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Abstract 

Recent transformation algorithms for speeding up pro- 
cessing of nested SQL-like queries with aggregates are 
reviewed with respect to the correctness of aggregates over 
empty sets. It turns out that for a particular subset of such 
queries these algorithms fail to compute consistent answers. 
Unfortunately there seems to be no uniform way to do 
these transformations efficiently and correctly under all cir- 
cumstances. Also the algorithms for QUEL are reexamined 
regarding their correctness. It is shown that for a specific 
subset of QUEL-queries with aggregates a clearer semantics 
can be associated. Finally, benchmark results for lngres 
show that considerable performance advantages may be 
gained for such query types by using dynamic filters. The 
consequence of all these observations is that more research is 
required to integrate correlation queries with aggregates into 
a unified operator tree model. 

1. INTRODUCTION 

This paper is concerned with a specific type of nested 
queries. involving aggregates and correlated predicates in a 
nested query block. A correlated predicate is a predicate in a 
nested block, which references a relation in an outer block. 
As an example consider the following sample relations and 
SQL-query ([CHA76]): 

-------- ------------ -------- - 
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Relations: 

PARTS ( PNUM. QOH ) 
SUPPLY ( PNUM. QUAN. SHIPDATE > 

Query Ql: 

SELECl- PNUM 
FROM PARTS 
WHERE QOH = 

( SELECT MAX( QUAN > 
FROM SUPPLY 
WHERE SUPPLY .PNUM = PARTS.PNUM 
AND SHIPDATE < l-l-80 > 

AND 3 < PNUM AND PNUM 6 11 

Each PARTS tuple contains the part number and the actual 
quantity on hand. In the SUPPLY relation each tuple has a 
part number and information on the quantity of that part 
shipped at a particular date. The meaning of query Ql is: 
Find the part numbers of parts, whose quant&&s on hand 
equal the highest quantities of those parts shipped before l-l- 
80 and whose part number is between 3 and II. 

A similar example can be found in 1~1~821. In that paper a 
terminology for nested SQL-like queries is developed. We 
will be concerned with what is there termed type-JA queries. 
A nested query Q is of type JA if the WHERE clause of the 
inner block contains a join predicate that references the rela- 
tion of the outer block (SUPPLY.PNUM = PARTSPNUM in 
our example) and some aggregate function (here MAX) is 
associated with the SELECT clause of the inner block. Simi- 
lar classifications of nested SQL-like queries can also be 
found in [MAKII] and [KlE83]. 1~0~841 discusses the pro- 
cessing of nested queries in a distributed environment. In 
[KLU82] special access paths are described that may 
accelerate aggregate evaluation. 

The standard method for evaluating correlation queries with 
aggregates is by nested-iteration, i.e. by evaluating the inner 
query block once for each substituted correlation value 
(PARTSPNUM-value in our case). Furthermore. the 
semantics of a correlated SQL-query are defined in a con- 
venient way by this nested-iteration procedure. Unfor- 
tunately, for a large set of such queries and database charac- 
teristics this method suffers from poor performance. Obvi- 
ously, to design faster algorithms one has to look for ways 
where the inner query block, calculating the aggregates. may 



be evaluated only once. This bar been recognized at several 
sites independently and has led to the design of different 
algorithms to recess correlation queries with ag 
[KIM821 and LIE831 for SQL-like queries and f 

regates. see 
EPS79] for 

QUEL-like queries. In the first two works the nested- 
iteration semantics are the starting point from which 
equivalent transformation algorithms can be developed. The 
last work entirely defines the semantics of QUEL-queries 
using aggregates by the given evaluation algorithm. As an 
additional means to speed up the processing of correlation 
queries with aggregates. the utilization of dynamic filters, as 
described in [KIE84]. is desirable. 

However, these semantic transformations must be treated 
very carefully to give results consistent with the original 
semantics. defined by nested-iteration. In section 2 we will 
discuss the proper choice of defaults for aggregates over 
empty sets. As it will turn out, the solutions given for SQL 
fail for some queries using the COUNT aggregate. Unfor- 
tunately those algorithms cannot be easily adjusted to pro- 
duce the desired answers. In section 3 the algorithms given 
in [EPS79] for processing analogous QUEL-queries are exam- 
ined and shown to yield the desired results (module some 
repairable bugs. causing unexpected results in some cases). 
Since SQL and QUEL are widely spread. these results should 
be of immediate interest for a large user community. (In 
fact, the term semantic reefs was coined because a lot of 
‘navigation” around all those bugs and inconsistencies was 
required. until matching results were established for 
untransformed queries, as being processed by the database 
system itself, and explicitly transformed queries. which 
were supposed to execute faster.) In section 4, QUEL- 
benchmarks for RTI-Ingres ([RTI83]) are reported. These 
performance measurements show the considerable gains to 
be expected when dynamic filters are applied. To produce 
verifiable and realistic results the synthetic database 
described in [BIT831 was used. Consequences asking for 
further research are outlined in section 5. 

2 SOURCES OF INCON!BTENCY FOR SQL 

2.1. Handling of aggregates over empty sets 

Let us assume the following instantiation of our 
PARTS and SUPPLY relations: 

SUPPLY ) PNUM QUAN SHIPDATE 
I 3 4 7-3-79 

3 2 lo-l-78 
10 1 6-8-78 
10 2 S-10-81 
8 5 S-7-83 
2 3 6-2-79 
12 7 12-6-77 

Evaluating Ql by nested-iteration proceeds here as follows: 
Fetch each PARTS tuple. extract its PNUM value, test the 
restriction on PNUM and -if it passes the test- substitute it 
into the inner query block where it replaces PARTSPNUM. 
Thereafter the inner block is evaluated and its result is 
compared to QOH of that PARTS tuple in question. 
Doing so, the question of how to handle aggregates over 
empty sets arises immediately. Let us distinguish two cases: 

(a) The default value for aggregates over empty sets is set to 
zer0.l 

Result: PARTSPNUM 
10 
8 

(b) Agggregates like AVG. SUM. MIN. MAX are set to a spe- 
cial NULL-value for empty sets. Additionally. expressions 
like QOH = NULL evaluate to an “unknown truth value 
( denoted by 7 in [CHA76]). The truth value of an entire 
WHERE clause is computed using three-valued logic 
([CHA76]). whereby tuples are considered not to satisfy the 
WHERE clause if the overall truth value is “false” or 7. ’ 

Result: PARTSPNUM 
10 

Now we transform query Ql according to the algorithms 
described in [KIMSZ]. This transformation results in materi- 
alizing a temporary relation TEMP and a subsequent join.3 

(a) 
TEMP ( SUPPNUM. MAXQUAN ) = 

( SELECT PNUM. MAX ( QUAN > 
FROM SUPPLY 
WHERE SHIPDATE < l-l-80 
GROUP BY PNUM ) 

* This is done e.g. in INGRES ([STOSO~). 
* In [ZAN84] an illustrative treatment of the logical problems 

for dealing with NULL values can be found. 
s Following [KIM821 the whole transformation requires two 

steps. First, the type-JA query is transformed into a so-called 
type-J query by the NEST-JA algorithm. Then an algorithm 
termed NEST-N-J transforms this type-J query into the join. 
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(bl 
SELECf PNUM 
FROM PARTS, TEMP 
WHERE PARTS.QOH = TEMP.MAXQUAN 
AND PARTSPNUM = TEMPSUPPNUM 
AND 3 GPARTSPNUM 
AND PARTS.PNUM < 11 

Informally, the processing of this algorithm can be summar- 
ized as follows: In the first step (a> the aggregate 
MAXCQUAN) is computed for each distinct SUPPLY.PNUM 
value. The second step (b) establishes the correspondence 
between the correlated PNUM values and evaluates the 
outer restriction on QOH. 
For the materialization of the temporary relation TEMP 
recall the semantics of SQL-queries with a WHERE and a 
GROUP BY clause ([CHA761): First the WHERE clause is 
applied to qualify tuples: then the respective groups are 
formed: then an aggregate function is applied to each group. 
According to these semantics step (a> gives: 

TEMP 1 SUPF MAX: 

The final result of our query Ql. after step (b) is: 

Result: PARTS.PNUM 
10 

As can be seen, this result matches that of employing 
NULL-values for the nested-iteration semantics. 

The transformations described in [KIE83] are similar to the 
ones above. but the expected performance gains are even 
much more promising due to the use of dynamic filters. For 
the given example the final step (b) is identical, however 
step (a) is augmented as shown below: 

TEMP(SUPPNUM. MAXQUAN) = 
( SELECT PNUM, MAX(QUAN) 

FROM SUPPLY 
WHERE SHIPDATE < l-l-80 
AND ~PNUM I 
GROUP BY PNUM > 

In this modified form a dynamic filter ~PIVUM ] is conjunc- 
tively added. aiming the reduction of the size of temporary 
relations as much as desirable. Dynamic filters are predi- 
cates which are derived from already computed results dur- 
ing the evaluation of a query. The intention behind the 
determination of dynamic filters is to use them for a 
dynamic query modification, e.g. by a conjunctive addition 
to a restriction as above. 
More formally, let X be a subset of the domain dom(R, r> of 
attribute r from R. A filter for X is a predicate Qx [r 1 in the 
variable r with the following property: 

W x CEdom(R,r) : x EX -+ ‘p,[r](x) 

Now Qx [r ] IS called dynamic filter. if X is a subsr’ ol the 
projection n, (R 1. 
For demonstration purposes we choose a so-called Min-Max 
filter for the set of relevant PNUM correlation values. 
Let X be a subset of the domain of an attribute& The Min- 
Max ~&rr for X is the following predicate & [r] in the 
variable r: 

a$% ] s * min{ xIxinX1 br Qmax{ xIxinX)’ 

Then the Min-Max filter for the relevant PNUM correlation 
values is the following predicate: 

@xmMp~uhf 1~. min(PNUM I 3 < PARTSPNUM < 11) 
QPNUM d 
max( PNUM I 3 d PARTSPNUM < 11) ’ 

~‘3 QPNUM <lo’ 

The impact of attaching this dynamic filter to the query is 
the reduction of the cardinality of TEMP as shown below: 

TEMP SUPPNUM MAXQUAN 
3 4 
10 1 

We will return to the performance gains for correlation 
queries with aggregates when we apply dynamic filters in 
section 4, where RTI-Ingres is benchmarked. For the subse- 
quent discussion however, the use of dynamic filters makes 
no difference. therefore we will refer to Kim’s basic 
transformation algorithm. 

2.2. Troubles with the COUNT-aggregate 

Until now everything seems to work nicely. assuming 
the proper use of NULL-values that assures the equivalence 
of the transformed query to the nested-iteration semantics. 
There seems to be some trouble with this semantic transfor- 
mation only if aggregates over empty sets are treated inade- 
quately. But there are examples where there is no straight- 
forward way out of this dilemma of aggregates over empty 
sets and therefore this type of semantic transformation is 
incorrect for some type-JA SQL-queries. To shown this, we 
will evaluate a query 42 that is derived from our original 
Ql by simply substituting the aggregate MAX by COUNT. 
The reason for choosing COUNT instead of MAX is that 
COUNT is a totally defined function. i.e. COUNT over the 
empty set is zero. (This also implies that for this new exam- 
ple the existence/non-existence of NULL-values is 
irrelevant.) 

Query 42: 

SELECT PNUM 
FROM PARTS 
WHERE QOH = 

( SELECT COUNT( SHlPDATE ) 
FROM SUPPLY 
WHERE SUPPLY.PNUM = PARTSPNUM 
AND SHIPDATE < l-l-80 > 

AND 3 dPNUM AND PNUM < 11 
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The meaning of que~> Q? 13 ..uppowd 10 be.’ 
Find th purt numbers of thosr parts, whore quantities on 
bawd equal the number of shipmars of those poris &fore l- 
l-80 and whose part number is between 3 and Il. 

Evaluating 42 according to the nested-iteration semantics 
yields: 

Result: PARTSPNUM 
10 
8 

The transformation of 42 using Kim’s algorithms gives: 

TEMP’ ( SUPPNUM. CI > = 
( SELECT PNUM, COUNT( SHIPDATE > 

FROM SUPPLY 
WHERE SHIPDATE < l-l-80 
GROUP BY PNUM ) 

SELECf PNUM 
FROM P.4RTS. TEMP’ 
WHERE PARTSQOH = TEMP’CT 
AND PARTSPNUM = TEMP’.SUPPNUM 
AND 3 GPARTSPNUM 
AND PARTS.PNUM < 11 

Evaluation of the above yields (remember the semantics of 
WHERE...GROUP BY...): 

TEMP’ 1 SUPPNUM CI 
3 2 
10 1 
2 1 
12 1 

Result: PARTS.PNUM 
10 

Again the results differ. But now we cannot establish a 
match. because COUNT is a totally defined function. The 
reason, why this transformation fails in this particular case 
is the following: because of the WHERE...GROUP BY 
semantics. materializing TEMP’ eliminates absent 
SUPPLY.PNUM values: thus these empty sets are not 
counted and not evaluated to CT = 0. On the other hand. 
the nested-iteration method does count empty sets. Similar 
deficiencies will show up for the case where the outer corre- 
lation column (PARTSPNUM) is not a subset of the inner 
correlation column (SUPPL.PNUM). as in our example.’ 
For completeness. it also should be mentioned that [JAR821 
addresses a related problem with empty relations. which 

’ Whether this is a question of practical interest is irrelevant 
for our discussion. 

’ The loophole in [KIM821 lies in the proof of lemma2 upon 
which the NEST-JA algorithm relies. An existential quantifier is 
implicitly assumed when it is stated: “Then It is clear t)cnt 2he 
query may be processed by fetching each tuple of Rf, then fetching 
the Rt tuple whose Cl column ha the same value as the Cp column 
of the Ri tupk,...” 
(In our example the roles of Ri, Rt, Cl and Cp are occupied by 

arise! 11 transformations invc .i ‘. !I~& queries with existential 
quantifiers are a1 t.empted. 

How to jLx these bugs? 
If one does not want to resort to a different algorithm then 
the following modification comes into mind: 
Trial wrrectim: 
Adjust the transformation algorithm for correlation queries 
with COUNTS by a posteriori recovering lost aggregates over 
empty sets in the following way: 
TEMP’ is defined as before, however the join query is 
modified into: 

SELECT PNUM 
FROM PARTSTEMP 
WHERE 

( PARTSQOH = TEMP’CT AND 
PARTSPNUM = TEMp’.SUPPNUM > 

OR 
( PARTSQOH = 0 AND 

PARTSPNUM IS NOT IN 
( SELECT SUPPNUM 

FROM TEMP’ > ) 
AND 3 6PARTS.PNUM 
AND PARTS.PNUM < 11 

Adding the OR clause preserves those tuples of PARTS, that 
have no matching PNUM value in SUPPLY. This construct is 
a one-sided outerjoin (see, e.g., (~0~841). with an additional 
restriction on QOH testing for 0 ( = COUNT(empty set) >. 
Unfortunately this solution only works for l-level deep 
correlated type-JA queries like our Q2. The following exam- 
ple with a correlation depth of 2 shows that in general the 
transformation under consideration cannot be fixed for arbi- 
trarily correlated SQL-queries with COUNTS. (Lower case 
letters denote attributes belonging to a relation denoted by a 
respective upper case letter.) 

SELECT rl 
FROM R 
WHERE r2 = ( SELECT aggr(s1) 

FROM S 
WHERE s2 = 

( SELECT COUNT(t1) 
FROM T 
WHERE t2 = r3 
AND restriction(t3) ) > 

Here, r3 in the innermost query block correlates to relation 
R in the outermost block. Applying the considered transfor- 
mations would produce two temporaries. The sketched 
method of information preservation by using outerjoins can 
retain r3-values not matched by any t2-value. But we are 
unable to deal with the following case: If for some non- 
matched r3-value s2 happens to be 0. then aggr(s1) in the 
middle query block yields some arbitrary value. depending 
on the current database contents. That’s why the required 
additional restriction on r2 for the outerjoin cannot be 
attached automatically. A detailed example for this type of 
inconsistency can be found in [KIE84b]. 
Consequently, to devise a transformation that will produce 

PARTS, TEMP’, PARTSPNUM and TEMP’.SUPPNUM.) 
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cansi.,tent results for dny type-JA query. different algo- 
rithms must be considered. 

LamEs 
REXSITING QUEL !iEMANTICS FOR 

As mentioned in the introduction, the semantics for 
QUEL ([~~0761) queries with aggregates are not con- 
veniently defined by nested-iteration. The reason is prob- 
ably founded in the following differences of QUEL. as com- 
pared to SQL. Unlike SQL. QUEL distinguishes between 
scalar aggregates and aggregate functions ([EPS79]). The 
difference is best shown by the following example, which at 
first glance could be thought to be the QUEL-equivalent of 
our SQL-query 42: 

RANGE OF P IS PARTS 
RANGE OF S IS SUPPLY 
RETRIEVE ( P.PNUM ) 
WHERE PQOH = 

COUNT ( S.SHIPDATE 
WHERE SPNUM = P.PNUM 
AND S.SHIPDATE <l-1-80 ) 

AND 3 < P.PNUM AND P.PNUM d 11 

However, in this query the nested P.PNUM is completely 
local to the aggregate COUNT, i.e. there is no linking 
between the outer PQOH and the inner P.PNUM. This is 
termed a scalar aggregate , and it evaluates to a single value 
that is substituted to compute the outer query. If we want 
to write the QUEL-equivalent to Q2. then we must expli- 
citly establish this desired link by using a so-called BY-list. 
Aggregates with a BY-list are termed aggregate functions. 
In fact, the correct choice can be made only if one is aware 
of all the implementation details, which of course cannot 
and should not be expected from a QUEL user. The correct 
way is to put the correlation attribute of the outer relation 
in the BY-list, as it is depicted below. 

Query 2’: 

RANGE OF P IS PARTS 
RANGE OF S IS SUPPLY 
RETRIEVE ( P.PNUM ) 
WHERE P.QOH = 

COUNT ( S.SHIPDATE [BY P.PNUM 1 
WHERE SPNUM = P.PNUM 
AND S.SHIPDATE < l-l-80 ) 

AND 3 < P.PNUM AND P.PNUM < 11 

Because of this freedom of explicit bindings through BY- 
lists a much broader class of aggregate queries than in SQL 
can be defined. Therefore. a comprehensible nested-iteration 
semantics cannot be assigned to all nested queries with 
aggregates in QUEL. The semantics are only defined by the 
evaluation procedure described informally in [EPS791. If 
applied to our query Q2’. this algorithm works as follows: 

/* (1) Project outer correlation column (bemg exactly the 
BY-list) and initialize aggregates. */ 

RETRIEVE INTO TEMPl ( P.PNUM . CT = 0 ) 

/* (2) Evaluate inner query with aggregate function locally. 
maintaining the connection between the inner correlation 
column values and their respective aggregate value. */ 
/* Be careful not to remove duplicates for TEMP2a. */ 

RETRIEVE 
INTO TEMP2a ( P.PNUM , S.SHIPDATE ) 
WHERE S.PNUM = P.PNUM 
AND S.SHIPDATE < l-l-80 

RANGE OF T2a IS TEMP2a 
RETRIEVE INTO TEMP2b 

( T2a.PNUM. 
CT = COUNT( T2a.SHIPDATE 

BY T2a.PNUM ) > 

/* (3) Replace aggregates over non-empty sets by their real 
values in TEMPl. */ 

RANGE OF Tl IS TEMPl 
RANGE OF T2b IS TEMP2b 
REPLACE Tl ( CT = T2b.CT > 
WHERE Tl.PNUM = T2b.PNUM 

/* (4) Establish the link on PNUM and evaluate outer block. 
*/ 

RETRIEVE ( P.PNUM ) 
WHERE PQOH = Tl.CT 
AND P.PNUM = Tl.PNUM 
AND 3 < P.PNUM AND P.PNUM < 11 

According to this algorithm Q2’ gets processed as follows: 

/* Steps 1 - 3 */ 

TEMPl PNUM CT 
3 0 -I-- 10 0 
8 0 
2 0 
12 0 

TEMP2a PNUM SHIPDATE 
3 7-3-79 
3 lo-l-78 
10 6-8-78 
2 6-2-79 
12 12-6-77 
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Result: 10, 8. 

Remarks: 
(1) Note that projecting initially all outer correlation values 
into a temporary guarantees to lose no non-matched correla- 
tion value, as opposed to the SQL transformation. If we 
assume that there are no duplicate values for the outer 
correlation column PARTSPNUM, then the correctness of 
this algorithm should be clear after all preceeding discus- 
sions.6 If however, for whatever reasons, there exist dupli- 
cate values in the outer correlation column then this algo- 
rithm fails to be equivalent to nested-iteration. (On the con- 
trary, this issue does not arise for the SQL transformations.) 
To establish an equivalence to nested-iteration in every con- 
ceivable case the computation of TEMP2a would have to be 
changed as follows: 

RANGE OF Tl IS TEMPl 
RETRIEVE 
INTO TEMP2a ( Tl.PNUM. SSHIPDATE ) 
WHERE S.PNUM = Tl .PNUM 
AND S.SHIPDATE < l-l-80 

(2) For queries involving aggregates other than COUNT this 
algorithm is slower compared to the SQL transformations, 
because it requires two joins (step 2 and 4). However, it is 
capable of processing a larger class of correlation queries 
that are no longer of type-JA. e.g. consider the query 

SELECT rl. r2 FROM R 
WHERE r3 = 

( SELECT AVG( sl > FROM S. T 
WHERE s2 = tl AND r4 = t2 > 

This query may be correctly processed using this al orithm. 
while it is not directly applicable to those in [KIM82 f . 
Besides revealing several bugs for QUEL. which went 
undetected for a long period, an important result of these 
observations is that we are now able to assign some clearer 
semantics to a certain subclass of QUEL-queries with aggre- 
gates. Namely. if we consider the class of all QUEL-queries 
that we get by translating type-JA SQL-queries into their 
QUEL-counterparts with the proper BY-list choice, then the 

6 For Ingres this proposition actually holds for l-level nested 
queries. For correlation depths greater than 1 a procedure called 

BY-list optimization” produces erronous results in some situa- 
tions (see [KIE84b] for an illustrative example). 

algc rr hm of [EPS79] implements the nested-iteration 
semantics (up to the mentioned exceptions). 

In this section we will provide benchmark results for 
some QUEL correlation queries with aggregates for RTI- 
Ingres ([RTI831). Hereby. the performance of processing the 
original query in RTI-Ingres is compared to that of the 
explicitly transformed version according to [EPS79]. aug- 
mented by dynamic filters. The first query schema to be 
tested is stated below. 

%%%krl R r2 ) 
WHERE R.rS < CL& 1 
AND R.r4 <avg( S.sl BY R.r5 

WHERE S.s3 < const2 
AND R.r5 = S.s2 > 

The equivalent transformed schema is the following: 

(a) 
RETRIEVE INTO TEMPl ( R.r5. aggval = 0 ) 
WHERE R.r5 6 const 1 (*I 

Note: This step must remove duplicates. This can be 
achieved by choosing a proper storage structure for TEMPl. 
which eliminates duplicates. 

(b) 
RETRIEVE INTO TEMP2a ( R.r5. S.sl) 
WHERE S.s3 d const2 
AND R.r5 = S.s2 
AND cp[r51 Pa> 

Note: This step requires duplicates to be preserved. Again. 
this must be communicated to Ingres by selecting a proper 
storage structure. 

cc> 
RANGE OF Tpl IS TEMPl 
RANGE OF T2a IS TEMP2a 
RETRIEVE 
INTO TEMP2b ( T2a.r5. 

aggval = avg( T2a.sl BY T2a.r5 > ) 

(d) 
RANGE OF T2b IS TEMP2b 
REPLACE Tpl ( aggval = T2b.aggval) 
WHERE Tpl.rS = T2b.r5 

RETRIEVE ( R.rl, R.r2 1 
WHERE R.r4 < Tpl.aggval 
AND R.r5 = Tplr5 

Comments to the transformed schema: 
(*): This is simply an application of the well-known stra- 
tegy of shifting operators down an operator tree. Ingres (at 
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least the Cniversity version) is not capable of doing this. 
because the entire query evaluation process is separated into 
an initial phase, where all aggregates are processed and 
replaced by their results, and a subsequent aggregate-free 
processing phase. Indeed, this separation reflects the fact 
that the query evaluation model is not unified. We will 
come back to this observation in the concluding section. 
(**I: Here the idea of utilizing dynamic filters is applied. A 
dynamic filter @r 51. characterizing the relevant correlation 
values for r5, is conjunctively added. The goal is of course 
to reduce the cardinality of TEMP2a. We will explain our 
choice of a concrete filter type after having presented the 
second benchmarked query schema. 

QueryschemQ 2: 
RETRIEVE ( R.rl. R.r2 ) 
WHERE R.rS < constl 
AND R.r4 <avg( Ssl BY R.rS 

WHERE S.s3 < const2 
AND S.s2 = T.tl 
AND R.r5 = T.t2 > 

Note that schema 2 is similar to schema 1. except that the 
correlation term R.r.5 = Ss2 is replaced by the more compli- 
cated expression S.s2 = T.tl AND R.r5 = T.t2. 
The transformed version. augmented again by a dynamic 
filter. is as follows: 

(a) As in query 1 transformation. 
(b) RETRIEVE INTO TEMP2a ( R.r5. S.sl > 

WHERE S.s3 d const2 
AND S.s2 = T.tl 
AND R.r5 = T.t2 
AND ar51 

(cl. cdl. (e) As in query1 transformation. 

Now let us turn to describe the choice of a specific filter type 
for ar-51. The idea behind the flexibility offered by 
dynamic filters is that the selection of a proper filter type is 
tuneable to the performance characteristics of the database 
architecture in question. For a conventional database system 
like Ingres the application of a total filter ([KIE84]) looks 
most promising. The total filter for a subset X of the 
domain of an attribute r is the following predicate in r: 

So the total filter for the relevant r5-correlation values is 
defined as: 

where X = { R.r5 I R.r5 gconstl ) 

As a lucky chance, the set X is our temporary TEMPl. 
which is computed anyway. Thus this total filter can 
efficiently be simulated in QUEL by making the following 
choice: 

Qfy[r 51 Ez ’ R.r5 = Tpl.rS ’ 

Benchmark descriptim: 
The benchmarked database was the synthetic database 01 
[BIT83]. which we found to be a very helpful test tool. The 
names of relations and attributes are self-explanatory, only 
the attributes needed are listed below. (E.g. onektup is a 
relation of cardinality 1000. hundreda is an attribute whose 
domain ranges from 1 to 100) 

Relations: 
onektup ( hundreda. thousanda, uniquela, 

unique2a. stringula. . . . > 
twoktup ( hundredb. thousandb. uniquelb. . . . > 
fivektup ( hundredc. thousandc, . . . > 

We made the following assignments for the relations and 
attributes appearing in query schema 1 and 2: 

R = onektup. S = twoktup. T = fivektup 
rl=. . . .r2 = stringula, r3 = unique2a. 
r4 = thousanda. r5 = . . . 
sl = thousandb. s2 = hundredb. s3 = uniquelb 
tl = hundredc, t2 = thousandc 

The following benchmark series were performed on the 
database with no useful storage structures and secondary 
indexes available: 

For queryschema 1: 
Series 1.1: rl = uniquela. r5 = hundreda 
Series 1.2: rl = hundreda. r5 = uniquela 

For queryschema 2: 
Series 2.1, series2.2 with similar 
correspondences for rl and rS. 

The benchmarks were run on a VAX/780 in multiuser 
mode. The performance results are depicted in the appen- 
dix. each series run for several constl. const2 values. The 
measurements were obtained by using RTI-Ingres’ perfor- 
mance monitoring facilities. Besides the consumed CPU time 
and totally elapsed time. the cardinality of the final result is 
listed as well. As can be observed from these tables, there 
are huge gains for the transformation algorithms with 
dynamic filters. They outperform Ingres’ processing algo- 
rithms up to a factor of 5 for schema 1 and up to a factor of 
10 for the complex schema 2. Clearly dynamic filtering 
achieves a higher speed-up for more complex queries. Note 
also that the transformations were coded in EQUEL 
(1.~~076 I). which introduces a considerable performance 
penalty. Thus dynamic filters are shown not only to be a 
useful tool for join processing ([KIE84]), but also for corre- 
lation queries. Moreover. the set-oriented transformation 
approach. which materializes several temporary relations, 
proves to be also viable in the context of a conventional, 
non-distributed database system. Also, it should be recalled 
that Kim’s transformations can likewise be ameliorated by 
dynamic filters, which will give another performance gain in 
addition to what is indicated in [KIM821 compared to 
nested-iteration processing. 

In conclusion, let us state one more observation. For some 
variations of the complex schema 2 we encountered situa- 
tions where the results of the supposedly equivalent query 
schema and those of the transformed version differed in so 
far as the original schema delivered one tuple less in the 
result. These mismatches must be contributed to the dupli- 
cate problem. The preservation of duplicates for a subse- 
quent aggregate computation cannot be guaranteed by the 
query processor for complex queries. and schema 2 is an 
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example for thaL. So again a striking example showed up 
that aggregates requiring duplicate preServation do not fit 
well into relational algebra. at the time being. It is suspected 
that similar problems exist not only for this benchmarked 
database system. but also for other products. 

5. CONCLUSION 

In this paper we showed that for SQL-like correlation 
queries involving the COUNT aggregate the transformation 
algorithms described in the literature fail to yield correct 
results for some cases. For the remaining correlation queries 
(using MAX. MIN. SUM. AVG aggregates) those transfor- 
mation algorithms are consistent with the desired semantics. 
if NULL-values are used. On the other hand, the algorithms 
used to process analogous QUEL-like queries are reported to 
give the desired answers (up to some repairable bugs), at the 
expense of less efficiency for non-COUNT aggregates. In 
summary, the question. whether the discussed transforma- 
tions of type-JA queries are equivalent to nested-iteration, is 
answered in the next table. 

Whether the SQL transformations can be adjusted in an 
elegant way relying on the current semantics of WHERE . . . 
GROUP BY clauses is questionable because of some inherent 
semantical problems. To demonstrate this, a query given in 
~C~~~~. for the well-known employee paradigm is 

SELECT DNO FROM EMP 
WHERE JOB = ‘CLERK’ 
GROUP BY DNO HAVING COUNT(*) > 10 

The meaning of this query is supposed to be: 
List the departments that employ rrwre than ten clerks. 

Now consider the slightly changed query where we ask for 
departments that employ less than ten clerks. This time the 
current WHERE . . . GROUP BY evaluation order fails to 
report departments that employ no clerks. In turn. QUEL 
allows a consistent formulation. reporting also departments 
without clerks. 

RANGE OF E IS EMP 
RETRIEVE ( E.DNO > 
WHERE 

COUNT( E.NAME BY E.DNO 
WHERE E.JOB = ‘CLERK’ > < 10 

In [KIM821 it is stated that the reason for the less-than- 
satisfactory performance of nested queries in existing 

relational database s> slems is that most types of nesting are 
not well understood. it should be added that these semantic 
transformations are indeed an important step towards 
efficiently processing nested queries. especially if dynamic 
filters are applied in addition. The reported benchmarks 
demonstrate that impressive performance improvements are 
achievable. However, the well-known fact that aggregates 
do not fit well into relational algebra has been pointed out 
by illustrative examples. Doubtless, further work needs to 
be done to integrate aggregates more smoothly into rela- 
tional algebra: e.g. in [ROS84] it is stated that a compact 
operator tree model covering the query class considered is 
still lacking. Then the design of query evaluation algorithms 
relying on query transformation will become a more reliable 
and powerful tool for efficiently processing complex queries. 
This is mandatory if complex applications such as expert 
systems, built on top of a database system (see e.g. 
[STO84]). are to be implemented sufficiently fast and 
trustworthy. 
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Appendix 

Table A.1:Benchmarkseries 1.1. 

constl consta card cp- cpusec elapsedsec elapsedsec 
result RTI transfo RTI transfo 

100 1200 507 184 45 375 111 
60 1200 302 177 31 384 79 
30 600 147 98 20 256 54 
15 300 64 58 17 165 63 

5 100 9 32 15 82 33 

Table A.2 Ben&mark series 1.2. 

constl const2 card cpusec cpusec elapsedsec elapse&xc 
result RTI transfo RTI transfo 

600 1200 49 66 46 180 124 
300 600 52 43 30 116 86 
150 300 47 31 23 54 66 

50 loo 12 24 16 66 40 

Table A3: Benchmark series 2.1. 

constl const2 card cpusec cpusec elapsedsec elapsedsec 
result RTI transfo RTI transfo 

100 1200 496 790 109 1418 245 
60 1200 304 784 75 1650 199 
30 600 148 432 46 1459 197 
15 300 71 251 36 1047 132 

5 100 21 118 31 363 71 

Table AA: Benchmark series 2.2. 

const1 const2 card cpusec cpusec elapsedsec elapsedsec 
result RTI transfo RTI transfo 

600 1200 301 2916 920 10703 2514 
300 600 149 1429 132 2388 340 
150 300 78 745 68 1392 158 

50 loo 21 302 39 1083 101 
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