G-WHIZ®, a Visual Interface for the
Functional Model with Recursion

Sandra Heiler and Arnon Rosenthal
Computer Corporation of America

G-WHIZ is a QBE-style interface for the
functional data model, with extensions that sup-
port recursively defirned structures such as part
hierarchies. Explicit joins are rarely needed
because set-valued and entity-valued functions of
the functional model are supported. The recur-
sive facilities are integrated with the rest of
the language. G~-WHIZ currently is being imple-
mented as the user interface to a CAD/CAM DBMS.

1. Introduction

G-WHIZ is a screen-oriented language for the
functional data model [Sh). It currently is
being implemented as the main interface to
CCDBMS, a CAD/CAM DBMS that must handle complex
interrelationships among the stored data. Its
style comes from Query-By-Example (QBE) [Zloof,
Date].

#Grids With Hierarchies, Imitating Zloof
Authors' addresses:

Sandra Heiler

Computer Corporation of America
1800 Diagonal Road

Alexandria, VA 22314

(703) 836-5200

heilerfcca or decvaxlccalheiler

Arnon Rosenthal

Computer Corporation of America
4 Cambridge Center

Cambridge, MA 02142

(617) 492-8860

arniefcca or decvaxlccalarnie

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect, commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and /or special permis-
sion from the Endowment.

Proceedings of VLDB 85, Stockholm

This paper concentrates on the two main
areas of G-WHIZ that significantly extend QBEE:

1. Use of the functional model, which simpli-
fies complex queries (explicit joins are
rare, and example elements nonexistent)

2. Constructs for defining and querying recur-
sively defined structures

2. The Functional Data Model

The basic constructs of the functional model
are the entity and the function, which model con-
ceptual objects and their properties. An entity
type corresponds to a base relation, a function
to an attribute. A function may be single-valued
or set-valued (have zero, one, or many values for
each entity), and its range may be simple (a
string or numeric type) or another entity type.

Relationships between entities are modeled
as entity-valued functions. For example, given
two types of entities, PARTs and DRAWINGs, the
drawing of a part can be defined as an entity-
valued function DRAWING(PART). The inverse func-
tion defines the relationship in the reverse
direction (i.e., PART_IN_DRAWING(DRAWING) yields
the PARTs represented in DRAWING).

Entity-valued functions may be single-valued
to represent one-to-one relationships or set-
valued to represent one~to~-many or many-to-many
(with set-valued inverses) relationships.
(Entity-valued functions may be implemented by
storing their values as entity identifiers or
they may be derived through uni-directional
outer-joins.)

Functions of related entities can be con
sidered derived functions of the base entity and
appear in the same view as the base entity
without an explicit join. In the above example,
functions of DRAWING (which is a function of
PART) are derived functions of PART. They can be
represented by function composition (nesting).
For example, the location of a drawing is a func-

tion of the part represented by the drawing
LOCATION(DRAWING(PART)).
The functional model supports entity super-

types and subtypes (i.e., generalization hierar-
chies [SS])). For example, the PART entity type

might be defined as a supertype of MADE PART and
PURCHASED _PART entity types as well as
ELECTRICAL_PART and MECHANICAL_PART entity types.
Such generalizations imply an assocciated inheri-
tance of functions,

These constructs result in several important
differences between the relational model and the
functional model that are reflected in G-WHIZ
[Man].

1. Since functions may take on entity values,
functions from a related entity may be
referenced by function composition without
an explicit join, For example, to select
PART entities based on the locations of
their drawings, an explicit join of PARTs

and DRAWINGs need not be specified;
LOCATION(DRAWING(PART)) can be referenced
directly. Further composition has the

effect of further joins, (1)

2. Set-valued functions allow multiple values
(including duplicates and null) for an
entity. For example, the DRAWING function

of PART entities may be defined as set-
valued to indicate that several drawings
describe the part without repeating the part

information. The relational model requires
a separate relation for each set~valued
function.

Entity subtyping allows an entity to be
several types at once, with the functions of
the supertypes inherited by the subtypes.
For example, a pump might be an
ELECTRICAL_PART as well as a PURCHASED PART
and also automatically be a PART, indicating
that it has all functions of both subtypes
ELECTRICAL_PART and PURCHASED PART and also
the functions inherited from the parent type
PART. The relational model requires
separate entities for each type.

An entity-valued function represents an
outer-join between entities of the base type
and entities of the function type. For

example, the DRAWING function of the PART
entity can be thought of as a uni-
directional outer join between PARTs and

DRAWINGs where the value of the function is
null for parts that have no drawings
representing them. Though outer-joins have

(1) Other approaches to a join-free interface
have been suggested. For example, in the
Universal Relation approach [Mai] the system
must decide what real-world objects are being
referenced, and find a join path among them.
Object identification and path selection is
based on names and dependencies, rather than on
explicit declarations of entities and func-
tions.

2IC

been added to the relational model, many
relational languages do not support them.

3. Background
Like QBE, G-WHIZ is a two-dimensional inter-
face, designed for simple terminals such as IBM

3270s. Operations and parameters are specified
in a grid that looks like the rows and columns of
a table. Table rows are equivalent to relational
tuples or entities and columns are equivalent to
attributes or functions of the entities. The grid
removes much of the syntax burden from the user,
allowing different parts of a complex query to be
generated in whatever order is convenient. The
facilities described in this section, except con-

ditional operations and views, are icdentical to
QBE.
Specifyine Operations

Queries are specified by entering selection
criteria (qualifications) in the columns of the
functions they qualify. Projections are per-
formed by deleting columns fram the table.
Operations I.(insert), U.(update), D.(delete),
and P.(print or display) are provided to operate
on entities (rows) or functions (columns).

To operate on entities or their functions,
the user specifies the entity type name in the
upper left corner of the grid; the system fills
in the function names, and the user specifies the
required operations in the columns of the grid.
For example, suppose the user wants to print the
values of all functions of PART entities where
NAME(PART) is "wing".

user.
FART |
E - -—
system:
PART | PART-NBR | NAME | COLOR | . . .
i ! 1 i !
user.
PART | PART-NBR | NAME | COLOR |
+ - - tom——— + -
p. | | wing ! i
Combining Qualifiers

ORed and the
For

Qualifiers in a column are
resulting column specifications are ANDed.
exampl e,

PART | PART_NBR | NAME | COLOR |...|COST
------ -’— e "L

F. | }

] !

- o+ -+
- t +

< 10
!

iwheel | grey
| | blue

displays values of all functions of PART entities
where ((NAME is "™wheel"™) AND (COLOR is "grey" OR
"blue") AND (COST < 10)). Comparators <,>,
<=z, >=, and ~(not) may be specified in qualif-
iers., The = sign is understood if no comparator
is specified. Complex qualifiers not fitting the
pattern may be specified within a column by a
Boolean expression using names of other functions
of the entity. (On the rare occasions where
alphanumeric literals conflict with function
names in the current view, the 1literals are
placed in quotes.)

icatio erat
First, entities that satisfy the grid's
qualification are selected. Then operators are

applied. Operators specified in the entity name
column affect all functions of the selected enti-
ties; operators specified in other columns affect
the specified functions of the selected entities.
For example,

PART-NBR |

e
+=-

PART | NAME | COLOR

bl

| | rim

ve

_— —

.
red U. blue |

selects entities where NAME is "rim" and COLOR is
"red", and updates COLOR to "blue".

We extend QBE to allow multiple operations
in a column. If an operator is specified by
itself (i.e., without a qualifier), it applies to
all values of that function in the selected enti-
ties. If it is specified next to a qualifier, a
subselection is performed on the entities that
satisefy the union of the qualifiers in that
column and the operation is performed only on

those that satisfy the associated qualifier. The
"otherwise" qualifier is specified as "?", For
example,
PART | PART_NBR | NAME | WIDTH
- - + .

! ! wing | 10 U. 10.1

! | | 20 U. 20.1

! ' | 7 U. WIDTH # 1.5
specifies that PART entities in which (NAME =

"ying") AND (WIDTH = 10 OR 20 OR anything else)
are to be selected. Then those in which WIDTH
10 have that value changed to 10.1 and those in
which WIDTH = 20 have that value changed to 20.1;
all others have the WIDTH value changed to WIDTH
® 1.5,

To insert a new row (entity), the user
specifies the I. operator in the entity name
column and the values of its functions as equali-
ties in the function columns. The idea and syn-
tax resemble equal ity qualifiers on any opera-
tion.

When display, update, and delete operations .
are specified, the system responds with the
nunber of entities that were selected (shown in
parentheses in the view name column). The user
can then display values of the functions of the
selected entities (before performing specified
updates or deletions), confirm update or delete
operations, or cancel the request.

Yiews

All access to data is through views. Each
stored entity type has a view (with the same
name) defined over it. The user first defines
some stored entity types and their functions,
much as tables are defined in QBE. New views are
created by selecting and projecting on existing
views, or extending them with derived or computed
functions (including entity-valued functions to
produce the equivalent of join views). A single

entity type underlies each view -~ the entity
type that underlies the view from which it was
derived.
The definition of a view includes:

1. The entity type and its functions

2. Selections

3. Projections

4. Formatting instructions, such as function

display widths

Functions of entities referenced through
entity-valued functions

Definitions of computed functions

In a hierarchical view, the successor func-
tion for the traversal and the beginning
node(s) (described in section 9.1)

The name of a view can act as a qualifier irn
the entity name column of another view or of an
entity-valued function. It represents the set of
entities defined by the view.

4. G-WHIZ Screen Format

The G~-WHIZ screen format is similar to that
of QBE, An entity type (or view name) is speci-
fied in the upper left corner, the names of func-
tions of the entity type are specified across the
top row, and operations and selection qualifiers
are specified in the rows and columns. G-WHIZ
uses an asterisk to identify functions that par-
ticipate in the primary key of the entity.

The functional model interface benefits from
some minor enhancements to the QBE screen format.
Set~valued functions are identified by a double
underline. Entity-valued functions (which also
may be set-valued) are marked by filler Llines
that precede and follow the function name in the
grid segment, double filler lines if the function
is both entity valued and set-valued. For exam-
ple:

PART |*PART _MBR! NAME |COLOR|...|=DRAWING=

e
t

indicates that PART NBR is an identifying (key)
function of PART, COLOR is set-valued, and DRAW-
ING is both entity-valued and set-valued.

G~WHIZ displays a pop-up menu of commands

and programmed function (PF) key meanings, to
help the user remember which commands are
relevant in the current context.
5. Set-Yalued Fupctions
The relational model's simplicity is partly
due to the fact that attributes are atamic. An

unfortunate consequence is that to associate a
set of values with a single entity, a join is
necessary. The functional model avoids these
joins by allowing a function value to be a set.
(Many proposals have been made to add set-valued
attributes to the relationmal model (e,g., [AB],
[Rks1).)

This section shows how G-WHIZ extends the
QBE-style interface to set-valued functions. The
extension is consistent with constructs like con-
ditional update from the basic interface.

When a set-valued function is qualified,
entities are selected if any value of the set-
valued function satisfies the qualifier. The
qualifiers "-" (null) or "~-" (not null) are used
to test whether the set is empty.

The insert (I.) column operator inserts a
value into the set of values of the function for
each selected entity. The display (P.), update
(U.), and delete (D.) column operators apply to
all values of the function, for each selected
entity, unless further qualified.

21¢

If operators are specified in conjunction
with qualifiers, the qualifier(s) are first used
to select a set of entities. Then each operator
is applied to the subset of those entities and
the particular values of the set-valued function
that satisfy its associated qualifier. (Results
are indeterminate if qualifiers overlap.) For

example, suppose that COLOR has been defined as
set-valued:
PART | NAME | . . . | COLOR
! tail | ired U. rouge
H | {blue U. bleu
In this example, entities in which ((NAME =
"tail") AND (any value of COLOR = T'"red" OR

In the selected entities,
are changed to "rouge" and

"blue®)) are selected.
COLOR values "red"
"blue" to "bleu".

When a new entity is inserted (I. row opera-
tor), multiple values may be listed in the column
for each set-valued function.

The display operator (P.), displays each
entity instance as a single row. If some func-
tion of that entity has a set with more than one
valve, the count of the set is displayed (in
parentheses). To display the values of the
entity's set-valued functions, the user moves the
cursor to the appropriate row and presses the
ZOOM key.

6. Entity-Valued Functjons

Entity-valued functions eliminate the need
for explicitly specifying joins., G-WHIZ incor-
porates these functions through the addition of a
single operator, EXPAND.

In the functional model, a relationship
between entities 1is represented by an entity-
valued function of one entity; the inverse rela-
tionship is represented by a function of the
other entity. For example, the relationship
between drawings and parts is represented by the
DRAWING function of PART and the inverse by a
PART_SHOWNN function of DRAWING.

When a view contains an entity-valued func-
tion, the user can include derived functions
(i.e., functions of the related entities) in the
view by positioning the cursor on the entity-
valued function and pressing the EXPAND key. For
example,

| expand

v key
PART | NAME | COLOR | ... |=DRAWING=
s takdataatae s 1 T 1 R DL 23 £+
' ! ! |

which results in

{z====DRAWING====zz===
PART |NAME| COLOR {...} |DNBR|-LOCN-|PAGES
----- LD LS B 1 ol L e el Lttt Ll

| ! (R | |

Now the user can select PART entities based on
values of functions of their related drawings,
and display functions of both PART and DRAWING,
as shown below:

}:::::DRAH]NG::::::::

PART | NAME | COLOR |...| |DNBR|-LOCN~-|PAGES

----- e mreem S SR S S S e e S S e o o e v o e
{P.wing} I B D PO | >4

The above example selects PARTs where NAME-wing
and any drawing of the part has PAGES(DRAWING)>4
and displays the values of NAME and associated
DNBRs of the drawings of the selected PARTs.

Multiple levels of entity-valued functions
can be EXPANDed. For example, the location of a
drawing (LOCN), which is shown as entity-valued,
could be expanded to show its functions as
derived functions of PART.

The EXPAND operation circumvents an awkward
feature of the basic functional model. When
referencing several functions of a related
entity, it is awkward to repeatedly express the
function composition. For example:

Retrieve (PAGES(DRAWING(PART)), DNBR(DRAWING(PART))

where PAGES(DRAWING(PART)) <16)

Updating through Views

G-WHIZ has simple (though limited) semantics
for view update. Only entities of the type
underlying the view can be inserted, deleted, or
updated and only functions of the entity underly-
ing the view can be inserted, deleted, or
updated. Computed and derived (nested) functions
are not updatable.

When insert, delete, or update operations
are specified on entity-valued functions, they
operate on the references to the related entity
type in the entities of the primary type that
underlies the view. They cannot insert or delete
entities of the related type, or update functions
of that type. For example,

Ny
Aat

| =2======DRAWING====z=z==

PART |NAME! COLOR |...| |DNBR{-LOCN= | PAGES

Bttt L 21334 D Ll 23321 LD el L aubeiatdnd
{pump| I | 1. |8454] !

inserts a reference to the DRAWING entity whose
DNBR is 8454 into the DRAWING function of the
PART entity whose NAME is pump. (If no such
DRAWING entity exists, the insert operation is
rejected.) I., D., and U. operators cannot be
specified in the expanded columns of the related
entity type.

7.1 DRefining Simple Computed Functions

Computed functions may be included in a G-
WHIZ view by inserting a column, naming it, and
specifying its value as an equality in the
inserted column, similar to the way values are
specified when a new row is inserted. The equal-

ity may be a constant, an expression, or null
(-). For example,

] insert

\'f key

PART |NAME}...|HEIGHT |WIDTH]| AREA

- - + + .

Other qualifiers may be combined with the equal-

|HEIGHT * WIDTH

ity in a boolean expression to specify condi-
tional values. The notation below uses & to
denote "where <conditiond", The usage is con

sistent with notations for selecting the proper
value for the added function, and for specifying
values to be inserted. For example:

] insert
v key
veel COLOR_CODE teos

- f———
|
'

| bright & (COLOR = red | yellow)
! dark & (COLOR = blue|black|brown)

The newly~-defined function normally is single
valued. It will be set-valued if multiple equal~
ities are specified or if the expression evalu~-
ates to a set. A computed function can be
defined to contain a subset of values of another
set-valued function. For example, the following
specification defines RED BLUE, which contains
the subset of values of COLOR that are equal to
red or blue. It is null for entities in which no
value of COLOR is red or blue.

| insert
v key
PART |NAME} COLOR | ... | RED _BLUE
- —— - D s 1t T 1 1t Lttt T X 2 I I 3 2 S T
!] | |{COLOR & red
' ! | {COLOR & blue

Arithmetic expressions and conditions 1in
function definitions or qualifiers may be contin-
ued on the next line by ending a 1line with an
arithmetic or logical operator or an open
parenthesis,

7.2 Defining Entity-Valued Computed Functions

Entity~valued computed functions are defined
by identifying the range (entity type or view
name) of the new function and specifying the con-
dition that determines the values of the new
function., New entity-valued functions may be
computed to capture a value-vased join condition,
to define unions, or to subset an existing
entity-valued function based on some qualifica-
tion.

For example, suppose the user wants to
define a new entity-valued function of PART,
whose values will be the set of VENDORs that make
that PART, He associates appropriate vendor
information with PART entities by adding an
entity-valued function, which he calls SOURCE in
this case (he could as well call it VENDOR), to
the PART view, defining its range as VENDOR, and
specifying its value to be the set of VENDORs
satisfying the Jjoin condition MADE_BY(PART) =
COMPANY(VENDOR).

] insert
v key
PARTINAME|...|MADE_BY/|...|=SQRCE=
- + + + +-==q4z=S====EC
| [! | VENDOR
! expand
v key
|=z=2z22=SWRCE==zz==z=
PARTINAME|...|MADE_BY|...| |COMPANY|ADDRESS
B bt auatt) it -1 ad +
! b ! | IMADE_BY|

Each PART entity will be associated with SOURCEs
(VENDOR entities) in which COMPANY(SOURCE) =
MADE_BY(PART).

Function names among related entities may be
qualified by their entity type to distinguish
dupl icates.

214

8. Recursivelv Defined Views

Current systems for bill-of-materials and
other applications over recursively-~defined
"path® structures use applications code to navi-
gate the database. G_WHIZ integrates facilities
for processing such structures into the query
language of the DBMS. The integrated architec-
ture uses DBMS facilities to handle query
language commands, query optimization, query exe-
cution (e.g., handling temporaries), and the user
interface.

In G-WHIZ, a hierarchical yview is a view
specified recursively, as a rooted tree. We use
the terms "hierarchical view," ‘"hierarchy," and
"recursively-defined view" synonymously. A
hierarchical view H is defined over an existing
view (or entity type) V by specifying:

1. The entities in H, Each entity in H
corresponds to a node of the tree. The
entities in H include the functions of the
entities in the underlying type V, plus some
recursively-defined functions. Each entity
instance in H corresponds to some entity
instance of V. The entities present and the
values of the new functions are computed
recursively, as desqribed later.

2. A successor function. One of the functions
of V 1is selected as the gugcessor funetion
(suce()) of the hierarchy H. succ() must be
entity-valued, ranging over entities of the
same type as V. It must be acyclic; that is,
repeated applications of succ() should not
return to the starting point. A hierarchy
can be defined over any view that includes a
successor function,

3. Root node(s). Some instance(s) of V must be
selected as the beginning of the recursive
traversal. For simplicity, our examples
assume the traversal begins at a single
entity, EO in the underlying view V.

Beginning at EO, the hierarchy's nodes con-
tains a node corresponding to EO, plus the
hierarchies rooted at successors(E0). For a Part
hierarchy for an airplane, H might consist of the

airplane, and the hierarchies of each immediate
successor of airplane. (Immediate successors of
airplane might be left wing, right wing,

fuselage, and tail). If entity E in V is the
successor of two different entities that appear
in the hierarchy, E (and the hierarchy below E)
will appear below each of them., For example, a
punp (and its decomposition) may appear several
times in the PART hierarchy of an airplane, If
multiple beginning nodes have been selected, the
hierarchical view has a tree below each.

The full hierarchy can be enormous., There-
fore G-WHIZ provides facilities for the user to
form subsets of the hierarchy in several ways:

- Begin the traversal deeper in the hierarchy
(e.g., form the hierarchy rooted at cockpit,
not at airplane)

Restrict the successor function so entire sub-
trees are skipped (e.g., consider only sub-
trees whose root entity is manufactured by XYZ
Corp.)

After the hierarchic view has been computed,
restrict it wusing ordinary G-WHIZ entity
selection.

A query language extension was necessary to
handle recursive hierarchies because the path
length in the hierarchy depends on the stored
entity instances, not on the schema. No fixed
number of expansions of the successor function

can be guaranteed to produce all levels of the
tree. Furthermore, each expansion would create
rew functions, while the hierarchy should have

the same functions in all the nodes, aligned 1in
columns to permit further selections.(2)

8.1 Defining a Recursive Hierarchy

To define a recursive hierarchy, the user
displays a view and chooses a successor function
by placing an H. in the function column. (The
system may check whether the relationship really
is acyclic.) Qualifiers preceded by B. are
applied to select beginning node(s) to be used as
the root(s) of traversals. If no beginning qual-
ifiers are specified, entities that are not
referenced by any successor function are used as
the beginning nodes.

The grid below defines a hierarchical view
over PART, using the SUBPART function as the suc-
cessor function and beginning at the PART named
"wing".

PART | NAME } COST | ... |=SUBPART=

!B, wing! | ! H.

Hierarchies are defined over views, not
merely over stored entity types. Therefore, a

successor function can be a computed function or
it can be derived by composition. For example,

(2) The problem is shared by all "first order
languages," including QUEL, SQL, ete. [AU,
Mai]. QBE [Datel], Oracle [JS], and a proposal
in [Cle] 4include facilities for defining and
manipulating hierarchies, though recursively-
defined functions are not discussed. The exact
power of these systems is hard to judge, be-
cause descriptions in the literature are some-
what sketchy.

215

the grids below define a computed function that
includes only SUBPARTs whose cost is a signifi-
cant fraction of the PART's cost. Then they
define a hierarchical view beginning at the wing,
using the computed successor function MAJOR_SUB.

insert key
t
i
|==SUBPART=== v
PART|NAME {COST!...] |INAME|COST!====MAJOR_SUB===
+ + ik & Lk et ez I 1 LA L L L L S
| | . | ISUBPART & COST >
! ! R | ! .1%COST(PART)
}==SUBPART===|
PART|NAME |COST|...| |NAME|COST|=MAJOR_SUB=
- o o = LI Dt L o Lt S et - 5 3+ 4
{B. wing| ! P | | H,

Another example: suppose Circuits have multiple
diagrams and that each diagram can include
several component circuits. The specification
below defines a hierarchy of circuits. The suc-~
ce ssor function is the derived function
SUB__CIRCUIT(DIAGRAM(CIRCUIT)).

|====z=======DIAGRAM:=
IDNBR{AUTHOR | =SUB_CIRCUIT=

! b ! ! H.

TIhe Result of a Hierarchic View Definition

The result of a hierarchy definition over
viewname is a hierarchical view (called
H.viewname). G-WHIZ autamatically defines
recursively-computed functions LEVEL., PATH., and
PREV. For example:

H.PART|NAME|COST!...|LEVEL.| PATH.|=/\PREV.-|=\/SUBPART=
———e

LEVEL. gives the entity's depth in the tree
(starting at 1). PATH. gives the position in the
traversal of the tree, For example, the fourth
SUBPART of the second SUBPART of the beginning of
the first tree has PATH. = 1.2.4.

PREV. is an entity-valued function that
gives the hierarchic predecessor (parent) of an
entity in the view. The hierarchic predecessor
of an entity in the hierarchy is unique, even if
the underlying PART is a SUBPART of several dif-
ferent entities. Since PREV. is entity-valued,
it can be EXPANDed like any other entity-valued
function. PREV. is particularly useful for
defining functions in terms of the value of that
function in the PREV. node.

PREV. is marked with an up arrow (/\); the
successor function (SUBPART) is marked with a
down arrow (\/). If no selection on beginning
entities is specified, the resulting hierarchy is
rooted at entities that have no predecessor
(i.e., that are not SUBPARTs). The functions,
LEVEL., PATH., and PREV. are subject to all the
usual operations on computed functions, except
that their names are reserved words.

The content of a hierarchical view is
defined by the the algorithm below (though the
actual computation strategy may be different).
Nodes of the hierarchy are instances of the view
against which the hierarchy was defined.

1. Find view entities satisfying the Begin (B.)
qualification and begin building a tree fram
each of these.

For each entity in the hierarchy, include it
and its children 1in the hierarchical view
via the successor function. Evaluate any
computed functions (including recursive
functions such as PATH.) all of whose data
is available from the underlying view or
from the PREV. entity in the hierarchy.
Continue by traversing each successor of a
chosen entity.

Perform additional traversals to compute
recursively-defined functions whose argu-
ments became available on the previous
traversal.

After the entire tree has been traversed and
all recursive functions computed (this may
require extra traversals), apply the qualif-
ication specified by the qualifiers without
a prefix. This step is an ordinary qualifi-
cation on the set of entities seen in the
hierarchical view. For example, the grid
below begins traversal for H.PART at the
wing, and after traversal is complete
imposes an ordinary selection on the result-
ing view, selecting parts whose COST>100 and
LEVEL.>3.

|B.wing} >100 | I >3 |

8.2 Recursively-Defined Functions

Application systems that traverse hierar-
chies often compute functions that summarize
information about the hierarchy. LEVEL, and
PATH. are two examples, One might also recurse
upward, summing the weights of all PARTs des~
cended from a given PART. These computations
cannot be expressed in first order queries on the
set of PARTs.

The powerful function-definition mechaniams
of G-WHIZ can be used for these recursive defini-
tions, Functions derived in such a way can be
queried like amy other computed function or used
in the specification of the beginning node(s) or
successor function of another hierarchical view
built over the first. For example, LEVEL. is a
system-defined recursive function. (If the
underlying view already has a function LEVEL.,
PATH,, or PREV., the new functions are denoted
LEVEL2., PATH2., PREV2., etc.)

The following grids show a hierarchy defined
over an earlier hierarchical view. In the exam-
ple, the first hierarchy uses the successor func-
tion SUBPART and begins at the wing. The second
hierarchy is built over the first and begins at
the 4th level of the first hierarchy.

PART | NAME | COST |...}=SUBPART=

|B. wing] .

H.PART|NAME|COST}...|LEVEL. | PATH. | -/\PREV,~|=\/SUBPART=

P

| B.4 | | |

The user need not know how to define hierar-
chies in order to define recursive functions.
Given a hierarchical view that already is
defined, the wuser simply inserts a new function
and provides a defining expression by using func-
tions of PREV. for dowmward computations, or by
using the successor function (e.g. SUBPART) for
upward computations. (Dowmward and upward recur-
sions cannot be in the same function definition).

The next example computes Cumulative Value
Added (CUM_VAL_ADD) for each PART in the H.PART
hierarchy by summing Value Added (VAL_ADD) for
all PARTs below it in the hierarchy. The compu-
tation proceeds recursively fram SUBPARTs to
PARTs. The SUM. function returns 0 when summing
over an empty set so we need not specify an ini-
tial value in this case,

Def ining a Function by
Aggregating Over Successors

| insert
v key
CUM_VAL_ADD | =\/SUBPART=

|VAL_ADD + H
! SUM, (CUM_VAL_ADD(SUBPART)) !

H. PARTINAME]|...|VAL_ADD{

oo
P

The next example shows a function recur-
sively computed from a PART's hierarchic prede-
cessor,

Assume that the hierarchy consists of physi-
cal parts where each PART appears only once as a
SUBPART. Suppose OFFSET(PART) contains the x-
distance between the leftmost edge of PART and
the leftmost edge of PREV.(PART) (its immediate
parent). The cumulative offset (relative to the

entity at the top of a traversal) is the sum of

the offsets along the path. We qualify the
definition to set CUM _OFFSET to 0 at the top of
the current traversal.

Defining a Function by
Aggregating Over Predecessors
H.PARTINAME|...|/\PREV. |OFFSET]| CUM_OFFSET |=\/SUBPART:

oo I 10 & PREV. - P

| | | | | |

| o | | (OFFSET + !

| I | | CUM_OFFSET(PREV.)) &l

| | | | | PREV. "~ |
CUVN_OFFSET of the top of this view is 0, Dbecause

PREV.(PART) at the top of the hierarchy is -
(null).
8.3 Monotonicity and Geometry

When a hierarchy is defined, the system asks
the user which functions always increase or
decrease between an entity and its successors.

The user can specify, for example, that
WEIGHT =< WEIGHT(PREV.).
This monotonicity declaration is wused for

conventional query optimization and for improving
the user interface. For example, given a query:

PART { NAME | WEIGHT |...|=SUBPART=
- 4 -+ Fmmwmtzsszzz==2

iB.wingl >10 | { H.

it is unnecessary to traverse SUBPARTs of PARTs
weighing =< 10. Monotonicity also is used to
reduce the amount of data presented to the user.
If we return the information that a seat weighs
more than 10 pounds, the interface may suppress
superparts of the seat (e.g., cockpit, fuselage,
and airplane). See [RHMB4] for a full treatment
of monotonicity.

Hierarchical Views for Geometric Data

The CAD/CAM data in CCDBMS requires a data-
type to approximate geanetric objects.
GEOM_OBJ(PART) is an entity-valued function that
stores the PART's shape, and also the position
and location relative to each superpart. A
recursive function POSITION (generalizing the
OFFSET example) 1is defined to give the 3-
dimensiomal offset and orientation of the PART
relative to the beginning of a hierarchy.

GEOM_(BJ has several predefined functions
(e.g., DISTANCE., EXTEND.) and predicates "con-
tains", "contained in", Tproperly intersects",

etc. The use of functional notation made it easy
to include the abstract data type and specialized
built-in functions and predicates. The monotonic

=11

behavior of these functions and predicates is
predeclared to the system. For example, if a
region contains a PART, it contains all

SUBPART(PART) .

Note that only relative position within the
immediate superpart is physically stored. Sub-
part positions within an item are stored only
once, regardless of how many times the item is
used in the top-level product. Also, when the
jtem is moved within its superpart, the relative
position of the item's subparts remain fixed, and
there are no stored absolute positions to be
upda ted.

CCDBMS gecametric facilities are not intended
to perfectly represent shapes of three-
dimensional objects, Solid modelling was too
costly for our goal, which was to permit database
queries that would limit the number of objects
that would need careful inspection, Approxima-
tions using extents boxes were sufficient.

8.4 Further Questions about

Recursive Hierarchies
We are currently investigating several
issues:

1. Aggregation facilities fram multiple parents

In part hierarchies, each path to a

part type (e.g., bolt) represents a dif-
ferent physical object, In some other
structures (e.g., task scheduling networks)

the object reached is the
of the path. The two behaviors must be dis~
tinguished, and facilities provided to
aggregate information obtained along all the
paths,

same, regardless

Query optimization

We will investigate optimization stra-
tegies for various types of queries. [Mel
investigated queries that touch nearly all
the stored entities. However, a very dif-
ferent kind of query processing strategy 1is
needed for an interactive system where most
queries touch only a s=mall subset of the

entities.

Architectural issues also will be
investigated. In particular, how can optim~
ization routines for hierarchies be
integrated with the rest of a query optim
izer?

3. Additional kinds of predicates

For example, "Between" predicates, as

in Find assemblies within the tail that

include bolt type B123.

4, Facilities for defining a new hierarchy from
a given one

We also want to make it easier to
define a new hierarchy based on an existing
one using its recursively-computed functions
to specify the beginning nodes or the suc~
cessor function.

Update

For hierarchies where no underlying
entity appears more than once, update should

be possible.
References
[AB] S. Abiteboul, N. Bidoit, "Non-First

Normal Form Relations to Represent Hierarchically
Organized Data", ACM Symposjum on Erinciples
Database Systems, R. Fagin (ed.), 1984, 191-203

{AU] A. Aho and J. Ullman, "Universality of Data
Retrieval Languages", 6th ACM Symposjug on Prin-
ciples of Programming Languages, 1979.

[Cle] E. Clemons, "Design of an External Schema
Facility to Define and Process Recursive Struc-
tures", ACM Traps. Database Syst., Vol. 6, No. 2,
June 1981, 295-311.

[Date] C.J. Date, Ap JIntroduction to Database
Systems, Addison Wesley, 1977, pp 137-152.

[JS] G. James, W. Stoeller, "Operations on Tree-
Structured Tables", X3H2-26-15 Standards Commit-
tee Working Paper, 1982, pp 81-92.

D. Maier, The Theory of Relational Data-
Computer Science Press, Rockville, MD

[Mail
bases,
1983.

[Man] F. Manola, "A Comparison of the Daplex and
Relational Data Models in the CCIBMS Preliminary
Design, ™ CCA Report, July, 1984.

[Me] T. Merrett, Relational Information Systems,
Reston Publishing, Reston VA, 198Y4.

[RHM] A. Rosenthal, S. Heiler, F. Manola, "An
Example of Knowledge~Based Query Processing in a
CAD/CAM DBMS™, VDB Conference, 1984, Singapore,
363~370.

[RKS] M Roth, H. Korth, A. Silberschatz, "Theory
of Non-FlIrst-Normal~Form Relational Databases",
University of Texas Computer Science TR-84-36.

[(Sh] D. Shipman, 'The Functional Data Model and

the Data Language DAPLEX', ACM Trans. Database
Syst., Vol. 6, No. 1, March, 1981.

o1t

{sS} Smith, J.M. and Smith, D.C.P., Database
abstractions: Aggregation and generalization, ACM
m' R&mﬂaﬁm- 2121 June 19770 105‘1330

[Zloof] M. Zloof, ™"Query By Example", Prog.
NCCyl, May, 1975.
Acknowledgements

The language presented in this paper was

originally sponsored by General Dynamics Data
Systems Division. Further research on hierarchic
facilities was sponsored by CCA and DARPA,

Bill Harrelson, Mort Goldman, Celia Shapiro,
Jan Dreisbach, Deborah Hamill, and Lisa Haflin
have participated in design or implementation of
the G-WHIZ language and interactive interface.
Bill Holmes (of General Dynamics), Richard Meier,
Peter Gutterman, Frank Manola, and Umesh Dayal
have made useful suggestions about the presenta-
tion,

The name G-WHIZ can be blamed on Mort Gold-
man and Celia Shapiro.

