
Computing Queries from Derived Relations*

P.-l. Larson and H.Z. Yang’

Data Structuring Group
Department of Computer Science

University of Waterloo
Waterloo, Ontario
N2L 3Gl Canada

Abstract. Assume that a set of derived relations
are available in stored form. Given a query (or
subquery), can it be computed from the derived rela-
tions and, if so, how? Variants of this problem arise in
several areas of query processing. Relation fragments
stored at a site in a distributed database system, data-
base snapshots, and intermediate results obtained dur-
ing the processing of a query are all examples of
stored, derived relations. In this paper we give neces-
sary and sufficient conditions for when a query is com-
putable from a single derived relation. It is assumed
that both the query and the derived relation are
defined by PSJ-expressions, that is, relational algebra
expressions involving only projections, selections, and
joins, in any combination. The solution is constructive:
not only does it tell whether the query is computable
or not, but it also shows how to compute it.

1. INTRODUCTION

Consider a database consisting of a number of
(conceptual) relations R,,R,,...,R,, and assume that
the extensions of the conceptual relations are not avail-
able in stored form. Instead we have available, in
stored form, a set of n derived relations, defined by
E,,Ez,...,E, where each Ei is some expression in rela-
tional algebra. We are given a query E,, that is, a
relational algebra expression over R ,,R,,...,R,. The
problem is then the following: Can E, be computed

* This research was supported by the Natural Sciences and En-
gineering Research Council of Canada under grant No. A-2460.
’ Electronic mail:
UUCP:
(decvax,ihnp4,allegra}!watmath!watdaisy!{ palarson,hzyang)
CSNET: (palarson,hzyang)%watdaisy@waterloo.csnet

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Vev Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

from the available, stored relations defined by
E,,E,,..., E, and, if so, how?

This paper represents a first step towards the
solution of this problem. We give necessary and suffi-
cient conditions for deciding whether E, can be com-
puted from a single derived relation E,, for the case
when EO and E, are both PSJ-expressions. A rela-
tional algebra expression is a PSJ-expression if it
involves only the operations project, select, join and
Cartesian product. This may seem a very restricted
class of expressions, but that is not the case. PSJ-
queries (queries that can be represented by a PSJ-
expression) are extremely common in relational data-
base systems. Whatever the user query language,
almost every query is either a PSJ-query or has one or
more subqueries which are PSJ-queries.

Different variants of this problem occur in several
areas of query processing. The differences arise from
different interpretations of stored, derived relations. In
a distributed database context, derived relations can be
interpreted as relation fragments stored at a site (or
group of sites). This variant of the problem has been
studied extensively, but normally under the assumption
that each fragment is derived from a single relation
using only selections and projections [CP84]. Data-
base snapshots are another example of stored, derived
relations [ALgO].

The solution to this problem also has applications
in “traditional” query optimization [MA83,UL82].
Here a derived relation can be interpreted as an inter-
mediate result obtained in the process of computing a
query. If some other part of the same query can be
“easily” computed from intermediate results
E,,E2,...,E,, query processing may be speeded up. It
may even be worthwhile retaining certain intermediate
results, if the chance that they can be used in subse-
quent queries is high enough to warrant the extra
storage space [FS82]. In this context the problem has
been studied (usually) under the restriction that E.
must exactly match one of the expressions E ,, Ez,..., E,.

Our main motivation for studying this problem
stems from a different area: physical database design
for relational databases. In current relational systems

Proceedings of VLDB 85, Stockholm 259

the structure of the stored database is normally
required to be in one-to-one correspondence with the
conceptual schema. By this we mean that each con-
ceptual relation exists as a separate stored relation
(file). To speed up query processing some auxiliary
access structures may be added: secondary indexes,
join indexes, record linking, etc. [AS76,BL81,SW76].
This way of structuring the stored database is a simple
and straightforward solution. However, it has the
effect that the processing of a query almost always
requires data to be collected from several physical
files.

Instead of directly storing each conceptual rela-
tion, we suggest a more flexible approach where the
physical database is structured as a set of stored,
derived relations. The choice of stored relations should
be guided by the (actual or anticipated) query load, so
that frequently occurring queries can be processed
rapidly. If it is advantageous to do so, some data may
be redundantly stored in several physical relations.
The structure of the stored database, and changes to
the structure, should be completely transparent at the
user level, and user queries and updates expressed
solely in terms of conceptual relations. The system
must be capable of automatically transforming a user
query into an equivalent query against stored relations,
and a user update to updates of (one or more) stored
relations. To make the suggested approach viable the
two fundamental problems of query transformation and
update transformation must be solved. This paper is a
first contribution towards the solution of the query
transformation problem.

The idea of not necessarily having a one-to-one
correspondence between conceptual relations and
stored relations has so far received little attention (out-
side the area of distributed databases). Joining rela-
tions is often the most costly operation in query pro-
cessing. Schkolnick and Sorensen [SS81] studied the
effects of storing relations in prejoined form (called
denormalization). Motivated by the availability of spe-
cial hardware capable of rapid selection and projec-
tion, Babb proposed a “Joined Normal Form” [BA82].
It amounts to storing the whole database as one single
relation, which is the join of all conceptual relations.
Roussopoulos [R082] originated the idea of view
indexing. A view index represents a materialized user
view, containing pointers to the tuples contained in the
view. A view index is essentially an indirect version of
a derived relation.

A classical problem related to the one studied
here is that of query containment: given two queries
defined by relational expressions Et, and El, is the
result of Ed a subset of the result of E r? This prob-
lem, and the closely related problem of query
equivalence, have been solved for certain classes of
queries: conjunctive queries and tableau queries. For

an overview and references, see the chapters on query
optimization in [MA831 or [UL82]. Note, however,
that the problem studied here is not equivalent to that
of query containment. In addition to containment, we
impose the further requirement that it must be possi-
ble to compute the result of E. from the result of E ,.

2. NOTATION AND BASIC ASSUMPTIONS

A relation scheme is a list of attribute names. A
database scheme is a set of relation schemes. An
instance (or extension) of a relation is a set of map-
pings which maps a set of attribute names to values or,
equivalently, a set of tuples. An instance (extension)
of a database is a collection of instances of all relations
in the database schema. When there is no risk of con-
fusion we will use the shorter “relation” instead of
“instance of a relation”, and correspondingly for data-
base.

Derived relations and queries are here expressed
in relation algebra. The following notation will be
used:

RXS

R{Cl

RM ,,A.1

RICIS

a(C)

Cartesian product of rela-
tions R and S.

Select all tuples from rela-
tion R satisfying condition
C (a boolean expression).

Project relation R onto
attributes A ,,..., A,.

Join relations R and S
over condition C, that is,
R (CIS = (R XS){C}.

The set of all attributes
appearing in condition C.

The logical connectives will be denoted by + for OR,
juxtaposition (multiplication) for AND and 1 for
NOT. A tuple t satisfies a condition C, if C evalu-
ates to true when each attribute name in C is replaced
by the corresponding attribute value from t. An
instance of a relation satisfies C if all tuples in the
relation satisfy C. Projections and selections are
assumed to have higher precedence than binary opera-
tions.

A relational algebra expression has relation names
as operands and relational algebra operators as opera-
tors. If each relation name is replaced by a
corresponding instance the expression is evaluated and
the result is a derived relation. The result of evaluat-
ing an expression E over an instance d of database

D = {R,,R2 ,..., R,] will be denoted by V(E,d). An
expression is considered to be defined over the full
database scheme, even though the expression may only
refer to a subset of the relations in the scheme.

We state the following without proof: Every
(valid) expression constructed from an arbitrary
number of Cartesian products, joins, selections and
projections (PSJ-expression) can always be transformed
to an equivalent expression in a standard form consist-
ing of a Cartesian product, followed by a selection, fol-
lowed by a final projection. One can easily see that
this holds by considering the query tree corresponding
to a PSJ-expression. The standard form is obtained by
first pushing all projections to the root of the tree and
thereafter all selection and join conditions.

From the above it follows that any RSJ-expression
E can be written in the form
E = (R,XR,X ... XRk) (C) [A,,A2 ,..., A,] where
R ,, R,,..., Rk are relations, C is a selection condition
and A,,A~ ,.,., A, are the attributes of the final projec-
tion. We can therefore represent any PSJ-expression
by a triple E = (A,R,C) where A = {A,,Az ,..., A,] is
called the attribute set, R = {R1,R2,...,RI(] the rela-
tion set or base, and C the selection condition.

Example: Consider the following expression
defined over relations R(A,B,C,D) and S(E,F):

((R[A,Bl {A>lOj) 1 B=F I(SiE>20))) [A,Fl
= (R XS) ((A>lO) (B=F) (E>20)] [A,F]

= ({A,F],{R,S),(A>lO) (B=F) (E>20)).

The triple representation inherits the naming
problem of relational algebra: if a relation R occurs
more than once in the relation set, then a reference to
one of its attributes in C or A is ambiguous. The
ambiguity can be resolved by appropriate renaming of
repeated relation. This problem will be discussed
later, but until further notice we will assume that no
relation occurs more than once in the relation set of an
expression.

3. DERIVABILITY AND COVERAGE

A user query is expressed in terms of conceptual
relations. Query transformation consists of transform-
ing a user query into an equivalent query against
stored relations. This process should be done automat-
ically by the system and be completely transparent at
the user level. Once an equivalent query has been con-
structed, the task of “optimizing” its evaluation still
remains. This problem has been studied extensively
and all the known techniques apply [MA83,UL82].
We are not at this stage concerned with constructing
efficient queries; the only goal at this stage is to be

able to correctly transform queries.
Both stored, derived relations and queries are

represented by relational algebra expressions. Stated
in its most general form, query transformation amounts
to finding a relational algebra expression
W,,Ez,..., E,,) which generates the same result as a
given query Eo, for every instance of the database.
Solving the problem in its general form appears
extremely hard. We will reduce it to a more manage-
able level by imposing a certain restriction on the
deriving expression F. The essence of the restriction is
that “self-joins” are not allowed in F. A “self-join” is
an expression of the type Ek 1 C 1 Ek or Ek X E, {C].
In our opinion this is not a severe restriction; “self-
joins” appear to be rare and of limited use.

Definition. (Derivability) Consider a set of rela-
tional algebra expressions { Eo, E i,..., E,) defined over a
database schema D = ~R,rR~v..rR,,,l, and let
{Ei,qEi,,...,Ei,), k in, be a subset of {E,,E, ,..., E,].
We say that E, is (algebraically) derivable from
(E 1, E2 ,..., E,], over the base Ei,, Ei, ,..., Ei,, if there
exists a relational algebra expression F, containing no
joins or Cartesian products, such that

V(E,,d) = V(F(Ei, X Eiz X X Ei,),d) for every
instance d of the database D. 0

Note that the definition does not completely
prohibit joins or Cartesian products; it only forbids
“self-joins”. There are no restrictions on the use of
projections, selections and the standard set operations.
An output tuple of F may be constructed by combin-
ing any tuple from Ej with any tuple from E, pro-
vided that j # 1. However, combining a tuple from
Ej with another one from Ej is not allowed. Note
also that F may not be unique. If the database con-
tains redundant data, there may be many different
ways of transforming the query.

If the relations defined by E,,E2,...,E, do not
contain “sufficient” data to construct Ea, no deriving
expression F can exist. If we can show that “suffi-
cient” data exist, then we can proceed to the more dif-
ficult problem of constructing a deriving expression F.
Saying that E,, E,,...,E, contains “sufficient” data
vaguely means that “all the data values of E, can be
found in E,,E, ,..., E, “. More precisely it means that
any value (combination of values) of an attribute (set
of attributes) found in a tuple in E. can also be found,
under the same attributes, by taking some combination
of tuples from E,,E,,..., E,. Consider the following
example:

Example: E,, is defined over R, and R,, and its
attributes are [R1.A,RI.B,R2.C]. Assume that a tuplc
(10, 5, -3) exists in E,-, for some instance of R, and

261

R2. If the value 10 is not contained in any projection
of E ,, Ed ,..., E, over R ,.A for the same instance of R,
and RZ, E,, cannot be derived from EI,E2,...,E,,. The
same holds if the tuple (10, 5) cannot be found in any
projection over [R l.A, R ,.B]. 0

This idea is formalized in the following two defin-
itions.

Definition. Let r = (~,,%9...,Um) and
s = (b,,b, ,..., b,), m 5 n, be two tuples of relations
R(A,,A~,...+%,,) and S(B,,B2 ,..., B,), respectively.
Tuple r is said to be a subtuple of s if for every ai,
lSi<m, there exists an attribute j, 1 5 j I n,
such that ai = bj and Ai = t?’ and no two attributes !’
in r map to the same attribute m s. •i

Definition. (Coverage) Let (Eo, E,, El,..., E, 1 be a
set of relational expressions defined over a common
database schema D = {R,,Rp..,R,] and let
{E,,,Ei *,...) Ei,j be a subset of {E,,El,..., E,]. We say
that EO, is covered by E,,E2,...,E,, over the base
{Ei,,Ei,,..., Ei,), if for every instance d of D and every
tuple to E VE,,d) there exists a tuple
t E V(Ei,XEi2X . X Eik,d) such that to is a subtu-

pleof t. 0

It is easy to see that derivability implies coverage.
Coverage is a necessary, but not sufficient, condition
for derivability. Testing coverage is much easier than
testing derivability as we will see. If the coverage test
fails, there is no need to consider derivability.

4. TESTING THE VALIDITY OF BOOLEAN
EXPRESSIONS

We will in the sequel frequently need an algo-
rithm for testing whether a given boolean expression is
valid, that is, always evaluates to true. Such an algo-
rithm is developed in this section, for formulas contain-
ing no arithmetic expressions. It is based on the same
idea as an algorithm given by Rosenkrantz and Hunt
[RH80]. Our algorithm is faster but more restricted
than theirs.

We will consider boolean expressions constructed
from variables, constants, comparison operators
(<, =, >), boolean connectives and parentheses. An
atomic conditions is an expression of the form x copy
where x is a variable, cop is one of ‘<‘,‘=‘, or ‘>’
and y is either a variable or a constant. If y is a con-
stant, the condition is said to be a simple condition,
otherwise a connective condition. Negation is not
needed; any expression containing negation can be
reduced to one without negation. Without loss of gen-
erality, all variables are assumed to be defined over
some finite set of integer values. Variables correspond
to attributes and in practice all attributes have a

discrete, finite domain. Any discrete, finite domain
can be mapped into a finite set of integer values.

Let C(x~,xz,...,x,) be a boolean expression, as
explained above, with variables x,,x~,...,x,, that is, a
formula in first order logic. A formula is valid if
vx1vx* ’ . Vx,(C(xl,xZ ,..., x,)) holds, that is, if it
evaluates to true for all possible values of x,, x2,..., x,.

Every xi, i = l,2 ,..., n is restricted to its domain, of
course. When there is no risk of confusion we will use
the shorter notation VX,,X~,...,X,,(C).

From elementary logic we know that
vx,,xz . . . x,(C) 0 je X1,X2. . . x,,(l C). Now expand
1 C into disjunctive form, that is, let Y C
= B,+B*+ ... + B, where each Bi is of the form
Bi = Bi, Bi2 . . Bik, and each Bij is an atomic condi-

tion. The quantifiers can be distributed over the &‘s,
and we obtain the following equivalences:

VXl,X~,...,X,(C) c)

~x,,xz,...,x,(-r C) Q

JlXl,XZ ,..., X”(B, +k?z+ . ‘. +B,) c=)

(3 x1,x2. . . X”(B,))@ Xl,X2,...,X,(B~))

. ..a x,,x*,...,x,(B,)).

To prove the validity of C it is sufficient to prove, for
each B/ separately, that Bi is inconsistent (no value
exists such that Ei evaluates to true). If, for any one
of the Bi’s, we can find a value x’,,x’~,...,x’~ such that
Bi is true, then it immediately follows that C is not
valid. Finding a value that satisfies all conditions in
Bi, or proving that no such value exists, can be done
by the algorithm explained below.

Let B be a conjunctive condition with variables
XI,X2v..,X,. The first step of the algorithm is to define
for each variable a permissible range which is con-
sistent with its domain and the simple conditions of B.
Consider a variable xi and let its domain be
{f.,,L, + I,..., H,, j. Denote its permissible range by
rx, = @x,,bx,).

For each variable xi of B we initialize its range
to TX, = (&,H,,). Then we adjust these initial ranges
by considering each simple condition of B in turn.
Let w denote a simple condition involving xi. The
permissible range of xi is then adjusted as follows:

(i) if w = (xi > c) then rx, : = (max(a,,,c+ l), b,)

(ii) if w = (xi < c) then rx, : = (a,,,min(b,,c- 1))

(iii) if w = (xi = c) then rx, = (c,c).

At the end of this step we have for each xi a permissi-
ble range which is consistent with its domain and the

262

simple conditions. If the range of any one variable xi
is empty then the condition B is (trivially) incon-
sistent. A range rX, = (ax,,bx,) is empty if ox, > b,.

Example: Consider the conjunctive condition

B’ = (x > lO)o, t20)(z > 15)(x <25)(x Cy)

(z<Y)(x-)(t-)

where x,y,z are restricted to the domain (0,1,...,50).
After the first step we have the permissible ranges
rx = (11,24), = (0,19), = (16,50) and
rl = (0,50), so Bjr!s not trivially izconsistent. 0

If the condition B is not trivially inconsistent we
proceed to the next step, in which the connective con-
ditions are taken into account. A directed graph is
constructed where nodes represent variables and edges
represent connective conditions of the form x > y. A
node may represent several variables, as explained
below. Each node also has an associated permissible
range, which initially is the range obtained from the
previous step.

We will denote a node by N(v; (a,b)) where v is
the set of variables associated with the node and (a,b)
is their permissible range. For each variable x in B a
node N(X; (a,,b,)) is created, where (ax,&) is the
permissible range obtained from the previous step.
Next we merge nodes by using connective conditions of
the form x = y. Whenever there is a condition
x = y, we locate the node in whose variable set x

occurs, and correspondingly for y. Denote these two
nodes by N,(v; (u,b)) and ~,,(a; (c,d)), respectively.
Node NZ is modified to
N,(v U 1.4; (max(u,c),min(b,d))) and N,, is eliminated.
This step terminates when all connective conditions
with equality have been processed. If any node now
has an empty range, condition B is inconsistent and
the processing of E stops. Otherwise, there is still at
least one value that satisfies all simple conditions and
all connective conditions with equality: the value
obtained by setting each variable equal to the lower
bound of the permissible range of the node in which
the variable occurs.

In the final step we take into account connective
conditions of the form x > y. For each condition
x > y we add an edge from the node in whose vari-

able set y occurs to the node in whose variable set x
occurs. For our example we obtain the following
graph.

For a variable to have a value that satisfies all
connective conditions, the value must be consistent
with the values of all its predecessors in the graph.
From the graph above we see that the lowest possible
values are t = 0, x = 11, z = max(16, ll+l, O+l)
= 16 and y = max(O, 11-t-1, 16+1, 11+2,0+2) = 17.
This value satisfies all the conditions of B’ and conse-
quently we have found one value for which B’ evalu-
ates to true. However, if there had been an additional
condition t > 20, then the minimum value for y
would be y = 23 = max(O, 16+1, 11+2, 21+2). This
is not a permissible value for y because the upper
bound is 19, and consequently B’ would be incon-
sistent.

Assume first that the graph obtained does not
contain any cycles. Finding the minimum permissible
value for each variable can then be done by processing
the nodes in a certain order. Consider a node and its
immediate predecessors in the graph. If the minimum
permissible value for each immediate predecessor has
been determined, then the minimum permissible value
for (all the variables of) the node is 1 plus the highest
of the minimum permissible values of all its immediate
predecessors. Any lower value will violate at least one
of the conditions. Whenever there are no cycles in the
graph, we can easily find a processing sequence such
that no node is processed before all its predecessors
have been processed. First find all nodes that have no
immediate predecessors and mark them. Then repeat-
edly select any node having only marked immediate
predecessors, adjust the lower bound of its range and
mark it. If at any stage during this process the range
of a node r becomes empty, condition B is incon-
sistent (because there is no value for the variables of t
that satisfies all the conditions). If, when all nodes
have been processed, all permissible ranges are non-
empty, then there exists at least one combination of
values that satisfies all the conditions: the one
obtained by setting each variable equal to the
minimum value in its permissible range.

Now consider the situation when there are one or
more cycles in the graph. Then there is at least one
node t which is its own predecessor. Because all the

263

predecessors of a node must be processed before a
node can be processed, node t will never be processed.
This will in the algorithm lead to a situation where
there are still unmarked nodes in the graph, but they
al1 have at least one unmarked (immediate) predeces-
sor. This situation is easily detected. A cycle in the
graph can arise only when there is a subset of connec-
tive conditions in B such that

(xi, > xi2)(xi2 > xii) . . (xi* > xi,). This set of condi-
tions can never be satisfied and consequently B is
inconsistent.

The above process for testing the inconsistency of
a conjunctive boolean expression is summarized in the
algorithm INCONSISTENT below. It is possible to
strictly prove its correctness but we will not include
the proof here. However, we think that its correctness
is fairly obvious from the way it was constructed.

The validity of a universally quantified boolean
expression can then be proved, or disproved, by the
simple algorithm VALID-C which follows.

procedure VALID-C(C : boolean expression):
boolean

{C is a boolean expression as explained
in the beginning of this sectionl

convert -,C into disjunctive form,
that is, -C = B,+B2+ ‘.. +B,

for each Bi do
if not INCONSISTENT (Bi)
then return (false)

od;
return (true);

end (VALID-C]

procedure INCONSISTENT (B : boolean
expression): boolean

{B must be of the form B = Cl Cz. . C,,, where
each C, is an atomic condition. Each variable x in B
must have a finite range (L,,H,).~

G: directed graph with nodes having the format
N(v ;(u,b)) where v is a set of variable names and
(a,b) is the permissible range of the variables;

begin

for each variable x in B do
insert a new node N,((x] ; (L,,H,)) into G;

od;

for each simple condition (X op C) i,
find node N,((x l ; (a,,&));
case op of

<: (ux,bx) : = (axrmin(b,,c-
= : (ux,bx) : = (c,c):
> : (ux,b,) : = (max(u,,c + 1)

end;
if a, > b, then return (true);

od;

n B do

1));

,b,);

for each connective condition (x = y) in B do
find nodes N,(v ; (u,b)) and N,,(u ; (c,d))
suchthat XEV and you;
v : =vuu;
(u,b) : = (max(u,c),min(b,d));
delete N,, from G ;
if a > b then return (true);

od;

for each connective condition (x > y) in B do
find nodes N,(v ; (u,b)) and N,,(u ; (c,d))
suchthat XEV and JJEU;
insert into G an edge from N,, to N,;

od;

while G is not empty do
find any node NP(v ; (up,bp))
without incoming edges;
if none exists then return (true) ;
{detected a cycle]
for each edge s starting from Np do

let N,(u,(u,, b,)) be the end node of s;
(u,,b,) : = (max(u,,up + I),b,)
if a, > b, then return (true);

od
delete node NP from G;

od;
return (false);

end (INCONSISTENT];

Testing the validity of a boolean expression is
equivalent to the satisfiability problem for boolean
expressions. It is well-known that testing satisfiability
may, in the worst case, take exponential time. How-
ever, we do not consider this to be a very serious prob-
lem. Selection expressions are normally short, and the
exponential explosion occurs only for expressions
involving several “not equals” [RH80].

264

5. TESTING COVERAGE

We are now ready to consider the question
whether a PSJ-expression E, is covered by another
PSJ-expression E , . Coverage means that every tuple
obtained by evaluating E, must occur (as subtuples) in
the relation obtained by evaluating El, and that this
must hold for every instance of the database. Before
stating the main theorem we need the notion of an
extended attribute set.

Definition. Let C be a boolean expression with
variables x1,x2 ,..., x,,yI,y2 ,..., y,. The variable yi,
llilm, is said to be uniquely determined by
x,,x2 ,..,, x,, with respect to C, if the following holds:

variables y,,y2,...,yk are guaranteed to be unique,
because each variable y,,y2,...,yL is uniquely deter-
mined by x1,x2 ,..., x,. In other words, we have
correctly reconstructed the missing values of
Yl*Y29-.9Yk* The following examples illustrates the dis-
cussion.

Example: Let
E = ({A }.R,(B =A)((A >7)(C=5) + (A t5)(C= 10))
where R = (A,B,C,D). One can easily show that B
and C (but not D) are uniquely determined by A.
Now consider the following instance of R and the
result when E is applied to that instance:

R: A B C D E: A

vx ,,..., x,,y I,..., ym,yl/ ,..., Y,‘(C(X,,...,X,,Yl,...,Ym)

C(X,,...,X,,Yl’,...,Y,‘) * Yi = Yi’) •l

10 10 5 4
10 11 5 6
11 11 7 4
4 4 10 6

Let C’ stand for C(X~,...,X,,Y I’....,Y,,,‘). 3 3 14 6

The above condition is equivalent to
-((y,. > y/i + yi < Y’~)C C’) which can be tested using
the algorithm VALID-C. The attribute set of a
derived relation can be extended to include all vari-
ables uniquely determined by those already in the
attribute set.

Definition. Let E = (A,R,C) be a PSJ-
expression and let B be the set of all attributes
uniquely determined by the attributes of A. Then
A u B, denoted by A +, is called the extended attri-
bute set of E. 0

The set B in the definition above must obviously
be a subset of u(C). An attribute not mentioned in C
cannot be uniquely determined by the attributes of A.
The importance of the notion of an extended attribute
set stems from the fact that given a tuple from E we
can correctly derive the missing values of all the vari-
ables in the set B. The procedure is explained below.

Let A = (x,,xz,....x,) and a(C) -A
= ~YI9Y29...~Yrnl~ Assume that yl,y2 ,..., ykr k I m,
have been shown to be uniquely determined by
XI,X21...,X,. We are given a tuple t = (xp,xF,...,x,O)
from the relation defined by E. The values of the
variables y,,...,ym are not known, but they must have
been such that the tuple t, before the projection, satis-
fied the condition C. In other words, the following
must hold: 3y1,y2 ,... ,ym(C(xp, x,~?,YI,Y~,...,Y,,,).

This is equivalent to +vy,,y2,...,y,(X)). The
algorithm VALID-C is now applied to Vyl,...,y,(-C),
modifying it to return the values found. Denote the
values returned by y~,y~,...,y~. Such a value combi-
nation always exists, because otherwise t would not
have satisfied C in the first place. The values for the

10
4

Each tuple appearing in the result of E must have
satisfied the selection condition. For the first tuple in
E we can conclude that B = 10 (because of the con-
dition B = A) and that C = 5 (because A > 7). In
the same way, we find for the second tuple that
B = 4 and C = 10. 0

Lemma. Let E = (A,R, C) be a PSJ-expression.
Given a tuple from E, the value of an attribute y, is
guaranteed to be uniquely reconstructible if and only
ifyEA+. 0

Sketch of proof: The procedure above for recon-
structing missing values shows that the condition
y E A + is sufficient. To show that it is also neces-
sary, assume that y 4 A +. Then we can find two
tuples t0 and t, over the base of E (the Cartesian
product of all relations in R) such that they agree on
all attributes in A but differ at least on the attribute
Y. This follows directly from the definition of
“uniquely determined” above. The database instance
obtained by projecting t0 and t, onto the attributes of
each relation in R is a valid instance. When t,, and t,
are projected onto the attributes of A they will map to
the same tuple, because they agree on all attributes of
A. Given only this tuple from E (and the condition
C) the value of y cannot be uniquely determined.
There are at least two different values of y, which
when combined with the given tuple satisfy C. 0

Given a tuple in E, we know the values of all
attributes in A and we can correctly determine the
values of all other attributes in A+. The above
lemma shows that A+ is the maximal set of attributes

265

whose values can be determined from a tuple in E.
The following theorem gives necessary and sufficient
conditions on coverage. Note the requirement that all
instances of the relations involved must be non-empty.

Theorem 1. Consider two PSJ-expressions
E,, = (Ao,Ro,Co) and El = (A,,R,,CJ defined over

a database where every relation in R, U R, is non-
empty. Let a(C,) U a(C,) = {x1,x2,...,x,j. Then E,,
is covered by E, if and only if A0 c A, + and
t/x*,x*, xn(Co(xl,x*, x,) * C1(XIrX*,...,Xn)). n

Sketch of Proof: First extend the relation set of
E,, and E, to R. U R, so that they are defined over
a common base (Cartesian product). Adding a new
relation S to the relation set of an expression does not
change the result of the expression (as long as the new
relation always contains at least one tuple). A tuple t
in the base before adding S will give rise to a number
of “copies” in the extended base, where the copies
differ only in the values of the attributes of S. If t
satisfied a given selection condition, then all its
“copies” will satisfy the condition as well. If t did not
satisfy the condition, then none of the “copies” will
satisfy it. The added attributes have no effect on the
selection. The final projection will reduce all “copies”
of t to a single tuple, exactly the same one as the pro-
jection of t.

Assume that A, _C A, + and that the implication
holds. The fact that the implication holds, guarantees
that each tuple t in the common base satisfying Co,
will also satisfy C,. Because A0 c A, + , the projec-
tion of t onto A0 is a subtuple of the projection of t
onto A, + . Consequently EO is covered by E ,.

It is obvious that the condition A0 c A, + is
necessary for coverage. Now assume that EO is
covered by E, and that A, c A, + , but that the
implication does not hold. Then there must exist a
tuple t such that it satisfies C, but not Ci. Now con-
sider the database instance where each relation
Si E R. U R, consist of the single tuple obtained by

projecting t onto the attributes of Si. When EO is
evaluated over this instance, the result will be one
tuple: the projection of t onto Ao. However, when
evaluating E, over the same database instance the
result will be the empty set. Hence E, is not covered
by E, for this instance, contradicting the assumption
that EO is covered by E, for every instance of the
database. 0

By the above theorem testing coverage is reduced
to two simpler tests. Note that it is not always neces-
sary to construct A, + . If A, c A, the first condition
is trivially satisfied. If this is not the case, then we
must test whether every variable in A0 - A, is uniquely
determined by the attributes in A,. Let x be a vari-

able in A0 - A,. A first simple test is to check whether
x is in u(C,). If x is not mentioned in C,, then it
cannot be uniquely determined by those in A,.

Note that Theorem 1 can be used to test
equivalence of relational expressions for a wider class
of expressions than those considered in [AS791 and
[SY81].

6. TESTING DERIVABILITY

The fact that an expression EO is covered by a
derived relation El does not automatically guarantee
derivability. All the necessary tuples are guaranteed
to exist in E,, but it may be impossible to select out
the ones belonging to E,, as illustrated by the follow-
ing example.

Example: Consider a database consisting of the
single relation S(A ,B,C). Let Eo
= (iA l,~s~,(B~1wC-G!0)) and
E, = ((A,C),{Sj,B>5). It is easy to see that E. is

covered by E, because every tuple satisfying
(B>lO)(Ct20) will automatically satisfy B > 5.
However, to compute E, from the derived relation E,,
attribute B is needed (to further qualify the tuples)
and B is not present in E, after the projection.
Hence E. cannot be derived from E,. 0

Consider E. = (Ao,Ro,Co) and E, = (A,,R,,C,)
and assume that E, is covered by E ,. If
a(Co) c A, + , that is, if all the attributes needed to

evaluate the condition Co are present in A, +, it is
obvious that E, can be derived from E ,. However,
even when some attributes in u(C,) are missing from
A,+ it may still be possible to derive E. from E,.
The missing attributes may not be needed. In the
example above that would be the case if the condition
in E. were B > 5 instead of B > 10. To handle this
type of situation we introduce the notion of essential
and nonessential variables.

Definition. Consider a boolean expression C with
variables x1,x2 ,..., x,. The variable xk is said to be
nonessential if the following holds

vx I,..., xk ,..., XnrXk’(c(X~,...,Xk ,..., k,)
= c(x I,..., Xk’,...,&))

Otherwise xk is an essential variable of C. Cl

A nonessential variable can be eliminated from
the condition simply by replacing it with any value
from its domain. This will in no way change the value

266

of the expression. However, for derivability we need
to know whether a variable in a condition is essential
given that another condition holds. This is covered by
the next definition.

Definition. Let Co and Cl be boolean expressions
with variables xi, x2 ,..., x,. The variable xk is said to
be computationally nonessential in c,-, with respect to
C, if the following condition holds:

vx I,..., xk ,..., &,,xk’

=+ c,,(x I,..., xk ,..., x,) = c,,(x I,..., xk’,..., x,)) q

The basic idea of this definition is that the exact
value of xk does not matter when evaluating Co. It
can be replaced by any value xk’ as long as the value
xk’ is such that Cl is satisfied. The algorithm
VALID-C in section 3 can be used to test whether the
condition holds. Let C{ stand for C,(xi ,..., xk’ ,..., x,)
and similarly for Ce’. Then the condition is equivalent
to

t/x I,..., xk ,111, x,,,xk’

(-(C, C,‘(Co + cox-ccl+ -Cd)) *

to which the algorithm can be applied directly.

Both definitions above can trivially be extended to
the case of several nonessential variables by interpret-
ing xk (and xk’) as Sets of variables. Note ah0 that a
variable not occurring in C,, is (trivially) nonessential.

If a variable (or set of variables) y of Co is com-
putationally nonessential with respect to C,, we can
correctly evaluate C,, without knowing the exact value
of y. However, y cannot be assigned an arbitrary
value in its domain. Consider two PSJ-expressions
Es = (A,,R,,CJ and E, = (A,,R,,C,) where E, is

covered by E ,. Let a(C,) = (x1,x2 ,..., x,,,y} where
{xi ,..., x,} c A, + and y 4 A, + . Assume that we

have shown that y is computationally nonessential
with respect to C,. Then y must be one of the vari-
ables in Cl. Now consider an arbitrary but fixed tuple
1, = (x,‘,x;,..., x,‘,y’,...) from E, before the projection

onto A,. After the projection y disappears and its
exact value in tl is not known. However, we know
that it was such that t, satisfied Cl. If we somehow
can find a surrogate value y” such that the tuple t2
= (XI/,X; ,..., x,‘,y” ,...) satisfies C,, then from the fact
that y is computationally nonessential it follows that
c&I/,X;,...,Xn’.Y’) = co(x,‘,x; ,..., x,‘,y”). In other
words, using the surrogate value y” when evaluating
Co gives exactly the same result as would have been
obtained using the correct, but unknown, value y’.

Example: Let R(A,B,C,D),
E,-, = ((A,B),{R},(A<50)(B>lO)(C'<40)(D<C)(D>B))
and
= ({A,B,C),(R),(B>lO)(C<4O)(D<C)(D>B)+(B:;)).
E, covers E. and it is easy to show that D is compu-
tationally nonessential in Co. Now consider the follow-
ing instance of the relation defined by E ,:

E,: A B C

100 30 35
20 15 25
20 4 0

For the first tuple we can deduce that the missing
value of D must have been in the range 30 =c D -c 35.
We can set D to any value in this range, D = 3 1, for
example. Using D = 31 and the given values for the
other attributes, we find that the first tuple does not
satisfy the condition in Eo. For the second tuple the
range is 15 < D < 25. Setting D = 16 we find that
the second tuple satisfies the selection condition of Eo.
For the third tuple, D can be assigned any value in its
range, D = 0, for example. (The tuple satisfies the
condition B < 5 independently of the value of D.)
With D = 0 (or any other value) the tuple does not
satisfy the condition in E,. The final result of Es is
hence the single tuple (20, 15). Cl

Surrogate values for computationally nonessential
variables can easily be found using the algorithm given
in section 3. Let A, = (x,x2,..., x,) and let
s = (xi..... x,,‘) be a tuple in the relation defined by
E,. This tuple must then have satisfied C,. Let
a(C,) - A, = {y,,y2 ,..., yk), that is, the variables of C1

not retained after the projection. All computationally
nonessential variables of Co are guaranteed to be in
the set {y I,..., yk 1. Finding surrogate values for
Yl*YZv~~TYk to be used with the given tuple
s = (x,/.x; ,..., Xn’) amounts to proving
~yI,y2~...,yk(CI(x~,x~,...~x~‘,yI~Y2~...,Yk))~ Proving this
is equivalent to disproving
tIyi,y2 ,..., yk(Y C,(x,‘,..., x,‘,y, ,..., yk)) which can be

done by applying the algorithm of section 3 (modifying
it to return the value found). Surrogate values
Y :,Y;,...Yk will always exist, because otherwise s
could not have satisfied C,. It may be necessary to
compute new surrogate values for every tuple, as we
saw in the example above. However, when given a
new tuple, it may be worthwhile trying to use previ-
ously computed surrogate values. If the attribute
values of the new tuple combined with the ‘old’ surro-
gate values satisfy Ci, then there is no need to recom-
pute the surrogates.

267

The following theorem summarizes the main
result of this paper:

Theorem 2. Let E, = (Ao,Ro, C,) and E,
= (A,,R!,C,) be PSJ-expressions and assume that E,,
is covered by E ,. Then EO is derivable from E, if
and only if all variables in u(C,) -A, + are computa-
tionally nonessential with respect to c,. q

Sketch of Proof: If the condition holds then E,,
can be computed in the way discussed above, so the
condition is clearly sufficient. To show that it is neces-
sary, assume that a(C,) -A, + is nonempty, that
y E a(C,) - A, + is a computationally essential vari-
able, and that E,, is derivable from E,. Then there
must exist a relational algebra expression F, not
involving the missing attribute y, which correctly com-
putes E, from E, for every instance of the database.
Denote by S the base of E,, that is, the Cartesian pro-
duct of all relations in R,. Because y is computation-
ally essential, we can construct two tuples t, and t2
over S which differ only in the value of y and which
both satisfy C, but only one, t, say, satisfies Co. Now
consider the following two database instances: d,
obtained by projecting t, onto the relations in R, and
d2 by similarly projecting t2. E, evaluated over I,
must then result in one tuple, while E, evaluated over
t2 must be empty. However, evaluating F over 1,
gives exactly the same result as evaluating F over t2,
because they differ only in the value of y and the
expression F does not involve the attribute y. Hence,
F gives an incorrect result for one of the two database
instances, contradicting the assumption that E,, is
derivable from E ,. 0

Note that the proof does not impose any other
restrictions on the deriving expression F than that it
does not involve attribute y. This implies that the
theorem holds also for expressions that involve “self-
joins”. In other words, if EO cannot be derived from
Et then it cannot be derived from E, X E, or
E,XE,XE,,. . either.

7. DISCUSSION

In this section we summarize the main assump-
tions made and briefly discuss the effect of relaxing
them.

One of the main restrictions was not to allow
“self-joins”. A “self-join” in a PSJ-expression is indi-
cated by the same relation name occurring more than
once in the relation set when the expression is con-
verted into triple format. This restriction can be
slightly relaxed. Assume that a relation R occurs k,
k > 1, times in the relation set of EO and that the k
occurrences have been renamed R’,R2,...,Rk. If the
same relation occurs in E, with at least the same mul-

tiplicity, E, may be derivable from E ,. Assume that
there are 1, 1 2 k, occurrences of R in Et and that
they have been renamed S1,S2,...,S’. If we can find a
mapping of the names R’,R2,...,Rk onto a subset of
S’,S’,...,S’ such that EO is derivable from E, under
the mapping, the problem is solved. (A mapping asso-
ciates each name R’,R2,...,Rk with some name
S’,S’,...,S’.) There does not seem to be any better way
of solving this than trying all f(1 - 1)...(1 -k + 1) pos-
sible mappings.

The algorithm in section 4 works only for a res-
tricted class of boolean expressions: only those where
atomic condition are restricted to a comparison of two
variables or a comparison of a variable with a con-
stant. Note, however, that none of the results in sec-
tions 5 and 6 depend directly on this algorithm. Any
class of boolean expressions can be handled provided
that we have an algorithm for testing the validity (or
satisfiability) of expressions of that class. The core of
such an algorithm is an algorithm for testing whether a
set of inequalities and/or equalities can all be simul-
taneously satisfied. Whether such an algorithm exists
or not, and its complexity, depend completely on the
type of expressions (functions) allowed in the
(in)equalities and the domain of the variables. If
linear expressions with variables ranging over the real
numbers are allowed, the problem is equivalent to fin-
dingng a feasible solution to a linear programming
problem.

The reader may have noticed that so far we have
not mentioned keys, functional dependencies, inclusion
dependencies and so on. What effect will they have on
derivability? The only constraints taken into account
in this paper are domain constraints: any combination
of attribute values drawn from their respective
domains represents a tuple that potentially may occur
in an instance of the relation in question. The only
effect of functional dependencies, multivalued depen-
dencies, inclusion dependencies, etc. is to impose con-
straints on what tuples can occur simultaneously in the
database, thereby reducing the set of permitted data-
base instances. Clearly the conditions given for deriva-
bility are still sufficient, but they may not be neces-
sary. The proof that the stated conditions are neces-
sary for derivability relies on a certain database
instance, consisting of two tuples, to produce a con-
tradiction. In the presence of additional constraints,
this may not be a permissible database instance.

References

AL80 Adiba, M.E. and Lindsay, B.G.,
Database Snapshots.
Proc. of 6th Intl. Symp. on VLDB, ACM, New

268

York, N.Y., (1980) 86-91.
AS79 Aho, A.V., Sagiv, Y. and Ullman, J.D.,

Equivalence of Relational Expressions.
SIAM J. of Computing, 8, 2 (1979), 218-246.

AS76 Astrahan, M.M. et al,
System R: A Relational Approach to Database
Management.
ACM TODS, 1,2, (1976), 97-137.

BAB82 Babb, E.,
Joined Normal Form: A storage encoding for rela-
tional databases.
ACM TODS 7, 4 (1982) 588-614.

BL81 Blasgen, M.V. et al.,
Systems R: An architectural overview.
IBM Systems J., 20, 1, (1981), 41-62.

CP84 Ceri, S. and Pelagatti, G.,
Distributed Databases - Principles & Systems.
McGraw-Hill, New York, N.Y., 1984.

FS82 Finkelstein, S.,
Common Expression Analysis in Database Applica-
tions.
Proc. 1982 ACM SIGMOD Intl. Conf. on Manage-
ment of Data. ACM, New York, N.Y., (1982),
235-245.

MA83 Maier, D.,
The Theory of Relational Database.
Computer Science Press, Rockville, Maryland,
(1983).

RH80 Rosenkrantz,D.J. and Hunt, H.B.,
Processing Conjunctive Predicates and Queries.
Proc. 6th Intl. Symp. on VLDB, ACM, New York,
N.Y., (1980), 64-72.

R082 Roussopoulos, N.,
View Indexing in Relational Database.
ACM TODS, 7,2, (1982) 258-290.

SY81 Sagiv, Y. and Yannakakis, M.,
Equivalence among Relational Expression with
Union and Difference Operators.
JACM, 27, 4 (1981), 633-655.

SS81 Schkolnick, M. and Sorensen, P.,
The Effects of Denormalization on Database Per-
formance.
IBM Research Rep. RJ3082, (1981).

SW76 Stonebraker, M., Wong, E., Kreps, P. and
Held, G.,
The Design and Implementation of INGRES.
ACM TODS, 1,3 (1976) 189-222.

UL82 Ullman, J.D.,
Principles of Database Systems.
Computer Science Press, Rockville, Maryland,
(1982).

269

