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Abstract 

G-WHIZ is a QBE-style interface for the 
functional data model, with extensions that sup- 
port recursively defined structures such as part 
hierarchies. Explicit joins are rarely needed 
because set-valued and entity-valued functions of 
the functional model are supported. The recur- 
sive facilities are integrated with the rest of 
the language. GWHIZ currently is being imple- 
mented as the user interface to a CAD/CAM I.Bt%3. 

1. - 

G-WHIZ is a screen-oriented language for the 
functional data model [Sh]. It currently is 
being implemented as the main interface to 
CCDBW, a CAD/CAM DBMS that must handle complex 
interrelationships among the stored data. Its 
style comes fran Query-By-Example (QBE) [Zloof, 
Date]. 
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This paper concentrates on the two main 
areas of G-WHIZ that significantly extend QBE: 

1. Use of the functional model, which simpli- 
fies complex queries (explicit joins are 
rare, and example elements nonexistent) 

2. Constructs for defining and queryir* recur- 
sively defined structures 

The basic constructs of the functional model 
are the entity and the function, which model con- 
ceptual objects and their properties. An entity 
type corresponds to a base relation, a function 
to an attribute. A function may bs single-valued 
or set-valued (have zero, one, or many values for 
each entity), and its range may be simple (a 
string or nuneric type) or another entity type. 

Relationships between entities are modeled 
as entity-valued functions. For example, given 
two types of entities, PARTS and DRAWINGS, the 
drawing of a part can be defined as an entity- 
valued function DRAWING(PART). The inverse func- 
tion defines the relationship in the reverse 
direction (i.e., PART-IN-DRAWING(DRAWING) yields 
the PARTS represented in DRAWING). 

Entity-valued functions may be single-valued 
to represent one-t*one relationships or setc 
valued to represent one-ternany or many-ternany 
(with set-valued inverses) relationships. 
(Entity-vslued functions may be implemented by 
storing their values as entity identifiers or 
they may be derived through uni-directional 
outer-joins.) 

Functions of related entities can be con- 
sidered derived functions of the base entity and 
appear in the same view as the base entity 
without an explicit join. In the above example, 
functions of DRAWING (which is a function of 
PART) are derived functions of PART. They can be 
represented by function composition (nesting). 
For example, the location of a drawing is a func- 
tion of the part represented by the drawing 
LOCATION(DRAWl.NG(PART)). 

The functional model supports entity super- 
types and subtypes (i.e., generalization hierar- 
chies [SSI)). For example, the PART entity type 
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might be defined as a supertype of MADE-PART and 
PURCHASED-PART entity types as well as 
ELECTRICAL-PART and MECHANICAL-PART entity types. 
Such generalizations imply an associated inheri- 
tance of functions. 

These constructs result in several important 
differences between the relational model and the 
functional model that are reflected in G-WHE 
[Man]. 

1. Since functions may take on entity values, 
functions frao a related entity may be 
referenced by function composition without 
an explicit join. For example, to select 
PART entities based on the locations of 
their drawings, an explicit join of PARTS 
and DRAWINGS need not be specified; 
LOCATION(DRAWING(PART)) can be referenced 
directly. Further composition has the 
effect of further joins.(l) 

2. Set-valued functions allcm multiple values 
(including duplicates and null) for an 
entity. For example, the DRAWING function 
of PART entities may be defined as set- 
valued to indicate that several drawings 
describe the part without repeating the part 
information. The relational model requires 
a separate relation for each set-valued 
function. 

3. Entity subtyping allows an entity to be 
several types at once, with the functions of 
the supertypes inherited by the subtypes. 
For example, a PWP might be an 
ELECTRICAL-PART as well as a PURCHASED-PART 
and also automatically be a PART, indicating 
that it has all functions of both subtypes 
ELECTRICAL-PART and PURCHASED-PART and also 
the functions inherited from the parent type 
PART. The relational model requires 
separate entities for each type. 

4. An entity-valued function represents an 
outer-join between entities of the base type 
and entities of the function type. For 
example, the DRAWING function of the PART 
entity can be thought of as a uni- 
directional outer join between PARTS and 
DRAWINGS where the value of the function is 
null for parts that have no drawings 
representing them. Though outer-joins have 

--- 

(1) Other approaches to a join-free interface 
have been suggested. For example, in the 
Universal Relation approach [Mail the system 
must decide what real-world objects are being 
referenced, and find a join path among them. 
Object identification and path selection is 
based on names and dependencies, rather than on 
explicit declarations of entities and func- 
tions. 

been added to the relational model, many 
relational languages do not support them. 

3. Backaround 

Like QBE, GWHIZ is a two-dimensional inter- 
face, designed for simple terminals such as IBM 
3270s. Operations and parameters are specified 
in a grid that looks like the rows and columns of 
a table. Table rows are equivalent to relational 
tuples or entities and colons are equivalent to 
attributes or functions of the entities. The grid 
removes much of the syntax burden from the user, 
allowing different parts of a complex query to be 
generated in whatever order is convenient. The 
facilities described in this section, except con- 
ditional operations and vi-s, are identical to 
QBE. 

Onerations 

Queries are specified by entering selection 
criteria (qualifications) in the columns of the 
functions they qualify. Projections are per- 
formed by deleting columns fran the table. 
Operations I.(insert), U.(update), D.(delete), 
and P.(print or display) are provided to operate 
on entities (rows) or functions (columns). 

To operate on entities or their functions, 
the user specifies the entity type name in the 
upper left corner of the grid; the system fills 
in the function names, and the user specifies the 
required operations in the colwans of the grid. 
For example, suppose the user wants to print the 
values of all functions of PART entities where 
NAm(PART) is "wing". 

user: 
FART 1 

--------+-------------------------------~- 

system: 
PART 1 FART-NBR 1 NAm 1 COLOR ! . . . 

-m------+ ----------+-------+-------+------- 
I I I I 

user: 
FART 1 PART-NBR I NAt43 1 COLOR I 

---------+----------+- --em--+ ------- + -^----- 
P. I I wing I I 

CombViers 

Qualifiers in a column are ORed and the 
resulting column specifications are ANDed. For 
example, 
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PART 1 PART-NBR 1 NAM 1 COLOR I...lCOST 
------+---------+------+ --m----+---+--m- 

F. 1 Iwheel I gray I I< 10 
I I Iblue I I 

displays values of all functions of PART entities 
where ((NAM3 is "wheel") AND (COLOR is "grey" OR 
"blue") AND (COST < 10)). Comparators =, <,>, 
<=, >=, and "(not) may be specified in qualif- 
iers. The = sign is understood if no comparator 
is specified. Complex qualifiers not fitting the 
pattern may be specified within a column by a 

Boolean expression using names of other fI,ur&iOnS 
of the entity. (On the rare occasions where 
alphanuneric literals conflict with function 
names in the current view, the literals are 
placed in quotes.) 

ADDliCatiOn of ODeratorg 

First, entities that satisfy the gid's 
qualification are selected. Then operators are 
applied. Operators specified in the entity name 
column affect all functions of the selected enti- 
ties; operators specified in other columns affect 
the specified functions of the selected entities. 
For example, 

PART 1 PART-NBR 1 NAM3 1 COLOR I . . . 
-e-m---+ ---------+-----+ ------------- +--- 

I I rim I red U. blue ( 

selects entities where NAM3 is "rim" and COLOR is 
"red", and updates COLOR to "blue". 

We extend QBE to allow multiple operations 
in a column. If an operator is specified by 
itself (i.e., without a qualifier), it applies to 
all values of that function in the selected enti- 
ties. If it is specified next to a qualifier, a 
subselection is performed on the entities that 
satisfy the union of the qualifiers in that 
column and the operation is performed only on 
those that satisfy the associated qualifier. The 
"otherwise" qualifier is specified as n?n. For 
example, 

PART I PART-NBR 1 NAM3 ; WIDTH 
-----+----------+- -----t----------------- 

I I wing I 10 U. 10.1 
I I I 20 u. 20.1 
I I I ? U. WIDTH l 1.5 

specifies that PART entities in which (NAm = 
"wing") AND (WIDTH = 10 OR 20 OR anything else) 
are to be selected. Then those in which WIDTH = 
10 have that value changed to 10.1 and those in 
which WIDTH = 20 have that value changed to 20.1; 
all others have the WIDTH value changed to WIDTH 
l 1.5. 

To insert a new row (entity), the user 
specifies the I. operator in the entity name 
collrmn and the values of its functions as equali- 
ties in the function cwlmns. The idea and syr+ 
tax resemble equality qualifiers on any opera- 
tion. 

When display, update, and delete operations 
are specified, the system responds with the 
nuuber of entities that were selected (shown in 
parentheses in the view name column). The user 
can then display values of the functions of the 
selected entities (before performing specified 
updates or deletions), confirm update or delete 
operations, or cancel the request. 

All access to data is through views. Each 
stored entity type has a view (with the same 
name) defined over it. The user first defines 
some stored entity types and their functions, 
much as tables are defined in QBE. New views are 
created by selecting and projecting on existing 
views, or extending them with derived or computed 
functions (including entity-valued functions to 
produce the equivalent of join views). A single 
entity type underlies each view -- the entity 
type that underlies the view frao which it was 
derived. 

The definition of a view includes: 

1. The entity type and its functions 

2. Selections 

3. Projections 

4. Formatting instructions, such as function 
display widths 

5. Functions of entities referenced through 
entity-valued functions 

6. Definitions of computed functions 

7. In a hierarchical view, the successor func- 
tion for the traversal and the beginning 
node(s) (described in section 9 .l) 

The name of a view can act as a qualifier in 
the entity name colon of another view or of an 
entity-valued function. It represents the set of 
entities defined by the view. 



4. ii-u.LzScreenFormat 

The G-WHIZ screen format is similar to that 
of QBE. An entity type (or view name) is speci- 
fied in the upper left corner, the names of func- 
tions of the entity type are specified across the 
top raw, and operations and selection qualifiers 
are specified in the rows and columns. GWHIZ 
uses an asterisk to identify functions that par- 
ticipate in the primary key of the entity. 

The functional model interface benefits frcm 
some minor enhancements to the QBE screen format. 
Set-valued functions are identified by a double 
underline. Entity-valued functions (which also 
may be set-valued) are marked by filler lines 
that precede and follow the function name in the 
grid segment, double filler lines if the function 
is both entity valued and set-valued. For exam- 
ple: 

If operators are specified in corjunction 
with qualifiers, the qualifier(s) are first used 
to select a set of entities. Then each operator 
is applied to the subset of those entities and 
the particular values of the se&valued function 
that satisfy its associated qualifier. (Results 
are indeterminate if qualifiers overlap.) For 
e-pie, suppose that COLOR has been defined as 
se&valued: 

PART 1 NAM3 1 . . . ! COLOR 
-------+------+-------+==========r= 

I tail I [red U. rouge 
I I lblue U. bleu 

In this example, entities in which ((NAME q 

"tail") AND (any value of COLOR = "red" OR 
nbluen)) are selected. In the selected entities, 
COLOR values "red" are changed to "rouge" and 
"blue" to "bleu". 

PART ItPART-NBRI NAME iCOLORI...I=DRAWING= When a new entity is inserted (I. raw opera- 
---v-+ --------+-----+=====+---+========= tar), multiple values may be listed in the column 

I I I I I for each set-valued function. 

indicates that PARTJIBR is an identifying (key) The display operator (P.), displays each 
function of PART, COLOR is set-valued, and DRAW- entity instance as a single row. If some func- 
ING is both entity-valued and set-valued. tion of that entity has a set with more than one 

ValW, the count of the set is displayed (in 
G-WHIZ displays a popup menu of commands parentheses). To display the values of the 

and programmed function (PF) key meanings, to entity's set-valued functions, the user moves the 
help the user remember which commands are cursor to the appropriate row and presses the 
relevant in the current context. ZOOM key. 

5.&&-ValuedFunctions 6. &&&y-Valued Functions 

The relational model's simplicity is partly 
due to the fact that attributes are atanic. An 
unfortunate consequence is that to associate a 
set of values with a single entity, a join is 
necessary. The functional model avoids these 
joins by allowing a function value to be a set. 
(Many proposals have been made to add set-valued 
attributes to the relational model (e.g., lABI, 
iRKSI).) 

This section shows how G-WHIZ extends the 
QBGstyle interface to set-valued functions. The 
extension is consistent with constructs like con- 
ditional update frau the basic interface. 

When a set-valued function is qualified, 
entities are selected if= value of the set- 
valued function satisfies the qualifier. The 
qualifiers N-n (null) or n--n (not null) are used 
to test whether the set is empty. 

Entity-valued functions eliminate the need 
for explicitly specifying joins. G-WHIZ incor- 
porates these functions through the addition of a 
single operator, EXPAND. 

In the functional model, a relationship 
between entities is represented by an entity- 
valued function of one entity; the inverse rela- 
tionship is represented by a function of the 
other entity. For example, the relationship 
between drawings and parts is represented by the 
DRAWING function of PART and the inverse by a 
PART-SHWN function of DRAWING. 

When a view contains an entity-valued func- 
tion, the user can include derived functions 
(i.e. , functions of the related entities) in the 
view by positioning the cursor on the entity- 
valued function and pressing the EXPAND key. For 
example, 

The insert (I.) column operator inserts a 
vslue into the set of values of the function for 

each selected entity. The display (P.), update 
CU.), and delete (D.) column operators apply to 
&$,l values of the function, for each selected 
entity, unless further qualified. 



I expand 
V &Y 

PART I NAM3 I COLOR I . . . I=DRABING= 
-----+------+,---,--+-----+=l’==t========= --m-e-- 

I I I I 

which results in 

I =====DR~JjJG======== 
PART INAM: COLOR I . . . I IDNBRI-~0%IPAGES 
-----+----,=======+--+==c ---+-----+---- 

I I I II I I 

Now the user can select PART entities based on 
values of functions of their related drawings, 
and display functions of both PART and DRAWING, 
as shaJn below: 

PART I NAME I COLOR I.. .I IDNBRI-LOCN-IPAGES 
-----t------+=======+----+==+ --m&m..--v-+-m...-- 

lP.wingI I I IP. I I >4 

The above example selects PARTS where NAMGwing 
and aw drawing of the part has PAGES(DRAWING)>4 
and displays the values of NAME and associated 
DNBRs of the drawings of the selected PARTS. 

Multiple levels of entity-valued functions 
can be EXPANDed. For example, the location of a 
drawing (LOCN), which is shown as entity-valued, 
could be expanded to show its functions as 
derived functions of PART. 

The EXPAND operation circumvents an awkward 
feature of the basic functional model. When 
referencing several functions of a related 
entity, it is awkward to repeatedly express the 
function composition. For example: 

Retrieve (PAGES(DRAWING(PART)), DNHR(DRAWING(PART)) 
where PAGFS(DRAWING(PART) 1 cl6 ) 

llpdatinu throuah Vie- 

G-WHIZ has simple (though limited) semantics 
for view update. Only entitles of the type 
underlying the view can be inserted, deleted, or 
up&ted and only functions of the entity underly- 
ing the view can bs inserted, deleted, or 
up& ted. Computed and derived (nested) functions 
are not up&table. 

When insert, delete, or update operations 
are specified on entity-valued functions, they 
operate on the references to the related entity 
type in the entities of the primary type that 
underlies the view. They cannot insert or delete 
entities of the related type, or update functions 
of that type. For example, 

I q =======DR/@IFjG======= 
PART INAN: COLOR !...I IDNBRI-LOCN- IPAGES 
-----+--3=======+--+====c---*------c”’- 

Ipmnpl I I I. 184581 I 

inserts a reference to the DRAWING entity whose 
DNBR Is 845A Into the DRAWING function of the 
PART entity whose NAPE is punp. (If no such 
DRAWING entity exists, the insert operation is 
rejected.) I. , D. , and U. operators cannot be 
specified in the expanded colw~~ns of the related 
entity type. 

7. -Functions 

7.1 Pefinina--Functiona 

Computed functions may be included in a G- 
WHIZ view by inserting a colon, naming it, and 
specifying its value as an equality in the 
inserted column, similar to the way values are 
specified when a new row is inserted. The equal- 
ity may be a constant, an expression, or null 
C-1. For example, 

I insert 
key 

PART INAMz!...IHEDGHT IwIDTHI AIEA 
------+----+---+-------c----+--------------------- 

I I I I IHEIGHT l WIDTH 

Other qualifiers may be combined with the equal- 
ity in a boolean expression to specify condi- 
tional values. The notation below uses & to 
&note Where <condltion>n. The usage is con- 
sistent with notations for selecting the proper 
value for the added function, and for specifying 
values to be inserted. For example: 

I insert 
V key 

. . . I COLOILCODE I... 
----+-----------------------------------+-- 

I bright & (COLOR = red i yellow) I 
I dark & (COLOR = bluelblacklbrown) I 

The newly-defined function normally is single 
valued. It will be set-valued if multiple equal- 
ities are specified or if the expression evalu- 
ates to a set. A computed function can bs 
defined to contain a subset of values of another 
set-valued function. For example, the following 
specification defines RED-BLUE, which contains 
the subset of values of COLOR that are equal to 
red or blue. It is null for entities in which no 
value of COLOR is red or blue. 



I insert 

I REDIBLGE 
bY 

PART INAMI COLOR I . . . 
------- -----c-----+-------c---- -I.============ 

I ICOLOR & red 
I i ICOLOR & blue 

Arithmetic expressions and conditions in 
function definitions or qualifiers may be contin- 
ued on the next line by ending a line with an 
arithmetic or logical operator or an open 
parenthesis. 

7.2 -Entity-Valued-- 

Entity-valued computed functions are defined 
by identifying the range (entity type or view 
name) of the new function and specifying the cot+ 
dition that determines the values of the new 
function. New entity-valued functions may be 
computed to capture a value-vased join condition, 
to define unions, or to subset an existing 
entity-vslued function based on some qualifica- 
tion. 

For example, suppose the user wants to 
define a new entity-valued function of PART, 
whose values will be the set of VENDORS that make 
that PART. He associates appropriate vendor 
information with PART entities by adding an 
entity-valued function, which he calls SOURCE in 
this case (he could as well call it VENDOR), to 
the PART view, defining its range as VENDOR, and 
specifying its value to be the set of VENDORS 
satisfying the join condition MADE-BY(PART) = 
COMPANY(VENWR). 

I inesrt 

PARTINAkEI...IMADE-BYI...I.S:RCE. 
key 

-------- ----+----+---+-------+---+--+-------- 
I I I I I VENDOR 

I expand 
V key 

I ======SWRCk===== 
PARTINAFEI...IMADE;_BYI...I ICOMPANYIADDRESS 
----+----+--C------t--+==+ ------.+....----- 

I I I I I IMADE-BYI 

Each PART entity will be associated with SUJRCEs 
(VENWR entities) in which CoMPANY(SWRCE) = 
MADE-BY(PART). 

Function names among related entities may be 
qualified by their entity type to distinguish 
duplicates. 

8. Becursively Defined Views 

Current systems for bill-of-materials and 
other applications over recursively-defined 
"path" structures use applications code to navi- 
gate the database. G-WHIZ integrates facilities 
for processing such structures into the query 
language of the DBMS. The integrated architec- 
ture uses LBMS facilities to handle query 
language commands, query optimization, query exe- 
cution (e.g., handling temporaries), and the user 
interface. 

In G-WtiIZ, ahierarchical w is a view 
specified recursively, as a rooted tree. We use 
the terms "hierarchical view," nhierarchy,n and 
"recursively-defined ViaJ" synonymously. A 
hierarchical view H is defined over an existing 
view (or entity type) V by specifying: 

1. The entities in H. Each entity in H 
corresponds to a node of the tree. The 
entities in H include the functions of the 
entities in the underlying type V, plus some 
recursively-defined functions. Each entity 
instance in H corresponds to some entity 
instance of V. The entities present and the 
values of the new functions are computed 
recursively, as described later. 

2. A successor function. One of the functions 
of V is selected as the successor function 
(succ()) of the hierarchy H. succo must be 
entity-valued, ranging over entities of the 
same type as V. It must be acyclic; that is, 
repeated applications of succ() should not 
return to the starting point. A hierarchy 
can be defined over aq view that includes a 
successor function. 

3. Root node(s). Sane instance(s) of V must be 
selected as the beginning of the recursive 
traversal. For simplicity, our examples 
assupe the traversal begins at a single 
entity, ED in the underlying view V. 

Beginning at EO, the hierarchy's nodes co* 
tains a node corresponding to EO, plus the 
hierarchies rooted at successors(E0). For a Part 
hierarchy for an airplane, H might consist of the 
airplane, and the hierarchies of each immediate 
successor of airplane. (Immediate successors of 
airplane might be left wing, right wing, 
fuselage, and tail). If entity E in V is the 
successor of two different entities that appear 
in the hierarchy, E (and the hierarchy below E) 
will appear below each of them. For example, a 
pump (and its decomposition) may appear several 
times in the PART hierarchy of an airplane. If 
multiple beginning nodes have been selected, the 
hierarchical view has a tree telcm each. 

The full hierarchy can be enormous. Thera- 
fore G-WHIZ provides facilities for the user to 
form subsets of the hierarchy in several ways: 

?I.4 



- Begin the traversal deeper in the hierarchy 
(e.g., form the hierarchy rooted at cockpit, 
not at airplane) 

- Restrict the successor function so entire suh- 
trees are skipped (e.g., consider only suh- 
trees whose root entity is manufactured b XYZ 
Corp.) 

- After the hierarchic view has heen computed, 
restrict it using ordinary GWHlZ entity 
&Vlection. 

A query language extension was necessary to 
handle recursive hierarchies because the path 
length in the hierarchy depends on the stored 
entity instances, not on the schema. No fixed 
nunher of expansions of the successor function 
can he guaranteed to produce all levels of the 
tree. Furthermore, each expansion would create 
new functions, while the hierarchy should have 
the same functions in all the nodes, aligned in 
columns to permit further selections.(2) 

8.1 DefininnaRecursiveHierarch!, 

To define a recursive hierarchy, the user 
displays a view and chooses a successor function 
by placing an H. in the function column. (The 
system msy check whether the relationship really 
is acyclic.) Qualifiers preceded by B. are 
applied to select beginning node(s) to he used as 
the root(s) of traversals. If no beginning qual- 
ifiers are specified, entities that are not 
referenced hy aw succsssor function are used as 
the beginning nodes. 

The grid below defines a hierarchical view 
over PART, using the SUBPART function as the suc- 
cessor function and beginning at the PART named 
'2Jing". 

PART , NAME , COST , . . . I=suBPART= 
-----t-----+-------r----+========= 

,B.wing, I I H. 

Hierarchies are defined over views, not 
merely over stored entity types. Therefore, a 
successor function can he a computed function or 
it can he derived hy composition. For example, 

-- 

(2) The problem is shared hy all "first order 
languages," including QUEL, SQL, etc. [AU, 
kil. QBE [Date], Oracle [JS], and a proposal 
in [Cle] include facilities for defining and 
manipulating hierarchies, though recursively- 
defined functions are not discussed. The exact 
power of these systems is hard to judge, be- 
cause descriptions in the literature are some- 
what sketchy. 

the grids below define a computed function that 
includes only SUBPARTS whose cost is a signifi- 
cant fraction of the PART's cost. Then they 
define a hierarchical view beginning at the wing, 
using the computed sucoessor function MAJO~SUB. 

insert key 
I I=~~JEJPART===I 

PARTINA~lcosTl...I ,NA~~,,C~ST,====~*~~SUB-=~ 
----+----r---$---+==t----r---+'=============== 

I 
I I f i / 

ISUBPART & COST > 
I , .l*COST(PART) 

,==SUBPART===, 
PART,NAM ,COST, . ..I INAF~,C~ST,=MAJO~SUB= 
----c-----,----+--+==c---+----+=========== 

,B.wing, I Ii I I H. 

Another example: suppose Circuits have multiple 
diagrZUtl.3 and that each diagram can include 
several component circuits. The specification 
below defines a hierarchy of circuits. The suc- 
ce ssor function is the derived function 
SUB~CIRCUIT(DIAORAM(CIRCUIT)). 

,===========DIAGRA#======-== 
CIRCUITIC-NAME,... I IDNBRIAUTH~R,=SUE-CIRCUIT= 
-------+------+---+==+-----+============= 

I I II I I H. 

Ihe Result of a Hierarchic View Definition 

The result of a hierarchy definition over 
viewname is a hierarchical VieW (called 
H.viewname). GWHIZ autanatically defines 
recursively-computed functions LEVEL., PATH., and 
PREV. For example: 

H. PAATINAM ICOSTI . ..Iuv’a.I pATH.I-/\PRGV.-I=\/SUBPART= 
------t---+---+--C-----C -----+--------+=I==__------ _ _ _ _ _ - _ 

I I II I I I 

LEVEL. gives the entity's depth in the tree 
(starting at 1). PATH. gives the position in the 
traversal of the tree. For example, the fourth 
SUBPART of the second SUBPART of the beginriing of 

the first tree has PATH. = 1.2.4. 

PREV. is an entity-valued function that 
gives the hierarchic predecessor (parent) of an 
entity in the view. The hierarchic predecessor 
of an entity in the hierarchy is unique, even if 
the underlying PART is a SUBPART of several dif- 
ferent entities. Since PREV. is entity-valued, 
it can he EXPANDed like any other entity-valued 
function. PREX. IS particularly useful for 
defining functions in terms of the value of that 
function in the PREV. node. 



PREY. is marked with an up arrcu (/\); the 
successor function (SUBPART) is marked with a 
down arrou (\/I. If no selection on beginning 
entities is specified, the resulting hierarchy is 
rooted at entities that have no predecessor 
(i.e. , that are not SUBPARTS). The functions, 
LEVEL., PATH., and PREV. are subject to all the 
usual operations on computed functions, except 
that their names are reserved words. 

The content of a hierarchical view is 
defined by the the algorithm belcm (though the 
actual computation strategy may be different). 
Nodes of the hierarchy are instances of the view 
against which the hierarchy was defined. 

1. Find view entities satisfying the Begin (B.) 
qualification and begin building a tree fran 
each of these. 

2. For each entity in the hierarchy, include it 
and its children in the hierarchical view 
via the successor function. Evaluate any 
computed functions (including recursive 
functions such as PATH.1 all of whose data 
is available fran the underlying view or 
fran the PREV. entity in the hierarchy. 
Continue by traversing each successor of a 
chosen entity. 

3. Perform additional traversals to compute 
recursively-defined functions whose argu- 
ments became available on the previous 
traversal. 

4. After the entire tree has been traversed and 
all recursive functions computed (this may 
require extra traversals), apply the qualif- 
ication specified by the qualifiers without 
a prefix. This step is an ordinary qualifi- 
cation on the set of entities seen in the 
hierarchical view. For example, the grid 
belw begins traversal for H.PART at the 
wing, and after traversal is complete 
imposes an ordinary selection on the result- 
ing view, selecting parts whose COST>100 and 
LEVEz.>3. 

H.PARTI NAM 1 COST I...ILEIV~.I PATH. I-/\PRW.-:.\/SUBPART. 
------c-----+-----c --c-----c..-----+ -_----_--- --------+=---------- 

IB.uingl >lOO I I >3 I I 
, 

8.2 Recursivelv-Defined Functiona 

Application systems that traverse hierar- 
chies often compute functions that summarize 
information about the hierarchy. LEVE. and 
PATH. are two examples. One might also recurse 
upward, smming the weights of all PARTS des 
tended fran a given PART. These computations 
cannot be expressed in first order queries on the 
set of PARTS. 

The powerful function-definition mechanisms 
of G-WHIZ oan ba used for these recursive defini- 
tions. Functions derived in such a way can bs 
queried like arw other computed function or used 
in the specification of the beginning node(s) or 
successor function of another hierarchical view 
built Over the first. For example, LEVEZ. is a 
system-defined recursive function. (If the 
underlying view already has a function LEVEL., 
PATH., or PREV., the new functions are denoted 
LEVEt2., PA'IH2., PREV2,, etc.) 

The following grids show a hierarchy defined 
over an earlier hierarchical view. In the exam- 
ple, the first hierarchy uses the successor func- 
tion SUBPART and begins at the wing. The second 
hierarchy is built over the first and begins at 
the 4th level of the first hierarchy. 

PART I NAM I COST I...~=SJBPART. 
-----*-----+ --__- + --+i==iiE=iii 

lB.wingl 1 I H. 

H.PARTINAt#lCOSTl . ..lLA'a.lPATH.I-/\PREV.-I.\/SlJBPART= 
..-----+---+---+--+ -----C----C--------+===-------- _--_---_ 

I II IB.41 I I 

The user need not know how to define hierar- 
chies in order to &fine recursive functions. 
Given a hierarchical view that already is 
defined, the user simply inserts a new function 
and provides a defining expression by using func- 
tions of PREV. for dowlward computations, or by 
using the successor function (e.g. SUBPART) for 
upward computations. (Dowtmard and upward recur- 
sions cannot bs in the same function definition). 

The next example computes Cumulative Value 
Ad&d (CIJKVALJDD) for each PART in the H.PART 
hierarchy by sunming Value Added (VAL-ADD) for 
all PARTS below it in the hierarchy. The compu- 
tation proceeds recursively from SUBPARTS to 
PARTS. The SUM. function returns 0 when smming 
over an empty set so we need not specify an ini- 
tial value in this case. 

Defining a Function by 
Over Successors 

I insert 
V key 

H.PARTINAhEI...IVALmADD: ClIlVAL-ADD lo\/XJBPART. 

------+ -_--------- ------c------c--------------------------+----------- 
I 1 1 IVAL-ADD + 

t 

I II I SUH.(CUII_VAL~ADD(SJBPART))~ 

The next example shows a function recur- 
sively computed frau a PART's hierarchic prede- 
cessor. 

Asswne that the hierarchy consists of physi- 
cal parts where each PART appears only once as a 
SUBPART. Suppose OFFSET(PART) contains the x- 
distance between the leftmost edge of PART and 
the leftmost edge of PREV.(PART) (its immediate 

parent). The cumulative offset (relative to the 
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entity at the top of a traversal) is the sun of 
the offsets along the path. We qualify the 
definition to set UJKOFFSET to 0 at the top of 
the current traversal. 

Defining a Function & 
Over Pre- 

H.PARTINAWI... I/\PREV.IOFFSETI CUKOFFSET I=\/SUBPART= 
________--- 

I I IO a PFiW. - I 
I 

~(OFFSRT + 
I 

I I I 
I I I CULOFF.SET(PREV.)) 61 
I I I PRW. -- l 

CDF,OFFSET of the top of this view is 0, because 
PREV.(PART) at the top of the hierarchy is - 
(null). 

8.3 Monotonicitv ti Geometrv 

When a hierarchy is defined, the system asks 
the user which functions always increase or 
decrease between an entity and its successors. 
The user can specm, for example, that 
WEIGHT =< WEIGHTtPREV.). 

This monotonicity declaration is used for 
conventional query optimization and for improving 
the user interface. For example, given a query: 

PART 1 NAI@ 1 WEIGHT I...I=SDBPART= 
-----+------+--------+---+============ 

IB.wingl >lO i 1 H. 

it is unnecessary to traverse SUBPARTS of PARTS 
weighing =< 10. Monotonicity also is used to 
reduce the amount of data presented to the user. 
If we return the information that a seat weighs 
more than 10 pounds, the interface may suppress 
superparts of the seat (e.g., cockpit, fuselage, 
and airplane). See [RHI@~] for a full treatment 
of monotonicity. 

Hierarchicalc Data 

The CAD/CAM data in CCDBMS requires a data- 
type to approximate geciuetric objects. 
GEOY_CBJ(PART) is an entity-valued function that 
stores the PART's shape, and also the position 
and location relative to each superpart. A 
recursive function POSITION (generalizing the 
OFFSET example) is defined to give the 3- 
dimensional offset and orientation of the PART 
relative to the beginning of a hierarchy. 

GEOKOBJ has several predefined functions 
(e.g. , DISTANCE., EXTEND.) and predicates "con- 
tains", "contained in", nproperly intersects", 
etc. The use of functional notation made it easy 
to include the abstract data type and specialized 
built-in functions and predicates. Themonotonic 

behavior of these functions and predicates is 
predeclared to the system. For example, if a 
region contains a PART, It contains all 
SGBPART(PART). 

Note that only relative position within the 
immediate superpart is physically stored. Sub- 
part positions within an item are stored only 
once, regardless of hew many times the item is 
used in the top-level product. Also, when the 
item is moved within its superpart, the relative 
position of the item's subparts remain fixed, and 
there are no stored absolute positions to be 
up&ted. 

CCDB& geometric facilities are not intended 
to perfectly represent shapes of three- 
dimensional objects. Solid modelling was too 
costly for our goal, which was to permit database 
queries that would limit the nunber of objects 
that would need careful inspection. Approxima- 
tions using extents boxes were sufficient. 

8.4 Further-M 
Recursive- 

We are currently investigating sev er al 
issues: 

1. Aggregation facilities frau multiple parents 

In part hierarchies, each path to a 
part type (e.g., bolt) represents a dif- 
ferent physical object. In some other 
structures (e.g., task scheduling networks) 
the object reached is the same, regardless 
of the path. The two behaviors must be dis- 
tinguished, and facilities provided to 
aggregate information obtained along all the 
paths. 

2. Query optimization 

We will investigate optimization str* 
tegies for various types of queries. [Mel 
investigated queries that touch nearly all 
the stored entities. However, a very dif- 
ferent kind of query processing strategy is 
needed for an interactive system where most 
queries touch only a mnal.1 subset of the 
entities. 

Architectural issues also will be 
investigated. In particular, how can optim- 
ization routines for hierarchies be 
integrated with the rest of a query optim- 
izer? 

3. Additional kinds of predicates 

For example, "Between" predicates, as 
in Find assemblies within the tail that 
include bolt type B123. 



4. Facilities for defining a new hierarchy fran 
a given one 

We also want to make it easier to 
define a new hierarchy based on an existing 
one using its recursively-computed funations 
to specify the beginning nodes or the suo- 
cessor function. 

CSSl Smith, J.M. and Smith, D.C.P., Database 
abstractions: Aggregation and generalization, &z&j 
m. .Database&&. 2,2, June 1977, 105-133. 

CZloofl M. Zloof, wQuery By Example", pmt. 
JtQx!&, May, 1975. 

5. Update 

For hierarchies where no underlying 
entity appears more than once, update should 
be possible. 
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