
ON SEhI.W,TIC REEFS M-l-l EFFICIENT PROCESINC; OF

~RRELATION QUERIES WITH AGGREGATES

Werner Kiessling
Technische Universitaet Muenchen

Jnstitut fuer Jnformatik
Arcisstr. 21

D-8000 Muenchen 2. West-Germany

Abstract

Recent transformation algorithms for speeding up pro-
cessing of nested SQL-like queries with aggregates are
reviewed with respect to the correctness of aggregates over
empty sets. It turns out that for a particular subset of such
queries these algorithms fail to compute consistent answers.
Unfortunately there seems to be no uniform way to do
these transformations efficiently and correctly under all cir-
cumstances. Also the algorithms for QUEL are reexamined
regarding their correctness. It is shown that for a specific
subset of QUEL-queries with aggregates a clearer semantics
can be associated. Finally, benchmark results for lngres
show that considerable performance advantages may be
gained for such query types by using dynamic filters. The
consequence of all these observations is that more research is
required to integrate correlation queries with aggregates into
a unified operator tree model.

1. INTRODUCTION

This paper is concerned with a specific type of nested
queries. involving aggregates and correlated predicates in a
nested query block. A correlated predicate is a predicate in a
nested block, which references a relation in an outer block.
As an example consider the following sample relations and
SQL-query ([CHA76]):

-------- ------------ -------- -

This report was prepared while the author was on
leave at the University of California, Berkeley, CA 94720.
Die Arbeit wurde mit Unterstuetzung eines Stipendiums des
Wissenschaftsausschuss der NATO ueber den DAAD
ermoeglicht.

Permission to copy without fee aIl or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special pcrmis-
eion from the Endowment.

Proceedings of VLDB 85, Stockholm 2 41

Relations:

PARTS (PNUM. QOH)
SUPPLY (PNUM. QUAN. SHIPDATE >

Query Ql:

SELECl- PNUM
FROM PARTS
WHERE QOH =

(SELECT MAX(QUAN >
FROM SUPPLY
WHERE SUPPLY .PNUM = PARTS.PNUM
AND SHIPDATE < l-l-80 >

AND 3 < PNUM AND PNUM 6 11

Each PARTS tuple contains the part number and the actual
quantity on hand. In the SUPPLY relation each tuple has a
part number and information on the quantity of that part
shipped at a particular date. The meaning of query Ql is:
Find the part numbers of parts, whose quant&&s on hand
equal the highest quantities of those parts shipped before l-l-
80 and whose part number is between 3 and II.

A similar example can be found in 1~1~821. In that paper a
terminology for nested SQL-like queries is developed. We
will be concerned with what is there termed type-JA queries.
A nested query Q is of type JA if the WHERE clause of the
inner block contains a join predicate that references the rela-
tion of the outer block (SUPPLY.PNUM = PARTSPNUM in
our example) and some aggregate function (here MAX) is
associated with the SELECT clause of the inner block. Simi-
lar classifications of nested SQL-like queries can also be
found in [MAKII] and [KlE83]. 1~0~841 discusses the pro-
cessing of nested queries in a distributed environment. In
[KLU82] special access paths are described that may
accelerate aggregate evaluation.

The standard method for evaluating correlation queries with
aggregates is by nested-iteration, i.e. by evaluating the inner
query block once for each substituted correlation value
(PARTSPNUM-value in our case). Furthermore. the
semantics of a correlated SQL-query are defined in a con-
venient way by this nested-iteration procedure. Unfor-
tunately, for a large set of such queries and database charac-
teristics this method suffers from poor performance. Obvi-
ously, to design faster algorithms one has to look for ways
where the inner query block, calculating the aggregates. may

be evaluated only once. This bar been recognized at several
sites independently and has led to the design of different
algorithms to recess correlation queries with ag
[KIM821 and LIE831 for SQL-like queries and f

regates. see
EPS79] for

QUEL-like queries. In the first two works the nested-
iteration semantics are the starting point from which
equivalent transformation algorithms can be developed. The
last work entirely defines the semantics of QUEL-queries
using aggregates by the given evaluation algorithm. As an
additional means to speed up the processing of correlation
queries with aggregates. the utilization of dynamic filters, as
described in [KIE84]. is desirable.

However, these semantic transformations must be treated
very carefully to give results consistent with the original
semantics. defined by nested-iteration. In section 2 we will
discuss the proper choice of defaults for aggregates over
empty sets. As it will turn out, the solutions given for SQL
fail for some queries using the COUNT aggregate. Unfor-
tunately those algorithms cannot be easily adjusted to pro-
duce the desired answers. In section 3 the algorithms given
in [EPS79] for processing analogous QUEL-queries are exam-
ined and shown to yield the desired results (module some
repairable bugs. causing unexpected results in some cases).
Since SQL and QUEL are widely spread. these results should
be of immediate interest for a large user community. (In
fact, the term semantic reefs was coined because a lot of
‘navigation” around all those bugs and inconsistencies was
required. until matching results were established for
untransformed queries, as being processed by the database
system itself, and explicitly transformed queries. which
were supposed to execute faster.) In section 4, QUEL-
benchmarks for RTI-Ingres ([RTI83]) are reported. These
performance measurements show the considerable gains to
be expected when dynamic filters are applied. To produce
verifiable and realistic results the synthetic database
described in [BIT831 was used. Consequences asking for
further research are outlined in section 5.

2 SOURCES OF INCON!BTENCY FOR SQL

2.1. Handling of aggregates over empty sets

Let us assume the following instantiation of our
PARTS and SUPPLY relations:

SUPPLY) PNUM QUAN SHIPDATE
I 3 4 7-3-79

3 2 lo-l-78
10 1 6-8-78
10 2 S-10-81
8 5 S-7-83
2 3 6-2-79
12 7 12-6-77

Evaluating Ql by nested-iteration proceeds here as follows:
Fetch each PARTS tuple. extract its PNUM value, test the
restriction on PNUM and -if it passes the test- substitute it
into the inner query block where it replaces PARTSPNUM.
Thereafter the inner block is evaluated and its result is
compared to QOH of that PARTS tuple in question.
Doing so, the question of how to handle aggregates over
empty sets arises immediately. Let us distinguish two cases:

(a) The default value for aggregates over empty sets is set to
zer0.l

Result: PARTSPNUM
10
8

(b) Agggregates like AVG. SUM. MIN. MAX are set to a spe-
cial NULL-value for empty sets. Additionally. expressions
like QOH = NULL evaluate to an “unknown truth value
(denoted by 7 in [CHA76]). The truth value of an entire
WHERE clause is computed using three-valued logic
([CHA76]). whereby tuples are considered not to satisfy the
WHERE clause if the overall truth value is “false” or 7. ’

Result: PARTSPNUM
10

Now we transform query Ql according to the algorithms
described in [KIMSZ]. This transformation results in materi-
alizing a temporary relation TEMP and a subsequent join.3

(a)
TEMP (SUPPNUM. MAXQUAN) =

(SELECT PNUM. MAX (QUAN >
FROM SUPPLY
WHERE SHIPDATE < l-l-80
GROUP BY PNUM)

* This is done e.g. in INGRES ([STOSO~).
* In [ZAN84] an illustrative treatment of the logical problems

for dealing with NULL values can be found.
s Following [KIM821 the whole transformation requires two

steps. First, the type-JA query is transformed into a so-called
type-J query by the NEST-JA algorithm. Then an algorithm
termed NEST-N-J transforms this type-J query into the join.

242

(bl
SELECf PNUM
FROM PARTS, TEMP
WHERE PARTS.QOH = TEMP.MAXQUAN
AND PARTSPNUM = TEMPSUPPNUM
AND 3 GPARTSPNUM
AND PARTS.PNUM < 11

Informally, the processing of this algorithm can be summar-
ized as follows: In the first step (a> the aggregate
MAXCQUAN) is computed for each distinct SUPPLY.PNUM
value. The second step (b) establishes the correspondence
between the correlated PNUM values and evaluates the
outer restriction on QOH.
For the materialization of the temporary relation TEMP
recall the semantics of SQL-queries with a WHERE and a
GROUP BY clause ([CHA761): First the WHERE clause is
applied to qualify tuples: then the respective groups are
formed: then an aggregate function is applied to each group.
According to these semantics step (a> gives:

TEMP 1 SUPF MAX:

The final result of our query Ql. after step (b) is:

Result: PARTS.PNUM
10

As can be seen, this result matches that of employing
NULL-values for the nested-iteration semantics.

The transformations described in [KIE83] are similar to the
ones above. but the expected performance gains are even
much more promising due to the use of dynamic filters. For
the given example the final step (b) is identical, however
step (a) is augmented as shown below:

TEMP(SUPPNUM. MAXQUAN) =
(SELECT PNUM, MAX(QUAN)

FROM SUPPLY
WHERE SHIPDATE < l-l-80
AND ~PNUM I
GROUP BY PNUM >

In this modified form a dynamic filter ~PIVUM] is conjunc-
tively added. aiming the reduction of the size of temporary
relations as much as desirable. Dynamic filters are predi-
cates which are derived from already computed results dur-
ing the evaluation of a query. The intention behind the
determination of dynamic filters is to use them for a
dynamic query modification, e.g. by a conjunctive addition
to a restriction as above.
More formally, let X be a subset of the domain dom(R, r> of
attribute r from R. A filter for X is a predicate Qx [r 1 in the
variable r with the following property:

W x CEdom(R,r) : x EX -+ ‘p,[r](x)

Now Qx [r] IS called dynamic filter. if X is a subsr’ ol the
projection n, (R 1.
For demonstration purposes we choose a so-called Min-Max
filter for the set of relevant PNUM correlation values.
Let X be a subset of the domain of an attribute& The Min-
Max ~&rr for X is the following predicate & [r] in the
variable r:

a$%] s * min{ xIxinX1 br Qmax{ xIxinX)’

Then the Min-Max filter for the relevant PNUM correlation
values is the following predicate:

@xmMp~uhf 1~. min(PNUM I 3 < PARTSPNUM < 11)
QPNUM d
max(PNUM I 3 d PARTSPNUM < 11) ’

~‘3 QPNUM <lo’

The impact of attaching this dynamic filter to the query is
the reduction of the cardinality of TEMP as shown below:

TEMP SUPPNUM MAXQUAN
3 4
10 1

We will return to the performance gains for correlation
queries with aggregates when we apply dynamic filters in
section 4, where RTI-Ingres is benchmarked. For the subse-
quent discussion however, the use of dynamic filters makes
no difference. therefore we will refer to Kim’s basic
transformation algorithm.

2.2. Troubles with the COUNT-aggregate

Until now everything seems to work nicely. assuming
the proper use of NULL-values that assures the equivalence
of the transformed query to the nested-iteration semantics.
There seems to be some trouble with this semantic transfor-
mation only if aggregates over empty sets are treated inade-
quately. But there are examples where there is no straight-
forward way out of this dilemma of aggregates over empty
sets and therefore this type of semantic transformation is
incorrect for some type-JA SQL-queries. To shown this, we
will evaluate a query 42 that is derived from our original
Ql by simply substituting the aggregate MAX by COUNT.
The reason for choosing COUNT instead of MAX is that
COUNT is a totally defined function. i.e. COUNT over the
empty set is zero. (This also implies that for this new exam-
ple the existence/non-existence of NULL-values is
irrelevant.)

Query 42:

SELECT PNUM
FROM PARTS
WHERE QOH =

(SELECT COUNT(SHlPDATE)
FROM SUPPLY
WHERE SUPPLY.PNUM = PARTSPNUM
AND SHIPDATE < l-l-80 >

AND 3 dPNUM AND PNUM < 11

243

The meaning of que~> Q? 13 ..uppowd 10 be.’
Find th purt numbers of thosr parts, whore quantities on
bawd equal the number of shipmars of those poris &fore l-
l-80 and whose part number is between 3 and Il.

Evaluating 42 according to the nested-iteration semantics
yields:

Result: PARTSPNUM
10
8

The transformation of 42 using Kim’s algorithms gives:

TEMP’ (SUPPNUM. CI > =
(SELECT PNUM, COUNT(SHIPDATE >

FROM SUPPLY
WHERE SHIPDATE < l-l-80
GROUP BY PNUM)

SELECf PNUM
FROM P.4RTS. TEMP’
WHERE PARTSQOH = TEMP’CT
AND PARTSPNUM = TEMP’.SUPPNUM
AND 3 GPARTSPNUM
AND PARTS.PNUM < 11

Evaluation of the above yields (remember the semantics of
WHERE...GROUP BY...):

TEMP’ 1 SUPPNUM CI
3 2
10 1
2 1
12 1

Result: PARTS.PNUM
10

Again the results differ. But now we cannot establish a
match. because COUNT is a totally defined function. The
reason, why this transformation fails in this particular case
is the following: because of the WHERE...GROUP BY
semantics. materializing TEMP’ eliminates absent
SUPPLY.PNUM values: thus these empty sets are not
counted and not evaluated to CT = 0. On the other hand.
the nested-iteration method does count empty sets. Similar
deficiencies will show up for the case where the outer corre-
lation column (PARTSPNUM) is not a subset of the inner
correlation column (SUPPL.PNUM). as in our example.’
For completeness. it also should be mentioned that [JAR821
addresses a related problem with empty relations. which

’ Whether this is a question of practical interest is irrelevant
for our discussion.

’ The loophole in [KIM821 lies in the proof of lemma2 upon
which the NEST-JA algorithm relies. An existential quantifier is
implicitly assumed when it is stated: “Then It is clear t)cnt 2he
query may be processed by fetching each tuple of Rf, then fetching
the Rt tuple whose Cl column ha the same value as the Cp column
of the Ri tupk,...”
(In our example the roles of Ri, Rt, Cl and Cp are occupied by

arise! 11 transformations invc .i ‘. !I~& queries with existential
quantifiers are a1 t.empted.

How to jLx these bugs?
If one does not want to resort to a different algorithm then
the following modification comes into mind:
Trial wrrectim:
Adjust the transformation algorithm for correlation queries
with COUNTS by a posteriori recovering lost aggregates over
empty sets in the following way:
TEMP’ is defined as before, however the join query is
modified into:

SELECT PNUM
FROM PARTSTEMP
WHERE

(PARTSQOH = TEMP’CT AND
PARTSPNUM = TEMp’.SUPPNUM >

OR
(PARTSQOH = 0 AND

PARTSPNUM IS NOT IN
(SELECT SUPPNUM

FROM TEMP’ >)
AND 3 6PARTS.PNUM
AND PARTS.PNUM < 11

Adding the OR clause preserves those tuples of PARTS, that
have no matching PNUM value in SUPPLY. This construct is
a one-sided outerjoin (see, e.g., (~0~841). with an additional
restriction on QOH testing for 0 (= COUNT(empty set) >.
Unfortunately this solution only works for l-level deep
correlated type-JA queries like our Q2. The following exam-
ple with a correlation depth of 2 shows that in general the
transformation under consideration cannot be fixed for arbi-
trarily correlated SQL-queries with COUNTS. (Lower case
letters denote attributes belonging to a relation denoted by a
respective upper case letter.)

SELECT rl
FROM R
WHERE r2 = (SELECT aggr(s1)

FROM S
WHERE s2 =

(SELECT COUNT(t1)
FROM T
WHERE t2 = r3
AND restriction(t3)) >

Here, r3 in the innermost query block correlates to relation
R in the outermost block. Applying the considered transfor-
mations would produce two temporaries. The sketched
method of information preservation by using outerjoins can
retain r3-values not matched by any t2-value. But we are
unable to deal with the following case: If for some non-
matched r3-value s2 happens to be 0. then aggr(s1) in the
middle query block yields some arbitrary value. depending
on the current database contents. That’s why the required
additional restriction on r2 for the outerjoin cannot be
attached automatically. A detailed example for this type of
inconsistency can be found in [KIE84b].
Consequently, to devise a transformation that will produce

PARTS, TEMP’, PARTSPNUM and TEMP’.SUPPNUM.)

244

cansi.,tent results for dny type-JA query. different algo-
rithms must be considered.

LamEs
REXSITING QUEL !iEMANTICS FOR

As mentioned in the introduction, the semantics for
QUEL ([~~0761) queries with aggregates are not con-
veniently defined by nested-iteration. The reason is prob-
ably founded in the following differences of QUEL. as com-
pared to SQL. Unlike SQL. QUEL distinguishes between
scalar aggregates and aggregate functions ([EPS79]). The
difference is best shown by the following example, which at
first glance could be thought to be the QUEL-equivalent of
our SQL-query 42:

RANGE OF P IS PARTS
RANGE OF S IS SUPPLY
RETRIEVE (P.PNUM)
WHERE PQOH =

COUNT (S.SHIPDATE
WHERE SPNUM = P.PNUM
AND S.SHIPDATE <l-1-80)

AND 3 < P.PNUM AND P.PNUM d 11

However, in this query the nested P.PNUM is completely
local to the aggregate COUNT, i.e. there is no linking
between the outer PQOH and the inner P.PNUM. This is
termed a scalar aggregate , and it evaluates to a single value
that is substituted to compute the outer query. If we want
to write the QUEL-equivalent to Q2. then we must expli-
citly establish this desired link by using a so-called BY-list.
Aggregates with a BY-list are termed aggregate functions.
In fact, the correct choice can be made only if one is aware
of all the implementation details, which of course cannot
and should not be expected from a QUEL user. The correct
way is to put the correlation attribute of the outer relation
in the BY-list, as it is depicted below.

Query 2’:

RANGE OF P IS PARTS
RANGE OF S IS SUPPLY
RETRIEVE (P.PNUM)
WHERE P.QOH =

COUNT (S.SHIPDATE [BY P.PNUM 1
WHERE SPNUM = P.PNUM
AND S.SHIPDATE < l-l-80)

AND 3 < P.PNUM AND P.PNUM < 11

Because of this freedom of explicit bindings through BY-
lists a much broader class of aggregate queries than in SQL
can be defined. Therefore. a comprehensible nested-iteration
semantics cannot be assigned to all nested queries with
aggregates in QUEL. The semantics are only defined by the
evaluation procedure described informally in [EPS791. If
applied to our query Q2’. this algorithm works as follows:

/* (1) Project outer correlation column (bemg exactly the
BY-list) and initialize aggregates. */

RETRIEVE INTO TEMPl (P.PNUM . CT = 0)

/* (2) Evaluate inner query with aggregate function locally.
maintaining the connection between the inner correlation
column values and their respective aggregate value. */
/* Be careful not to remove duplicates for TEMP2a. */

RETRIEVE
INTO TEMP2a (P.PNUM , S.SHIPDATE)
WHERE S.PNUM = P.PNUM
AND S.SHIPDATE < l-l-80

RANGE OF T2a IS TEMP2a
RETRIEVE INTO TEMP2b

(T2a.PNUM.
CT = COUNT(T2a.SHIPDATE

BY T2a.PNUM) >

/* (3) Replace aggregates over non-empty sets by their real
values in TEMPl. */

RANGE OF Tl IS TEMPl
RANGE OF T2b IS TEMP2b
REPLACE Tl (CT = T2b.CT >
WHERE Tl.PNUM = T2b.PNUM

/* (4) Establish the link on PNUM and evaluate outer block.
*/

RETRIEVE (P.PNUM)
WHERE PQOH = Tl.CT
AND P.PNUM = Tl.PNUM
AND 3 < P.PNUM AND P.PNUM < 11

According to this algorithm Q2’ gets processed as follows:

/* Steps 1 - 3 */

TEMPl PNUM CT
3 0 -I-- 10 0
8 0
2 0
12 0

TEMP2a PNUM SHIPDATE
3 7-3-79
3 lo-l-78
10 6-8-78
2 6-2-79
12 12-6-77

245

Result: 10, 8.

Remarks:
(1) Note that projecting initially all outer correlation values
into a temporary guarantees to lose no non-matched correla-
tion value, as opposed to the SQL transformation. If we
assume that there are no duplicate values for the outer
correlation column PARTSPNUM, then the correctness of
this algorithm should be clear after all preceeding discus-
sions.6 If however, for whatever reasons, there exist dupli-
cate values in the outer correlation column then this algo-
rithm fails to be equivalent to nested-iteration. (On the con-
trary, this issue does not arise for the SQL transformations.)
To establish an equivalence to nested-iteration in every con-
ceivable case the computation of TEMP2a would have to be
changed as follows:

RANGE OF Tl IS TEMPl
RETRIEVE
INTO TEMP2a (Tl.PNUM. SSHIPDATE)
WHERE S.PNUM = Tl .PNUM
AND S.SHIPDATE < l-l-80

(2) For queries involving aggregates other than COUNT this
algorithm is slower compared to the SQL transformations,
because it requires two joins (step 2 and 4). However, it is
capable of processing a larger class of correlation queries
that are no longer of type-JA. e.g. consider the query

SELECT rl. r2 FROM R
WHERE r3 =

(SELECT AVG(sl > FROM S. T
WHERE s2 = tl AND r4 = t2 >

This query may be correctly processed using this al orithm.
while it is not directly applicable to those in [KIM82 f .
Besides revealing several bugs for QUEL. which went
undetected for a long period, an important result of these
observations is that we are now able to assign some clearer
semantics to a certain subclass of QUEL-queries with aggre-
gates. Namely. if we consider the class of all QUEL-queries
that we get by translating type-JA SQL-queries into their
QUEL-counterparts with the proper BY-list choice, then the

6 For Ingres this proposition actually holds for l-level nested
queries. For correlation depths greater than 1 a procedure called

BY-list optimization” produces erronous results in some situa-
tions (see [KIE84b] for an illustrative example).

algc rr hm of [EPS79] implements the nested-iteration
semantics (up to the mentioned exceptions).

In this section we will provide benchmark results for
some QUEL correlation queries with aggregates for RTI-
Ingres ([RTI831). Hereby. the performance of processing the
original query in RTI-Ingres is compared to that of the
explicitly transformed version according to [EPS79]. aug-
mented by dynamic filters. The first query schema to be
tested is stated below.

%%%krl R r2)
WHERE R.rS < CL& 1
AND R.r4 <avg(S.sl BY R.r5

WHERE S.s3 < const2
AND R.r5 = S.s2 >

The equivalent transformed schema is the following:

(a)
RETRIEVE INTO TEMPl (R.r5. aggval = 0)
WHERE R.r5 6 const 1 (*I

Note: This step must remove duplicates. This can be
achieved by choosing a proper storage structure for TEMPl.
which eliminates duplicates.

(b)
RETRIEVE INTO TEMP2a (R.r5. S.sl)
WHERE S.s3 d const2
AND R.r5 = S.s2
AND cp[r51 Pa>

Note: This step requires duplicates to be preserved. Again.
this must be communicated to Ingres by selecting a proper
storage structure.

cc>
RANGE OF Tpl IS TEMPl
RANGE OF T2a IS TEMP2a
RETRIEVE
INTO TEMP2b (T2a.r5.

aggval = avg(T2a.sl BY T2a.r5 >)

(d)
RANGE OF T2b IS TEMP2b
REPLACE Tpl (aggval = T2b.aggval)
WHERE Tpl.rS = T2b.r5

RETRIEVE (R.rl, R.r2 1
WHERE R.r4 < Tpl.aggval
AND R.r5 = Tplr5

Comments to the transformed schema:
(*): This is simply an application of the well-known stra-
tegy of shifting operators down an operator tree. Ingres (at

246

least the Cniversity version) is not capable of doing this.
because the entire query evaluation process is separated into
an initial phase, where all aggregates are processed and
replaced by their results, and a subsequent aggregate-free
processing phase. Indeed, this separation reflects the fact
that the query evaluation model is not unified. We will
come back to this observation in the concluding section.
(**I: Here the idea of utilizing dynamic filters is applied. A
dynamic filter @r 51. characterizing the relevant correlation
values for r5, is conjunctively added. The goal is of course
to reduce the cardinality of TEMP2a. We will explain our
choice of a concrete filter type after having presented the
second benchmarked query schema.

QueryschemQ 2:
RETRIEVE (R.rl. R.r2)
WHERE R.rS < constl
AND R.r4 <avg(Ssl BY R.rS

WHERE S.s3 < const2
AND S.s2 = T.tl
AND R.r5 = T.t2 >

Note that schema 2 is similar to schema 1. except that the
correlation term R.r.5 = Ss2 is replaced by the more compli-
cated expression S.s2 = T.tl AND R.r5 = T.t2.
The transformed version. augmented again by a dynamic
filter. is as follows:

(a) As in query 1 transformation.
(b) RETRIEVE INTO TEMP2a (R.r5. S.sl >

WHERE S.s3 d const2
AND S.s2 = T.tl
AND R.r5 = T.t2
AND ar51

(cl. cdl. (e) As in query1 transformation.

Now let us turn to describe the choice of a specific filter type
for ar-51. The idea behind the flexibility offered by
dynamic filters is that the selection of a proper filter type is
tuneable to the performance characteristics of the database
architecture in question. For a conventional database system
like Ingres the application of a total filter ([KIE84]) looks
most promising. The total filter for a subset X of the
domain of an attribute r is the following predicate in r:

So the total filter for the relevant r5-correlation values is
defined as:

where X = { R.r5 I R.r5 gconstl)

As a lucky chance, the set X is our temporary TEMPl.
which is computed anyway. Thus this total filter can
efficiently be simulated in QUEL by making the following
choice:

Qfy[r 51 Ez ’ R.r5 = Tpl.rS ’

Benchmark descriptim:
The benchmarked database was the synthetic database 01
[BIT83]. which we found to be a very helpful test tool. The
names of relations and attributes are self-explanatory, only
the attributes needed are listed below. (E.g. onektup is a
relation of cardinality 1000. hundreda is an attribute whose
domain ranges from 1 to 100)

Relations:
onektup (hundreda. thousanda, uniquela,

unique2a. stringula. . . . >
twoktup (hundredb. thousandb. uniquelb. . . . >
fivektup (hundredc. thousandc, . . . >

We made the following assignments for the relations and
attributes appearing in query schema 1 and 2:

R = onektup. S = twoktup. T = fivektup
rl=. . . .r2 = stringula, r3 = unique2a.
r4 = thousanda. r5 = . . .
sl = thousandb. s2 = hundredb. s3 = uniquelb
tl = hundredc, t2 = thousandc

The following benchmark series were performed on the
database with no useful storage structures and secondary
indexes available:

For queryschema 1:
Series 1.1: rl = uniquela. r5 = hundreda
Series 1.2: rl = hundreda. r5 = uniquela

For queryschema 2:
Series 2.1, series2.2 with similar
correspondences for rl and rS.

The benchmarks were run on a VAX/780 in multiuser
mode. The performance results are depicted in the appen-
dix. each series run for several constl. const2 values. The
measurements were obtained by using RTI-Ingres’ perfor-
mance monitoring facilities. Besides the consumed CPU time
and totally elapsed time. the cardinality of the final result is
listed as well. As can be observed from these tables, there
are huge gains for the transformation algorithms with
dynamic filters. They outperform Ingres’ processing algo-
rithms up to a factor of 5 for schema 1 and up to a factor of
10 for the complex schema 2. Clearly dynamic filtering
achieves a higher speed-up for more complex queries. Note
also that the transformations were coded in EQUEL
(1.~~076 I). which introduces a considerable performance
penalty. Thus dynamic filters are shown not only to be a
useful tool for join processing ([KIE84]), but also for corre-
lation queries. Moreover. the set-oriented transformation
approach. which materializes several temporary relations,
proves to be also viable in the context of a conventional,
non-distributed database system. Also, it should be recalled
that Kim’s transformations can likewise be ameliorated by
dynamic filters, which will give another performance gain in
addition to what is indicated in [KIM821 compared to
nested-iteration processing.

In conclusion, let us state one more observation. For some
variations of the complex schema 2 we encountered situa-
tions where the results of the supposedly equivalent query
schema and those of the transformed version differed in so
far as the original schema delivered one tuple less in the
result. These mismatches must be contributed to the dupli-
cate problem. The preservation of duplicates for a subse-
quent aggregate computation cannot be guaranteed by the
query processor for complex queries. and schema 2 is an

247

example for thaL. So again a striking example showed up
that aggregates requiring duplicate preServation do not fit
well into relational algebra. at the time being. It is suspected
that similar problems exist not only for this benchmarked
database system. but also for other products.

5. CONCLUSION

In this paper we showed that for SQL-like correlation
queries involving the COUNT aggregate the transformation
algorithms described in the literature fail to yield correct
results for some cases. For the remaining correlation queries
(using MAX. MIN. SUM. AVG aggregates) those transfor-
mation algorithms are consistent with the desired semantics.
if NULL-values are used. On the other hand, the algorithms
used to process analogous QUEL-like queries are reported to
give the desired answers (up to some repairable bugs), at the
expense of less efficiency for non-COUNT aggregates. In
summary, the question. whether the discussed transforma-
tions of type-JA queries are equivalent to nested-iteration, is
answered in the next table.

Whether the SQL transformations can be adjusted in an
elegant way relying on the current semantics of WHERE . . .
GROUP BY clauses is questionable because of some inherent
semantical problems. To demonstrate this, a query given in
~C~~~~. for the well-known employee paradigm is

SELECT DNO FROM EMP
WHERE JOB = ‘CLERK’
GROUP BY DNO HAVING COUNT(*) > 10

The meaning of this query is supposed to be:
List the departments that employ rrwre than ten clerks.

Now consider the slightly changed query where we ask for
departments that employ less than ten clerks. This time the
current WHERE . . . GROUP BY evaluation order fails to
report departments that employ no clerks. In turn. QUEL
allows a consistent formulation. reporting also departments
without clerks.

RANGE OF E IS EMP
RETRIEVE (E.DNO >
WHERE

COUNT(E.NAME BY E.DNO
WHERE E.JOB = ‘CLERK’ > < 10

In [KIM821 it is stated that the reason for the less-than-
satisfactory performance of nested queries in existing

relational database s> slems is that most types of nesting are
not well understood. it should be added that these semantic
transformations are indeed an important step towards
efficiently processing nested queries. especially if dynamic
filters are applied in addition. The reported benchmarks
demonstrate that impressive performance improvements are
achievable. However, the well-known fact that aggregates
do not fit well into relational algebra has been pointed out
by illustrative examples. Doubtless, further work needs to
be done to integrate aggregates more smoothly into rela-
tional algebra: e.g. in [ROS84] it is stated that a compact
operator tree model covering the query class considered is
still lacking. Then the design of query evaluation algorithms
relying on query transformation will become a more reliable
and powerful tool for efficiently processing complex queries.
This is mandatory if complex applications such as expert
systems, built on top of a database system (see e.g.
[STO84]). are to be implemented sufficiently fast and
trustworthy.

Acknowledgment: I wish to thank Yannis Ioannidis for care-
fully reading a draft of this paper. Likewise I am grateful
to Michael Stonebraker for providing me the opportunity to
spend my scholarship at UC Berkeley.

Literature:

[BIT831

[CHA76]

[EPS79]

[JAR821

[KIE83]

[KIE84]

[KIE84b]

[KIM821

[KLU82]

D. Bitton. D.J. Dewitt. C. Turbyfill:
Benchmarking Database Systems: A Systematic
Approach, Proc. VLDB Florence. 1983, pp. 8-19.
D.D. Chamberlin. et al.:
SEQUELZ: A Unified Approach to Data Dzjnition,
Manipulation and Control, IBM J. Res.&Dev..
Vo1.20. No.6. Nov. 1976. pp. 560-575.

R. Epstein:
Techniques for Processing Aggregates in Relational
Database Systems, UC Berkeley 1979, Memo No.
UCB/ERL/ M79/8.

M. Jarke. J.W. Schmidt:
Query Prcxessing Strategies in the Pascal/R Rela-
tional Database Managemeni System, Proc. SIG-
MOD 1982, pp. 256 - 264.
W. Kiessling:
Database Systems for Computers with Intelligeti
Subsystems: Architecture, Algorithms, Optimiza-
tion, techn. report TUM-18307. Aug. 1983. Techn.
Univ. Munich (in German).
W. Kiessling:
Tuneable Dynumic Filter Algorithms for High Per-
formance Database Systems, Proc. Intern.
Workshop on High Level Computer Architecture.
Los Angeles. May 21-25 , 1984. pp. 6.10 - 6.20.

W. K&sling:
SQL-like and QUEL-like Con-e&ion Queries with
Aggregates Revisited, UC Berkeley 1984. Memo
No. UCB/ERL/84/75.
W. Kim:
On Optimizing an SQL-like Nested Query, ACM
TODS. Vol. 7, No. 3. Sept. 1982, pp. 443-469.
T. Klug:
Access Paths in the ‘Abe’ Statistical Query

248

Facilily. Froc. SIGMOD 1982, pp. 161 - 173.

[LOHS4] G.M. Lohman. et al.:
Optimization of Nested Quries in a Distributed
Relational Database, Proc. VLDB Singapore 1984.
pp. 403-4 15.

[MAKBl] A. Makinouchi. et al.:

[ROS84]

[RTI8 31

[STOIC]

1~~0801

[ST0841

[ZAN84]

The Optimization Strategy for Query EvaLua&ion in
RDR/Vl, Proc. VLDB Cannes 1981, pp. 518-529.

A. Rosenthal. D. Reiner:
Extending the Algebraic Framework of Query Pro-
cessing to Handle Outerjoins, Proc. VLDB Singa-
pore 1984. pp. 334-343.

Relational Technology Ingres
EQUEL/C User’s Guide Version 2.0 VAX/UNIX.
Jun. 1983.
M. Stonebraker. E. Wong. P. Kreps:
The Design and Implementation of INGRES, ACM
TODS. Vol. 1. No. 3. Sept. 1976. pp. 189-222.

M. Stonebraker:
Retrospection on a Database System, ACM TODS.
Vol. 5. No. 2. June 1980. pp. 225-240.

M. Stonebraker. et al.:
QUEL as a Data Type, Proc. SIGMOD 1984. pp.
208 - 214.

C. Zaniolo:
Database Relations with Null Values, Journ. of
Comp. and Sys. SC.. Vol. 28. No. 1. Febr. 1984.
pp. 142-166.

249

Appendix

Table A.1:Benchmarkseries 1.1.

constl consta card cp- cpusec elapsedsec elapsedsec
result RTI transfo RTI transfo

100 1200 507 184 45 375 111
60 1200 302 177 31 384 79
30 600 147 98 20 256 54
15 300 64 58 17 165 63

5 100 9 32 15 82 33

Table A.2 Ben&mark series 1.2.

constl const2 card cpusec cpusec elapsedsec elapse&xc
result RTI transfo RTI transfo

600 1200 49 66 46 180 124
300 600 52 43 30 116 86
150 300 47 31 23 54 66

50 loo 12 24 16 66 40

Table A3: Benchmark series 2.1.

constl const2 card cpusec cpusec elapsedsec elapsedsec
result RTI transfo RTI transfo

100 1200 496 790 109 1418 245
60 1200 304 784 75 1650 199
30 600 148 432 46 1459 197
15 300 71 251 36 1047 132

5 100 21 118 31 363 71

Table AA: Benchmark series 2.2.

const1 const2 card cpusec cpusec elapsedsec elapsedsec
result RTI transfo RTI transfo

600 1200 301 2916 920 10703 2514
300 600 149 1429 132 2388 340
150 300 78 745 68 1392 158

50 loo 21 302 39 1083 101

250

