupying ahout 4h and 4% pages,
respcctivcly. Second, random attribute value distrihu-
lions arc desirable in order IO provide an unhiased lrcal-
ment of each of the join methods. This was particularly
important in the sort-merge ,join cast. Third, in order
to insure that the results of the various IC‘SIS were nol

hiased hy preceeding ones, we had IO ensure that no lesl
query was likely IO find useful pages sitting in the huffcr
lrom its predecessors. We used a technique described
in [BittXJ], where two topics of source relalions arc’
maintained (at each site in our case), and allernale
queries USC allernatc copies of the sourer relations.

Another important decision for our study was ihc

choice of an appropriate set of performance metrics and
a reasonable measurement approach. For our cxperi-
ments, the elapsed lime of a query was the main metric
measured. This time is defined as the time interval
heginning when site S, initiates the query and ending
when the result is completely stored at site S,. The
Crystal Nugget provides a timing procedure that is
accurate to the nearest 10 milliseconds; this procedure
was used for our elapsed time measurements. For each
query, we also measured the number of disk accesses
performed and the numher of messages sent. Our disk
access measurements were taken using a special version
of WiSS that is instrumented IO trace disk operations.
For each disk access, the start and completion times 01
the access arc recorded. An analysis of the trace
records from our experiments indicates that an avcragc
disk access in our test environment takes ahout 25.5
milliseconds (for a 4K-byte page). To measure network
traffic, WC’ counted messages in our own communica-
lions intcrfacc routines. To measure the actual mcssagc
send and receive times, WC ran scparatc (csts IO send
and rcccive a large numhcl- of sin@-packcl “null” mcs-
sags hctwccn IWO nod, machines using the same corn-
munications intcrl.acc routines used lor our ICSI queries.
Our results indicate char ~hc avcragc mcssagc translcr
time is ahout 1h.h milliseconds (IOI- a 2K-hytc packet).
Finally, while wvc‘ would also lihc IO l~avc measured ~hc
CPU time used hy OUI- ICSI qucrics, this was noi easily
done 81 the level al which our expcrimcnts ran (i.c.,
stand-alone on Crystal nodes).

3.2. The Experiments and Results

We dcsigncd ICSI qucrics IO investigate the effects
of a numhcr of different factors on the pcrformancc of
the alternative distributed join algorithms. The factors
invcstigatcd include (hc sizes of the source relations and
the join selectivity (i.c., ~hc rcsulc r-clarion size and the
distributions of the ,join column values). WC dcscrihv
our cxperimcnts and the results thaw WC ohtaincd in this
section. First, however, wc dcscrihc the results 01. one
of our distributed join executions in greal detail in order
IO illusrratc the COSIS and hcnclits ol the various
approaches and IO provide the rcadcr with usdul hack
ground knowledge for la~cr discussions.

1.2.1. Queq Resource Demands: A Detailed
EXil m pk

The cxamplc thal WC will cxaminc in this seclion
involves a query whcrc both R, and R,,, arc “thoustup”
relations and the result relation has 100 ~uplcs.

Figure 4.2 shows the elapsed lime for the example
query processed using the dill’ercnt join methods. ‘l‘hc
elapsed time for sile S, is the actual elapsed time for IhC

296

E 30
i

I

a

P

5 20 I

Silt Sa
D---EJ

\

M

c

I)

SJSM SJNL PJSM PJNL SSSM SSNL PSSM PSNL

Join Methods

Figure 4.2: Elapsed Time.

I Sic Sa. Rccrivc

,
I

, \
,
1
1
,
I
I
I ,‘I
, 1’

SilC Sk!, Send
;s---t;,l’

I
II ,

__ ----
8

SJSM SJNL PJSM PJNL SSSM SSNI. PSSM PSNI.

Join Methods

Figure 4.3: Numb ol Messages.

I Silr S;I

0-I t
SJSM SJNL PJSM PJNL SSSM SSNL PSSM PSNL

Join Methods

Figure 4.4: Number of Disk Accesses.

query, and the elapsed time lor site S, shows the par-

tion of time during which S, was involved in the query.
The gcncral trend is that the pipelincd join methods -
PJSM, PSSM, PJNL, and PSNL - executed the join
more quickly than the sequential methods did. Of the
pipelined methods, the nested loops join method outper-
formed the sort-merge method for this example. (That
is, PJNL did better than PJSM, and PSNL did hettcr
than PSSM). This can he explained hy taking a look at
the resource demands of the various join methods.

Figure 4.3 shows the number of messages that
were required to transfer data hetwccn the IWO sites S,
and Sh (mcasurcd at site S,), illustrating the communi-
cations COSI of each of the join methods. For each of
the traditional join methods (SJNL, SJSJ, PJSM and
PJNL), all of relation Rb is shipped lo site S,, and site
S, sends no data to site Sb. For the sequential semi,join

methods (SSNL and SSSM), site S, sends its ,join
column values lo sile Sb, and site Sb sends hack its
matching luplcs. In our example, since the tolal size ol
the join column values of R, is only 2000 hytcs tjusl
cxcccding the size of a single message packet with cons
trol information), and the semi.join sclcctivity is 0.1, the
communications cost 01‘ the sequential scrni.join mcrhods
is much lower than that oi- the other join methods.
However, it is important IO realize ~ha~.thc fractional
communications cosl (i.e., communications cosl as a
portion of the total elapsed time) is not high in any of’
the ,join methods. For the non-scmijoin mcthodh, 100
messages wcrc required in all, yielding a total mcssagc
lime of ahour 1 .h5 seconds.

The mcssag<’ COSI analysis for the pipclincd semi-
join methods (PSNL and PSSM) is a hit more compli-
cated fbr OUI- implcmcnlation. First of all, the numhcr
of messages for PSNL and PSSM is ai‘lcctcd both hy the
hulfr space size that is allocated a~ site S, for holding
R, luplcs, and also hy rhc mcssagc packet size. Our
implcmcntation allocates onlv one hufler page (22
tuplcsb lor scanning R,, so wc sent only 22 ,join column
values each tirnc. That is, WC’ were limited hy hull&
space, so lhc mcssagc packets wcrc nol fully used.
(This may indicate that, since one messngc packet can
hold many join column values, it may hc hcttcr in prac-
ticc IO SCICCI the numhcr 01. R, hufb pages used
according 10 ~hc numhcr 01. join column values that fit
in one’ mcssagc packcl.) Another complication involved
in the pipelincd scmijoin mcssagc analysis is that ihc
numhcr 01‘ messages rcccivcd hy site S, is iniluenccd hy
the distribution ol the ,join column values. For somt
messages sent hy S,, many values will hc rcturncd, hur
other mcssagcs may simply say “no matches” or may
conmin ,just a few tuples. This is in contrusi IO I~C
sequential scmijoin case, which will totally fill all hul
the las~ of the r-~&sages returned from S, IO S,. For all

297

GQl QG2 -1
QG2.a QG2.b

lR*l iRbi IRI I%1 lRbl IRI l&l lRbl IRI
10,000 10,000 10,000 10,000 1,000 1,000 1,000 10,000 1,000

1,000 1,000 1,000 10,000 100 100 100 10,000 100 I
500 500 500 10,000 10 10 10 10,000 10
100 100 100 10,000 1 1 1 10,000 1

Figure 4.5: Sizes of Relations in Query Groups QGl and QG2.

of‘ the reasons cited ahove, then, the numher of’ mes-
sages ~OI- the PSSM and PSNL algorithms usually
exceeds the numher for SSSM and SSNL, as is Ihe case
in Figure 4.3. (Again. however, we remind the reader
that the message cosi is far from hcing the dominant
cost factor here.)

The numher 01’ disk accesses for a join method
depends on the numher of difl’ercnt pages accessed dur-
ing the operation tol‘ course), hut it also depends
strongly on the availahlc huffcr space, on the page
replaccmont policy used hy the hulfer manager, and on
the physical allocation of pages in each relation. Figure
-1.4 shows the measured number of disk accesses lor the
example query, and provides insight into the disk usage
of the various distributed join methods. At site Sb, the
sort-merge join methods (SJSM and SJNL) both require
the same number of‘ disk accesses - this number is the
sum of’the ~CCCSSCS required lor sorting relation R, and
those needed to scan Rb once to send its luplcs to S,.
The sort-merge scmi,join methods (SSSRI and PSSM)
rcqulrc a similar numher of‘ disk acccsscs. For the
nested loops join methods (SJNL and PJNL), ,just one
scan ol- Rt, is required a~ Sb (to send it IO S, I. For the
nested loops semijoin methods tSSNL and PSKL), the
number of disk accc’sscs at site S, dcpcnds on the scm-
join selectivity of‘ the query. SSNL requires somewhat
more disk accesses at Sh hecausc it has to store the
intcrmediatc semijoin result R, .AIA = B]R, and then
retrieve it again to send it hack to S,. Similar trends
are ohserved at site S,. As ohservcd in the mcasure-
mcnts at S,, the sort-merge methods require more disk
accesses than the nested loops methods due IO sorting.
Among the nested loops methods, the sequential ones
have higher disk costs than the pipelined methods due to
the storage and retrieval of the received relation; this is
especially true for the sequential join case (SJNL),
which builds an index on the received relation at S,.

4.2.2. The Effect of Relation Sizes

Two groups of queries, QGl and QG2, were tested
to investigate the behavior of the difl’erent join methods
as the relation sizes were varied. QGl consists of.joins
between two relations of the same size; the result rela-

tion in QGl is the same size as the source relations
(making the join selectivity simply the inverse of ~hc
source relation size). QG2 consists of joins hctwccn
two relations of various differing sizes; the join selec-
tivity is kept constant in query group QG2 (a~ ;I value 01’
10-4). Since the two sites in these queries arc asym-
metrical, QG2 is further divided into two subgroups 01.
queries, QG2.a and QG2.h. In QG2.a, the site having
the larger relation was chosen as the join site; in
QG2.h, the smaller relation resided at the join site. (As
hcforc, the result site is taken to he the join site l.or
these tests.) These query groups arc listed in Figure
4.5.

Figure 4.h SIIOWS lhe clapscd time mcasurcd 1.01
each of lhe QGI qucrics. For the ,join oi‘ IIIC IWO
“tcnthoustup” relations, all ol’ the nested loops metllods
lost to the sort-merge methods cvcn though the SOI-TV
merge methods must sort these large relations. This is
hccausc the amount 01 work saved through sorting sig-
nificantlv outweighs the work requir-cd IO pcrlol-m the
sorts. I%is is illustrated hy Figure 4.9, which shows
the mcasurcd clapscd times and disk accc’sses for sorting
the “tenthoustup”, “thoustup” and “hundrcdtup” rcla-
tions, and hy the lollowing analysis. Figure -1.9 shows
that it takes h4.89 seconds to SOI-I the “tenthoustup”
relation, and that this involves 191 1 disk acccsscs. This
constilutcs lhc per-join “ovcrhcad” portion 01. the sort-
merge methods lor this cast. After sorting, the merge
phase acccsscs each page 01’ each relation just once. ln
contrast, Ibr the ncstcd loops join using a nonclustered
index, the numher of disk acccsscs is much larger: this
is due to the number- 01. data pages (randomly) accessed.
Figure 4.7 shows this clearly. 01‘ the four ncstcd loops
methods, three ol‘ them rcquircd more than 10,000 disk
a~ccsscs, which is what was chosen as an upper limit
for the numher of disk ;~~csscs traced due IO space con-
siderations. The one cxccption was PSNL (pipclincd
semijoin-hascd nested loops). which keeps ruplcs in
memory at site S,, scanning R, only once. Ho:\:c\c~-,
this method involved a large’ numhcl- of‘ disk acccssc~s ilt
site Sb (not shown), where R, is searched using the
index to lind the matching tuples lor the 10,000 join
attrihute values sent hy R,. The elapsed time was

298

I !

(IOK,IOKI
1

(IK,IKI mn.m) (100,100)
Relation Size (RI, Rb)

Figure 4.h: Elapsed l’ime (QGl).

5 in I
tIUK,IOK) (IK,IK) (coo.sool (100,100

Relation Site tRu, Rb)

Figure 4.7: Numhcr of Disk ACCCSS~S (QGl).

(IK,IKt m0,500~
Relation Size (Ru. Rb)

~100,100~

Figure 4.X: Number ol’ Messages (QGl).

Elapsed
Number of Disk Acccsscs

Relation
Time Total Reads , Writes

hundredtup 0.54 13 h 7
thoustup 6.46 196 97 99
tenthoustup 04.89 1911 95.5 956

Figure 4.9: Sorting Times Versus Relation Size

mainly determined hy the processing rate a~ site Sb in
this cast, which explains its elapsed time as compared
lo the sort-merge methods.

Figure 4.6 shows that, as the relation sizes arc
decreased, the cost of sorting the relations begins to
outweigh the cost of performing an inner relation disk

access per outer relation tuple. With smaller relation
sizes, Figure 4.7 shows that the rotal numhcrs oi’ disk
accesses for the the pipelined nested loops methods
(PJNL and PSNLj are lower than those for the sort-
merge methods. T’hus, the pipelincd nested loops
methods arc the hcs~ pcrlormcrs except at the largest
relation size Icstcd lor QGl.

Figure 4.X shows the roral number of messages
involved in executing each of the tight Join methods
tested. Only three curves arc cvidcnt. The highest cost
hcrc is for the pipclincd semijoin methods, the next
highest COSI is lor 111~ scqucntial semijoin methods, and
~hc IOWCSI among the message costs arc the non-
scmi,join methods. This is hccausc, in this case, the
join is a “one-to-one join” - each ~uplc ol R, Joins
with one and only one mplc of Rh. Thus, the use of
semi,joins here does not rcducc rhc amount of data ulti-
matcly transl‘crrcd IO the Join site; rather, ;I increases
the overall mcssagc cost hy the amount of data sent to
the rcmotc site l.rom the Join site initially. In all cases,
given our packet transfer time of 1h.h milliseconds, the
overall mcssagc time is ncvcr more than ahout S-10%
01‘ the overall elapsed time. (Also, the cffccl of the mes-
sage time is even less significant for the pipelined algo-

rithms, as thcrc is processing going on while messages
are in transil.)

Figures 4.10 and 4.11 give 111~ measured clapscd
times l.or the qucrics in query groups QG2.a and
QG2.h. ‘l’hcsc results clearly illustrate the diflctrcnccs

hetwccn 111~ various join methods tested. The diversity
of rhc results can hc cxplainod hased on 111~ discussion

of‘ the dctailcd cxamplc and analysis given in Section
4.2. 1. II is evident from the ligurcs that the nested
loops join methods arc more sensitive to relalion size
differences than the sort-mcrg methods, parlicularly at
the larger relation sizes. This is hecause the sort-merge
methods have a fixed component of their costs due 10

299

“I
(IOK.IK) I I OK, IOO) ~IOK,llll (lQK.1)

Rrhtion Size (Ku. Rb)

Figure 4.10: Elapsed Time (QG2.a).

,) 312>

I

5

k h2.z

(IUK.IKI I I OK. I no) (IOK.10)

Krlalion Size (Ka. Rb)

t

(IQK.1)

A SJNI. b w [3 SSNI. 3 c PSNI. 3

~lK.lnK) OnlLIOK) ~lO,IOK)

Relation Size (RIB, Kb)

ll,lnK)

Figure 4.11: Elapsed Time (QG2.h).

(InK.IK) (InK,lO0) flOK.10)

Kelation Size (Ro, Rb)

Figure J. 12: Numhcr of Disk ACCCSSCS (QG2.a).

3125

I)

I i

A ----__ A -----A-----------A-----

i 625 ------A

s I El.. .\
k

I25 -

A

c
25 -

c

c _----- _--- -
SITE Sa

5 s-

:; //
(IK.IOK) 000.10K) (lO,l0K) (l,lOK)

Rrhfion Size (Ra. Kb)

s (IK.IOK) ~lOO.lOK) (ln,lOK) (l,lOK)

Relation Size (Ra, Rb)

Figure 4.13: Number of Disk Accesses (QG2.h).

300

sorling the “tcnthoustup” relation (see Figure 4.9 for
ttlis cost). An extrcmc case is illustrated in Figure 4.11
I’or the the pipclined join case (PJSM). With the
smaller relation site as the join site, its cost remains
nearly constant over the whole size range investigated.
The main components 01‘ the cost of PJSM are sorting
R, at site S, and scanning Rb to send it to site S,.
(Thcsc nvo factors alone account for ahout 90% of the
elapsed time. I The sort merge methods can never exe-
cute laster than the time it takes to sort and scan the
larger ol its relations. The nested loops join methods
ar? dil‘lerent, however. When the size of one ol‘ the
source I-clations dccreascs, the number of’ disk accesses
deercases dramatically ibr at least one of the nested
loops methods in both query groups, as shown in Fig-
urc’s -1.12 and 1.13. This is due to the absence of sort-
ing o\crhrad and the effectiveness of the index for
smaller outer relation sizes. The winner for query
group QG2.a is the pipelined join version of nested
loops (PJNL). The winner for query group QG2.h is
the pipclincd scmi,join version ol nested loops (PSNL);
the scqucntial semi.join method ((SSNL) is the next hesl
choice, with nearly identical pcrlormance fbr the
smaller relation sizes. While the message counts arc
not given hcrc’, thcv rcprcscnt an insignilicant portion
of the overall query processing COSI (as in the previous
casts examincdt.

One not? hcrc: II sc’cms to us that the qucrics in
QG2 :tre rcprcsentativc 01. B class oi’ queries that is
likely IO al-isc in real datahasc systems - that is,
qucrics with a small number of’ tuplcs in one relation
(the rc’sult 01. a st’lcction J being joined with tuplcs l.rom
a much larger rclatinn. .An importimt ohscrvation from
the tcsb covcrcd hy qucr! groups QGI and QG2 is thnl,
when one relation is small, the pipclincd ncstcd loops
join methods perlorm much hcttcr than their scqucntial
counterparts or any 01’ the sor-t-mcrgc methods. When
both lrclations arc large, howcvcr, as when hoth wcrc
“tcnlhoustup” relations in our tests, the optimal
methods will he the pipclincd sort-merge methods.

4.2.3. The Et’tixts ot’ Join Selectivity

Join sclcctivity, which is the ratio of the size 01‘ the
result relation to the product of the sizes ol the source
relations, is an inllucntial factor with rcspct to join
algorithm pcrlbrmancc. To see just how various join
selectivilies afl’ect pcrlormancc, WC’ ran tests on the
eight distrihutud join methods using two relations each
with 1,000 tuplcs. These wt’rc not the “rhoustup” rcla-
(ions from the Wisconsin datahasc, howcvcr. Rathc>r,
the join selectivity was varied to product result sizes nl‘
1000 tuplcs, 100 tuplcs, 10 tuplcs, and 1 tuplc in the
following \vay. A result size of’ ,‘v tuplcs was ohtaincd
hy selecting R, Irom the “lcnthoustup” relation with

s
c

;I

‘\
- .._-..---- -* -_________ A

b7;

‘\
‘._
, -------Be-..- ______ D

‘\
e-----

-----~~~~~e---------- ---------- 8

m

c
0-f I

1000 I00 I 0 I
Size of Result Krlulion

Figure 4.14: Ellcct of’ Join Selectivity.

“unique I ” values in the range [4500..54993, \vhilc
choosing N 01. Rh’s tuplcs from the “tcnthoustup” rcla
lion randomly in the same range and choosing the’
remainder 01 Rb’s tuplcs randomly I‘rom outside this
range.

Figure 1.14 shows the measured elapsed times lor
the dil‘l.crcnt join methods for the various join sc’lcctivi-
tics tested. Higher join sclcctivitics (i.e. smaller result
rclationsj mean that fcwcr tuplcs will match during the
join, which lcads to several cost savings. First, the
result relation is smaller, so fewer disk accc’sses are
nccdcd IO write out the result. Second, lbwcr data
pages arc accessed for the indexed ncstcd loops .join
methods. ‘I’hird, I’cwcr tuplcs will he retricvcd from the
remote site for the scmijoin methods, so the communi-
cations COSI is rcduccd in their cast. The pipclined
ncstcd loops join and scmijoin methods were the
winners in this exprimcnt, with the scmi,join method
doing somcwha~ worst than the join-hascd method.
Their piplincd sort-mcrsc counterparts wcrc next hcst
in terms 01‘ cliipscd tims here.

4.2.3. The 13tkts of’ Duplicatr Attribute Valurs

Another l’actor which can inllucncc the pcrlor-
mancc 01 a join method is the dcgrec 01. join column
value duplication. In the mcrgc phase ol a sort-mcrgc
join, duplicate join attrihutc values can cause’ multiple
scans 01. pages ol one relation. Perhaps more signili-
cant is the cl‘1Cc1 01. duplicates on sequential versus pipc-
lined scmi,join pcrformancc. In semi.join methods, site
S, sends the join column values of‘ R, to site Si,, and
site S, uses ~hc values to ICtch and return any matching
tuples in relation Rh. In the sequential variant of’ ~hc
scmi,join method, duplicate R,.A values arc removed,

301

0 n=r
A D=lO

0 D = 100

---- SSNL
- PSNL

50 ! , t
1~lOO 100 10 I

Size 0r Krs~ll Krbtion

Figure 4.15: Efl’ec~ of Duplicate Values.

which has IWO cftcc~s. First, less dala is sent - dupli-
cate join column values arc avoided in messages from
S, td S,, and (as a result) each matching Rb tuple is

sent lo S, jusl once. Second, and related, is the

avoidance ol multiple disk accesses in Rt, lor a given
R,.A value. These IWO savings reduce hoth the com-
munications COSI and the local processing COSI. WC
tested a group of queries which join two relations on an
attribute with duplicate values in this expcrimcnt.

We USC the duplication ficror D of‘ atlrihuic A 01‘
relation R, to quantitatively descrihc rhc dcgrcc of

duplication. This l’actor is defined as the ratio 01. the
numhcr of ~uples in relation R, to ~hc numhcr 01’ dis-
tinct values of attrihutc A. Figure 4.15 shows the
efl.ccts 01’ duplicates on the sequential and pipclincd
semi.join methods (SSNL and PSNL). In all tests, hoth
source relations have 1000 tuplcs. Join columns in R,.
arc‘ chosen with D= 1, 10, and 100, rcspcctively. II can
hc seen from the figure that duplicates have almost no
cf’fcci on PSNL. For SSNL, howcvcr, an increase in
the duplication factor moves it from hcing much worst
than PSNL to being much helter. Obviously. the hcnc-
lit due IO the elimination of’ duplicates outweighs the
usual disadvantages of the scqucntial methods when the
duplication factor is high.

1.2.5. Summary of Test Results

There arc a few observations that WC’ would like IO
make hcrc. First, if WC set the issue of join site. sclec-
tion aside, Figures 4.10 and 4. I I show that the three
nested loops methods PJNL, SSNL and PSNL provide
the best ptrlbrmancc when joining a large relation with
a small one. For “medium” similar size relation joins,
such as those shown in Figurr 4.14, PJNL and PSNL

1 I/ 0.3500 1 0.3x9.5 j 11.29’, jj

Figure 4.16: Local versus Distrihutcd Join (IR,(= 1OK)

also perform the best, and the sequential SSN L algo-
rithm becomes worst’ than the two pipclincd sort-mergr
methods (PJSM and PSSM). ‘Illis lcads IO the conclu
sion thal pipelined join and semijoin methods seem IO

hc the most promising ot‘ the distrihutcd join methods
tested. TO join very large relations OF similar size, the
pipelined sorl-mcr-gc mcbthods stem IO hc the hcst
choices, as shown in Figure 4.6. ‘fhcse conclllsions
hold for- the entire rnngc 01. qucrics that WC invcstigatcd.

Another gcncral conclusion 01’ this study is tllai the
communications COSI did not play a signiticant IOIC in
deicrmining algorithm prformance in OUI- cnvil-on
mcnt. The contribution 01. communications costs to ~hc
overall measured clapscd times was typically around
IO-15%. As an illustrative cxamplc, to translcr ~1
“tenthouslup” relation from one’ site IO another rlquircs

ahout 1000 mcssagcs, hut it only takes uhout ;h ! 7
seconds lor this transmission. In queries \vhcr~ such ;1
transfer might hc ussCull how~vcr. the processing COSI
may hc as high as scvcral hundred sccnnds. ‘l’llr rela
tivcl! pool- pcrlormancc 01. the sequential scniijoin
method is also cvidcncc I~;II communication co51 sav
ings alone does not help muclt. As ;I more concrctc
cxamplc, Figure 4. lh compares local ioin costs Lvith
distrihutcd join COSIS in our environment. In all casC5,
IR,I = lOk, and the local and distrihutcd join rrcthod<
used wcrc those ihat gave the Icast elapsed tinlc. It is
clear from the cxamplc that Ihc mcssagc cost is no1 lh~
major determining tactor lor pcrlormancc.

The IUSI point IO hc made 1s thar cllonsing the rig111
combination ol‘ a ,join processing site and a join method
is important. Figul-cs 4. 10 and 3. 1 I indicate thar, il 111~.
two relations IO hc joined hitvc dillcrc>nt sizes, tltc pipe
lined nested loops ‘join method (P.tNL) needs IIIC site
with larger relation IO hc ~hc join site (i.e., it nc‘rds the
outer relation IO hc tllc smaller of tl~c two snurcc I \.:[;I
lions). In contrast, rhc scmijoin ncstcd loops nl~‘tllod~
(PSNL and SSNL) pcrl’orn; much hcttcl- W~CII tht
smaller relation site is chosen as the join silt ti.c., they
also need the outer I-elation IO hc the srnallci- 01 IIIC
two). The intuition hchind thcsc results is Iail-I) siln
plc, in rctrospcct: PJNL and PSNL arc basically I~C
same algorithm il‘ communications cost is ZC’IO. hntil
being distrihutcd executions 01’ a simple ncstcd loops

302

,join; ihcy have Ihc same local processing COSIS. The
outer relation should hc the smaller of the two in the
ccntrvlizcd cast as well [BlasTlh, Seli79]. Note also that
in a low communications cosl environment such as this,
WC can switch our join site choice with little or no
significant impact on performance. For example, sup-
pose thaw /?, is a small relation, R, is a large relation,
that S, is IO hc the result site, and therefore that the
pipclincd scmijoin (PSNL) method is the best choice.
In this cast, S, ends up hcing the ,join site. If WC
would prefer to have Sh hc the join site for some rca-
son, such as load halancing cdnsidcrations [Car&S),
wc can accomplish this hy doing a pipelined join
t PJNLI 31 sire S, and shipping the results back lo site

so

5. CONCLIISIONS

In this paper, WC’ have studied the pcrformancc 01
;1 numher of ‘different join methods for a distrihutcd
datahasc system. Eight different melhods wc’rc’ imple-
mcnted on top of the Wisconsin Storage System and run
on an experimental distrihutcd computer system, ~hc
Crystal mullicomputcr, at the University of Wisconsin.
Join queries with various sizes, join selcctivities, and
attrihute value distrihutions wcrc tcstcd. Our results
have shown that, in ;i local network, communication
cost is not the dominant factor. Shipping an cntirc rcla-
tion from one site to another site is a rcasonahle way IO
process a distributed join query - as long as in is done
correctly. Correctly in this case means that a pipclincd
join algorithm, where the outer relation is shipped IO
the join site (the inner site) in parallel with the local
join processing itself, is employed. Allhough traditional
(sequential) scmi,join methods can reduce the communi-
cations COSI, and ~hcy pcrlorm well in cases where the
join column duplication factor is high (many matching
inner relation tuplcs per outer relation ~uplc), pivlincd
scmi.join methods wc’rc’ found to hc prefrahlc in most
01. Ihc test cases examined. Thcsc results hold over a
wide range of query characlcrislics. For the cast whcrc
IWO very large relations arc IO hc ,joincd, pipclinc sort-
merge methods arc recommended. We also lound that
Ihe comhinalion of Ihc join method and Ihc join site arc
important, thar it is very important to cnsurc that the
ouIcr relation for the join is the smaller of the rwo
SOLII-cc I-clations (as in ccntralizcd datahasc systems).

Our results are related to several other picccs 01‘
work on distrihuted query processing tcchniqucs. First,
~hc pipclincd scmi.join methods that WC implemented arc
~hc ones used in System R’ , known there its the “fetch
~hc inner ~uplc as needed” methods IScliXO]. They
opted to USC Ihc pipclincd version 01. scmi.join over the
more‘ IradiIional scquenlial version because they
hclirvcd IhaI iI would tend IO win in most siIuaIions due

to lower local processing cosls. Our results indicate
that this is indeed the case in a local nclwork. Our
results also concur with the claims of Page, which indi-
caie that, in a distrihutcd dalahase system hased on a
local network, it is iar mot-c’ important that joins he
done in the correci order and with the correct inner and
outer relations than that they he done at the site which
minimizes communicaiions [Pagc83]. The key diffcr-
encc between Page’s results and ours are that his con-
clusions were hased on a COSI analysis of the INGRES
database system and the LOCUS distrihutcd operating
system, whereas ours were obtained from measuring
the performance of a number of actual distrihutcd join
queries. Finally, earlier analytical studies have indi-
caled thaI pipelined query cvaluaiion techniques provide
the best performance in centralized database systems
ISmil75, Yao79]. Our resulis in favor of pipelined join
methods can he vicwcd as showing cxpcrimcnlally thaI
pipelining is still Ihc method of choice in a locally dis-
trihutcd dalahasc sysiem.

Thcrc arc scvcral directions lhal can hc lakcn from
hcrc in Ierms of luiurc rcscnrch on query processing
methods Ibr locally dislrihutcd datahasc systems. One
direction Ihat wc’ arc actively pursuing is the incorpora-
tion 01. load halancing tcchniqucs into a distrihutcd daLii-
hasc sysicm [CarcM]. WC inlcnd IO USC the rcsulls
ohtaincd hcrc IO guide the design of query processing
algorithms that incorporate such tcchniqucs. WC also
plan IO use our dctailcd measurements to drive a simu-
lation model that WC have dcvclopcd for research in Ihis

area. Another dirccIion that one mighI pursue is a
study of lhc performance of processing sIraIegics for II-
way ,joins (whet-c /i > 2). While WC’ feel that our
results paint a lairlv compleic picture of the rclalive
merits of the alternative join methods for our environ-
ment, we have not taken an cxhauslive look at all possi-
hililics.

The aulhors wish to acknowlcdgc helpful discus-
sions with David DcWitt. WC must also thanh Hong-
l‘ai Chou, who provided us with the inslrumcntcd VW

sion of WiSS used in ~hcsc cxpcriments. WC also wanI
to Ihanh Bart Miller, who hclpcd us learn ahouI

l’nix/lPC for an carlicr implcmcnIation of lhc distri-
hutcd ,join methods. Finally, wc wish to acknowledge
Ihc NSF-sponsored Crystal mullicomputcr prqjccl at the
University 01‘ Wisconsin, which provided the cxpcl-i-
mental environment lor this work and a helpful group
of stal‘l‘ memhcrs to aid us in learning how to work in
the Crystal environmenr.

303

REFERENCES

IBcrn79aJ

[Bern79hl

(BernXlh)

[BitlX3]

JBlas76)

[Brab84]

[CarcXS]

jChouX3j

[DcWiX4)

[DeWiSS]

[Eps180]

Bernstein, P. A. and Goodman, N. The
theory of sem<joins, Tech. Rep. CCA-79-27,
Compuler Corp. of America, 1979.

Bernstein, P. A. and Goodman, N. “Full
reducers for relational queries using multi-
arlributc semi-.joins,” in Pvoc. 1979 NBS
Symp. on Camp. Nehuork., December 1979.

Bernstein, P. A., and Chiu, D. W. “Using
semi,joins to Solve relational queries,” J.
ACM. 28, 1 January 1981, 2540.

Bernstein, P. A., and Goodman, N. “The
power of natural semijoins,” SIAM J. Com-
pur. 10.4, Nov. 19X1, 751-771.

Bitton, D., Dewitt, D. J., and Turbyfill, C.
“Benchmarking database sysrems: a sys-
tematic approach”, Proc. 9th Int ‘1 ConfI on
Very Large Data Bases, Octohcr, 1983.

Blasgen, M. W., and Es\varcn, K. P. “On
the evaluation of queries in a relational data
base system,” IBM Research Rep. RJ174.5,
April 1976.

Brabergsengen, K. “Hashing methods and
relational algebra operations”, Proc. IOr/7
In,‘1 ConJ on Very Large Darn Bases, Scp-
lcmher 19X4.

Carey, h/l. J., Livny, M., and Lu, H.
“Dynamic task allocation in a dislrihutcd
database system”, Proc. 5th lt7t ‘I Conf 017
Distributed Cotnputit7g Systctm, h’i ;ty I 9X5.

Chou, H.T., DcWirt, D.J., K~Iz, R. H.,
and Klug, A. C. Des&t7 and itnpletnenfnlion
of rl7r Wisrot7sit7 storage syswtn, ‘l‘cchnical
Rcporr, Compulcr Scicnccs Department,
U nivcrsity of Wisconsin-Madison,
Novcmhcr 19X.3.

DeWitl, D. J., Finkcl, R., and Solomon,
M U7e Crystal tnulficompufer: design at7d
itnpletnenlnrion experietice, Technical
Report, Compulcr Sciences Department,
University 01. Wisconsin-Madison, SCp-
lcmhcr 1984.

Dewitt, D.J. and Gerber, R, Partirionod
hashing algorid7ms. Technical Report #5X3,
Computer Sciences Deparcmenl, Univcrsiry
of Wisconsin-Madison, Fehruary 19X5

Epstein, R., and Slonchraker, M “Analysis
of distributed database processing Srra-
tegies” Proc. 6tl7 lnr’l Conf: 017 Very Large
Dala Bases, Ocroher 1980, X2- 10 1.

[KcrsX2] Kcrschhcrg, L., l‘ing, P. D., and \‘a~, S.
B. “Query optimization in star computer
networks,” ACM Trans. Database Syst. 7, 4,
December 19X2, 67X-71 1.

[LohmX4] Lohman, G. M., Mohan, C., Haas, L. M.,
Lindsay, B. G., Selinger, P. G., Wilms, P.
F., and Danicls, D.,
R+ 7,)

“Query Processing in
IBM Research Report, RJ 4272,

[N ieh76]

[f’age83]

(Scli79j

1 ScliXO]

ISmil?5]

[UllmXZ]

April 1984.

Niehuhr, K. E. and Smith, S. E. “N-ary
joins for processing Query by Example”,
IBM Tech. Disclosure Bull. 19, h, 197h,
2377-2381.

Page, T. W. Jr., “Distrihutcd query pro-
cessing in local network datahascs”, hlastcr-
Thesis, University ol Calilbrnia, Los
Angeles, 1983.

Selingel-, P., ci al, “Access path wlcclion
in a relational daltthase managcmenl sys-
[cm”, Proc. of rile ACM-SlGMOD b7r’I ConJ:
ot7 Mat7agetnrnt of Dara, June 1979.

Sclingcr, P., and Adiha, h/l ., “Access palh
selection in distributed datahasc managc-
mcni syslcms”, Proc. 1st It7r’l Conf: on Dis-
tribufed Dara Bases, Aherdcen, 19X0.

Smitll, J. M. and Chang, P. \‘. T.,
“Oplimizing the ~ri‘ormancc 01. a rclalionnl
algchrs dabhasc inlcrlace”, Commun. ACM
IS. IO, Oclohcr 1975, 5bX-579.

l!llman, .I. D. Principles of Darnbase Sys-
1etns, Compulcr Scicncc Press, Rockville,
Marvland, 1982.

(Wong7hJ Wang, E., and Yousseli, K. “Dccomposi-
lion -- A slrarcgy fbr query pl-occssing,”
ACM 7iat7s. Database Sysr. I, 3 (Scptcmhcr
197h), 223-24 1

[Yao78] Yao, S. B., and DcJong, D. “Evaluarion oi
dacahasc access paths”, Pror. of fhe ACM-
SIGMOD hr’l Conf on Managemet of Data,
197x, M-77.

1 \‘ao79] \r’ao, s. B. “Optimization of quel-y cvalua-
lion algorilhms,” ACM rhans. Database
Sysr. 4, 2, June 1979. 133~155

304

