
Multirelations - Semantics and Languages 

Aviel Klausner Nathan Goodman 

Harvard University Sequoia Systems 

Abstract 
We argue that a multirelation (relation 

with duplicates) is not, a semantically independent 
data object, but rather it should be viewed as a sub- 
set. of columns within a larger relation that has no 
duplicates. Consequently, at the level of the con- 
ceptual database, duplicates in base relations or in 
views are not allowed, nor are operations on mul- 
tirelations. Multirelations as query output can be 
specified by designating a subset of some relation’s 
columns for output, while “hiding” the rest, of the 
columns. Similarly, aggregate functions are applied 
to multirelations by applying them to a column 
within a relation. Our approach can be applied to 
extend any query language in a consistent way to 
have full multirelational expressiveness, and such an 
extension for the query language QUEL is detailed. 

1 Introduction 

The problem of duplicate tuples is usually 
ignored by the traditional relational model theory. 
By definition relations are sets, so the same tuple 
cannot exist more than once in a relation. This 
approach has the advantage of being mathemati- 
cally clean and elegant. However in practice the 
need for relations with duplicates, or multirelations, 
can arise. For example, a user may pose a query 
whose answer could have duplicates, such as a query 

requesting the n&es of a certain group of people. 
The list. may contain duplicates if several people 
have the same name, and the number of duplicate 
names may be significant to the user. 

DAPLEX [ShipSl], a query language based 
on the entity-relationship model, is an example of a 
language that specifically supports multirelational 
queries, i.e. queries which return duplicates. Its 
iteration-based semantics gives queries flexible con- 
trol over the creation and elimination of duplicates. 
In PROLOG [Hogg84], which has aspects of a rela- 
tional query language, the predefined operational 
semantics sometimes forces the output to be re- 
peated a specific number of times. However many 
other database systems, in coping with duplicates, 
are inconsistent and often ill-defined. For example, 
the number of duplicates in the output of a QUEL 
query, a8 implemented in INGRES [WY79], might 
depend on the access strategy chosen for evaluating 
the query. The user has no control over the elimi- 
nation of duplicates in this output. The UNIQUE 
(‘) feature in QUEL gives limited control over du- 
plicate elimination when applying aggregate func- 
tions, however it cannot be used to eliminate dupli- 
cates in the output of a query. 

The first attempt to incorporate duplicates 
into the theory was presented in [DGK82], moti- 
vated by the need to process multirelational queries 
in DAPLEX. The relational model was generalized 
by replacing the relation with the more general mul- 
tirelation (multiset relation in [DGK82]), which is 
a relation with duplicates. In the generalized mul- 
tirelational model the database consists, in general, 
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manipulation of multirelations by algebraic opera- 
t,ors. The input, as well as the output of a query 
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consist, in general, of multirelations, of which rela- 
tions are a special case. 

The multirelational model provides a math- 
ematically elegant generalization of the relational 
model, and it is a practical formalism for h&ng 
multirelations. On this issue we disagree with ISlug 
[Klug82], which ignores the need for multirelations 
as query output, a need demonstrated by our exam- 
ples. Contrary to hi claim, multirelational queries 
can be optimized, and the multirelational model 
is useful in processing such queries, as shown in 
[Klau85]. For example, a multirelational expression 
involving the union of two restrictions on the same 
relation, (opR) U (o&Z), was given in [Klug82]; it 
is true that the standard access strategy that scans 
R and outputs tuples that satisfy either P or Q 
will not preserve the number of duplicates in this 
expression as required. Nevertheless, this can be 
“fixed” in a simple way - a tuple that satisfies 
both conditions would be output twice. 

Although the multirelational model is use- 
ful in the internal levels of the database for prc+ 
cessing multirelational queries, it does not provide 
an adequate semantic framework for understanding 
the role of multirelations at the conceptual level, 
i.e. the abstract representation of the data in the 
database. This paper proposes such a framework, 
which addresses questions such as: When do du- 
plicates occur, what do they represent, should base 
relations or views contain duplicates, and how can 
a query specify precisely the extent of duplicates in 
its output? 

According to our approach, which is de- 
veloped and justified in Section 3, at the concep- 
tual database level a multirelation is not a semanti- 
cally independent data object with complete data. 
In the entity-relationship model of the world (see 
[Ullm82]) a relation represents a set of entities in 
the real-world, one tuple per entity. A multirelation 
also refers to a set of distinct real-world entities, but 
it contains only partial information about these en- 
tities, thus giving rise to duplicates. The multirela- 
tion consists of a subset of columns within some re- 
lation without duplicates that represents these en- 
tities. This relation is called a complete relation, its 
columns that appear in the multirelation are called 
output columns, and those missing are called hidden 
columns. A multirelation can be considered a pr* 
jection of a complete relation on the output columns 
without eliminating duplicates. As a consequence 

of this approach, base relations or views cannot con- 
tain duplicates, and manipulating multirelations as 
such should be avoided at the conceptual level. 

A query that requests a multirelation aa 
output actually inquires about the entities of the 
complete relation, while it needs only part of the 
information about these entities, namely the out- 
put columns. Hence such a query should be able to 
specify the complete-relation-entities, and to desig- 
nate any subset of its columns as the output mul- 
tirelation. Accordingly, Section 4 describes how 
any query language can be extended consistently 
to have full multirelational expressiveness, and in 
Section 5 such an extension for the query language 
QUEL is detailed. 

Our approach to multirelations helps to un- 
derstand another instance in which one should be 
aware of duplicates, namely in the input to an ag- 
gregate function. Addressing this problem Klug 
[Klug82] correctly observed that aggregate func- 
tions should be applied to a column (or set of 
columns) within a relation that has no duplicates. 
This is clearly justified by our semantic approach: 
A complete relation represents the desired set of 
entities, and the aggregate function is applied to 
the output column within this relation while the 
rest of the columns are hidden. Thus aggregate 
function input can be treated as a particular use 
of multirelational queries, and indeed in Section 5 
it is shown how the exact same constructs used to 
extend QUEL with multirelational queries are use- 
ful in supporting generalized aggregate functions as 
well, in accordance with the suggestions in [Klug82]. 

2 Basic Definitions 

By the standard definition a relation can- 
not contain duplicate tuples, as it is a set. Collec- 
tions of tuples in which this requirement is relaxed 
are called multirelations, i.e. multisets of tuples. 

Formally, a unioerse U is a set of attributes, 

each associated with a domain. A relation scheme 
& is a subset of attributes, and a data6ase scheme is 
a collection of relation schemes. A tuple t over & is 
a mapping from Es attributes into their respective 
domains. A set relation instance (or simply a rela- 
tion) over E is a set of tuples over & while a mul- 
tirelation instance over B is a multiset of tuples over 



B, i.e. an unordered collection of (possibly multi- 
ple copies of) tuples. R(Ar, . . . , Ak) is often used 
to denote that R is a (multi)relation over AI.. . AL, 
which are also called the columns of R. The num- 
ber of copies of t in a multirelation R is called the 
multiplicity oft in R and is denoted by #(t, R). A 
relation is the special case in which #(t, R) = 1 for 
all t E R. Note that, strictly speaking, a multirela- 
tion R over 12 is a mapping from the domain of B 
into Z. 

In the entity-relationship model of the 
world (see [Ullm82]) the real world is modeled by 
sets of entities of various sorts together with some 
relationship8 among these entities. In the tradi- 
tional relational model of data thii information is 
represented by relations. Each relation can repro- 
sent some set of real-world entities of a similar type, 
where each tuple represents one entity and each at- 
tribute represents some characteristic of this type 
of entities.’ The data resides in relation instances, 
and the database instance is a collection of relation 
instances (also called base relations). Extracting 
information from a database is done using queries, 
which may be regarded ss mappings from database 
instances to relation instances. Relational algebra 
is a language for expressing such queries, and it 
consists of a set of operations for manipulating re- 
lations. 

In the generalized multirelational model 
[DGK82], the database consists, in general, of mul- 
tirelation instances, which are the main data ob- 
jects. The input as well as the output of a query 
consist, in general, of multirelations which might 
therefore contain duplicates. Multirelational alge- 
bra [DGK82,Klau85] is a generalization of relational 
algebra which enables the manipulation of multire- 
lations by algebraic operators. For example, the 
standard project operation is separated into two dis- 
tinct operations: Project without eliminating dupli- 
cates (II), which might result in a multirelation, 
and unify (a), which merges identical tuples into a 
single copy, thus transforming a multirelation into 
a relation. 

lA relation can also represent a relationship between entities, 
but for our purpose the set of relationship instances itself 
can be considered a set of entities. 

3 A Semantic Approach to 
Mult irelat ions 

The multirelational model gracefully gener- 
alizes the relational model, introducing duplicates 
into relational database theory. It provides a pray- 
tical formalism for handling multirelations and for 
processing multirelational queries, yet at the con- 
ceptual level it does not provide an adequate seman- 
tic framework for understanding duplicates. This 
aspect of the role of multirelations in databases is 
examined in this section, and a semantic frame- 
work is proposed that treats multirelations within 
the relational model, without need to generalize the 
model. We use the following example throughout 
this paper to demonstrate these ideas. 

Let ASSIGNMENT(emp#, name, 
salary, dept) be a relation describing employees 
and their assignments to departments, where each 
employee can work in one or more departments. As- 
sume that a list of names of employees working in 
either the Toy or the Hat departments is requested. 

A careful reader would probably notice 
that ASSIGNMENT is not normalized, and in 
the database it might be decomposed into the re- 
lations E(emp#, name, salary) and A(emp#, 
dept). Nevertheless, the given query ould then 
be naturally solved by first joining E and A over 
emp# to create the relation ASSIGNMENT. 

Clearly, the requested list of names would 
be taken from the name column of ASSIGN- 
MENT, after selecting tuples which refer to ei- 
ther of the two departments. However, project- 
ing ~nomLE(Tov,~~~)ASSIGNMENT on the name 
column and eliminating duplicates would yield an 
incorrect answer since two employees can have the 
same name, and each one of them should be output 
separately. Projecting on the name column with- 
out eliminating duplicates is also wrong, since the 
name of an employee working in both departments 
would appear twice. 

The correct way is to create a new relation 

EMP(emp#, name), by projecting 
~~nomLE(TOY,HAT~ASSIGNMENT on these two 
columns and eliminating duplicates. EMP has ex- 
actly one tuple for each employee that works in ei- 
ther department, as specified in the problem. The 
name column of EMP constitutes the requested 



multirelation, which therefore can be produced by 
“projecting” EMP, without eliminating duplicates, 
on the name column. 

Although this multirelation consists only of 
names, it is related to the employees in EMP in a 
very direct way: It has exactly one tuple for each 
employee. In other words, the multirelation actu- 
ally pertains to the EMP-entities, and its dupli- 
cates arise precisely because some tuples in EMP 
refer to different employees with the same name. 

Going back to the entity-relationship view 
of the world we can say that in general, for each 
multirelation M over X there exists a set of en- 
tities E to which iU refers, such that there is a 
l-l correspondence between the tuples of M and 
the entities in E. M contains only partial infor- 
mation about each entity, namely the attributes X. 
These attributes might not be enough to uniquely 
identify each entity, thus yielding duplicates in M. 
The entities in E can however be described by some 
relation without duplicates R over some set of at- 
tributes XY, such that R contains enough infor- 
mation to uniquely identify each entity in E. R is 
called a complete relation for M, its columns that 
appear in M are called output columns, and those 
missing are called hidden columns. M constitutes 
a subset of R’s columns, and indeed M is usually 
created by projecting a complete relation R on the 
output columns X without eliminating duplicates. 

We contend that a query requesting a mul- 
tirelation as output actually enquires about the en- 
tities of the complete relation, while only part of the 
information about these entities, namely the output 
columns, is needed. The query specifies the set of 
entities to be described by the complete relation, 
which in our example is the specified set of employ- 
ees. In addition it specifies what is of interest about 
these entities, that is, which columns in this com- 
plete relation would be output and which would be 
hidden. In our example only the names of these em- 
ployees are needed and the employee-numbers are 
hidden. 

As a consequence, a multirelation, which 
only partially describes the entities it represents, 
cannot serve as an independent data object in the 
database, i.e. a base relation (or a view) should not 
contain duplicates. Semantically a base relation is 
supposed to describe some real world entities (or 
relationships). All the relevant information about 

them is supposed to reside in it, and in particular it 
should contain all the information required to iden- 
tify and distinguish between the various entities. 
Indeed if several real world entities have exactly 
the same values for all the attributes in a base rela- 
tion, then the relation scheme should be purposely 
augmented by attributes that distinguish between 
the entities in the real world.* On the other hand, 
if that distinction is irrelevant, then the relation is 
not really describing these entities, but rather it is 
describing some “collection of properties” these en- 
tities can have. In either case the relation has no 
duplicates. 

Similarly, multirelations should not be ma- 
nipulated as independent data objects, at least not 

at the level of the conceptual database. Manipu- 
lating multirelations can be useless or misleading, 
since in general multirelations contain only partial 
information about the complete relation entities, 
and the information lost might be needed later, as 
illustrated by the following example. 

Let TOY-NAME(name) and HAT- 
NAME(name) be two unary multirelations, with 
complete relations TOY-EMP(emp#, name) 
and HAT-EMP (emp#, name), respectively, 
containing information about the employees in each 
respective department. It would seem natural to 
derive the list of names requested above by com- 
bining the two multirelations. However, this task is 
impossible since there is no way to know whether 
a name appearing in both multirelations refers to 
the same employee or not. In fact the requested 
multirelation can range anywhere between TOY- 
NAME tnaz HAT-NAME and TOY-NAME 
+ HAT-NAME’ (of course, eliminating all du- 
plicates is wrong since two employees in the same 
department might have the same name). The 
correct answer is given by creating the union of 
the complete relations TOY-EMP U HAT-EMP 
(without duplicates), thus a person who works in 
both departments is considered in this relation only 
once. The name column within this relation is the 
requested multirelation. 

It is important to emphasize that designat- 
ing some columns of the complete relation as output 
and hiding the rest is conceptually different from 

*A CO~IIIOII way of doing this is by adding an arbitrary ID 
column to the relation scheme. 
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the relational algebraic project operation. When 
a projection of a relation is taken, a new and in- 
dependent relation is created. Thii relation might 
describe different entities than those described by 
the original relation. In contra&, the multirelation 
which consists of the output columns refers exclu- 
sively to the entities of the complete relation, and 
therefore it has no meaning by itself. For example, 
while the multirelation H,d,,,EMP refers to the 
entities of EMP and contains salaries of individual 
employees, the relation Gll,l,EMP, with no du- 
plicates, does not refer to employees but to salary 
entities, i.e. it describes the various salary figures 
paid by the employer. 

Our semantic approach to multirelations 
helps to understand another instance in which one 
should be aware of duplicates, namely in the input 
to an aggregate function. The value of many ag- 
gregate functions, e.g. Count, Sum, Average, de 
pends directly on the existence or elimination of 
duplicates in the argument. Addressing this prob- 
lem Klug [Klug82] correctly observed that aggre- 
gate functions should be applied to a column (or 
set of columns) within a relation that has no du- 
plicates to produce a single value. This is clearly 
justified by our approach: An aggregate function is 
applied to some set of real-world entities using part 
of the information about each entity, usually a sin- 
gle attribute. In our terminology we can say that 
a complete relation represents this set of entities, a 
subset of output columns within this relation serves 
as the aggregate function argument, and the rest of 
the columns are hidden. Thus aggregate function 
input can be treated as a particular use of multire- 
lational queries. 

To summarize, duplicates should be incor- 
porated into databases not by viewing multirela- 
tions as a generalization of relations, but rather by 
explaining them within the relational framework as 
a subset of some relation’s columns. A multirelation 
can serve as query output or ss an aggregate func- 
tion argument only as part of a complete relation, 
but it cannot be manipulated as an independent 
data object. 

4 Application to Languages 

Using the above concepts we can now de 
scribe specifically what is required of a relational 

database language to be able to express multirela- 
tional queries. Since we concluded that base rela- 
tions cannot contain duplicates, there is no need to 
change the data definition language (DDL). As for 
queries in the data manipulation language (DML), 
it suffices to specify the construction of the com- 
plete relation without duplicates, followed by the 
hiding of some of its columns, thereby creating du- 
plicates in the output. A query language that can 
eliminate duplicates in any constructed relation and 
can output any subset of its columns while hiding 
the rest is said to have full multirelational expres- 
siuenese. 

For any given query language the construc- 
tion of the complete relation can be specified with- 
out any change to the language. To this should be 
added the ability to specify which of its columns 
would be in the output multirelation and which 
would be hidden; the trivial case of no hidden 
columns corresponds to standard queries with du- 
plicate elimination. In specifying the complete rela- 
tion each language preserves its individual method- 
ology and expressive capabilities, and adding the 
ability to create from this relation some output 
with duplicates gives the language full multirela- 
tional expressive power in a natural and consistent 
way. 

Domain Relational Calculus [Ullm82], for 
example, can be extended accordingly in a triv- 
ial manner, by dividing the free variables into two 
groups, specifying which correspond to the output 
columns and which to the hidden columns: 

< x1,. . .,x, >: < hI,. . . , h, >: 
J’(a...,Z,,h,..., h&J* 

In the example above the multirelation of names 
of employees working in either the Toy or the Hat 
departments would then be given by the expression 

n : e : 3s( ASSIGNMENT(e,n, s, TOY)V 
ASSIGNMENT(e, n, s, HAT) ). 

5 Extended QUEL 

QUEL [HS W75] is a tuple calculus query 
language developed for the relational database sys- 
tem INGREg. The behavior of duplicates in QHEL 
is mostly undefined. In the implementation de- 
scribed in [WY79] QUEL queries are evaluated 
using tuple substitution, which is similar to the 



depth-first execution and unification [Hogg84] used 
in PROLOG. This method has the same effect as 
nested loops, one loop per relation mentioned, caus- 
ing duplicates in the output of both languages, 
since each tuple is constructed and accepted for 
output independently of the other tuples. In both 
languages duplicates are not always desirable, but 
while in PROLOG the creation of duplicates is pra 
cisely specified by the operational semantics of the 
language, no such definition exists in QUEL. In- 
deed, the number of duplicates in QUEL is inconsis- 
tent and might depend on the access strategy the 
sen to evaluate the query. For example, the elim- 
ination of a redundant clause during optimization 
might reduce the number of duplicates in the out- 
put. One exception is the UNIQUE feature, which 
provides limited control over duplicate elimination 
when applying aggregate functions, yet it cannot 
be used to eliminate duplicates in the output of a 
query. Thus the user has no control over the elimi- 
nation of duplicates in thii output. 

In the following we extend QUEL to have 
precise and full multirelational expressiveness. The 
extension also introduces into QUEL generalized 
aggregate functions, in accordance with the sugges- 
tions in [Klug82], as explained above. 

Formally, a QUEL retrieval query has the 
following form (square brackets designate an op- 
tional part): 

RETRIEVE [INTO R] (tl, . . . , t,,) WHERE q 

The qualification q contains tuple variables that 
correspond to base relations, and the target-list 
h,..., t, contains attribute terms obtained from 
these variables. The output contains a tuple 
<t r, . . . , t, > iff it corresponds to some q-satisfying 
tuple in the Cartesian product of all the relations. 

Using the example above, the list of em- 
ployees in either the Toy or the Hat departments is 
requested. The query 

RANGE OF A IS ASSIGNMENT 
RETRIEVE (A.name) WHERE (A.dept = ‘Toy’) 
OR (A.dept = ‘Hat’) 

does not work, since an employee of both depart- 
ments has two tuples in ASSIGNMENT that sat- 
isfy the qualification, and therefore the name would 
be listed twice. 

To enable multirelational queries according 
to the concepts developed above, the query is re- 
garded as specifying the complete relation, and the 
target list is divided into two parts, specifying the 
output columns and the hidden columns within the 
complete relation: 

RETRIEVE (tl,. . . , t, [HIDING hr,. . . , hr]) 
WHERE q 

where the hi are attribute terms. The qualifica- 
tion q together with all the terms in the target list 
specify the complete relation, and each ti (resp. hi) 
specifies an output (resp. hidden) column. The 
tuple < tl,..., t, > appears in the multirelation 
output once for each tuple < tl, . . . , t,, hl, . . . , hp > 
that satisfies the qualification. Omitting the HID- 
ING part will result in the elimination of all the 
duplicates in the output. In Extended QUEL the 
query requested in the example is: 

RETRIEVE (A.name HIDING A.emp\#) WHERE 
(A.dept = ‘Toy’) OR (A.dept = ‘Hat’) 

Notice that the HIDING option should be 
allowed only in cases in which the INTO clause is 
not used. As discussed above, it is not appropri- 
ate to create multirelations as named objects to be 
manipulated later. An alternative could be to allow 
the creation of these named multirelational objects, 
but to distinguish them from relations and to ac- 
cordingly restrict their use and manipulation. 

This extension for multirelational queries 
can also be applied to improve the aggregate ca- 
pabilities of the language in a consistent way. The 
basic form of aggregates in QUEL is: 

AGG(t WHERE q) 

The aggregate function AGG is applied to a one- 
column relation which is the output of a query with 
target-list t and qualification q. That “relation” is 
in fact a multirelation, since by default duplicates 
are not eliminated before applying AGG. 

Assume we want to compute the total 
salaries of the employees in ASSIGNMENT. The 
expression 

SUM(A. salary) 

gives an incorrect answer, since it sums twice the 
salary of a person working in two departments. 

256 



The UNIQUE feature (sometimes de- 
noted ‘) was added to QUEL to enable the elimina- 
tion of duplicates before applying aggregate func- 
tions such a~ COUNT, SUM, AVG. The aggre- 
gation then has the form: 

AGG UNIQUE (t WHERE q) 

Unfortunately even with the UNIQUE 
feature QUEL does not provide full control over 
duplicate elimination in aggregate function input. 
When UNIQUE is used, d the duplicates are 
eliminated before applying the aggregate function. 
As we have noted above, in some cases neither full 
elimination nor no elimination of duplicates are cor- 
rect. In our example the expression 

SUM UNICUE(A.ealary) 

sums only once a salary figure earned by two em- 
ployees. (The only way the correct answer can ac- 
tually be obtained in QUEL is by creating a new 
relation E(emp#, salary), changing its physical 
structure so that duplicates will be eliminated, and 
then summing its salaries.) 

As mentioned above, the problem can be 
solved by having aggregate functions range over all 
the entities of a complete relation, while applying 
them only to one of its columns, ss suggested in 
[Klug82]. In QUEL this can be achieved using ex- 
actly the same construct we have used to imple- 
ment multirelational queries. The target-list t is 
modified, adding to it the specification of the hid- 
den columns, in exactly the same manner as was 
done for the target-list of a general query. The new 
aggregation has the following more general form: 

AGG(~ [HIDING hl, . . . , hP] WHERE q) 

The hidden terms hr, . . . , hp, if specified, together 
with the term t form a complete relation. The du- 
plicates in this relation are eliminated, and then 
the multirelation that consists of column t is taken 
as the argument for AGG. If no duplicate elimina- 
tion is desired, keys to all the relations mentioned 
in the query should be listed as hidden terms. All 
the duplicates are eliminated if no hidden terms 
are specified, thus obviating the UNIQUE feature. 
Any degree of duplicate elimination in between is 
possible, for example the value requested above is 
produced correctly by the following expression: 

SUM(A.salary HIDING A.emp\#) 

Our extension for aggregation is also useful 
when a BY clause is used to partition a set of tup1es 
-and to apply an aggregate function to each partition 
separately. For example, 

COUNT(A.emp\l BY A.dept) 

counts the number of employees in each depart- 
ment separately. This feature is also suggested in 
[KlugB2] as part of a generalized aggregate function 
capability. 

To enable the full control over duplicate 
elimination when using the BY clause the same 
construct a~ above can be used: 

AGG(t BY t 1,. . . ,t, [HIDING hl, . . . , hP] 
WHERE q) 

All the attribute terms t, tr, . . . , t,, hl, . . . , hp form a 
complete relation, and its duplicates are eliminated. 
Then the tuples are partitioned according to their 
values on the grouping terms tl, . . . , t,, and AGG is 
applied to the t column of each partition separately. 
Each set of values of the grouping terms is output, 
together with the respective result of AGG. For 
example, the average salary in each department is 
computed by the following expression: 

AVG(A.salary BY A.dept HIDING A.emp\#) 

6 Conclusions and Related 
Work 

In this paper we have discussed the seman- 
tic aspects of duplicates, providing a conceptual 
framework for understanding their role in query 
output as well as in aggregate function input. It was 
argued that, semantically, multirelations should be 
viewed as some subset of columns within a rela- 
tion without duplicates. A multirelation is not a 
semantically independent data object, since it con- 
tains only partial information about the real world 
entities to which it refers, and therefore it is not 
appropriate for base relations or views to contain 
duplicates. Multirelations are important as query 
output, when only partial information about some 
set of entities is requested for output. They are 
similarly important for aggregate functions, which 



are usually applied only to a single attribute of the 
set of entities. 

We have shown how these concepts can be 
applied to extend any relational query language in a 
simple and natural way to have full multirelational 
expressiveness. A QUEL extension was presented 
that supports full control over duplicates in query 
output. This extension also supports in a uniform 
manner control over duplicates in aggregate func- 
tion input in accordance with the ideas presented 
in [Klug82]. 

To aid in the optimization of multirela- 
tional queries in the query processing stage a 
tableau formalism was defined in [DGK82], gener- 
alizing the method of [ASU79]. Tableaux are useful 
for checking equivalence among such queries and 
for simplifying them, as shown in [Klau85].’ The 
Chase process [MMS79], for simplifying tableaux 
when functional dependencies are present, is also 
extended for multirelational queries in [Klau85). 

Although not appropriate at the level of the 
conceptual database, the multirelational model and 
multirelational algebra do prove useful in the actual 
processing of multirelational queries, since the ma- 
nipulation of multirelations instead of relations can 
then be advantageous. For example, the multirela- 
tional algebraic expression &(AB w BC w CD) is 
equivalent to the expression &(AB w IIB(BC w 
Hc CD)). The second expression might be easier to 
evaluate using semijoin operations instead of joins, 
with counters in the physical representation of a 
multirelation instead of the duplicates themselves. 
It would be useful to extend the theory of database 
scheme acyclicity in order to identify the cases in 
which such a technique is helpful. 
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