
Multirelations - Semantics and Languages

Aviel Klausner Nathan Goodman

Harvard University Sequoia Systems

Abstract
We argue that a multirelation (relation

with duplicates) is not, a semantically independent
data object, but rather it should be viewed as a sub-
set. of columns within a larger relation that has no
duplicates. Consequently, at the level of the con-
ceptual database, duplicates in base relations or in
views are not allowed, nor are operations on mul-
tirelations. Multirelations as query output can be
specified by designating a subset of some relation’s
columns for output, while “hiding” the rest, of the
columns. Similarly, aggregate functions are applied
to multirelations by applying them to a column
within a relation. Our approach can be applied to
extend any query language in a consistent way to
have full multirelational expressiveness, and such an
extension for the query language QUEL is detailed.

1 Introduction

The problem of duplicate tuples is usually
ignored by the traditional relational model theory.
By definition relations are sets, so the same tuple
cannot exist more than once in a relation. This
approach has the advantage of being mathemati-
cally clean and elegant. However in practice the
need for relations with duplicates, or multirelations,
can arise. For example, a user may pose a query
whose answer could have duplicates, such as a query

requesting the n&es of a certain group of people.
The list. may contain duplicates if several people
have the same name, and the number of duplicate
names may be significant to the user.

DAPLEX [ShipSl], a query language based
on the entity-relationship model, is an example of a
language that specifically supports multirelational
queries, i.e. queries which return duplicates. Its
iteration-based semantics gives queries flexible con-
trol over the creation and elimination of duplicates.
In PROLOG [Hogg84], which has aspects of a rela-
tional query language, the predefined operational
semantics sometimes forces the output to be re-
peated a specific number of times. However many
other database systems, in coping with duplicates,
are inconsistent and often ill-defined. For example,
the number of duplicates in the output of a QUEL
query, a8 implemented in INGRES [WY79], might
depend on the access strategy chosen for evaluating
the query. The user has no control over the elimi-
nation of duplicates in this output. The UNIQUE
(‘) feature in QUEL gives limited control over du-
plicate elimination when applying aggregate func-
tions, however it cannot be used to eliminate dupli-
cates in the output of a query.

The first attempt to incorporate duplicates
into the theory was presented in [DGK82], moti-
vated by the need to process multirelational queries
in DAPLEX. The relational model was generalized
by replacing the relation with the more general mul-
tirelation (multiset relation in [DGK82]), which is
a relation with duplicates. In the generalized mul-
tirelational model the database consists, in general,

Permission to copy without fee all or part of this material is of multirelation instances, which are the main data

granted provided that, the copies are not made or distributed for di. objects. Multirelational algebra was defined as a
rect commercial advantage, the VLDB copyright notice and the title generalization of relational algebra to enable the
of the publication and ita date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

manipulation of multirelations by algebraic opera-
t,ors. The input, as well as the output of a query

Proceedings of VLDB 85, Stockholm 251

consist, in general, of multirelations, of which rela-
tions are a special case.

The multirelational model provides a math-
ematically elegant generalization of the relational
model, and it is a practical formalism for h&ng
multirelations. On this issue we disagree with ISlug
[Klug82], which ignores the need for multirelations
as query output, a need demonstrated by our exam-
ples. Contrary to hi claim, multirelational queries
can be optimized, and the multirelational model
is useful in processing such queries, as shown in
[Klau85]. For example, a multirelational expression
involving the union of two restrictions on the same
relation, (opR) U (o&Z), was given in [Klug82]; it
is true that the standard access strategy that scans
R and outputs tuples that satisfy either P or Q
will not preserve the number of duplicates in this
expression as required. Nevertheless, this can be
“fixed” in a simple way - a tuple that satisfies
both conditions would be output twice.

Although the multirelational model is use-
ful in the internal levels of the database for prc+
cessing multirelational queries, it does not provide
an adequate semantic framework for understanding
the role of multirelations at the conceptual level,
i.e. the abstract representation of the data in the
database. This paper proposes such a framework,
which addresses questions such as: When do du-
plicates occur, what do they represent, should base
relations or views contain duplicates, and how can
a query specify precisely the extent of duplicates in
its output?

According to our approach, which is de-
veloped and justified in Section 3, at the concep-
tual database level a multirelation is not a semanti-
cally independent data object with complete data.
In the entity-relationship model of the world (see
[Ullm82]) a relation represents a set of entities in
the real-world, one tuple per entity. A multirelation
also refers to a set of distinct real-world entities, but
it contains only partial information about these en-
tities, thus giving rise to duplicates. The multirela-
tion consists of a subset of columns within some re-
lation without duplicates that represents these en-
tities. This relation is called a complete relation, its
columns that appear in the multirelation are called
output columns, and those missing are called hidden
columns. A multirelation can be considered a pr*
jection of a complete relation on the output columns
without eliminating duplicates. As a consequence

of this approach, base relations or views cannot con-
tain duplicates, and manipulating multirelations as
such should be avoided at the conceptual level.

A query that requests a multirelation aa
output actually inquires about the entities of the
complete relation, while it needs only part of the
information about these entities, namely the out-
put columns. Hence such a query should be able to
specify the complete-relation-entities, and to desig-
nate any subset of its columns as the output mul-
tirelation. Accordingly, Section 4 describes how
any query language can be extended consistently
to have full multirelational expressiveness, and in
Section 5 such an extension for the query language
QUEL is detailed.

Our approach to multirelations helps to un-
derstand another instance in which one should be
aware of duplicates, namely in the input to an ag-
gregate function. Addressing this problem Klug
[Klug82] correctly observed that aggregate func-
tions should be applied to a column (or set of
columns) within a relation that has no duplicates.
This is clearly justified by our semantic approach:
A complete relation represents the desired set of
entities, and the aggregate function is applied to
the output column within this relation while the
rest of the columns are hidden. Thus aggregate
function input can be treated as a particular use
of multirelational queries, and indeed in Section 5
it is shown how the exact same constructs used to
extend QUEL with multirelational queries are use-
ful in supporting generalized aggregate functions as
well, in accordance with the suggestions in [Klug82].

2 Basic Definitions

By the standard definition a relation can-
not contain duplicate tuples, as it is a set. Collec-
tions of tuples in which this requirement is relaxed
are called multirelations, i.e. multisets of tuples.

Formally, a unioerse U is a set of attributes,

each associated with a domain. A relation scheme
& is a subset of attributes, and a data6ase scheme is
a collection of relation schemes. A tuple t over & is
a mapping from Es attributes into their respective
domains. A set relation instance (or simply a rela-
tion) over E is a set of tuples over & while a mul-
tirelation instance over B is a multiset of tuples over

B, i.e. an unordered collection of (possibly multi-
ple copies of) tuples. R(Ar, . . . , Ak) is often used
to denote that R is a (multi)relation over AI.. . AL,
which are also called the columns of R. The num-
ber of copies of t in a multirelation R is called the
multiplicity oft in R and is denoted by #(t, R). A
relation is the special case in which #(t, R) = 1 for
all t E R. Note that, strictly speaking, a multirela-
tion R over 12 is a mapping from the domain of B
into Z.

In the entity-relationship model of the
world (see [Ullm82]) the real world is modeled by
sets of entities of various sorts together with some
relationship8 among these entities. In the tradi-
tional relational model of data thii information is
represented by relations. Each relation can repro-
sent some set of real-world entities of a similar type,
where each tuple represents one entity and each at-
tribute represents some characteristic of this type
of entities.’ The data resides in relation instances,
and the database instance is a collection of relation
instances (also called base relations). Extracting
information from a database is done using queries,
which may be regarded ss mappings from database
instances to relation instances. Relational algebra
is a language for expressing such queries, and it
consists of a set of operations for manipulating re-
lations.

In the generalized multirelational model
[DGK82], the database consists, in general, of mul-
tirelation instances, which are the main data ob-
jects. The input as well as the output of a query
consist, in general, of multirelations which might
therefore contain duplicates. Multirelational alge-
bra [DGK82,Klau85] is a generalization of relational
algebra which enables the manipulation of multire-
lations by algebraic operators. For example, the
standard project operation is separated into two dis-
tinct operations: Project without eliminating dupli-
cates (II), which might result in a multirelation,
and unify (a), which merges identical tuples into a
single copy, thus transforming a multirelation into
a relation.

lA relation can also represent a relationship between entities,
but for our purpose the set of relationship instances itself
can be considered a set of entities.

3 A Semantic Approach to
Mult irelat ions

The multirelational model gracefully gener-
alizes the relational model, introducing duplicates
into relational database theory. It provides a pray-
tical formalism for handling multirelations and for
processing multirelational queries, yet at the con-
ceptual level it does not provide an adequate seman-
tic framework for understanding duplicates. This
aspect of the role of multirelations in databases is
examined in this section, and a semantic frame-
work is proposed that treats multirelations within
the relational model, without need to generalize the
model. We use the following example throughout
this paper to demonstrate these ideas.

Let ASSIGNMENT(emp#, name,
salary, dept) be a relation describing employees
and their assignments to departments, where each
employee can work in one or more departments. As-
sume that a list of names of employees working in
either the Toy or the Hat departments is requested.

A careful reader would probably notice
that ASSIGNMENT is not normalized, and in
the database it might be decomposed into the re-
lations E(emp#, name, salary) and A(emp#,
dept). Nevertheless, the given query ould then
be naturally solved by first joining E and A over
emp# to create the relation ASSIGNMENT.

Clearly, the requested list of names would
be taken from the name column of ASSIGN-
MENT, after selecting tuples which refer to ei-
ther of the two departments. However, project-
ing ~nomLE(Tov,~~~)ASSIGNMENT on the name
column and eliminating duplicates would yield an
incorrect answer since two employees can have the
same name, and each one of them should be output
separately. Projecting on the name column with-
out eliminating duplicates is also wrong, since the
name of an employee working in both departments
would appear twice.

The correct way is to create a new relation

EMP(emp#, name), by projecting
~~nomLE(TOY,HAT~ASSIGNMENT on these two
columns and eliminating duplicates. EMP has ex-
actly one tuple for each employee that works in ei-
ther department, as specified in the problem. The
name column of EMP constitutes the requested

multirelation, which therefore can be produced by
“projecting” EMP, without eliminating duplicates,
on the name column.

Although this multirelation consists only of
names, it is related to the employees in EMP in a
very direct way: It has exactly one tuple for each
employee. In other words, the multirelation actu-
ally pertains to the EMP-entities, and its dupli-
cates arise precisely because some tuples in EMP
refer to different employees with the same name.

Going back to the entity-relationship view
of the world we can say that in general, for each
multirelation M over X there exists a set of en-
tities E to which iU refers, such that there is a
l-l correspondence between the tuples of M and
the entities in E. M contains only partial infor-
mation about each entity, namely the attributes X.
These attributes might not be enough to uniquely
identify each entity, thus yielding duplicates in M.
The entities in E can however be described by some
relation without duplicates R over some set of at-
tributes XY, such that R contains enough infor-
mation to uniquely identify each entity in E. R is
called a complete relation for M, its columns that
appear in M are called output columns, and those
missing are called hidden columns. M constitutes
a subset of R’s columns, and indeed M is usually
created by projecting a complete relation R on the
output columns X without eliminating duplicates.

We contend that a query requesting a mul-
tirelation as output actually enquires about the en-
tities of the complete relation, while only part of the
information about these entities, namely the output
columns, is needed. The query specifies the set of
entities to be described by the complete relation,
which in our example is the specified set of employ-
ees. In addition it specifies what is of interest about
these entities, that is, which columns in this com-
plete relation would be output and which would be
hidden. In our example only the names of these em-
ployees are needed and the employee-numbers are
hidden.

As a consequence, a multirelation, which
only partially describes the entities it represents,
cannot serve as an independent data object in the
database, i.e. a base relation (or a view) should not
contain duplicates. Semantically a base relation is
supposed to describe some real world entities (or
relationships). All the relevant information about

them is supposed to reside in it, and in particular it
should contain all the information required to iden-
tify and distinguish between the various entities.
Indeed if several real world entities have exactly
the same values for all the attributes in a base rela-
tion, then the relation scheme should be purposely
augmented by attributes that distinguish between
the entities in the real world.* On the other hand,
if that distinction is irrelevant, then the relation is
not really describing these entities, but rather it is
describing some “collection of properties” these en-
tities can have. In either case the relation has no
duplicates.

Similarly, multirelations should not be ma-
nipulated as independent data objects, at least not

at the level of the conceptual database. Manipu-
lating multirelations can be useless or misleading,
since in general multirelations contain only partial
information about the complete relation entities,
and the information lost might be needed later, as
illustrated by the following example.

Let TOY-NAME(name) and HAT-
NAME(name) be two unary multirelations, with
complete relations TOY-EMP(emp#, name)
and HAT-EMP (emp#, name), respectively,
containing information about the employees in each
respective department. It would seem natural to
derive the list of names requested above by com-
bining the two multirelations. However, this task is
impossible since there is no way to know whether
a name appearing in both multirelations refers to
the same employee or not. In fact the requested
multirelation can range anywhere between TOY-
NAME tnaz HAT-NAME and TOY-NAME
+ HAT-NAME’ (of course, eliminating all du-
plicates is wrong since two employees in the same
department might have the same name). The
correct answer is given by creating the union of
the complete relations TOY-EMP U HAT-EMP
(without duplicates), thus a person who works in
both departments is considered in this relation only
once. The name column within this relation is the
requested multirelation.

It is important to emphasize that designat-
ing some columns of the complete relation as output
and hiding the rest is conceptually different from

*A CO~IIIOII way of doing this is by adding an arbitrary ID
column to the relation scheme.

S’JJheee multirelational algebraic operations =e defined for-
mally in (Klau851.

the relational algebraic project operation. When
a projection of a relation is taken, a new and in-
dependent relation is created. Thii relation might
describe different entities than those described by
the original relation. In contra&, the multirelation
which consists of the output columns refers exclu-
sively to the entities of the complete relation, and
therefore it has no meaning by itself. For example,
while the multirelation H,d,,,EMP refers to the
entities of EMP and contains salaries of individual
employees, the relation Gll,l,EMP, with no du-
plicates, does not refer to employees but to salary
entities, i.e. it describes the various salary figures
paid by the employer.

Our semantic approach to multirelations
helps to understand another instance in which one
should be aware of duplicates, namely in the input
to an aggregate function. The value of many ag-
gregate functions, e.g. Count, Sum, Average, de
pends directly on the existence or elimination of
duplicates in the argument. Addressing this prob-
lem Klug [Klug82] correctly observed that aggre-
gate functions should be applied to a column (or
set of columns) within a relation that has no du-
plicates to produce a single value. This is clearly
justified by our approach: An aggregate function is
applied to some set of real-world entities using part
of the information about each entity, usually a sin-
gle attribute. In our terminology we can say that
a complete relation represents this set of entities, a
subset of output columns within this relation serves
as the aggregate function argument, and the rest of
the columns are hidden. Thus aggregate function
input can be treated as a particular use of multire-
lational queries.

To summarize, duplicates should be incor-
porated into databases not by viewing multirela-
tions as a generalization of relations, but rather by
explaining them within the relational framework as
a subset of some relation’s columns. A multirelation
can serve as query output or ss an aggregate func-
tion argument only as part of a complete relation,
but it cannot be manipulated as an independent
data object.

4 Application to Languages

Using the above concepts we can now de
scribe specifically what is required of a relational

database language to be able to express multirela-
tional queries. Since we concluded that base rela-
tions cannot contain duplicates, there is no need to
change the data definition language (DDL). As for
queries in the data manipulation language (DML),
it suffices to specify the construction of the com-
plete relation without duplicates, followed by the
hiding of some of its columns, thereby creating du-
plicates in the output. A query language that can
eliminate duplicates in any constructed relation and
can output any subset of its columns while hiding
the rest is said to have full multirelational expres-
siuenese.

For any given query language the construc-
tion of the complete relation can be specified with-
out any change to the language. To this should be
added the ability to specify which of its columns
would be in the output multirelation and which
would be hidden; the trivial case of no hidden
columns corresponds to standard queries with du-
plicate elimination. In specifying the complete rela-
tion each language preserves its individual method-
ology and expressive capabilities, and adding the
ability to create from this relation some output
with duplicates gives the language full multirela-
tional expressive power in a natural and consistent
way.

Domain Relational Calculus [Ullm82], for
example, can be extended accordingly in a triv-
ial manner, by dividing the free variables into two
groups, specifying which correspond to the output
columns and which to the hidden columns:

< x1,. . .,x, >: < hI,. . . , h, >:
J’(a...,Z,,h,..., h&J*

In the example above the multirelation of names
of employees working in either the Toy or the Hat
departments would then be given by the expression

n : e : 3s(ASSIGNMENT(e,n, s, TOY)V
ASSIGNMENT(e, n, s, HAT)).

5 Extended QUEL

QUEL [HS W75] is a tuple calculus query
language developed for the relational database sys-
tem INGREg. The behavior of duplicates in QHEL
is mostly undefined. In the implementation de-
scribed in [WY79] QUEL queries are evaluated
using tuple substitution, which is similar to the

depth-first execution and unification [Hogg84] used
in PROLOG. This method has the same effect as
nested loops, one loop per relation mentioned, caus-
ing duplicates in the output of both languages,
since each tuple is constructed and accepted for
output independently of the other tuples. In both
languages duplicates are not always desirable, but
while in PROLOG the creation of duplicates is pra
cisely specified by the operational semantics of the
language, no such definition exists in QUEL. In-
deed, the number of duplicates in QUEL is inconsis-
tent and might depend on the access strategy the
sen to evaluate the query. For example, the elim-
ination of a redundant clause during optimization
might reduce the number of duplicates in the out-
put. One exception is the UNIQUE feature, which
provides limited control over duplicate elimination
when applying aggregate functions, yet it cannot
be used to eliminate duplicates in the output of a
query. Thus the user has no control over the elimi-
nation of duplicates in thii output.

In the following we extend QUEL to have
precise and full multirelational expressiveness. The
extension also introduces into QUEL generalized
aggregate functions, in accordance with the sugges-
tions in [Klug82], as explained above.

Formally, a QUEL retrieval query has the
following form (square brackets designate an op-
tional part):

RETRIEVE [INTO R] (tl, . . . , t,,) WHERE q

The qualification q contains tuple variables that
correspond to base relations, and the target-list
h,..., t, contains attribute terms obtained from
these variables. The output contains a tuple
<t r, . . . , t, > iff it corresponds to some q-satisfying
tuple in the Cartesian product of all the relations.

Using the example above, the list of em-
ployees in either the Toy or the Hat departments is
requested. The query

RANGE OF A IS ASSIGNMENT
RETRIEVE (A.name) WHERE (A.dept = ‘Toy’)
OR (A.dept = ‘Hat’)

does not work, since an employee of both depart-
ments has two tuples in ASSIGNMENT that sat-
isfy the qualification, and therefore the name would
be listed twice.

To enable multirelational queries according
to the concepts developed above, the query is re-
garded as specifying the complete relation, and the
target list is divided into two parts, specifying the
output columns and the hidden columns within the
complete relation:

RETRIEVE (tl,. . . , t, [HIDING hr,. . . , hr])
WHERE q

where the hi are attribute terms. The qualifica-
tion q together with all the terms in the target list
specify the complete relation, and each ti (resp. hi)
specifies an output (resp. hidden) column. The
tuple < tl,..., t, > appears in the multirelation
output once for each tuple < tl, . . . , t,, hl, . . . , hp >
that satisfies the qualification. Omitting the HID-
ING part will result in the elimination of all the
duplicates in the output. In Extended QUEL the
query requested in the example is:

RETRIEVE (A.name HIDING A.emp\#) WHERE
(A.dept = ‘Toy’) OR (A.dept = ‘Hat’)

Notice that the HIDING option should be
allowed only in cases in which the INTO clause is
not used. As discussed above, it is not appropri-
ate to create multirelations as named objects to be
manipulated later. An alternative could be to allow
the creation of these named multirelational objects,
but to distinguish them from relations and to ac-
cordingly restrict their use and manipulation.

This extension for multirelational queries
can also be applied to improve the aggregate ca-
pabilities of the language in a consistent way. The
basic form of aggregates in QUEL is:

AGG(t WHERE q)

The aggregate function AGG is applied to a one-
column relation which is the output of a query with
target-list t and qualification q. That “relation” is
in fact a multirelation, since by default duplicates
are not eliminated before applying AGG.

Assume we want to compute the total
salaries of the employees in ASSIGNMENT. The
expression

SUM(A. salary)

gives an incorrect answer, since it sums twice the
salary of a person working in two departments.

256

The UNIQUE feature (sometimes de-
noted ‘) was added to QUEL to enable the elimina-
tion of duplicates before applying aggregate func-
tions such a~ COUNT, SUM, AVG. The aggre-
gation then has the form:

AGG UNIQUE (t WHERE q)

Unfortunately even with the UNIQUE
feature QUEL does not provide full control over
duplicate elimination in aggregate function input.
When UNIQUE is used, d the duplicates are
eliminated before applying the aggregate function.
As we have noted above, in some cases neither full
elimination nor no elimination of duplicates are cor-
rect. In our example the expression

SUM UNICUE(A.ealary)

sums only once a salary figure earned by two em-
ployees. (The only way the correct answer can ac-
tually be obtained in QUEL is by creating a new
relation E(emp#, salary), changing its physical
structure so that duplicates will be eliminated, and
then summing its salaries.)

As mentioned above, the problem can be
solved by having aggregate functions range over all
the entities of a complete relation, while applying
them only to one of its columns, ss suggested in
[Klug82]. In QUEL this can be achieved using ex-
actly the same construct we have used to imple-
ment multirelational queries. The target-list t is
modified, adding to it the specification of the hid-
den columns, in exactly the same manner as was
done for the target-list of a general query. The new
aggregation has the following more general form:

AGG(~ [HIDING hl, . . . , hP] WHERE q)

The hidden terms hr, . . . , hp, if specified, together
with the term t form a complete relation. The du-
plicates in this relation are eliminated, and then
the multirelation that consists of column t is taken
as the argument for AGG. If no duplicate elimina-
tion is desired, keys to all the relations mentioned
in the query should be listed as hidden terms. All
the duplicates are eliminated if no hidden terms
are specified, thus obviating the UNIQUE feature.
Any degree of duplicate elimination in between is
possible, for example the value requested above is
produced correctly by the following expression:

SUM(A.salary HIDING A.emp\#)

Our extension for aggregation is also useful
when a BY clause is used to partition a set of tup1es
-and to apply an aggregate function to each partition
separately. For example,

COUNT(A.emp\l BY A.dept)

counts the number of employees in each depart-
ment separately. This feature is also suggested in
[KlugB2] as part of a generalized aggregate function
capability.

To enable the full control over duplicate
elimination when using the BY clause the same
construct a~ above can be used:

AGG(t BY t 1,. . . ,t, [HIDING hl, . . . , hP]
WHERE q)

All the attribute terms t, tr, . . . , t,, hl, . . . , hp form a
complete relation, and its duplicates are eliminated.
Then the tuples are partitioned according to their
values on the grouping terms tl, . . . , t,, and AGG is
applied to the t column of each partition separately.
Each set of values of the grouping terms is output,
together with the respective result of AGG. For
example, the average salary in each department is
computed by the following expression:

AVG(A.salary BY A.dept HIDING A.emp\#)

6 Conclusions and Related
Work

In this paper we have discussed the seman-
tic aspects of duplicates, providing a conceptual
framework for understanding their role in query
output as well as in aggregate function input. It was
argued that, semantically, multirelations should be
viewed as some subset of columns within a rela-
tion without duplicates. A multirelation is not a
semantically independent data object, since it con-
tains only partial information about the real world
entities to which it refers, and therefore it is not
appropriate for base relations or views to contain
duplicates. Multirelations are important as query
output, when only partial information about some
set of entities is requested for output. They are
similarly important for aggregate functions, which

are usually applied only to a single attribute of the
set of entities.

We have shown how these concepts can be
applied to extend any relational query language in a
simple and natural way to have full multirelational
expressiveness. A QUEL extension was presented
that supports full control over duplicates in query
output. This extension also supports in a uniform
manner control over duplicates in aggregate func-
tion input in accordance with the ideas presented
in [Klug82].

To aid in the optimization of multirela-
tional queries in the query processing stage a
tableau formalism was defined in [DGK82], gener-
alizing the method of [ASU79]. Tableaux are useful
for checking equivalence among such queries and
for simplifying them, as shown in [Klau85].’ The
Chase process [MMS79], for simplifying tableaux
when functional dependencies are present, is also
extended for multirelational queries in [Klau85).

Although not appropriate at the level of the
conceptual database, the multirelational model and
multirelational algebra do prove useful in the actual
processing of multirelational queries, since the ma-
nipulation of multirelations instead of relations can
then be advantageous. For example, the multirela-
tional algebraic expression &(AB w BC w CD) is
equivalent to the expression &(AB w IIB(BC w
Hc CD)). The second expression might be easier to
evaluate using semijoin operations instead of joins,
with counters in the physical representation of a
multirelation instead of the duplicates themselves.
It would be useful to extend the theory of database
scheme acyclicity in order to identify the cases in
which such a technique is helpful.

Acknowledgements

We would like to thank Larry Denenberg
and Ed Sciore for commenting on earlier versions of
this paper. The discussions with Christoph Freytag
and his continuous encouragement were indispens-
able during the making of this paper. The work was

supported in part by National Science Foundation
grants mcs-79-07762 and mcs-82-01429.

4We should point out that as stated, Theorems 3.2 and 3.3 in
[DGK82] are incorrect. However, it is possible to modify the
definition of containment mapping ihere to enable tableau
equivalence checking and tableau simplification.

References

(ASU79)

[DGK82]

[HSW75]

[HwWl

[Klau85]

(Klug82]

[MMS79]

[Ship811

[Ullm82]

[WY791

Aho, A. V., Y. Sagiv, and J. D. Ullman,
“Equivalences Among Relational Expres-
sions,” SIAM Journal of Computing, Vol.

8, No. 2, May 1979, pp. 218-246.

Dayal, U., N. Goodman, and R. H.
Katz, UAn Extended Relational Algebra
with Control Over Duplicate Elimina-
tion,” Proc. ACM Symp. Principles of
Database Systems, 1982, pp. 117-123.

Held, G. D., M. R. Stonebraker, and
E. Wong, “INGRES - A Relational
Database Management System,” Proc.
AFIPS NCC, Vol. 44, May 1975, pp.
409416.

Hogger, C. J., “Introduction to Logic
Programming,” Academic Press, 1984.

Klausner, A., “Multirelations in Rela-
tional Databases,” Manuscript, 1985.

Klug, A., “Equivalence of Relational Al-
gebra and Relational Calculus Query
Languages Having Aggregate Functions,”
Journal of the ACM, Vol. 29, No. 3, July
1982, pp. 699-717.

Maier, D., A. 0. Mendelzon, and Y.
Sagiv, “Testing Implications of Data
Dependencies,” ACM Transactions on
Database Systems, Vol. 4, No. 4, De-
cember 1979, pp. 445-469.

Shipman, D. W., “The Functional Data
Model and the Data Language DAPLEX,”
ACM Transactions on Database Systems,
Vol. 6, No. 1, March 1981, pp. 140-173.

Ullman, J. D., “Principles of Database
Systems,n 2nd Edition, Computer Sci-
ence Press, 1982.

Wong, E., and K. Youssefi, “Decomposi-
tion - A Strategy for Query Processing,”
ACM Transactions on Database Systems,
Vol. 1, No. 3, September 1976, pp. 22%
241.

