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ABSTRACT 
The file processing efficiency of the ICL 
Search Engine CAFS (Content Addressable File 
Store) is studied by means of detailed 
simulation experiments. The suitability of 
CAFS to different file structures and 
processing operations is critically assessed, 
and processing environments have been 
identified where the use of CAFS offers only 
marginal benefits and where it is actually 
counter-productive. We also provide concrete 
recommendations concerning the optimal 
deployment of CAFS as well as guidelines for 
the tuning of its performance parameters. In 
addition, the strengths and weaknesses of the 
CAFS architecture are assessed and some 
improvements to its current design are 
proposed. 

1. INTRODUCTION 

The principal aim of this paper is to study 
the file processing efficiency of the ICL 
backend database machine , the Content 
Addressable File Store (CAFS), and quantify the 
extent of its performance advantage over 
convent ional direct access storage devices 
(DASD). This study also identifies the 
processing environments in which CAFS is best 
suited and those in which it only offers 
marginal improvement, as well as critically 
assess the type of design philosophy adopted in 
the construction of CAFS. 
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The objective of this work is four-fold. 
Firstly, while there is no doubt that CAFS will 
offer some performance improvement over 
conventional DASD , it is a costly resource and 
if it fails to confer sufficiently impressive 
benefits in a given processing environment, 
then it may not be worthwhile to install it at 
all. We shall therefore quantify its precise 
extent of improvement for different types of 
file sizes and processing operations. 

Secondly, even if CAFS is available in an 
installation, it may not be wise to use it for 
every type of processing indiscriminately 
because while it may be highly efficient for 
certain operations such as fuzzy matching and 
multiple key search involving complex 
selection expressions, it may not be well- 
suited to others; by freeing CAFS from 
operations to which it is unsuited, it could be 
effectively deployed to satisfy competing 
demands for which its potential could be 
exploited to the full. It is also the aim of 
this study to categorise the common file 
processing operations into appropriate types so 
as to guide decisions as to when CAFS ought to 
and ought not to be invoked. 

Thirdly, in CAFS processing, there exists a 
number of parameters, such as cell size and the 
degree of amplification in a drive which may be 
fine tuned to give maximum performance 
benefits. It is also the aim of this study to 
discover how these parameters affect processing 
efficiency and how they may be adjusted to 
optimise performance. 

Finally, as an engineered product, CAFS may 
suffer from possible design drawbacks. Part of 
the aim of this study is to critically examine 
the CAFS architecture and identify it strengths 
and weaknesses; this will help to advance the 
design of future database machines using 
similar philosophy. 

Not much previous work appear to have been 
done on the performance evaluation of CAFS. In 
c71, useful attempts to quantify the 
performance advantages of CAFS are made but are 
chiefly confined to savings in terms of 
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processing power and the extent to which CAFS 
relieves the mainframe of CPU cycles in 
controlling file operations. The overall 
performance gains in terms of speed and 
response time is not considered there. In this 
study, we shall assess the overall efficiency 
of CAFS in the processing of common file 
organisations by a series of simulations 
experiments which take into account both the 
ordercode instruction execution as well as the 
disc access overheads. Altogether, well over 
100 separate simulation experiments have been 
performed. The chief contribution of this work 
is the detailed performance assessment of a 
production database machine system not 
undertaken before. In addition, we are able to 
condense our experimental findings into a 
simple set of usable performance figures for 
effectively quantifying the operational 
efficiency of CA FS for different file 
structures and processing operations, as well 
as to provide concrete recommendations to guide 
the efficient deployment of CAFS in practical 
processing situations. 

2. PERFORMANCE CHARACTERISTICS OF CAPS 

In this section and the next, we shall 
briefly describe the performance features and 
data structures of CAFS. Certain details are 
included insofar as they affect our 
construction of a meaningful simulation model. 
For a more complete description of the 
operation of CAFS, the reader is referred to 
c3,41. 

Searching of CAFS files is initiated by 
software in the mainframe machine and is 
coordinated by the CAFS controller. There are 
special registers in the controller and prior 
to searching they are primed with the data 
values to be compared with fields in the file. 
The actual comparison is carried out on-the-fly 
by hardware that interprets the record format 
and matches data from the disc against the 
values in the registers. Simultaneously with 
the comparison process, data fields from the 
record are retrieved and stored for later 
transmission to the mainframe. At the end of 
each record, the results of the comparisons are 
evaluated by a special microprogram prepared in 
the mainframe and loaded into the controller. 
If the record is a hit, the retrieved data 
fields are preserved in the controller and sent 
to the mainframe, otherwise the buffer used for 
retrieval is emptied and comparison with the 
next record commences. 

The CAFS controller is centred around a 
small computer which controls and coordinates a 
number of hardware sub-units. All transfers are 
buffered in this control processor, which is 
attached via a single channel to the mainframe. 
The principal sub-units of interest are: (a) 

COntrOl Processor, (b) Direct Access Unit, (c) 
Associative Searching Unit, and (d) Record 
Retrieval Unit. The main functions of the 
Control Processor are task scheduling and 
resource management. The Direct Access Unit 
provides standard conventional direct access 
processing facilities. CAFS disc drives can be 
connected to a standard controller in addition 
to the CAFS controller and can be switched 
between the two, enabling the drive to be used 
In CAFS mode or conventional direct access 
mode. 

The function of the Associative Searching 
Unit is to execute parallel searches on a 
multiplexed data stream obtained from the 
concurrent reading of several disc drives. In 
addition, each of the disc drives is usually 
equipped with read amplifiers so that up to ten 
heads on any one drive may read data in 
parallel. The Associate Searching Unit permits 
up to 16 key and mask registers together with 
corresponding comparators (=, 2, >, <, L, 5) to 
be allocated to any particular search task, 
allowing up to seven such tasks to run 
concurrently. After all key comparisons for a 
record have been made, a microprogram that has 
been specially compiled and loaded into it for 
the record selection expression in questdon 
will be invoked. This program combines the 
boolean results of each field comparison into a 
truth val ue which dictates whether the 
retrieval unit retains or discards the whole 
record. It also supports quorum search which 
allows weights to be attached to truth 
subexpressions and a threshold to be specified 
for the overall result so that any record which 
achieves a value exceeding this threshold will 
be retrieved. Before a search is started the 
Record Retrieval Unit is primed with a target 
list of fields for retrieval from hit records; 
this allows the contents of the designated 
fields in each hit record to be retained. 

3. CAPS DATA STRUCTURES 

The storage medium which supports CAFS 
implementation is the EDS60 disc which adopts a 
count-data format. The EDS60 has 406 cylinders, 
each of which is made up of 20 tracks. Each 
track is recorded as a series of 15 sectors, 
each sector being made up of a count block and 
a data block. These blocks are labelled from 0 
to 14. The data on each track is considered by 
CAFS as a cyclic sequence so that block 0 
logically follows on from block 14. Each 
record comprises a sequence of data fields 
followed by a 2-byte trailer field. The 
trailer field defines the end of each record 
and, during searching, triggers the process of 
combining the evaluations of its separate 
fields together to form a hit/no hit evaluation 
of the record as a whole. Rather than being 
identified by physical position within the 
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record, CAFS fields are self-identifying. The 
first byte of each field is used as an 
identifier byte. The field identifier and 
length are stored as a part of the field; the 
identifier indicates the type of data that 
exists in the field. CAFS fields are also 
variable in length, the second byte of each 
field giving the field’s overall length in 
bytes. The remainder of the field is the actual 
user data. SUCCeSSiVe trailer fields on a 
track must be at least 16 bytes apart to allow 
the hardware time to evaluate each record; 16 
bytes is therefore the minimum record length. 
The retrieval unit’s temporary buffer is 1024 
bytes long but, as the data in the buffer is 
enveloped in control information, the full 1024 
bytes are not available for retrieved fields. 
The number of control bytes required depends on 
the type of search that is being carried out 
and the practical maximum record length is 
taken as about 1000 bytes to allow the whole of 
every record to be retrieved. The area within 
the file to be searched for a given enquiry is 
specified to the controller as a list of search 
areas in the form: drive, cylinder , track, 
size. Each such search area is a cylinder or 
part cyl inder and is called a sucket. The 
smallest sucket size is one whole track and 
each CAFS data record must lie entirely within 
one track. 

The physical structure of a CAFS file can be 
termed a cellular serial one. The file extent 
is divided into a series of storage cells whose 
size may vary from one disc track to a cylinder 
depending on the particular requirements of the 
application. Although a sucket is defined by a 
dynamic search task and a cell is a static file 
portion, they frequently coincide in practice; 
in this study, we shall use these terms 
interchangeably. Any search task is then 
directed to one or more cells which are 
exhaustively scanned. In many applications a 
half-cylinder is used as a cell and then using 
ten head read the whole cell may be searched in 
one revolution of the disc pack. Since access 
to a record within a cell is associative, the 
physical location is irrelevant unless there is 
an applications requirement to maintain records 
in a given sequence. CAFS files can be totally 
unindexed so that the whole file will always be 
scanned for every search of that file. 
Alternatively, an index can be established for 
a CAFS file containing data ordered on some 
key, which is necessarily coarse and only 
resolve to the storage cell level. 

4. EVALUATION OF PERFORMAYCE 

Here we are primarily concerned with 
quantifying the performance benefits of CAFS 
compared with conventional DASD for the three 
most common file organisations: sequential, 
indexed sequential, and hashed random. We 

shall consider the processing of these 
organisations via both their native access 
methods as well as at her more flexible 
processing operations on them such as skip 
sequential processing, exhaustive search based 
on complex selection expressions, and binary 
search. Both the I/O and processor overheads 
will be taken into account in our evaluation. 
Although CAFS allows concurrent search tasks to 
be activated simultaneously, we shall in our 
experiments disregard any possible inter-task 
interference; this will help to eliminate any 
extraneous factor which will almost certainly 
cloud the central issues. For the same reason, 
although CAFS also permits the fragmentation of 
files into extents, the effect of which on 
performance is no doubt signif icant C63, we 
shall also disregard any such fragmentation and 
assume that all files are contiguously stored. 
In our experiments, unless otherwise indicated, 
the following are assumed: average values are 
computed from sample sizes of 500; the records 
are 100 bytes long; the blocking factor is 10; 
the drive amplification (i.e. maximum allowable 
number of active heads per drive) is 10; and 
the CAFS cell size is 10 tracks. 

4.1 Evaluation of Sequential Organisation 

4.1.1 Direct Processing 

For flexible retrieval, it is frequently 
necessary to locate an arbitrary record from a 
file; this type of processing shall be referred 
to as direct processing in this study. Direct 
processing is of ten invoked by a search 
expression. The number of key terms in the 
expression is used to determine the number of 
ordercode instructions required to perform the 
key matching task. The relationship between the 
total number of instructions I and the number 
of selector keys K in processing a record is 
shown in C73 to be 

I = KY (22+ 42m) , 

where m is the term degeneracy and is defined 
to be the average number of different values 
taken by a given data item in a record. The 
number of instructions when divided by the CPU 
power. usually expressed as the number of 
million instructions per second (mips), gives 
the CPU time to process the record. Therefore 
the time required to process a block of records 
can be estimated and then used to determine the 
latency penalty incurred in processing 
successive blocks. With conventional DASD, it 
is generally true that the processing of 
successive blocks would require more time than 
is allowed for by the inter-block gap so that 
in our model at least one rotation is assumed 
to be required for processing each block. With 
a large number of key terms and a high term 
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degeneracy, more than one rotation may be 
sometimes needed. These searches may be 
described as process bound, although they are 
only so relative to the processing power of the 
CPU; process bound searches are studied in 
greater detail in the next section. 

The seek time of the EDS60 ranges from 10 
milliseconds (ms) to 75 ms with an average of 
35 ms. The seek characteristics of the EDS60 
is nonlinear, and the seek time used in our 
model is that obtained from the actual head 
movement graph given in c41. s In context 
scanning where the hardware is normally able to 
start scanning at any alternate block, an 
average latency of one block at a time, or less 
than 1.7 ms is incurred; transfer time is about 
1.7 ms per block. The associative search 
channels are required to be in step with 
logical records within the data blocks before 
starting their search, and since the logical 
records may cross block boundaries, it is 
generally necessary to re-read the first block 
at the end of the scan. Transfer time for 
searching a complete track is therefore 
normally 16 block times. 

With CAFS implementation, the cell size 
specifies the number of tracks per sucket. 
Since the EDS60 is assumed to be equipped with 
10 heads, the intuitive candidates for 
efficient cell sizes could only be either a 
factor or a multiple of 10, i.e. 1, 2, 4, 5, 10 
or 20 tracks in order to avoid certain heads 
being unused in the scanning of a cell. During 
context scanning , all records in up to 10 
tracks can be searched in one rotation. A 20- 
track cell still requires 2 rotations to be 
completely scanned, however; the effect of cell 
size on performance will be studied in greater 
detail in Sections 4.2 and 4.3. 

There are two common ways in which a record 
in a sequentially or gani sed file can be 
located: full search from the beginning of the 
file, and binary search. In our experiments, 
all such searches will be conducted using the 
latter algorithm as we found that it is always 
significantly faster than the former. With 
binary search [g], the highest (last) record in 
each cylinder is used to determine the next 
cylinder to be examined. The time to access 
this record is assumed to be 1 rotation due to 
the synchronisation of the index marker [5]. 
Once the required cylinder is located, the 
tracks are searched logarithmically in a 
similar manner, except this time, switching of 
read/write heads is done electronically and 
takes negligible time. Finally the located 
track is searched sequentially, block by 
block. The block on the track where the record 
is found is assumed to be random although 
strictly speaking it can be calculated from 
the record number. Such refinement is not 
necessary as it has little effect on the 

overall timing when averaged over large 
samples. 

Fig. 1 shows the experimental ratios of the 
DASD processing time to that of CAFS for files 
of sizes (measured in number of records) 5000, 
10000 ( 15000, 20000, 25000, and 30000. We see 
that this ratio does not seem to depend on the 
file size. It is possible to have a least 
square fit through these points, and we find 
that the resultant intercept is 2.52 with a 
standard error of 0.06. This indicates that 
the direct processing of a DASD sequential file 
is likely to take about two and a half times as 
long as one implemented in CAFS. 

4.1.2 Exhaustive Sequential Search 

For exhaustive sequential search, 
considerable benefit can be gained by using 
CAFS. Here the processing is similar to direct 
processing under full search except that the 
search continues to the end of the file. As 
remarked above, with conventional DASD, there 
is a significant difference in search speed 
between process bound and non-process bound 
operations. For example , with 16 key terms 
selection, a term degeneracy of 4, and a CPU 
power of 1 mips , the processing time of a block 
Of records will exceed one rotation time of the 
EDS60 and the overall efficiency is greatly 
reduced: an experiment has been performed on a 
file of 32000 records with a blocking factor of 
9, and we find that the mean processing time 
for 16 key terms selection is 192 seconds. 
Under identical conditions using 1 key term 
se1 ect i on, the processing time is reduced by 
46.9% to 102 seconds. However, since most 
present day computers are very powerful (often 
in excess of 5 mips), we shall in subsequent 
experiments be mainly concerned with non- 
process bound searches, although it must be 
acknowledged that process bound search could 
cause a substantial degradation in performance 
in conventional DASD. On the other hand, CAFS 
hardware can execute a search using up to 16 
key terms in a complex selection expression 
with negligible difference in the elapsed time: 
under identical conditions , the above 
processing experiment when applied to CAFS 
yields a time of 1.9 seconds for both 1 and 16 
key terms selection, giving speed improvements 
of 56 and 101 times respectively. We have 
intentionally left the performance of skip 
sequential processing for sequentially 
organised files out of consideration because 
the ICI, record format is implemented in oount- 
data rather than count-key-data format, and 
scanning keys at rotation speed is on1 y 
possible with the latter format. However, skip 
sequential processing is considered in the 
context of indexed sequential files. 
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With exhaustive searching of sequential 
files, Fig. 2 displays the DASD to CAFS 
processing time ratios obtained for file sizes 
ranging from 5000 records to 30000 records as 
for Fig. 1. The intercept of the least square 
line through these points is found to be 47.0, 
with a standard error of 0.4. This is a much 
more impressive l&fold improvement over the 
direct processing case. 

records can be located by searching through 
this chain. The time to locate a record can 
therefore be divided into searching the index 
and searching the data blocks. 

Searching through an index requires, first 
of all, a random seek to the highest index 
level. Subsequent seeks are one track seeks. 
The number of seeks is the smaller of the index 
levels and the number of cylinders occupied by 
the whole index. Each index block has to be 
transferred to main memory, deblocked and 
processed. We adopt the somewhat simplifying 

4.2 Evaluation of 
Organisation 

Indexed Sequential 

4.2.1 Direct Processing 

assumption that, on average, that only half of 
the records in each index block have to be 
processed. The timing considerations therefore 
include half a rotation to locate the index 

In CAFS indexed sequential files, the 
sequential index, as pointed out earlier, is 
fairly coarse and is only resolved to a storage 
cell level, and is accordingly small in size. 
The mainframe software that handles searching 
uses the sequential index whenever a value for 
a data item declared as associated with the 
sequential index iS encountered, thus 
automatically selecting on1 y the relevant 
suckets. During the processing of an indexed 
sequential file, the sequential index is 
usually stored in mainframe memory. Searching 
of index is done in mainframe and the time 
taken is assumed to be negligible. Under 
conventional implementation, it is rarely true 
that the entire index could be accommodated in 
main memory as it is often much denser than the 
corresponding CA FS index, and consequently 
occupies much more space with the result that 
searching through it will have to be done 
externally. 

block, the block transfer time, and the 
processing time of half of the records. The 
number of key terms to decide a hit index 
record is obviously one. Searching the data 
blocks begins at the prime data block. It 
requires a random seek. If the record is in 
this block, on average half the records have to 
be searched. If the record is not in this block 
but in an overflow block, then all the records 
in this block have to be checked to arrive at 
this conclusion. The time taken to process a 
data block is similar to that of an index 
block. As mentioned earlier, overflow records 
(blocks) are stored in the same cylinder, so 
that there is no seek delay. An overflow rate 
(1%) is used to determine whether a search to 
the overflow chain is necessary. 

First we shall consider processing 
performance in conventional DASD in our model. 
For the ICL indexed sequential organisation, 
the file is initially loaded to a preset 
percentage which by default is 90%. The 
distributed free space is used for new 
additions. There is a cylinder overflow area 
for each data cylinder. In our model, the 
number of tracks in each overflow area here is 
fixed to one. Initially each block is only 
partially filled. The blocking factor together 
with the packing density determines the total 
number of prime data blocks in the file. 
Depending on the file size, a multilevel index 
may be generated. The size of this index is 
determined by the number of prime data blocks, 
the size of index records and the blocking 
factor of index records. The index record size 
here is taken as 12 bytes to include an g-byte 
key, 1 control byte and 3-byte block pointer. 
The index blocking factor is fixed at 10. For 
each of the records to be processed, a search 
through the index levels will locate the 
pointer to the prime data block. Since 
overflow blocks are chained to the prime data 
block and treated as its continuation, overflow 

With CAFS implementation, the def au1 t 
packing density is again 90%. In our model, we 
assume that insertion is made into its logical 
position in the cell and the record with the 
iargest key is overflowed into a separate 
overflow area. We also suppose that there is a 
separate overflow area (the size is assumed to 
be at most 10 tracks) for each prime data cell. 
Within each overflow area, records are in key 
sequence. All overflow areas are separate from 
the prime data cells so that accessing an 
overflow area requires an extra seek, but all 
records within the overflow area can be 
accessed together. The overflow information is 
kept in an overflow vector in an index table 
and is available to the mainframe software when 
the file is being processed. Therefore, in 
direct processing, there is no difference in 
accessing records in prime area and overflow 
area. Each directly accessed record takes a 
random seek, one block rotation delay and time 
to scan a cell; and since scanning can stop as 
soon as record is found, the last timing factor 
is also random. The empirical performance 
ratios of DASD to CAFS is shown in Fig. 3; the 
least square line intercept, which indicates 
the average improvement, is found to be 2.51, 
with a standard error of 0.08. In addition, 
experiments were performed on a file of 32000 
records in which the DASD index search times 
are ignored, and we find that the time taken to 
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access a record in CAFS takes an average of 
57.5 ms, while it takes an average of 59.5 ms 
in conventional DASD, each average being 
computed from 1000 samples - this performance 
difference is hardly noticeable. 

Experiments have also been performed to 
gwe the effect of the cell size on 
performance, using a file of 32060 records and 
cell sizes of 2, 4, 5, 10, 20. The respective 
processing times are observed to be 57.3 ms, 
57.7 ms, 57.5 ms, 57.3 ms, and 72.3 ms. These 
observations suggest that there is a pronounced 
degradation in performance by using a 20 track 
cell size. A plausible explanation for this 
being that, if the Overflow chains are not 
excessive, then generally only a single cell 
needs to be searched. Since any cell size not 
exceeding 10 tracks can be scanned in one 
revolution, there is no performance difference 
in obtaining a record for these cell sizes. 
However, for cell sizes exceeding 10 tracks, 
then more than 1 revolution may be necessary to 
locate the record since the record may be found 
in 11 th or higher tracks of the cell, hence 
giving rise to the observed degradation in 
performance . 

4.2.2 Skip Sequential Processing 

One of the key advantages of indexed 
sequential files is the option of skip 
sequential processing. When the hit rate - i.e. 
the percentage of records that have to be 
processed - is low, records, whole tracks and 
even cylinders may be skipped. Although a 
sequential file that uses a record storage 
format in which keys are separate from data can 
also skip records, every key nevertheless has 
to be checked. An indexed file can allow more 
marked savings to be made as only the index 
entries need to be read, and these show which 
tracks and cylinders can be skipped. A high 
blocking factor generally has an undesirable 
effect for skip sequential processing because 
as more records are brought together to form a 
block, it becomes more likely that a large 
block of records will have to be accessed in 
order to process a single record only. We 
suppose that the block hit rate B for a block 
of n records is related to the record hit rate 
P by: 

B = 1-(1-p?, 

which for independent record activities appears 
to be a reasonable assumption. If the record 
hit rate or the block hit rate is 100% then 
this will reduce to sequential processing of 
the entire file. If the block hit rate is less 
than 100% skip sequential processing (of prime 
blocks) is applied. Because overflow blocks 
are not usually full it is difficult to 
estimate the activity of these blocks. For 

simplicity, the number of overflow blocks to be 
processed is taken as a certain percentage (1%) 
of the total prime blocks. Each overflow block 
processing requires half a rotation delay, 
block transfer time and CPU time. 

With CAFS implementation, the record hit 
rate is used to determine the cell hit rate in 
a similar manner, and non-hit cells can be 
skipped. When a cell is a hit, the whole cell 
is scanned as it usually contains a large 
number of records which implies that there will 
be more hit records in it compared to a single 
block and they are likely to be scattered 
throughout the cell. The amount of overflow 
areas to be searched is also taken as a certain 
percentage (1%) of the total storage cells in 
the file. 

Fig. 4 and Fig. 5 show the sensitivity of 
the processing time to the hit rates (lb, 5%. 
lo%, 252, 50%, 75X, and 100%) for both DASD and 
CAFS for a file of 30000 records. We see that, 
while the DASD processing time is quite 
sensitive to small and medium hit rates, the 
performance of CAFS is rather insensitive to it 
over the entire range. This is because a CAFS 
cell is much larger than a block in 
conventional DASD, and most cells would have to 
be searched anyway even for a relatively small 
record hit rate. Therefore, CAFS indexed 
sequential files in general do not benefit from 
skip sequential processing. Fig. 6 shows the 
processing time ratios of DASD to CAFS for the 
same file size with different hit rates. We see 
that this ratio increases rather sharply for 
small hit rates but gradually settles to about 
48 for large hit rates. Experiments have also 
been performed for file sizes 5000, 10000, 
15000, 20000, and 25000, and they are observed 
to exhibit a similar extent of improvement. 

Additional experiments have been performed 
on CAFS with small cell sizes of 1 and 2 
tracks, and we find that, somewhat 
surprisingly, that for a hit rate of l%, CAFS 
actually exhibits a slight degradation in 
performance in comparison with conventional 
DASD: CAFS is slower by 28.7% for a cell size 
of 1, and by 0.4% for a cell size of 2. We also 
find that when the cell size is increased to 
20, a slight degradation (about 4%) in 
performance is also evident in comparison with 
a 10 track cell size. 

4.3 Evaluation of Hashed Random Organisation 

In ICL hashed random files implemented in 
conventional DASD, but kets are accessed by 
means of a bucket directory comprising a fixed 
number of pointers, one for each bucket, each 
pointer being the address of the first block 
for that bucket. In any bucket, each block 
within it contains a pointer to the next block 
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(if any) with the last (or only) block in that 
bucket containing a null pointer. Buckets are 
generally of variable size and consists of as 
many blocks as required. We assume that the 
whole bucket directory always resides in main 
memory when the file is being processed. Key- 
to-address transformation and searching of 
bucket directory and pointer manipulation are 
done in main memory and the time taken is 
assumed to be negligible. The space taken up 
by the pointer in each block is assumed to be 
insignificant. The number of blocks in a 
bucket depends on the number of records that 
have been hashed to this bucket address and the 
blocking factor. The probability p(x) of an 
address having x records allocated it it is 
assumed to conform to the Poisson distribution 
c21: 

[ (n/N)X] exp(-n/N) 
p(x) _ --------^-------^--- , x=0,1,2,... 

x! 

where n signifies the number of records, and N 
signifies the number of buckets. The 
probability that there are x records in a 
bucket is taken to be p(x)/[l-p(O)], which is 
used to decide the length of the search through 
a bucket. With a packing density of 90% and 
single record block, it was found that the 
bucket size would not exceed 9 blocks. It is 
therefore not unreasonable to assume that the 
size of each bucket does not exceed 10 blocks. 
These probabilities for the first ten blocks 
are calculated and stored in an array in the 
course of the simulation. Each record is 
accessed by computing the bucket number and 
consulting the bucket directory to locate the 
first block of that bucket. These are assumed 
to take negligible time. Each block of the 
bucket is then searched successively for the 
record. The time to search each block includes 
a random seek to the required cylinder, half a 
rotation for the block to come under the 
read/write heads, block transfer time and 
record processing time. At each block, the 
probability above is used to determine whether 
the record is found. Searching continues until 
the record is found or the maximum number of 
blocks have been searched. It is assumed that 
on average the required record can be found 
after searching half of the records in the 
block where it is stored. All records in blocks 
preceding the one where it is found would have 
to be searched. 

With CAFS implementation, the situation is 
very similar except that since the smallest 
addressable unit is a cell, each bucket is 
assumed to be made up of a variable number of 
cells. The number of records each cell can 
hold is thus quite large. It was found that 
for a single track cell, the bucket size rarely 
exceeds two cells. As the cell size increases, 
the number of bucket addresses decreases and 
the ratio (n/N) becomes very large so that p(0) 

= exp(-n/N) tends to zero. It was found that 
for a cell holding more than 70 records, p(0) 
becomes SO small that it cannot be represented 
even using a double precision number on the PDP 
11144 machine on which the simulation model is 
implemented. For this reason we simply assume 
that for a cell that can hold more than 70 
records, the length of each bucket is less than 

equal to 1 cell This assumption 
FLasonable because for ‘a packing density of 9:; 
and a bucket size of 75 the percentage of 
synonyms as a percentage of records loaded is 
shown in [2] to be 1.25%. We assume that each 
cell access in a bucket requires a random seek, 
one block rotation delay and scanning through 
the cell. The position where the record is 
found is random and searching can stop as soon 
as it is found, If the record is not found in a 
cell, the whole cell would have been scanned 
before searching the next cell. 

Fig. 7 displays the processing time ratios 
of DASD to CAFS for different file sizes under 
direct processing. We find that this ratio is 
well below 2; the intercept of the least square 
line through these points is calculated to be 
1.64. This suggests that the improvement in 
efficiency in the direct processing of CAFS 
hashed random files is rather mar gi nal . 
However, the experimental results relating to 
exhaustive searching of these files yield an 
average (least square) ratio of 45.5. 

Experiments have also been performed to 
w-w the effect of the cell size on 
performance on a file of 32000 records and cell 
sizes of 2, 4, 5, 10, and 20; the same 
phenomenon observed in Section 4.2.1 is also 
present with an increase in processing time of 
about 23% being observed for a cell size of 20 
tracks. 

5. SUMMARY AND CONCLUSIONS 

We have studied the performance advantages 
of CAFS in relation to conventional DASD 
through performing over 100 detailed simulation 
experiments. We find that the benefits 
conferred by CAFS vary quite considerably 
depending crucially on the file structure and 
the processing operation. In the case of 
sequentially organised files, conventional DASD 
is slower than CAFS by a factor of about 2.5 
for direct processing under binary search which 
increases to about 50 for exhaustive search. In 
the case of indexed sequential files with 
external index searching, a comparable extent 
of improvement is observed. If, however, 
external index search in conventional DASD iS 
avoided, then we find that CAFS fails to Offer 
any tangible performance improvement for direct 
processing. We also find that, al though 
indexed sequential files implemented on 
conventional DASD generally benefit from skip 

290 



sequential processing, the same fails to be 
true for CAFS implementations. We find that the 
latter implementation is rather insensitive to 
the hit rate; even with a relatively small hit 
rate of about 105, a complete scan of the file 
frequently results. In fact, for a hit rate of 
lb, CAFS could actually be slower than 
conventional DASD. Similarly, in the case of 
direct processing in a hashed random file, the 
performance advantage of CAFS is rather 
marginal : conventional DASD being slower than 
it on average by a factor of only 1.6. 
Exhaustive searching of a hashed random file 
with pre-specif ied selection criteria, however, 
does substantially raise this factor to about 
50 times. These improvement factors appear to 
be quite general and is not affected by the 
file size, provided the file contains a minimum 
of several thousand records. 

We also find that CAFS could be counter- 
productive if the wrong parameters are chosen 
for its implementation. These experiments 
suggest that for a system with drive 
amplification of degree n, then having a cell 
size which substantially deviates from n is 
inefficient, and the system normally behaves 
quite satisfactorily when the sucket size is 
the same as the degree of drive amplification. 

Thus, in a processing environment where 
there is contention for CAFS resources, we 
would recommend that CAFS not be used for (i) 
direct processing of indexed sequential files 
with index loadable into main memory, (ii) skip 
sequential processing with expected hit rates 
of less than 15, (iii) direct processing of 
hashed random files. Further tasks which might 
be off-loaded from CAFS without sacrificing too 
much efficiency are (i) direct processing of 
sequentially organised files, and (ii) direct 
processing of indexed sequential files with 
external index search. 

The chief strength of CAFS is in exhaustive 
search. For highly complex search expressions, 
conventional DASD could be slower than CAFS by 
as much as a factor of 100; for moderately 
complex expressions, this factor is generally 
about 50. The merit of CAFS appears to be based 
on a rather simple design: the elimination of 
rotational delay by dedicated hardware which 
obviates time-consuming intermediate I/O 
transfers and memory references . This 
elimination takes 3 forms: (i) by allowing the 
fields to be self-identifying, any initial 
search delay caused by identification by 
position may be eliminated; (ii) by speeding up 
the necessary ordercode execution so that 
search may take place continuously without 
losing a rotation for each inter-block gap; 
(iii) by supporting the simultaneous reading of 
multiple tracks, Only a single rotation iS 
necessary for search tasks which otherwise may 
require several, As we have already indicated, 
since certain tasks are unsuited to CAFS, a 

highly commendable design feature of it is the 
inclusion of the Direct Access Unit, which 
conveniently allows tasks to be switched 
between CAFS mode and conventional mode. A key 
weakness of CAFS, however, is that it makes no 
attempt to reduce the seek time which accounts 
for a substantial proportion of the delay in 
many processing situations. This could be 
overcome by Using a multi-head or fixed-head 
disc; a further improvement along this line 
would be to introduce an additional degree of 
parallelism by allowing several of these heads 
on different cylinders to be active 
simultaneously - theoretical work on this type 
of architectural design is already available 
(see e.g. Cl]). With such additional 
enhancements, it is very likely that file 
operations in which there is currently only 
marginal improvement may also yield impressive 
performance gains. 
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