
GUHIZ*, a Visual Interface for the
Funationnl Mxlell vifh Recursion

Sandra Iieiler and Arnon Rosenthal
Computer Corporation of America

Abstract

G-WHIZ is a QBE-style interface for the
functional data model, with extensions that sup-
port recursively defined structures such as part
hierarchies. Explicit joins are rarely needed
because set-valued and entity-valued functions of
the functional model are supported. The recur-
sive facilities are integrated with the rest of
the language. GWHIZ currently is being imple-
mented as the user interface to a CAD/CAM I.Bt%3.

1. -

G-WHIZ is a screen-oriented language for the
functional data model [Sh]. It currently is
being implemented as the main interface to
CCDBW, a CAD/CAM DBMS that must handle complex
interrelationships among the stored data. Its
style comes fran Query-By-Example (QBE) [Zloof,
Date].

%rids With Hierarchies, Imitating Zloof

Authors' addresses:

Sandra Heiler
Computer Corporation of America
1800 Diagonal Road
Alexandria, VA 22314
(703) 836-5200
heiler@cca or decvaxlccalheiler

Arnon Rosenthal
Computer Corporation of America
4 Cambridge Center
Cambridge, MA 02142
(617) 492-8860
arnie@cca or decvaxlccalarnie

Penn&ion to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage,the VLDB copyright notice and the title
ofthepublication and its date appear, and notice is giventhatcopy-
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise,orto republiish,rcquires a fee and/or specialpermis.
sion from the Endowment.

This paper concentrates on the two main
areas of G-WHIZ that significantly extend QBE:

1. Use of the functional model, which simpli-
fies complex queries (explicit joins are
rare, and example elements nonexistent)

2. Constructs for defining and queryir* recur-
sively defined structures

The basic constructs of the functional model
are the entity and the function, which model con-
ceptual objects and their properties. An entity
type corresponds to a base relation, a function
to an attribute. A function may bs single-valued
or set-valued (have zero, one, or many values for
each entity), and its range may be simple (a
string or nuneric type) or another entity type.

Relationships between entities are modeled
as entity-valued functions. For example, given
two types of entities, PARTS and DRAWINGS, the
drawing of a part can be defined as an entity-
valued function DRAWING(PART). The inverse func-
tion defines the relationship in the reverse
direction (i.e., PART-IN-DRAWING(DRAWING) yields
the PARTS represented in DRAWING).

Entity-valued functions may be single-valued
to represent one-t*one relationships or setc
valued to represent one-ternany or many-ternany
(with set-valued inverses) relationships.
(Entity-vslued functions may be implemented by
storing their values as entity identifiers or
they may be derived through uni-directional
outer-joins.)

Functions of related entities can be con-
sidered derived functions of the base entity and
appear in the same view as the base entity
without an explicit join. In the above example,
functions of DRAWING (which is a function of
PART) are derived functions of PART. They can be
represented by function composition (nesting).
For example, the location of a drawing is a func-
tion of the part represented by the drawing
LOCATION(DRAWl.NG(PART)).

The functional model supports entity super-
types and subtypes (i.e., generalization hierar-
chies [SSI)). For example, the PART entity type

Proceedings ofVLDB 85,Stockholm 70<4

might be defined as a supertype of MADE-PART and
PURCHASED-PART entity types as well as
ELECTRICAL-PART and MECHANICAL-PART entity types.
Such generalizations imply an associated inheri-
tance of functions.

These constructs result in several important
differences between the relational model and the
functional model that are reflected in G-WHE
[Man].

1. Since functions may take on entity values,
functions frao a related entity may be
referenced by function composition without
an explicit join. For example, to select
PART entities based on the locations of
their drawings, an explicit join of PARTS
and DRAWINGS need not be specified;
LOCATION(DRAWING(PART)) can be referenced
directly. Further composition has the
effect of further joins.(l)

2. Set-valued functions allcm multiple values
(including duplicates and null) for an
entity. For example, the DRAWING function
of PART entities may be defined as set-
valued to indicate that several drawings
describe the part without repeating the part
information. The relational model requires
a separate relation for each set-valued
function.

3. Entity subtyping allows an entity to be
several types at once, with the functions of
the supertypes inherited by the subtypes.
For example, a PWP might be an
ELECTRICAL-PART as well as a PURCHASED-PART
and also automatically be a PART, indicating
that it has all functions of both subtypes
ELECTRICAL-PART and PURCHASED-PART and also
the functions inherited from the parent type
PART. The relational model requires
separate entities for each type.

4. An entity-valued function represents an
outer-join between entities of the base type
and entities of the function type. For
example, the DRAWING function of the PART
entity can be thought of as a uni-
directional outer join between PARTS and
DRAWINGS where the value of the function is
null for parts that have no drawings
representing them. Though outer-joins have

(1) Other approaches to a join-free interface
have been suggested. For example, in the
Universal Relation approach [Mail the system
must decide what real-world objects are being
referenced, and find a join path among them.
Object identification and path selection is
based on names and dependencies, rather than on
explicit declarations of entities and func-
tions.

been added to the relational model, many
relational languages do not support them.

3. Backaround

Like QBE, GWHIZ is a two-dimensional inter-
face, designed for simple terminals such as IBM
3270s. Operations and parameters are specified
in a grid that looks like the rows and columns of
a table. Table rows are equivalent to relational
tuples or entities and colons are equivalent to
attributes or functions of the entities. The grid
removes much of the syntax burden from the user,
allowing different parts of a complex query to be
generated in whatever order is convenient. The
facilities described in this section, except con-
ditional operations and vi-s, are identical to
QBE.

Onerations

Queries are specified by entering selection
criteria (qualifications) in the columns of the
functions they qualify. Projections are per-
formed by deleting columns fran the table.
Operations I.(insert), U.(update), D.(delete),
and P.(print or display) are provided to operate
on entities (rows) or functions (columns).

To operate on entities or their functions,
the user specifies the entity type name in the
upper left corner of the grid; the system fills
in the function names, and the user specifies the
required operations in the colwans of the grid.
For example, suppose the user wants to print the
values of all functions of PART entities where
NAm(PART) is "wing".

user:
FART 1

--------+-------------------------------~-

system:
PART 1 FART-NBR 1 NAm 1 COLOR ! . . .

-m------+ ----------+-------+-------+-------
I I I I

user:
FART 1 PART-NBR I NAt43 1 COLOR I

---------+----------+- --em--+ ------- + -^-----
P. I I wing I I

CombViers

Qualifiers in a column are ORed and the
resulting column specifications are ANDed. For
example,

%IC

PART 1 PART-NBR 1 NAM 1 COLOR I...lCOST
------+---------+------+ --m----+---+--m-

F. 1 Iwheel I gray I I< 10
I I Iblue I I

displays values of all functions of PART entities
where ((NAM3 is "wheel") AND (COLOR is "grey" OR
"blue") AND (COST < 10)). Comparators =, <,>,
<=, >=, and "(not) may be specified in qualif-
iers. The = sign is understood if no comparator
is specified. Complex qualifiers not fitting the
pattern may be specified within a column by a

Boolean expression using names of other fI,ur&iOnS
of the entity. (On the rare occasions where
alphanuneric literals conflict with function
names in the current view, the literals are
placed in quotes.)

ADDliCatiOn of ODeratorg

First, entities that satisfy the gid's
qualification are selected. Then operators are
applied. Operators specified in the entity name
column affect all functions of the selected enti-
ties; operators specified in other columns affect
the specified functions of the selected entities.
For example,

PART 1 PART-NBR 1 NAM3 1 COLOR I . . .
-e-m---+ ---------+-----+ ------------- +---

I I rim I red U. blue (

selects entities where NAM3 is "rim" and COLOR is
"red", and updates COLOR to "blue".

We extend QBE to allow multiple operations
in a column. If an operator is specified by
itself (i.e., without a qualifier), it applies to
all values of that function in the selected enti-
ties. If it is specified next to a qualifier, a
subselection is performed on the entities that
satisfy the union of the qualifiers in that
column and the operation is performed only on
those that satisfy the associated qualifier. The
"otherwise" qualifier is specified as n?n. For
example,

PART I PART-NBR 1 NAM3 ; WIDTH
-----+----------+- -----t-----------------

I I wing I 10 U. 10.1
I I I 20 u. 20.1
I I I ? U. WIDTH l 1.5

specifies that PART entities in which (NAm =
"wing") AND (WIDTH = 10 OR 20 OR anything else)
are to be selected. Then those in which WIDTH =
10 have that value changed to 10.1 and those in
which WIDTH = 20 have that value changed to 20.1;
all others have the WIDTH value changed to WIDTH
l 1.5.

To insert a new row (entity), the user
specifies the I. operator in the entity name
collrmn and the values of its functions as equali-
ties in the function cwlmns. The idea and syr+
tax resemble equality qualifiers on any opera-
tion.

When display, update, and delete operations
are specified, the system responds with the
nuuber of entities that were selected (shown in
parentheses in the view name column). The user
can then display values of the functions of the
selected entities (before performing specified
updates or deletions), confirm update or delete
operations, or cancel the request.

All access to data is through views. Each
stored entity type has a view (with the same
name) defined over it. The user first defines
some stored entity types and their functions,
much as tables are defined in QBE. New views are
created by selecting and projecting on existing
views, or extending them with derived or computed
functions (including entity-valued functions to
produce the equivalent of join views). A single
entity type underlies each view -- the entity
type that underlies the view frao which it was
derived.

The definition of a view includes:

1. The entity type and its functions

2. Selections

3. Projections

4. Formatting instructions, such as function
display widths

5. Functions of entities referenced through
entity-valued functions

6. Definitions of computed functions

7. In a hierarchical view, the successor func-
tion for the traversal and the beginning
node(s) (described in section 9 .l)

The name of a view can act as a qualifier in
the entity name colon of another view or of an
entity-valued function. It represents the set of
entities defined by the view.

4. ii-u.LzScreenFormat

The G-WHIZ screen format is similar to that
of QBE. An entity type (or view name) is speci-
fied in the upper left corner, the names of func-
tions of the entity type are specified across the
top raw, and operations and selection qualifiers
are specified in the rows and columns. GWHIZ
uses an asterisk to identify functions that par-
ticipate in the primary key of the entity.

The functional model interface benefits frcm
some minor enhancements to the QBE screen format.
Set-valued functions are identified by a double
underline. Entity-valued functions (which also
may be set-valued) are marked by filler lines
that precede and follow the function name in the
grid segment, double filler lines if the function
is both entity valued and set-valued. For exam-
ple:

If operators are specified in corjunction
with qualifiers, the qualifier(s) are first used
to select a set of entities. Then each operator
is applied to the subset of those entities and
the particular values of the se&valued function
that satisfy its associated qualifier. (Results
are indeterminate if qualifiers overlap.) For
e-pie, suppose that COLOR has been defined as
se&valued:

PART 1 NAM3 1 . . . ! COLOR
-------+------+-------+==========r=

I tail I [red U. rouge
I I lblue U. bleu

In this example, entities in which ((NAME q

"tail") AND (any value of COLOR = "red" OR
nbluen)) are selected. In the selected entities,
COLOR values "red" are changed to "rouge" and
"blue" to "bleu".

PART ItPART-NBRI NAME iCOLORI...I=DRAWING= When a new entity is inserted (I. raw opera-
---v-+ --------+-----+=====+---+========= tar), multiple values may be listed in the column

I I I I I for each set-valued function.

indicates that PARTJIBR is an identifying (key) The display operator (P.), displays each
function of PART, COLOR is set-valued, and DRAW- entity instance as a single row. If some func-
ING is both entity-valued and set-valued. tion of that entity has a set with more than one

ValW, the count of the set is displayed (in
G-WHIZ displays a popup menu of commands parentheses). To display the values of the

and programmed function (PF) key meanings, to entity's set-valued functions, the user moves the
help the user remember which commands are cursor to the appropriate row and presses the
relevant in the current context. ZOOM key.

5.&&-ValuedFunctions 6. &&&y-Valued Functions

The relational model's simplicity is partly
due to the fact that attributes are atanic. An
unfortunate consequence is that to associate a
set of values with a single entity, a join is
necessary. The functional model avoids these
joins by allowing a function value to be a set.
(Many proposals have been made to add set-valued
attributes to the relational model (e.g., lABI,
iRKSI).)

This section shows how G-WHIZ extends the
QBGstyle interface to set-valued functions. The
extension is consistent with constructs like con-
ditional update frau the basic interface.

When a set-valued function is qualified,
entities are selected if= value of the set-
valued function satisfies the qualifier. The
qualifiers N-n (null) or n--n (not null) are used
to test whether the set is empty.

Entity-valued functions eliminate the need
for explicitly specifying joins. G-WHIZ incor-
porates these functions through the addition of a
single operator, EXPAND.

In the functional model, a relationship
between entities is represented by an entity-
valued function of one entity; the inverse rela-
tionship is represented by a function of the
other entity. For example, the relationship
between drawings and parts is represented by the
DRAWING function of PART and the inverse by a
PART-SHWN function of DRAWING.

When a view contains an entity-valued func-
tion, the user can include derived functions
(i.e. , functions of the related entities) in the
view by positioning the cursor on the entity-
valued function and pressing the EXPAND key. For
example,

The insert (I.) column operator inserts a
vslue into the set of values of the function for

each selected entity. The display (P.), update
CU.), and delete (D.) column operators apply to
&$,l values of the function, for each selected
entity, unless further qualified.

I expand
V &Y

PART I NAM3 I COLOR I . . . I=DRABING=
-----+------+,---,--+-----+=l’==t========= --m-e--

I I I I

which results in

I =====DR~JjJG========
PART INAM: COLOR I . . . I IDNBRI-~0%IPAGES
-----+----,=======+--+==c ---+-----+----

I I I II I I

Now the user can select PART entities based on
values of functions of their related drawings,
and display functions of both PART and DRAWING,
as shaJn below:

PART I NAME I COLOR I.. .I IDNBRI-LOCN-IPAGES
-----t------+=======+----+==+ --m&m..--v-+-m...--

lP.wingI I I IP. I I >4

The above example selects PARTS where NAMGwing
and aw drawing of the part has PAGES(DRAWING)>4
and displays the values of NAME and associated
DNBRs of the drawings of the selected PARTS.

Multiple levels of entity-valued functions
can be EXPANDed. For example, the location of a
drawing (LOCN), which is shown as entity-valued,
could be expanded to show its functions as
derived functions of PART.

The EXPAND operation circumvents an awkward
feature of the basic functional model. When
referencing several functions of a related
entity, it is awkward to repeatedly express the
function composition. For example:

Retrieve (PAGES(DRAWING(PART)), DNHR(DRAWING(PART))
where PAGFS(DRAWING(PART) 1 cl6)

llpdatinu throuah Vie-

G-WHIZ has simple (though limited) semantics
for view update. Only entitles of the type
underlying the view can be inserted, deleted, or
up&ted and only functions of the entity underly-
ing the view can bs inserted, deleted, or
up& ted. Computed and derived (nested) functions
are not up&table.

When insert, delete, or update operations
are specified on entity-valued functions, they
operate on the references to the related entity
type in the entities of the primary type that
underlies the view. They cannot insert or delete
entities of the related type, or update functions
of that type. For example,

I q =======DR/@IFjG=======
PART INAN: COLOR !...I IDNBRI-LOCN- IPAGES
-----+--3=======+--+====c---*------c”’-

Ipmnpl I I I. 184581 I

inserts a reference to the DRAWING entity whose
DNBR Is 845A Into the DRAWING function of the
PART entity whose NAPE is punp. (If no such
DRAWING entity exists, the insert operation is
rejected.) I. , D. , and U. operators cannot be
specified in the expanded colw~~ns of the related
entity type.

7. -Functions

7.1 Pefinina--Functiona

Computed functions may be included in a G-
WHIZ view by inserting a colon, naming it, and
specifying its value as an equality in the
inserted column, similar to the way values are
specified when a new row is inserted. The equal-
ity may be a constant, an expression, or null
C-1. For example,

I insert
key

PART INAMz!...IHEDGHT IwIDTHI AIEA
------+----+---+-------c----+---------------------

I I I I IHEIGHT l WIDTH

Other qualifiers may be combined with the equal-
ity in a boolean expression to specify condi-
tional values. The notation below uses & to
¬e Where <condltion>n. The usage is con-
sistent with notations for selecting the proper
value for the added function, and for specifying
values to be inserted. For example:

I insert
V key

. . . I COLOILCODE I...
----+-----------------------------------+--

I bright & (COLOR = red i yellow) I
I dark & (COLOR = bluelblacklbrown) I

The newly-defined function normally is single
valued. It will be set-valued if multiple equal-
ities are specified or if the expression evalu-
ates to a set. A computed function can bs
defined to contain a subset of values of another
set-valued function. For example, the following
specification defines RED-BLUE, which contains
the subset of values of COLOR that are equal to
red or blue. It is null for entities in which no
value of COLOR is red or blue.

I insert

I REDIBLGE
bY

PART INAMI COLOR I . . .
------- -----c-----+-------c---- -I.============

I ICOLOR & red
I i ICOLOR & blue

Arithmetic expressions and conditions in
function definitions or qualifiers may be contin-
ued on the next line by ending a line with an
arithmetic or logical operator or an open
parenthesis.

7.2 -Entity-Valued--

Entity-valued computed functions are defined
by identifying the range (entity type or view
name) of the new function and specifying the cot+
dition that determines the values of the new
function. New entity-valued functions may be
computed to capture a value-vased join condition,
to define unions, or to subset an existing
entity-vslued function based on some qualifica-
tion.

For example, suppose the user wants to
define a new entity-valued function of PART,
whose values will be the set of VENDORS that make
that PART. He associates appropriate vendor
information with PART entities by adding an
entity-valued function, which he calls SOURCE in
this case (he could as well call it VENDOR), to
the PART view, defining its range as VENDOR, and
specifying its value to be the set of VENDORS
satisfying the join condition MADE-BY(PART) =
COMPANY(VENWR).

I inesrt

PARTINAkEI...IMADE-BYI...I.S:RCE.
key

-------- ----+----+---+-------+---+--+--------
I I I I I VENDOR

I expand
V key

I ======SWRCk=====
PARTINAFEI...IMADE;_BYI...I ICOMPANYIADDRESS
----+----+--C------t--+==+ ------.+....-----

I I I I I IMADE-BYI

Each PART entity will be associated with SUJRCEs
(VENWR entities) in which CoMPANY(SWRCE) =
MADE-BY(PART).

Function names among related entities may be
qualified by their entity type to distinguish
duplicates.

8. Becursively Defined Views

Current systems for bill-of-materials and
other applications over recursively-defined
"path" structures use applications code to navi-
gate the database. G-WHIZ integrates facilities
for processing such structures into the query
language of the DBMS. The integrated architec-
ture uses LBMS facilities to handle query
language commands, query optimization, query exe-
cution (e.g., handling temporaries), and the user
interface.

In G-WtiIZ, ahierarchical w is a view
specified recursively, as a rooted tree. We use
the terms "hierarchical view," nhierarchy,n and
"recursively-defined ViaJ" synonymously. A
hierarchical view H is defined over an existing
view (or entity type) V by specifying:

1. The entities in H. Each entity in H
corresponds to a node of the tree. The
entities in H include the functions of the
entities in the underlying type V, plus some
recursively-defined functions. Each entity
instance in H corresponds to some entity
instance of V. The entities present and the
values of the new functions are computed
recursively, as described later.

2. A successor function. One of the functions
of V is selected as the successor function
(succ()) of the hierarchy H. succo must be
entity-valued, ranging over entities of the
same type as V. It must be acyclic; that is,
repeated applications of succ() should not
return to the starting point. A hierarchy
can be defined over aq view that includes a
successor function.

3. Root node(s). Sane instance(s) of V must be
selected as the beginning of the recursive
traversal. For simplicity, our examples
assupe the traversal begins at a single
entity, ED in the underlying view V.

Beginning at EO, the hierarchy's nodes co*
tains a node corresponding to EO, plus the
hierarchies rooted at successors(E0). For a Part
hierarchy for an airplane, H might consist of the
airplane, and the hierarchies of each immediate
successor of airplane. (Immediate successors of
airplane might be left wing, right wing,
fuselage, and tail). If entity E in V is the
successor of two different entities that appear
in the hierarchy, E (and the hierarchy below E)
will appear below each of them. For example, a
pump (and its decomposition) may appear several
times in the PART hierarchy of an airplane. If
multiple beginning nodes have been selected, the
hierarchical view has a tree telcm each.

The full hierarchy can be enormous. Thera-
fore G-WHIZ provides facilities for the user to
form subsets of the hierarchy in several ways:

?I.4

- Begin the traversal deeper in the hierarchy
(e.g., form the hierarchy rooted at cockpit,
not at airplane)

- Restrict the successor function so entire suh-
trees are skipped (e.g., consider only suh-
trees whose root entity is manufactured b XYZ
Corp.)

- After the hierarchic view has heen computed,
restrict it using ordinary GWHlZ entity
&Vlection.

A query language extension was necessary to
handle recursive hierarchies because the path
length in the hierarchy depends on the stored
entity instances, not on the schema. No fixed
nunher of expansions of the successor function
can he guaranteed to produce all levels of the
tree. Furthermore, each expansion would create
new functions, while the hierarchy should have
the same functions in all the nodes, aligned in
columns to permit further selections.(2)

8.1 DefininnaRecursiveHierarch!,

To define a recursive hierarchy, the user
displays a view and chooses a successor function
by placing an H. in the function column. (The
system msy check whether the relationship really
is acyclic.) Qualifiers preceded by B. are
applied to select beginning node(s) to he used as
the root(s) of traversals. If no beginning qual-
ifiers are specified, entities that are not
referenced hy aw succsssor function are used as
the beginning nodes.

The grid below defines a hierarchical view
over PART, using the SUBPART function as the suc-
cessor function and beginning at the PART named
'2Jing".

PART , NAME , COST , . . . I=suBPART=
-----t-----+-------r----+=========

,B.wing, I I H.

Hierarchies are defined over views, not
merely over stored entity types. Therefore, a
successor function can he a computed function or
it can he derived hy composition. For example,

--

(2) The problem is shared hy all "first order
languages," including QUEL, SQL, etc. [AU,
kil. QBE [Date], Oracle [JS], and a proposal
in [Cle] include facilities for defining and
manipulating hierarchies, though recursively-
defined functions are not discussed. The exact
power of these systems is hard to judge, be-
cause descriptions in the literature are some-
what sketchy.

the grids below define a computed function that
includes only SUBPARTS whose cost is a signifi-
cant fraction of the PART's cost. Then they
define a hierarchical view beginning at the wing,
using the computed sucoessor function MAJO~SUB.

insert key
I I=~~JEJPART===I

PARTINA~lcosTl...I ,NA~~,,C~ST,====~*~~SUB-=~
----+----r---$---+==t----r---+'===============

I
I I f i /

ISUBPART & COST >
I , .l*COST(PART)

,==SUBPART===,
PART,NAM ,COST, . ..I INAF~,C~ST,=MAJO~SUB=
----c-----,----+--+==c---+----+===========

,B.wing, I Ii I I H.

Another example: suppose Circuits have multiple
diagrZUtl.3 and that each diagram can include
several component circuits. The specification
below defines a hierarchy of circuits. The suc-
ce ssor function is the derived function
SUB~CIRCUIT(DIAORAM(CIRCUIT)).

,===========DIAGRA#======-==
CIRCUITIC-NAME,... I IDNBRIAUTH~R,=SUE-CIRCUIT=
-------+------+---+==+-----+=============

I I II I I H.

Ihe Result of a Hierarchic View Definition

The result of a hierarchy definition over
viewname is a hierarchical VieW (called
H.viewname). GWHIZ autanatically defines
recursively-computed functions LEVEL., PATH., and
PREV. For example:

H. PAATINAM ICOSTI . ..Iuv’a.I pATH.I-/\PRGV.-I=\/SUBPART=
------t---+---+--C-----C -----+--------+=I==__------ _ _ _ _ _ - _

I I II I I I

LEVEL. gives the entity's depth in the tree
(starting at 1). PATH. gives the position in the
traversal of the tree. For example, the fourth
SUBPART of the second SUBPART of the beginriing of

the first tree has PATH. = 1.2.4.

PREV. is an entity-valued function that
gives the hierarchic predecessor (parent) of an
entity in the view. The hierarchic predecessor
of an entity in the hierarchy is unique, even if
the underlying PART is a SUBPART of several dif-
ferent entities. Since PREV. is entity-valued,
it can he EXPANDed like any other entity-valued
function. PREX. IS particularly useful for
defining functions in terms of the value of that
function in the PREV. node.

PREY. is marked with an up arrcu (/\); the
successor function (SUBPART) is marked with a
down arrou (\/I. If no selection on beginning
entities is specified, the resulting hierarchy is
rooted at entities that have no predecessor
(i.e. , that are not SUBPARTS). The functions,
LEVEL., PATH., and PREV. are subject to all the
usual operations on computed functions, except
that their names are reserved words.

The content of a hierarchical view is
defined by the the algorithm belcm (though the
actual computation strategy may be different).
Nodes of the hierarchy are instances of the view
against which the hierarchy was defined.

1. Find view entities satisfying the Begin (B.)
qualification and begin building a tree fran
each of these.

2. For each entity in the hierarchy, include it
and its children in the hierarchical view
via the successor function. Evaluate any
computed functions (including recursive
functions such as PATH.1 all of whose data
is available fran the underlying view or
fran the PREV. entity in the hierarchy.
Continue by traversing each successor of a
chosen entity.

3. Perform additional traversals to compute
recursively-defined functions whose argu-
ments became available on the previous
traversal.

4. After the entire tree has been traversed and
all recursive functions computed (this may
require extra traversals), apply the qualif-
ication specified by the qualifiers without
a prefix. This step is an ordinary qualifi-
cation on the set of entities seen in the
hierarchical view. For example, the grid
belw begins traversal for H.PART at the
wing, and after traversal is complete
imposes an ordinary selection on the result-
ing view, selecting parts whose COST>100 and
LEVEz.>3.

H.PARTI NAM 1 COST I...ILEIV~.I PATH. I-/\PRW.-:.\/SUBPART.
------c-----+-----c --c-----c..-----+ -_----_--- --------+=----------

IB.uingl >lOO I I >3 I I
,

8.2 Recursivelv-Defined Functiona

Application systems that traverse hierar-
chies often compute functions that summarize
information about the hierarchy. LEVE. and
PATH. are two examples. One might also recurse
upward, smming the weights of all PARTS des
tended fran a given PART. These computations
cannot be expressed in first order queries on the
set of PARTS.

The powerful function-definition mechanisms
of G-WHIZ oan ba used for these recursive defini-
tions. Functions derived in such a way can bs
queried like arw other computed function or used
in the specification of the beginning node(s) or
successor function of another hierarchical view
built Over the first. For example, LEVEZ. is a
system-defined recursive function. (If the
underlying view already has a function LEVEL.,
PATH., or PREV., the new functions are denoted
LEVEt2., PA'IH2., PREV2,, etc.)

The following grids show a hierarchy defined
over an earlier hierarchical view. In the exam-
ple, the first hierarchy uses the successor func-
tion SUBPART and begins at the wing. The second
hierarchy is built over the first and begins at
the 4th level of the first hierarchy.

PART I NAM I COST I...~=SJBPART.
-----*-----+ --__- + --+i==iiE=iii

lB.wingl 1 I H.

H.PARTINAt#lCOSTl . ..lLA'a.lPATH.I-/\PREV.-I.\/SlJBPART=
..-----+---+---+--+ -----C----C--------+===-------- _--_---_

I II IB.41 I I

The user need not know how to define hierar-
chies in order to &fine recursive functions.
Given a hierarchical view that already is
defined, the user simply inserts a new function
and provides a defining expression by using func-
tions of PREV. for dowlward computations, or by
using the successor function (e.g. SUBPART) for
upward computations. (Dowtmard and upward recur-
sions cannot bs in the same function definition).

The next example computes Cumulative Value
Ad&d (CIJKVALJDD) for each PART in the H.PART
hierarchy by sunming Value Added (VAL-ADD) for
all PARTS below it in the hierarchy. The compu-
tation proceeds recursively from SUBPARTS to
PARTS. The SUM. function returns 0 when smming
over an empty set so we need not specify an ini-
tial value in this case.

Defining a Function by
Over Successors

I insert
V key

H.PARTINAhEI...IVALmADD: ClIlVAL-ADD lo\/XJBPART.

------+ -_--------- ------c------c--------------------------+-----------
I 1 1 IVAL-ADD +

t

I II I SUH.(CUII_VAL~ADD(SJBPART))~

The next example shows a function recur-
sively computed frau a PART's hierarchic prede-
cessor.

Asswne that the hierarchy consists of physi-
cal parts where each PART appears only once as a
SUBPART. Suppose OFFSET(PART) contains the x-
distance between the leftmost edge of PART and
the leftmost edge of PREV.(PART) (its immediate

parent). The cumulative offset (relative to the

216

entity at the top of a traversal) is the sun of
the offsets along the path. We qualify the
definition to set UJKOFFSET to 0 at the top of
the current traversal.

Defining a Function &
Over Pre-

H.PARTINAWI... I/\PREV.IOFFSETI CUKOFFSET I=\/SUBPART=
________---

I I IO a PFiW. - I
I

~(OFFSRT +
I

I I I
I I I CULOFF.SET(PREV.)) 61
I I I PRW. -- l

CDF,OFFSET of the top of this view is 0, because
PREV.(PART) at the top of the hierarchy is -
(null).

8.3 Monotonicitv ti Geometrv

When a hierarchy is defined, the system asks
the user which functions always increase or
decrease between an entity and its successors.
The user can specm, for example, that
WEIGHT =< WEIGHTtPREV.).

This monotonicity declaration is used for
conventional query optimization and for improving
the user interface. For example, given a query:

PART 1 NAI@ 1 WEIGHT I...I=SDBPART=
-----+------+--------+---+============

IB.wingl >lO i 1 H.

it is unnecessary to traverse SUBPARTS of PARTS
weighing =< 10. Monotonicity also is used to
reduce the amount of data presented to the user.
If we return the information that a seat weighs
more than 10 pounds, the interface may suppress
superparts of the seat (e.g., cockpit, fuselage,
and airplane). See [RHI@~] for a full treatment
of monotonicity.

Hierarchicalc Data

The CAD/CAM data in CCDBMS requires a data-
type to approximate geciuetric objects.
GEOY_CBJ(PART) is an entity-valued function that
stores the PART's shape, and also the position
and location relative to each superpart. A
recursive function POSITION (generalizing the
OFFSET example) is defined to give the 3-
dimensional offset and orientation of the PART
relative to the beginning of a hierarchy.

GEOKOBJ has several predefined functions
(e.g. , DISTANCE., EXTEND.) and predicates "con-
tains", "contained in", nproperly intersects",
etc. The use of functional notation made it easy
to include the abstract data type and specialized
built-in functions and predicates. Themonotonic

behavior of these functions and predicates is
predeclared to the system. For example, if a
region contains a PART, It contains all
SGBPART(PART).

Note that only relative position within the
immediate superpart is physically stored. Sub-
part positions within an item are stored only
once, regardless of hew many times the item is
used in the top-level product. Also, when the
item is moved within its superpart, the relative
position of the item's subparts remain fixed, and
there are no stored absolute positions to be
up&ted.

CCDB& geometric facilities are not intended
to perfectly represent shapes of three-
dimensional objects. Solid modelling was too
costly for our goal, which was to permit database
queries that would limit the nunber of objects
that would need careful inspection. Approxima-
tions using extents boxes were sufficient.

8.4 Further-M
Recursive-

We are currently investigating sev er al
issues:

1. Aggregation facilities frau multiple parents

In part hierarchies, each path to a
part type (e.g., bolt) represents a dif-
ferent physical object. In some other
structures (e.g., task scheduling networks)
the object reached is the same, regardless
of the path. The two behaviors must be dis-
tinguished, and facilities provided to
aggregate information obtained along all the
paths.

2. Query optimization

We will investigate optimization str*
tegies for various types of queries. [Mel
investigated queries that touch nearly all
the stored entities. However, a very dif-
ferent kind of query processing strategy is
needed for an interactive system where most
queries touch only a mnal.1 subset of the
entities.

Architectural issues also will be
investigated. In particular, how can optim-
ization routines for hierarchies be
integrated with the rest of a query optim-
izer?

3. Additional kinds of predicates

For example, "Between" predicates, as
in Find assemblies within the tail that
include bolt type B123.

4. Facilities for defining a new hierarchy fran
a given one

We also want to make it easier to
define a new hierarchy based on an existing
one using its recursively-computed funations
to specify the beginning nodes or the suo-
cessor function.

CSSl Smith, J.M. and Smith, D.C.P., Database
abstractions: Aggregation and generalization, &z&j
m. .Database&&. 2,2, June 1977, 105-133.

CZloofl M. Zloof, wQuery By Example", pmt.
JtQx!&, May, 1975.

5. Update

For hierarchies where no underlying
entity appears more than once, update should
be possible.

References

CAB1 s. Abiteboul, N. Bidoit, nNon-First
Normal Form Relations to Represent Hierarchically
Organized Data", &MM !22ius Qf
Database Svstems, R. Fagi: ted.? 1884, 191-203

[AU] A. Aho and J. Ullman, nUniversality of Data
Retrieval Languages", u m Svmnosiuma Prin-
cinlea nf Proarw a, 1979.

[Cle] E. Clemens, "Design of an External Schema
Facility to Define and Process Recursive Struc-
tures", ACM Trans. Database Sv&., Vol. 6, No. 2,
June 1981, 295-311.

[Date] C.J. Date, & -Introduction u Q&g@&
m, Addison Wesley, 1977, pp 137-152.

[JS] G. James, W. Stoeller, "Operations on Tree-
Structured Tables", X3H2-26-15 Standards Commit-
tee Working Paper, 1982, pp 81-92.

[Mail D. Maier, m Theory sf Belatw &g&
l!cAass, Computer Science Press, Rockville, MD
1983.

[Man] F. Manola, "A Comparison of the Daplex and
Relational Data Models in the CCcBm Preliminary
Design," CCA Report, July, 1884.

[Mel T. Merrett, Relational Information Svstems,
Reston Publishing, Reston VA, 1984.

[RHMI A. Rosenthal, S. Heiler, F. Manola, "An
Example of Knowledge-Based Query Processing in a
CAD/CAM DBNS", m Conference, 1984, Singapore,
363-370.

[RKS] M Roth, H. Korth, A. Silberschatz, "Theory
of Non-First-Normal-Form Relational Databases",
University of Texas Computer Science TR-84-36.

CShl D. Shipman, 'The Functional Data Model and
the Data Language DAPLEX', mm. D&&g&w
ia&. t Vol. 6, No. 1, March, 1981.

The language presented in this paper was
originally sponsored by General Dynamics Data
Systems Division. Further research on hierarchic
facilities was sponsored by CCA and DARPA.

Bill Harrelson, Mart Goldman, Celia Shapiro,
Jan Dreisbach, Deborah Hamill, and Lisa Haflin
have participated in design or implementation of
the G-WHIZ language and interactive interface.
Bill Holmes (of Gensral Dynamics), Richard Meier,
Peter Gutterman, Frank Manola, and Umesh Dayal
have made useful suggestions about the presenta-
tion.

The name G-WHIZ can be blamed on Mort Gold-
man and Celia Shapiro.

