
FILE PROCRSSINC EFFICIENCY
ON TRE CONTEm ADDRRSSAELE FILE STORE

C.H.C. Lemg and K.S. Wong

Department of Computer Science
University College London, Cower Street, London WClE 6BT, UK

ABSTRACT
The file processing efficiency of the ICL
Search Engine CAFS (Content Addressable File
Store) is studied by means of detailed
simulation experiments. The suitability of
CAFS to different file structures and
processing operations is critically assessed,
and processing environments have been
identified where the use of CAFS offers only
marginal benefits and where it is actually
counter-productive. We also provide concrete
recommendations concerning the optimal
deployment of CAFS as well as guidelines for
the tuning of its performance parameters. In
addition, the strengths and weaknesses of the
CAFS architecture are assessed and some
improvements to its current design are
proposed.

1. INTRODUCTION

The principal aim of this paper is to study
the file processing efficiency of the ICL
backend database machine , the Content
Addressable File Store (CAFS), and quantify the
extent of its performance advantage over
convent ional direct access storage devices
(DASD). This study also identifies the
processing environments in which CAFS is best
suited and those in which it only offers
marginal improvement, as well as critically
assess the type of design philosophy adopted in
the construction of CAFS.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis.
sion from the Endowment.

The objective of this work is four-fold.
Firstly, while there is no doubt that CAFS will
offer some performance improvement over
conventional DASD , it is a costly resource and
if it fails to confer sufficiently impressive
benefits in a given processing environment,
then it may not be worthwhile to install it at
all. We shall therefore quantify its precise
extent of improvement for different types of
file sizes and processing operations.

Secondly, even if CAFS is available in an
installation, it may not be wise to use it for
every type of processing indiscriminately
because while it may be highly efficient for
certain operations such as fuzzy matching and
multiple key search involving complex
selection expressions, it may not be well-
suited to others; by freeing CAFS from
operations to which it is unsuited, it could be
effectively deployed to satisfy competing
demands for which its potential could be
exploited to the full. It is also the aim of
this study to categorise the common file
processing operations into appropriate types so
as to guide decisions as to when CAFS ought to
and ought not to be invoked.

Thirdly, in CAFS processing, there exists a
number of parameters, such as cell size and the
degree of amplification in a drive which may be
fine tuned to give maximum performance
benefits. It is also the aim of this study to
discover how these parameters affect processing
efficiency and how they may be adjusted to
optimise performance.

Finally, as an engineered product, CAFS may
suffer from possible design drawbacks. Part of
the aim of this study is to critically examine
the CAFS architecture and identify it strengths
and weaknesses; this will help to advance the
design of future database machines using
similar philosophy.

Not much previous work appear to have been
done on the performance evaluation of CAFS. In
c71, useful attempts to quantify the
performance advantages of CAFS are made but are
chiefly confined to savings in terms of

Proceedings of VLDB 85, Stockholm 282

processing power and the extent to which CAFS
relieves the mainframe of CPU cycles in
controlling file operations. The overall
performance gains in terms of speed and
response time is not considered there. In this
study, we shall assess the overall efficiency
of CAFS in the processing of common file
organisations by a series of simulations
experiments which take into account both the
ordercode instruction execution as well as the
disc access overheads. Altogether, well over
100 separate simulation experiments have been
performed. The chief contribution of this work
is the detailed performance assessment of a
production database machine system not
undertaken before. In addition, we are able to
condense our experimental findings into a
simple set of usable performance figures for
effectively quantifying the operational
efficiency of CA FS for different file
structures and processing operations, as well
as to provide concrete recommendations to guide
the efficient deployment of CAFS in practical
processing situations.

2. PERFORMANCE CHARACTERISTICS OF CAPS

In this section and the next, we shall
briefly describe the performance features and
data structures of CAFS. Certain details are
included insofar as they affect our
construction of a meaningful simulation model.
For a more complete description of the
operation of CAFS, the reader is referred to
c3,41.

Searching of CAFS files is initiated by
software in the mainframe machine and is
coordinated by the CAFS controller. There are
special registers in the controller and prior
to searching they are primed with the data
values to be compared with fields in the file.
The actual comparison is carried out on-the-fly
by hardware that interprets the record format
and matches data from the disc against the
values in the registers. Simultaneously with
the comparison process, data fields from the
record are retrieved and stored for later
transmission to the mainframe. At the end of
each record, the results of the comparisons are
evaluated by a special microprogram prepared in
the mainframe and loaded into the controller.
If the record is a hit, the retrieved data
fields are preserved in the controller and sent
to the mainframe, otherwise the buffer used for
retrieval is emptied and comparison with the
next record commences.

The CAFS controller is centred around a
small computer which controls and coordinates a
number of hardware sub-units. All transfers are
buffered in this control processor, which is
attached via a single channel to the mainframe.
The principal sub-units of interest are: (a)

COntrOl Processor, (b) Direct Access Unit, (c)
Associative Searching Unit, and (d) Record
Retrieval Unit. The main functions of the
Control Processor are task scheduling and
resource management. The Direct Access Unit
provides standard conventional direct access
processing facilities. CAFS disc drives can be
connected to a standard controller in addition
to the CAFS controller and can be switched
between the two, enabling the drive to be used
In CAFS mode or conventional direct access
mode.

The function of the Associative Searching
Unit is to execute parallel searches on a
multiplexed data stream obtained from the
concurrent reading of several disc drives. In
addition, each of the disc drives is usually
equipped with read amplifiers so that up to ten
heads on any one drive may read data in
parallel. The Associate Searching Unit permits
up to 16 key and mask registers together with
corresponding comparators (=, 2, >, <, L, 5) to
be allocated to any particular search task,
allowing up to seven such tasks to run
concurrently. After all key comparisons for a
record have been made, a microprogram that has
been specially compiled and loaded into it for
the record selection expression in questdon
will be invoked. This program combines the
boolean results of each field comparison into a
truth val ue which dictates whether the
retrieval unit retains or discards the whole
record. It also supports quorum search which
allows weights to be attached to truth
subexpressions and a threshold to be specified
for the overall result so that any record which
achieves a value exceeding this threshold will
be retrieved. Before a search is started the
Record Retrieval Unit is primed with a target
list of fields for retrieval from hit records;
this allows the contents of the designated
fields in each hit record to be retained.

3. CAPS DATA STRUCTURES

The storage medium which supports CAFS
implementation is the EDS60 disc which adopts a
count-data format. The EDS60 has 406 cylinders,
each of which is made up of 20 tracks. Each
track is recorded as a series of 15 sectors,
each sector being made up of a count block and
a data block. These blocks are labelled from 0
to 14. The data on each track is considered by
CAFS as a cyclic sequence so that block 0
logically follows on from block 14. Each
record comprises a sequence of data fields
followed by a 2-byte trailer field. The
trailer field defines the end of each record
and, during searching, triggers the process of
combining the evaluations of its separate
fields together to form a hit/no hit evaluation
of the record as a whole. Rather than being
identified by physical position within the

283

record, CAFS fields are self-identifying. The
first byte of each field is used as an
identifier byte. The field identifier and
length are stored as a part of the field; the
identifier indicates the type of data that
exists in the field. CAFS fields are also
variable in length, the second byte of each
field giving the field’s overall length in
bytes. The remainder of the field is the actual
user data. SUCCeSSiVe trailer fields on a
track must be at least 16 bytes apart to allow
the hardware time to evaluate each record; 16
bytes is therefore the minimum record length.
The retrieval unit’s temporary buffer is 1024
bytes long but, as the data in the buffer is
enveloped in control information, the full 1024
bytes are not available for retrieved fields.
The number of control bytes required depends on
the type of search that is being carried out
and the practical maximum record length is
taken as about 1000 bytes to allow the whole of
every record to be retrieved. The area within
the file to be searched for a given enquiry is
specified to the controller as a list of search
areas in the form: drive, cylinder , track,
size. Each such search area is a cylinder or
part cyl inder and is called a sucket. The
smallest sucket size is one whole track and
each CAFS data record must lie entirely within
one track.

The physical structure of a CAFS file can be
termed a cellular serial one. The file extent
is divided into a series of storage cells whose
size may vary from one disc track to a cylinder
depending on the particular requirements of the
application. Although a sucket is defined by a
dynamic search task and a cell is a static file
portion, they frequently coincide in practice;
in this study, we shall use these terms
interchangeably. Any search task is then
directed to one or more cells which are
exhaustively scanned. In many applications a
half-cylinder is used as a cell and then using
ten head read the whole cell may be searched in
one revolution of the disc pack. Since access
to a record within a cell is associative, the
physical location is irrelevant unless there is
an applications requirement to maintain records
in a given sequence. CAFS files can be totally
unindexed so that the whole file will always be
scanned for every search of that file.
Alternatively, an index can be established for
a CAFS file containing data ordered on some
key, which is necessarily coarse and only
resolve to the storage cell level.

4. EVALUATION OF PERFORMAYCE

Here we are primarily concerned with
quantifying the performance benefits of CAFS
compared with conventional DASD for the three
most common file organisations: sequential,
indexed sequential, and hashed random. We

shall consider the processing of these
organisations via both their native access
methods as well as at her more flexible
processing operations on them such as skip
sequential processing, exhaustive search based
on complex selection expressions, and binary
search. Both the I/O and processor overheads
will be taken into account in our evaluation.
Although CAFS allows concurrent search tasks to
be activated simultaneously, we shall in our
experiments disregard any possible inter-task
interference; this will help to eliminate any
extraneous factor which will almost certainly
cloud the central issues. For the same reason,
although CAFS also permits the fragmentation of
files into extents, the effect of which on
performance is no doubt signif icant C63, we
shall also disregard any such fragmentation and
assume that all files are contiguously stored.
In our experiments, unless otherwise indicated,
the following are assumed: average values are
computed from sample sizes of 500; the records
are 100 bytes long; the blocking factor is 10;
the drive amplification (i.e. maximum allowable
number of active heads per drive) is 10; and
the CAFS cell size is 10 tracks.

4.1 Evaluation of Sequential Organisation

4.1.1 Direct Processing

For flexible retrieval, it is frequently
necessary to locate an arbitrary record from a
file; this type of processing shall be referred
to as direct processing in this study. Direct
processing is of ten invoked by a search
expression. The number of key terms in the
expression is used to determine the number of
ordercode instructions required to perform the
key matching task. The relationship between the
total number of instructions I and the number
of selector keys K in processing a record is
shown in C73 to be

I = KY (22+ 42m) ,

where m is the term degeneracy and is defined
to be the average number of different values
taken by a given data item in a record. The
number of instructions when divided by the CPU
power. usually expressed as the number of
million instructions per second (mips), gives
the CPU time to process the record. Therefore
the time required to process a block of records
can be estimated and then used to determine the
latency penalty incurred in processing
successive blocks. With conventional DASD, it
is generally true that the processing of
successive blocks would require more time than
is allowed for by the inter-block gap so that
in our model at least one rotation is assumed
to be required for processing each block. With
a large number of key terms and a high term

284

degeneracy, more than one rotation may be
sometimes needed. These searches may be
described as process bound, although they are
only so relative to the processing power of the
CPU; process bound searches are studied in
greater detail in the next section.

The seek time of the EDS60 ranges from 10
milliseconds (ms) to 75 ms with an average of
35 ms. The seek characteristics of the EDS60
is nonlinear, and the seek time used in our
model is that obtained from the actual head
movement graph given in c41. s In context
scanning where the hardware is normally able to
start scanning at any alternate block, an
average latency of one block at a time, or less
than 1.7 ms is incurred; transfer time is about
1.7 ms per block. The associative search
channels are required to be in step with
logical records within the data blocks before
starting their search, and since the logical
records may cross block boundaries, it is
generally necessary to re-read the first block
at the end of the scan. Transfer time for
searching a complete track is therefore
normally 16 block times.

With CAFS implementation, the cell size
specifies the number of tracks per sucket.
Since the EDS60 is assumed to be equipped with
10 heads, the intuitive candidates for
efficient cell sizes could only be either a
factor or a multiple of 10, i.e. 1, 2, 4, 5, 10
or 20 tracks in order to avoid certain heads
being unused in the scanning of a cell. During
context scanning , all records in up to 10
tracks can be searched in one rotation. A 20-
track cell still requires 2 rotations to be
completely scanned, however; the effect of cell
size on performance will be studied in greater
detail in Sections 4.2 and 4.3.

There are two common ways in which a record
in a sequentially or gani sed file can be
located: full search from the beginning of the
file, and binary search. In our experiments,
all such searches will be conducted using the
latter algorithm as we found that it is always
significantly faster than the former. With
binary search [g], the highest (last) record in
each cylinder is used to determine the next
cylinder to be examined. The time to access
this record is assumed to be 1 rotation due to
the synchronisation of the index marker [5].
Once the required cylinder is located, the
tracks are searched logarithmically in a
similar manner, except this time, switching of
read/write heads is done electronically and
takes negligible time. Finally the located
track is searched sequentially, block by
block. The block on the track where the record
is found is assumed to be random although
strictly speaking it can be calculated from
the record number. Such refinement is not
necessary as it has little effect on the

overall timing when averaged over large
samples.

Fig. 1 shows the experimental ratios of the
DASD processing time to that of CAFS for files
of sizes (measured in number of records) 5000,
10000 (15000, 20000, 25000, and 30000. We see
that this ratio does not seem to depend on the
file size. It is possible to have a least
square fit through these points, and we find
that the resultant intercept is 2.52 with a
standard error of 0.06. This indicates that
the direct processing of a DASD sequential file
is likely to take about two and a half times as
long as one implemented in CAFS.

4.1.2 Exhaustive Sequential Search

For exhaustive sequential search,
considerable benefit can be gained by using
CAFS. Here the processing is similar to direct
processing under full search except that the
search continues to the end of the file. As
remarked above, with conventional DASD, there
is a significant difference in search speed
between process bound and non-process bound
operations. For example , with 16 key terms
selection, a term degeneracy of 4, and a CPU
power of 1 mips , the processing time of a block
Of records will exceed one rotation time of the
EDS60 and the overall efficiency is greatly
reduced: an experiment has been performed on a
file of 32000 records with a blocking factor of
9, and we find that the mean processing time
for 16 key terms selection is 192 seconds.
Under identical conditions using 1 key term
se1 ect i on, the processing time is reduced by
46.9% to 102 seconds. However, since most
present day computers are very powerful (often
in excess of 5 mips), we shall in subsequent
experiments be mainly concerned with non-
process bound searches, although it must be
acknowledged that process bound search could
cause a substantial degradation in performance
in conventional DASD. On the other hand, CAFS
hardware can execute a search using up to 16
key terms in a complex selection expression
with negligible difference in the elapsed time:
under identical conditions , the above
processing experiment when applied to CAFS
yields a time of 1.9 seconds for both 1 and 16
key terms selection, giving speed improvements
of 56 and 101 times respectively. We have
intentionally left the performance of skip
sequential processing for sequentially
organised files out of consideration because
the ICI, record format is implemented in oount-
data rather than count-key-data format, and
scanning keys at rotation speed is on1 y
possible with the latter format. However, skip
sequential processing is considered in the
context of indexed sequential files.

28:

2 i

0

With exhaustive searching of sequential
files, Fig. 2 displays the DASD to CAFS
processing time ratios obtained for file sizes
ranging from 5000 records to 30000 records as
for Fig. 1. The intercept of the least square
line through these points is found to be 47.0,
with a standard error of 0.4. This is a much
more impressive l&fold improvement over the
direct processing case.

records can be located by searching through
this chain. The time to locate a record can
therefore be divided into searching the index
and searching the data blocks.

Searching through an index requires, first
of all, a random seek to the highest index
level. Subsequent seeks are one track seeks.
The number of seeks is the smaller of the index
levels and the number of cylinders occupied by
the whole index. Each index block has to be
transferred to main memory, deblocked and
processed. We adopt the somewhat simplifying

4.2 Evaluation of
Organisation

Indexed Sequential

4.2.1 Direct Processing

assumption that, on average, that only half of
the records in each index block have to be
processed. The timing considerations therefore
include half a rotation to locate the index

In CAFS indexed sequential files, the
sequential index, as pointed out earlier, is
fairly coarse and is only resolved to a storage
cell level, and is accordingly small in size.
The mainframe software that handles searching
uses the sequential index whenever a value for
a data item declared as associated with the
sequential index iS encountered, thus
automatically selecting on1 y the relevant
suckets. During the processing of an indexed
sequential file, the sequential index is
usually stored in mainframe memory. Searching
of index is done in mainframe and the time
taken is assumed to be negligible. Under
conventional implementation, it is rarely true
that the entire index could be accommodated in
main memory as it is often much denser than the
corresponding CA FS index, and consequently
occupies much more space with the result that
searching through it will have to be done
externally.

block, the block transfer time, and the
processing time of half of the records. The
number of key terms to decide a hit index
record is obviously one. Searching the data
blocks begins at the prime data block. It
requires a random seek. If the record is in
this block, on average half the records have to
be searched. If the record is not in this block
but in an overflow block, then all the records
in this block have to be checked to arrive at
this conclusion. The time taken to process a
data block is similar to that of an index
block. As mentioned earlier, overflow records
(blocks) are stored in the same cylinder, so
that there is no seek delay. An overflow rate
(1%) is used to determine whether a search to
the overflow chain is necessary.

First we shall consider processing
performance in conventional DASD in our model.
For the ICL indexed sequential organisation,
the file is initially loaded to a preset
percentage which by default is 90%. The
distributed free space is used for new
additions. There is a cylinder overflow area
for each data cylinder. In our model, the
number of tracks in each overflow area here is
fixed to one. Initially each block is only
partially filled. The blocking factor together
with the packing density determines the total
number of prime data blocks in the file.
Depending on the file size, a multilevel index
may be generated. The size of this index is
determined by the number of prime data blocks,
the size of index records and the blocking
factor of index records. The index record size
here is taken as 12 bytes to include an g-byte
key, 1 control byte and 3-byte block pointer.
The index blocking factor is fixed at 10. For
each of the records to be processed, a search
through the index levels will locate the
pointer to the prime data block. Since
overflow blocks are chained to the prime data
block and treated as its continuation, overflow

With CAFS implementation, the def au1 t
packing density is again 90%. In our model, we
assume that insertion is made into its logical
position in the cell and the record with the
iargest key is overflowed into a separate
overflow area. We also suppose that there is a
separate overflow area (the size is assumed to
be at most 10 tracks) for each prime data cell.
Within each overflow area, records are in key
sequence. All overflow areas are separate from
the prime data cells so that accessing an
overflow area requires an extra seek, but all
records within the overflow area can be
accessed together. The overflow information is
kept in an overflow vector in an index table
and is available to the mainframe software when
the file is being processed. Therefore, in
direct processing, there is no difference in
accessing records in prime area and overflow
area. Each directly accessed record takes a
random seek, one block rotation delay and time
to scan a cell; and since scanning can stop as
soon as record is found, the last timing factor
is also random. The empirical performance
ratios of DASD to CAFS is shown in Fig. 3; the
least square line intercept, which indicates
the average improvement, is found to be 2.51,
with a standard error of 0.08. In addition,
experiments were performed on a file of 32000
records in which the DASD index search times
are ignored, and we find that the time taken to

287

access a record in CAFS takes an average of
57.5 ms, while it takes an average of 59.5 ms
in conventional DASD, each average being
computed from 1000 samples - this performance
difference is hardly noticeable.

Experiments have also been performed to
gwe the effect of the cell size on
performance, using a file of 32060 records and
cell sizes of 2, 4, 5, 10, 20. The respective
processing times are observed to be 57.3 ms,
57.7 ms, 57.5 ms, 57.3 ms, and 72.3 ms. These
observations suggest that there is a pronounced
degradation in performance by using a 20 track
cell size. A plausible explanation for this
being that, if the Overflow chains are not
excessive, then generally only a single cell
needs to be searched. Since any cell size not
exceeding 10 tracks can be scanned in one
revolution, there is no performance difference
in obtaining a record for these cell sizes.
However, for cell sizes exceeding 10 tracks,
then more than 1 revolution may be necessary to
locate the record since the record may be found
in 11 th or higher tracks of the cell, hence
giving rise to the observed degradation in
performance .

4.2.2 Skip Sequential Processing

One of the key advantages of indexed
sequential files is the option of skip
sequential processing. When the hit rate - i.e.
the percentage of records that have to be
processed - is low, records, whole tracks and
even cylinders may be skipped. Although a
sequential file that uses a record storage
format in which keys are separate from data can
also skip records, every key nevertheless has
to be checked. An indexed file can allow more
marked savings to be made as only the index
entries need to be read, and these show which
tracks and cylinders can be skipped. A high
blocking factor generally has an undesirable
effect for skip sequential processing because
as more records are brought together to form a
block, it becomes more likely that a large
block of records will have to be accessed in
order to process a single record only. We
suppose that the block hit rate B for a block
of n records is related to the record hit rate
P by:

B = 1-(1-p?,

which for independent record activities appears
to be a reasonable assumption. If the record
hit rate or the block hit rate is 100% then
this will reduce to sequential processing of
the entire file. If the block hit rate is less
than 100% skip sequential processing (of prime
blocks) is applied. Because overflow blocks
are not usually full it is difficult to
estimate the activity of these blocks. For

simplicity, the number of overflow blocks to be
processed is taken as a certain percentage (1%)
of the total prime blocks. Each overflow block
processing requires half a rotation delay,
block transfer time and CPU time.

With CAFS implementation, the record hit
rate is used to determine the cell hit rate in
a similar manner, and non-hit cells can be
skipped. When a cell is a hit, the whole cell
is scanned as it usually contains a large
number of records which implies that there will
be more hit records in it compared to a single
block and they are likely to be scattered
throughout the cell. The amount of overflow
areas to be searched is also taken as a certain
percentage (1%) of the total storage cells in
the file.

Fig. 4 and Fig. 5 show the sensitivity of
the processing time to the hit rates (lb, 5%.
lo%, 252, 50%, 75X, and 100%) for both DASD and
CAFS for a file of 30000 records. We see that,
while the DASD processing time is quite
sensitive to small and medium hit rates, the
performance of CAFS is rather insensitive to it
over the entire range. This is because a CAFS
cell is much larger than a block in
conventional DASD, and most cells would have to
be searched anyway even for a relatively small
record hit rate. Therefore, CAFS indexed
sequential files in general do not benefit from
skip sequential processing. Fig. 6 shows the
processing time ratios of DASD to CAFS for the
same file size with different hit rates. We see
that this ratio increases rather sharply for
small hit rates but gradually settles to about
48 for large hit rates. Experiments have also
been performed for file sizes 5000, 10000,
15000, 20000, and 25000, and they are observed
to exhibit a similar extent of improvement.

Additional experiments have been performed
on CAFS with small cell sizes of 1 and 2
tracks, and we find that, somewhat
surprisingly, that for a hit rate of l%, CAFS
actually exhibits a slight degradation in
performance in comparison with conventional
DASD: CAFS is slower by 28.7% for a cell size
of 1, and by 0.4% for a cell size of 2. We also
find that when the cell size is increased to
20, a slight degradation (about 4%) in
performance is also evident in comparison with
a 10 track cell size.

4.3 Evaluation of Hashed Random Organisation

In ICL hashed random files implemented in
conventional DASD, but kets are accessed by
means of a bucket directory comprising a fixed
number of pointers, one for each bucket, each
pointer being the address of the first block
for that bucket. In any bucket, each block
within it contains a pointer to the next block

288

20
0

lo
o 0

(if any) with the last (or only) block in that
bucket containing a null pointer. Buckets are
generally of variable size and consists of as
many blocks as required. We assume that the
whole bucket directory always resides in main
memory when the file is being processed. Key-
to-address transformation and searching of
bucket directory and pointer manipulation are
done in main memory and the time taken is
assumed to be negligible. The space taken up
by the pointer in each block is assumed to be
insignificant. The number of blocks in a
bucket depends on the number of records that
have been hashed to this bucket address and the
blocking factor. The probability p(x) of an
address having x records allocated it it is
assumed to conform to the Poisson distribution
c21:

[(n/N)X] exp(-n/N)
p(x) _ --------^-------^--- , x=0,1,2,...

x!

where n signifies the number of records, and N
signifies the number of buckets. The
probability that there are x records in a
bucket is taken to be p(x)/[l-p(O)], which is
used to decide the length of the search through
a bucket. With a packing density of 90% and
single record block, it was found that the
bucket size would not exceed 9 blocks. It is
therefore not unreasonable to assume that the
size of each bucket does not exceed 10 blocks.
These probabilities for the first ten blocks
are calculated and stored in an array in the
course of the simulation. Each record is
accessed by computing the bucket number and
consulting the bucket directory to locate the
first block of that bucket. These are assumed
to take negligible time. Each block of the
bucket is then searched successively for the
record. The time to search each block includes
a random seek to the required cylinder, half a
rotation for the block to come under the
read/write heads, block transfer time and
record processing time. At each block, the
probability above is used to determine whether
the record is found. Searching continues until
the record is found or the maximum number of
blocks have been searched. It is assumed that
on average the required record can be found
after searching half of the records in the
block where it is stored. All records in blocks
preceding the one where it is found would have
to be searched.

With CAFS implementation, the situation is
very similar except that since the smallest
addressable unit is a cell, each bucket is
assumed to be made up of a variable number of
cells. The number of records each cell can
hold is thus quite large. It was found that
for a single track cell, the bucket size rarely
exceeds two cells. As the cell size increases,
the number of bucket addresses decreases and
the ratio (n/N) becomes very large so that p(0)

= exp(-n/N) tends to zero. It was found that
for a cell holding more than 70 records, p(0)
becomes SO small that it cannot be represented
even using a double precision number on the PDP
11144 machine on which the simulation model is
implemented. For this reason we simply assume
that for a cell that can hold more than 70
records, the length of each bucket is less than

equal to 1 cell This assumption
FLasonable because for ‘a packing density of 9:;
and a bucket size of 75 the percentage of
synonyms as a percentage of records loaded is
shown in [2] to be 1.25%. We assume that each
cell access in a bucket requires a random seek,
one block rotation delay and scanning through
the cell. The position where the record is
found is random and searching can stop as soon
as it is found, If the record is not found in a
cell, the whole cell would have been scanned
before searching the next cell.

Fig. 7 displays the processing time ratios
of DASD to CAFS for different file sizes under
direct processing. We find that this ratio is
well below 2; the intercept of the least square
line through these points is calculated to be
1.64. This suggests that the improvement in
efficiency in the direct processing of CAFS
hashed random files is rather mar gi nal .
However, the experimental results relating to
exhaustive searching of these files yield an
average (least square) ratio of 45.5.

Experiments have also been performed to
w-w the effect of the cell size on
performance on a file of 32000 records and cell
sizes of 2, 4, 5, 10, and 20; the same
phenomenon observed in Section 4.2.1 is also
present with an increase in processing time of
about 23% being observed for a cell size of 20
tracks.

5. SUMMARY AND CONCLUSIONS

We have studied the performance advantages
of CAFS in relation to conventional DASD
through performing over 100 detailed simulation
experiments. We find that the benefits
conferred by CAFS vary quite considerably
depending crucially on the file structure and
the processing operation. In the case of
sequentially organised files, conventional DASD
is slower than CAFS by a factor of about 2.5
for direct processing under binary search which
increases to about 50 for exhaustive search. In
the case of indexed sequential files with
external index searching, a comparable extent
of improvement is observed. If, however,
external index search in conventional DASD iS
avoided, then we find that CAFS fails to Offer
any tangible performance improvement for direct
processing. We also find that, al though
indexed sequential files implemented on
conventional DASD generally benefit from skip

290

sequential processing, the same fails to be
true for CAFS implementations. We find that the
latter implementation is rather insensitive to
the hit rate; even with a relatively small hit
rate of about 105, a complete scan of the file
frequently results. In fact, for a hit rate of
lb, CAFS could actually be slower than
conventional DASD. Similarly, in the case of
direct processing in a hashed random file, the
performance advantage of CAFS is rather
marginal : conventional DASD being slower than
it on average by a factor of only 1.6.
Exhaustive searching of a hashed random file
with pre-specif ied selection criteria, however,
does substantially raise this factor to about
50 times. These improvement factors appear to
be quite general and is not affected by the
file size, provided the file contains a minimum
of several thousand records.

We also find that CAFS could be counter-
productive if the wrong parameters are chosen
for its implementation. These experiments
suggest that for a system with drive
amplification of degree n, then having a cell
size which substantially deviates from n is
inefficient, and the system normally behaves
quite satisfactorily when the sucket size is
the same as the degree of drive amplification.

Thus, in a processing environment where
there is contention for CAFS resources, we
would recommend that CAFS not be used for (i)
direct processing of indexed sequential files
with index loadable into main memory, (ii) skip
sequential processing with expected hit rates
of less than 15, (iii) direct processing of
hashed random files. Further tasks which might
be off-loaded from CAFS without sacrificing too
much efficiency are (i) direct processing of
sequentially organised files, and (ii) direct
processing of indexed sequential files with
external index search.

The chief strength of CAFS is in exhaustive
search. For highly complex search expressions,
conventional DASD could be slower than CAFS by
as much as a factor of 100; for moderately
complex expressions, this factor is generally
about 50. The merit of CAFS appears to be based
on a rather simple design: the elimination of
rotational delay by dedicated hardware which
obviates time-consuming intermediate I/O
transfers and memory references . This
elimination takes 3 forms: (i) by allowing the
fields to be self-identifying, any initial
search delay caused by identification by
position may be eliminated; (ii) by speeding up
the necessary ordercode execution so that
search may take place continuously without
losing a rotation for each inter-block gap;
(iii) by supporting the simultaneous reading of
multiple tracks, Only a single rotation iS
necessary for search tasks which otherwise may
require several, As we have already indicated,
since certain tasks are unsuited to CAFS, a

highly commendable design feature of it is the
inclusion of the Direct Access Unit, which
conveniently allows tasks to be switched
between CAFS mode and conventional mode. A key
weakness of CAFS, however, is that it makes no
attempt to reduce the seek time which accounts
for a substantial proportion of the delay in
many processing situations. This could be
overcome by Using a multi-head or fixed-head
disc; a further improvement along this line
would be to introduce an additional degree of
parallelism by allowing several of these heads
on different cylinders to be active
simultaneously - theoretical work on this type
of architectural design is already available
(see e.g. Cl]). With such additional
enhancements, it is very likely that file
operations in which there is currently only
marginal improvement may also yield impressive
performance gains.

REFERENCES

Cl] Calderbank, A.R., E.G. Coffman Jr., and
L. Flatto. Optimum head separation in a disk
system with two read/write heads. .I. ACM,
Vo1.31, No. 4, pp. 826-838, 1984.

[2] Hanson, 0. Design of Canputer Data
Files. Pitman, 1982.

c31 ICL. CAFS 800 General Enquiry System.
1982.

[4] ICL. VME/B File Management. 1983.

[5] LeUng, C.H.C. and Q.H. Choo. The effect
of fixed-length record implementation on file
system response. Acta Informatica Vo1.17, pp.
399-409, 1982.

C61 Leung, C.H.C. Analysis of secondary
storage fragmentation. IEEE Trans. Software
Ew., Vol. SE-g, pp.87-93, 1983.

[73 Mailer, V.A.J. Information retrieval
using the content addressable f ilestore. In
Proc. Information Processing 80, North-Holland,
pp. 187-192, 1980.

[8] Teorey, T.J. and J.P. Fry, Design of
Database Structures. Prentice-Hall, 1982.

291

