
AN EFFICIENT IMPLEMENTATION OF A RELATIONAL DATA BASE 

Marian S. Furman 

Institute for Scientific, Technical and Economic Information 

00-926 Warszawa, ul. zurawia 3/5, Poland 

Abstract 

In the paper an approach to implement efficiently 
a relational data base is presented. The appro- 
ach combines a new method of physical repre- 
sentation with a novel database machine ( DBM ) 
architecture. The dispersed representation 
assumes a relation consisting of three parts: 
the identification, value, and link (optionally). 
The parts are separated and the identification 
and link parts are converted to be expressed 
with pointers, and then the parts are dispersed 
among three memories: the IDENTIFICATION, 
VALUE, and LINK. The DBM architecture 
attempts to implement the dispersed representa- 
tion efficiently and uses modified cellular asso- 
ciative memories (CAM) to store and process 
the value and link parts. The modification 
consists in providing a CAM with a res 
register called a global mark register P 

ond 
GMR ) 

which can be readily loaded and unloaded 
externally. 

Introduction 

Database machines (DBM ) C Bane 79, Bora82, 
Cope73, DeWi79, Hsia83,0zka75, Schu79, Su79al 
optimise the data base processing by means of 
hardware implementation of the basic database 
operations. However, the achieved performance 
is not fully satisfactory CHawt823, especially 
in the case of the join operation. It can be cau- 
sed by unsufficiently addressing the sematic 

Permission to copy without fee all or pact of this material is 
granted provided that the copies are not made or distributed for di- 
rect commercial advantage, the VLDB copyright notice and the title 
of the publication and its date appear, and notice is given that copy 
ing is by permission of the Very Large Data Base Endowment. To 
copy otherwise, or to republish, requires a fee and/or special permis- 
sion from the Endowment. 

meaning of data kept in a data base when deve- 
loping the hardware algorithms. 

When developing a data base to create a model 
of a ceratain real world situation two things are 
usually conceptualised: the objects and the 
relationships among them. However, the distinc- 
tion tends to vanish in the data base structure 
and processing. The hardware algorithms of the 
join iBabb79, Hsia83, Kits83, MenoBl,Ozka831, 
which is predestinated to compute the relation- 
ships, are in majority designed for any kind of 
join and any type of attributes. In normalised 
relational data bases the natural join on key 
attributes is most frequently used so this type of 
joins should be optimised as much as possible. 

In the paper we propose an approach to 
implement a data base which assumes that to 
store and process a data base efficiently, the 
information concerning objects should be sepa- 
rated from the information concerning rela- 
tionships . 

In Section 2 the dispersed physical repre- 
sentation of a relational data base is presented. 
A relation is assumed to consist of three parts: 
the identification, value, and link (optionally). 
The parts are separated and the identification 
and link parts are converted to be expressed 
with pointers, and then the parts are dispersed 
among three memories : the IDENTIFICATION, 
VALUE, and LINK. In Section 3 the cellular 
associative memory (CAM ) being emulated by 
such DBM’s like CASSM CCope73, Su79a1, and 
RAP COzka83,0zka75, Schu791 is presented. 
The modification consisting in providing the 
CAM with a respond register is described. The 
global mark register (GMR) can be readily 
loaded and unloaded externally. The GMR enab- 
les to mark quickly any set of tuples stored in 
the CAM as well as to transform a set of marked 
tuples into a set of pointers to them. In Section 
4 a new DBM architecture is presented, which 
attempts to implement the dispersed representation 

Proceedings of VLDB 85, Stockholm 181 



efficiently. Two modified CAM’ s are used to 
implement the VALUE and LINK memories. The 
memories are bridged by the Pointer Processing 
Unit which also implement the IDENTIFICATION 
memory (in RAM). The GMR’s allowing fast 
pointer processing serve as a means of commu- 
nication between the DBM components. In Sec- 
tion 5 we describe the execution of the set ope- 
rations : the union, difference, and intersection 
as well as the join operation. Joins are classi- 
fied by dividing it into three types: the iden- 
tifying, linking, and associating according to 
the aim of the join. Zn Section 6 the execution 
of a typical query in the DBM is described. 
Finally, in Section 7 conclusion remarks are 
given. The dispersed representation along 
with the proposed DBM architecture promise 
significant improvement in the preformance due 
to the simultaneous processing of the value, 
link, and identification data base parts and a 
higher specialisation of the processing devices. 
However, the most spectacular benefit is that 
execution costs of the identifying joins are 
practically negligible. 

2. The dispersed physical representation 

The dispersed representation bases on the 
perception that attributes in a tuple are used 
for three purposes: 
a) to hold a value ( every attribute ) 
b) to identify the tuple (key) 
c ) to provide a link with a tuple of other relation 

( joinable attributes ) 
The (a) and (c) attribute functions are well 
understood while the (b) one is more of the ope- 
rational nature. The identifying function consists 
in a transformation of a set of keys into a set of 
marked tuples or vice versa. Hence, to identify 
a tuple when its key is known means to mark the 
tuple, in opposite, to identify a marked tuple 
means to send its key value to the controller. 

Some attributes fulfil more then one function 
and that is convenient on the conceptual level 
but causes problems on the physical level since 
all the functions are performed in one place and 
have to be accomplished in a sequential manner. 

For example, suppose we have a relation 
EMP with the attributes NAME (value and key), 
SALARY (only value), and DEP ++ (link, i.e. 
a foreign key to the relation DEP). Assume the 
relation EMP is stored as a file of records. 
The following tasks corresponding to the three 
mentioned functions are to be performed: (a) to 
find employees with SALARY > 10000, (b) to 
identify (mark) the tuple with the key NAME = 
Codd, and (c ) to provide a link with the rela- 

tion DEP, i.e. to mark the tuples in the rela- 
tion DEP matching the value DEP * of a certain 
(previously marked) tuple in the relation EMP, 

The tasks (a) and (b) are realised by pro- 
per selections in EMP, while to perform the task 
(c), first the value of the marked tuple in EMP 
is sent to the controller, next it is used as a 
argument of a selection in the relation DEP. In 
most systems the tasks (a), (b), and (c) have 
to be performed sequentially. Futhermore, if 
the tasks (b) and (c) concern many tuples it 
must be repeated for each tuple. 

The proposed dispersed representation 
attempts to eliminate the drawbacks and enable 
simultaneous performance of the three functions. 
This is accomplished, firstly, by relieving the 
key attributes from performing the identifying 
function and passing the duty to a tuple address, 
secondly, by splitting up a relation to separate 
the value and link attributes. 

We now present the method with some 
simplifying assumptions concerning the data 
base. Suppose that a data base consists of a 
set of normalised relations Rl, R2, . . . . R . 

A relation scheme R* 
P 

denotes a set of attributes 
Al, A2, . . . . Ar composing the relation R. Let 

A denotes the set of all attributes. From the set 
A we arbitrary chose a subset J consisting of 
joinable attributes. We want such a physical 
data base organisation that natural join and 
equijoin operations involving a comparison of 
the attributes from the set J will be performed 
especially quickly. 

Let consider the case when the set J con- 
sists of all key attributes. We distinct two 
types of relations: a simple one and a compound 
one. The simple relations have no foreign keys 
while the compound ones do. We also assume 
that each foreign key in the compound relations 
point to only one simple relation. The compcund 
relations can be futher divided into two subtypes, 
i.e. “purely” compound relations which all 
attributes are foreign keys and “mixed” compo- 
und relations which besides foreign keys have 
also other “value” attributes. 

The dispersed representation requires a 
relation to be either simple or “purely” com- 
pound. Therefore, whenever R is the “mixed” 
compound relation it is decomposed onto two 
relations R-S and R-C. The relation R-S is a 
projection of R onto its all non-foreign key 
attributes while the relation R-C is a projection 
of R onto all foreign key attributes and the 
attributes which form a key of the relation R-S . 
Note that the relation R-S is simple and the 

182 



relation R-C is “purely” compound. After 
decomposing all “mixed” compund relations in 
the above way we obtain a data base scheme 
consisting of simple and “purely” compond rela- 
tions . 

Then we replace foreign key attributes 
composing the compound relations by pointer 
attributes, e.g. if X is a foreign key in the re- 
lation R and originates from the simple relation 
Rl then X is deleted from R and a new attribute 

named RlF is added which values are the 

addresses of proper tuples in the relation Rl. 

To keep this substitution valid we have to assu- 
me that the tuple addresses are constant. 

Now, in terms of the dispersed represen- 
tation, there is an ideal situation since the 
“value” part of a data base (simple relations) is 
separated from the “link” part (compound r ela- 
tions) so the parts may be stored and processed 
separately. 

Assume that the mass memory consists of 
three parts: the VALUE, LINK, and IDENTIFI- 
CATIGN memories. We place the simple relations 
in the VALUE memory and the compound relations 
in the LINK memory. For a formal reason we 
assume that to each placed relation R a new 
address attribute R1” is added. A value of the 
attribute RC is equal to an address of the tuple 
in the VALUE or LINK memory and matches a 
pointer to the tuple. We denote a simple relation 
R augmented with the attribute RT and stored in 
the VALUE memory by RCV] while a compound 
relation R stored in the LINK memory by RCLI . 

Finally in the IDENTIFICATION memory we 
establish an identifying part consisting of two 
unary relations RCID] and R* (lIDI for each 
simple and compound relation. The relation 
RCID] consists of the attribute R’I’ projected 
from either RCV] or RCL] and it is just a set of 
pointers to the tuples of the relation. The rela- 
tion R* [ID] consists of the attribute ATTR and 
contains names of the attributes composing the 
relation R on the conceptual level. 

Let us illustrate the dispersed representa- 
tion with an example of the data base shown in 
Fig. 1 consisting of three relations: 
S (suppliers), P (parts), and SP (shipments). 
There are foreign keys in the relation SP, i.e. 
S# and P#. Therefore the relation SP is classi- 
fied as compound one while the relations S and 
P as simple ones. Precisely, the relation SP is 
a “mixed” compound one since the attributes 
QTY and DATE are not foreign keys. Hence the 
relation SP is decomposed onto the simple rala- 
tion SP-S (QTY, DATE) and the “purely” 

S /suppliers/ 

11 

P /parts/ 

P# 1 NAME 1 COLOR WEIGHT 

SP /shipments/ 
I 

S# Ps QTY DATE 

Sl Pl 300 85-05- 11 
Sl P2 200 85-05- 12 
Sl P3 400 85-05-13 
s2 Pl 300 85-05-l 1 
s2 P2 400 85-05-15 
s3 P2 200 85-05-15 , 

Fig. 1. The sample relational data base. 

compound relation SP-C(S#, PO, Q TY, DATE). 
Next the simple relations S, P, and SP-S are 
placed in the VALUE memory while the compound 
relation SP-C with its attributes converted into 
pointers in the LINK memory. After that for each 
relation a pair of the identifying relations (RCIDI 
and R* [ID] is created in the IDENTIFICATION 
memory. The final arrangment of the data base in 
the three mass memory components is shown in 
Fig. 2 (the addresses in the LINK memory are 
preceded by letter L ). Note that values of the 
added attributes (R 7” > need not be stored expli- 
citly since they are determined by the tuple 
position (constant) in the VALUE or LINK me- 
mory . 

To summarise, the dispersed representation 
of a simple relation consists of relations RCID] 
and R* CID1 stored in the IDENTIFICATION 
memory and the relation RCVI stored in the 
VALUE memory. The original relation R can be 
created by a natural join of the relations REID] 
and RCVI and then projection onto the set of 
attributes stored in R”CID] . 

R =xR*CID] (REID] w RCVI ) 

Hence a simple relation R can be viewed as an 
extract from a certain relation stored in the 

183 



VALUE memory IDENTIFICATION memory 

SCVI SCIDI SxCID] 

S+ Stt NAME STATUS CITY 

, 
PCVI 

I 
I 

P? Pk NAME COLOR WEIGHT ; 
e--.-. I 
; 11 Pl Nut Red 12 

v- P2 Bolt Green 17 ---- 
LsL P3 Screw Blue 17 
;1G- P4 Screw Red l.4 

SP- scvl 

SP-St QTY DATE 
-w--s I 
L-g 
I- - - 
L.3 
1 24 400 85-05-E 
r-25 200 85-05-E 

! 
I 

LINK memory 

SP- SLID] SP- SxCID] 

SP-Sf 

21 
22 
23 
24 
25 

SP-CCID] =SPCID] 

[s] SP*CID] 

Ll 
L2 

Ll L3 
L4 
L5 
L5 

SP-CCL] 

SP-Cf Sf P? SP-ST 
_L ----- 
: Ll I1 11 21 I 
riJ- 

J 
1 12 22 

:-is- 1 13 23 
r i.,- - 2 11 21 

Fig. 2. The dispersed representation of the sample data base I 

VALUE memory. The extract is defined by two 
relations stored in the IDENTIFICATION memory, 
i. e. the relation RCIDI determines it horizontally 
while the relation R* CID] vertically. 

In the case R is a compound relation and 
consists of “p” foreign keys to Rl, R2, . . . . R 

P 
simple relations, its representation consists of 
the relations RCID] and R*CIDl stored in the 
IDENTIFICATION memory, the relation RCLI 
stored in the LINK memory, and the relations 
R&V], R2CVl, . . . , RpCVl stored in the VALUE 

memory. The original relation R can be expre- 
ssed as follows. 

A compound relation R can be viewed as an 
extract from a certain implicit relation being a 
Cartesian product of the “p” simple relations 
stored in the VALUE memory. Horizontally the 
extract is cut out, firstly, by the relation RCLI 
and, secondly, by the relation RCID] , while 
vertically it is cut out by the relation R* CID] . 

From the above expressions one can notice 
that to represent any compound relation no rela- 
tions in the VALUE memory have to be created 
and to represent any derived relation Q being a 
“horizontal” or “vertical” extract of an already 
existing relation R only relations QCID] and 
Q*[ID] have to be created in the IDENTIFICA- 
TION memory, 

The physical structure of a data base imposed 

184 



by the dispersed representation strongly depends 
on the chosen subset J of the joinable attributes 
since a value of each attribute belonging to J have 
to be tied to one place in the VALUE memory to 
enable the substitution of the value by its 
address. For example the set J chosen in the 
paper consisting of keys creates a structure 
corresponding somehow to the entity-relationship 
approach CChen76] with the simple relations as 
the entity sets and the compound relations as the 
relationship. 

On the other hand, comparing the classifica- 
tion of relations imposed by the dispersed repre- 
sentation with the one given in CCodd79] ane can 
notice that the simple and compound relations 
correspond to the kernel entity and kernel 
associative relations respectively, while the 
identifying relations RCID] to the E (surrogate) 
- relations, We want to stress that our classfi- 
ciation of relations, as opposed to Codd’s which 
delt with the conceptual modelling, deals with 
the physical implementation and attempts to pro- 
vide tools for high efficiency. Therefore we 
suggest that classifications established on the 
conceptual level should be reshaped into the 
simple, compound, and identifying relations. 

The dispersed representation makes an 
extensive use of pointers therefore to implement 
it efficiently a system with a powerful pointer 
mechanism is required. We will describe such a 
DBM in the next sections. 

3. The modified cellular associative memory 
(CAM) 

A number of DBM’s use a cellular associa- 
tive memory (content-addressable memory) built 
up with cells of comparatively inexpensive me- 
mories and processors. An outline of the memory 
is shown in Fig. 3. It consists of a chain of 
cells and a controller. Each cell is composed of 
a processor P i and a cell memory CMi. The set 

of CM’s serves as a mass memory to store a 
data base. The CM. can be implemented on a 
track of the head-p&r-track disk,CCD memory, 
bubble memory, or even RAM memory. The asso- 
ciativity of the memory is achieved by parallel 
and synchronised processing of all processors. 

The CAM’s shows many advantages (fast 
search) but have some limitations. For example, 
they are not provided with an efficient mechanism 
for performing the identifying tasks. Some of the 
limitations can be overcome by a minor modifica- 
tion of the CAM architecture. 

The proposed modification consists in pro- 
viding every cell with a cell mark register CMRi. 

processor 

ICf cell mark 

-L3 5 CM1 
1 M ! 
1 R’j 

register 

i.2; I 
I 
I : I ‘4 I 

global mark 1 I I 
I : I 

: i C 
register 

I Controller I 1 I 

Fig. 3. The modified cellular associative 
memory. 

Each CMRi has as many bits as tuples stored 

in CMi and there is a one-to-one correspondence 

between the bits and tuples. The CMRi can be 

set by Pi or the controller to indicate the tuples 

relevant for the executed operation. 
All CMR’ s are connected to form the global 

mark register GMR. Assuming that all CM’ s 

are also connected and a tuple occupies one 
“word” of the memory we obtain the classical 
model of an associative memory with every word 
containing one tuple and the GMR as the respond 
register as shown in Fig. 4. 

In the modified cellular associative memory; 
the GMR is used as a means of communication 
between the CAM and the external env-iroment. 
To inform about the results of the completed 
operation the GMR state is sent outside. On the 

185 



Tuple Global mark 
addre s s register 

t 
1 tuple 1 bl 

2 tuple 2 -~- I 3 
a 
I 

The set of Cell 

Memories 
. 
. 

b2 
- 

1 
I 

m tuple m bm 

Fig.4. The model of the associative 
memory. 

contrary, to indicate which tuples are to be 
considered in the next operation the GMR is 
loaded externally. 

The load/unload process is controlled by 
the Encoder and Decoder units (Fig. 3). Before 
being sent outside a GMR state is encoded in the 
Encoder unit. We assume that the encoded GMR 
state is a list of the bit positions equal 1. The 
list is just a set of pointers to the marked tuples. 
Note that physically the list can be stored in a 
compressed form. On loading, the Decoder con- 
verts the set of pointersinto the proper GMR 
state. 

Thus the GMR together with the Encoder and 
Decoder units can be used as an efficient mecha- 
nism for pointer processing. It allows to convert 
a set of marked tuples into a set of pointers and 
viece versa. Therefore it is a good hardware 
facility to implement the identifying function of 
attributes. 

Effectively, the GMR mechanism allows to 
eliminate a great number of selections as well 
as to decrease the I/O traffic. In the previous 
CAM’s “ml’ selections have to be generated to 
mark (identih) a set of tuples knowing their 
key values (or pointers); where “m” is the num- 
ber of identifiers. Therefore one operation of 
loading the GMR saves “m” selections. On the 
contrary, to inform the controller which tuples 
were marked their key values or other identifi- 

ers have to be sent through the Z/O channel. 
Hence one operation of unloading the GMR saves 
“m” I/O operations. 

It is important to develop a fast load/unload 
mechanism as the GMR can consists of a great 
number of bits and is intended to be fequently 
used. Fortunately, the work of the mechanism 
can overlap the work of cell processors; if the 
cell memory is built up with a loop of rotating 
memory then the desired time for servicing the 
GMR is as long as one rotation of the loop. We 
assume that the CAM is provided with at least 
three copies of the GMR being loaded/unloaded 
by the same mechanism. During the excution of 
the current operation, the GMR state set in the 
previous operation can be sent outside, and the 
GMR state to be used in the next operation can 
be loaded. If the loading/unloading process 
completes before the beginning of the next ope- 
ration it will cause no delays in the operating of 
the cell processors, so practically the process 
costs no time. 

There are several methods to develop the 
GMR mechanism; a simple one is to organise the 
GMR as a shift register. The shift register can 
be divided into parts working in parallel in order 
to make it quicker. More sophisticated techinques 
are also possible. 

4. The proposed DBM architecture 

The architecture of the proposed DBM is 
is shown in Fig. 5. The mass memory consists 
of the VALUE, IDENTIFICATION, and LINK 
memories. The VALUE memory is the modified 
CAM described in Section 3 provided with the 
global mark register of VALUE memory (GMRV). 
The LINK memory is also the modified CAM pro- 
vided with the GMRL. The IDENTIFICATION 
memory is supposed to be realised in RAM. 

The value part of a data base, i.e. the 
relations RCV], is stored and processed by the 
cell processors in the VALUE memory, while 
the link part, i.e. the relations R[L] , is stored 
and processed in the LINK memory. The VALUE 
memory performs the operations corresponding 
to the “value” function of attributes, i. e. “-value” 
selections, arithmetic and logical operations, 
aggregate functions etc. The LINK memory deals 
with pointers (to the VALUE memory) and its 
main operation is a selection with an equality 
comparison being a component of join operation. 

Each tuple stored in the VALUE and LINK 
memory is associated constantly with one bit of 
the GMRV and GMRL respectively. This as- 
sumption allows the global mark register to be 
the additional and powerful facility to perform 
the identifying functions. 

The identification part of a data base, i.e. 
the relations RCID] (set of pointers) and 

186 



VALUE 

memory 

/cellular associative 
memory/ 

1 

IDENTIFICATION 

memory 

I-L I=/ 
G 
M 

channel R 
s--------m-*- ----___ 

L 

POINTER 

PROCESSING 

UNIT 

LINK 

memory 

‘cellular associative 
memory/ 

. CONTROLLER ’ 
I 

- 

Fig. 5. The proposed database machine architecture. 

R* [ID] (set of attribute names), is stored in 
the IDENTIFICATION memory and recessed by 
the Pointer Processing Unit (PPU. P . The PPU 
is connected with the VALUE and LINK memories 
so that the flow of information between them is 
possible. The connections are realised by the 
global mark register (GMRV and GMRL) loa- 
ding/unloading mechanisms; precisely, outputs 
of the Encoders and inputs of the Decoders are 
adjoned to the PPU. The PPU having the 
IDENTIFICATION memory as their main memory 
performs the identifying tasks concerning the 
relations stored in the VALUE and LINK memory. 
To identify (mark ) a set of tuples a relation 
RCID] is sent from the IDENTIFICATION memo- 
ry to the Decoder of the proper mark register 
and converted into a state of the register. On 
the contrary, a state of the GMRV or GMRL can 
be fatched, coded by the Encoder into a set of 

pointers and saved as a relation RCID] in the 
IDENTIFICATION memory. 

The second duty of the PPU is a cooperation 
with the LINK memory in performing‘the linking 
tasks. Therefore the units are additionally 
connected with the I-L channel. The I-L channel 

enables the PPU to send arguments of selections 
to the LINK memory cell processors as well as 
to transmit data between the IDENTIFICATION 
and the LINK memories. For example, an attri- 
bute of a relation RCL] can be sent to the 
IDENTIFZCATION memory, and next used to 
identify tuples in the VALUE memory or returned 
as selection arguments. An example of informa- 
tion flow between the DBM components will be 
given in Section 6. 

Let us show two main advantages of the 
presented architecture over the previous cellu- 
lar DBM’s. 
Simultaneity. Hitherto cellular DBM’ s consisted 
of one CAM in which all kinds of tasks were 
performed sequentially. In our DBM the main 
components operate simultaneously; at the same 
time, the VALUE, LINK memory, and PPU 
independently realise the value, link, and iden- 
tifying tasks repectively, 
Specialization. Hitherto experience with the 
cellular DBM’s proved that the cell processors 
tend to be complex since they are expected to 
fulfil many requirments. In the proposed archi- 
tecture the complexity can be decreased, 

187 



especially in the case of the LINK memory 
processors. The LINK memory processors deal 
with very uniform type of data, i.e. pointers and 
only the VALUE memory processors handle 
complex types of data (strings, integers, boole- 
ans etc. ). The only required operation perfor- 
med in the LINK memory besides the I/O opera- 
tions is a selection with an equality test being 
a component of the join operation. The very 
short list of performed operations and the uni- 
form data type simplify the LINK memory cell 
processor and make easier its specialisation. 
For example, the processor can be adopted to 
perform selections on a compressed list of argu- 
ments rather than on the single one. The 
complexity of the VALUE memory processors 
can be decreased because they are relieved 
from performing a great number of joins, which 
are performed by the LINK memory, and need 
not be provided with hardware equipment used 
to speed up the join. 

5. Execution of relational operations in the DBM 

We consider execution of a relational operation 
as a process of creating the dispersed repre- 
sentation of a releation Q being the result of the 
operation. In proposed DBM the same operation 
can be executed in a different way depending on 
its type. The DBM architecture mostly affects 
the execution of the set operations: the union, 
difference, and intersection as well as the join 
operation. We shortly analyse the operations. 
Union. Q=RUS 
Difference. Q = R - S 
Intersection. Q = R fl S 

The set operations are expecially easy to 
perform due to the existence of the global mark 
registers. All the operations are performed 
similarly. If the relations R and S are simple 
then relation RCID] is sent to the GMRV Deco- 
der to set the register. Next, the GMRV is 
copied and the relation SLID] is converted into 
the GMRV state. After that, the proper logical 
operation is performed on bits of the current 
GMRV state and the saved one. After that, the 
result indicated in the GMRV is sent back to the 
PPU and converted into the relation QCID] . To 
complete the representation the equivalence 
Q” CID] = R*CID] = S*CID] . is esta- 
blished. In the case the relations R and S are 
compound the algorithm differs in that the 
working register is the GMRL. 

Join. Q = R W S 
A8B 

The join operation is a bottleneck in rela- 
tional systems. Generally, execution of join 
consists of two processes: the derivation and 
selection. In the derivation process the compa- 
red attribute values of one relation are transpor- 
ted from the mass memory to the controller. In 
the selection process, for each derived value a 
selection is generated against the second relation. 
The existing hardware algorithms attempt to 
optimise the join (mainly the selection process) 
using such methods as sorting, hashing, and pro- 
jection. Usually, the algorithms do not classify 
joins sematicly and execute any kind of joins in 
the same way. 

Our approach to optimise the join execution 
consists in dividing joins into classes and a 
specific execution of each class in order to elimi- 
nate one or both of the derivation and selection 
processes. 

From the semantic point of view execution 
of a join creates a new association in the data 
base (such a join will be called an associating 
one) or does not. In terms of the dispersed repre- 
sentation the associating join creates a new 
relation QCL] in the LINK memory, while the 
non-associating join creates a relation QCL] 
(provided the relation Q is compound) which is 
a subset of an already existing relation 
(RCLI or SCLI ). This subset can be determined 
by the relation QCID] . The non-associating joins 
are divided futher into identifying andlinking 
ones. Hence, there are following types of joins. 

identifying - natural joins satisfying the 
conditions KEYS(R)=KEYS(S); 
where KEYS(X) denotes the 
set of all foreign keys plus the 
main key of the relation X. 

linking - natural joins such that 
KEYS(R)CKEYS(S). In other 
words each of the simple rela- 
tions composing the relation R 
composes also the relation S. 

associating - the rest of joins. 
We analyse shortly the realization of the joins. 
As a part of each realization, a relation 
Q*[ID] = Rjc cID]u S*CID] is created in the 
IDENTIFICATION memory. 

All identifying joins are performed by the 
PPU together with the GMRV or GMRL. The 
joins can be divided into two classes. 
A - identifying joins such that RCIDJ c.SCIDl . 

A join of the class A corresponds to the 
identifying transformation of the set of 
pointers (REID] ) into a set of marked 
tuples. From the representation formalism, 
all needed to execute the class A of iden- 

188 



tifying joins is to establish the equivalence 
QCID] = RCIDJ . 

B - identifying joins such that RCID’I $SCIDl . 
The class B is executed similarly to the 
intersection using the GMRV or GMRL. In 
the IDENTIFICATION memory, the relations 
QCID] = RCID] il SLID3 is created. 
Note that identifying joins require no the 

derivation process (the arguments are at hand in 
the IDENTIFICATION memory) nor the selection 
process which is substituted by the operations of 
the global mark registers. 

The linking joins require the selection 
process and are performed in the LINK memory 
with the cooperation of the PPU. We will not 
describe the algorithm used to perform the join 
in the LINK memory, which can be one of the 
existing so far, but, as we mentioned in Section 
4, the unified type of data stored and processed 
in the LINK memory gives an opportunity for 
futher optimisation. Linking joins are divided 
into classes C or D according to a type of the 
relation R . 
c- R is simple (S has to be compound). The 

class C of joins does not require the 
derivation process. To execute a join of 
class C, the relation RCID] is sent from the 
IDENTIFICATION memory to the LINK me- 
mory through the I-L channel. In the LINK 
memory, the cell processors compare the 
received values with the attribute Rt of the 
relation SCL] to mark the matching tuples 
in the GMRL. Next, the GMRL state is 
transmitted to the PPU and converted into 
the relation QCIDI . 

D - R is compound. Joins of class D require the 
derivation process. To execute (in a strai- 

ghtforward way) a join of the class D each 
attribute of the relation RCL] is sent from 
the LINK memory to the PPU through the 
I-L channel. In the PPU the attribute 
values are sorted to remove duplications 
and sent back to the LINK memory as argu- 
ments of selections in the relation SLID]. 
At the end, the tuples of the relation SCLI 
matching all selections are identified by the 
relation QCID] . 
The main characteristic of the associating 

joins is that they create a new relation QCL] in 
the LINK memory. The joins can be divided into 
two classes. 
E - equijoins on keys and natural joins on keys 

such that KEYS (R)$KEYS (S); the rela- 
tion R is compound. 
The class E is performed in the LINK me- 

mory similarly to the class D respectively, but 
the new relation QCLI is created out of the joina- 

ble tuples of the relations RCLI and SCLI . 
F - all joins which imply other comparison than 

equality or other attributes than keys. This 
class has to be performed in the VALUE 
memory and cause a new relation QCLI to be 
created in the LINK memory. The joins 
require both the derivation (from the VALUE 
memory) and selections processes. 

To summarise, a join is executed by different 
components of the DBM according to its type 

and class. The execution of the identifying joins 
is practically eliminated. The linking joins and 
the class E of the associating joins are performed 
in the LINK memory. It is preferable since the 
VALUE memory isrelieved fromexecuting the 
joins and the LINK memory is considered more 
efficient. Only the class F of the associating 
joins is performed in the VALUE memory. The 
overall improvement of time and data transmission 
depends on the number of joins performed in each 
class and is bigger if the number decreases with 
the advancing of the class’ s letter. For example, 
if the percentage of identifying joins is equal 50 
then the reduction is at least double. 

6. An example of a query execution in the DBM 

Let us illustrate the cooperation and flow of 
information between DBM components wit-h an 
example of the execution of a typical query. 
Recall the data base shown in Fig. 1 and its 
dispersed representation shown in Fig. 2. Let 
the query be GET INFORMATION ABOUT RED 
PARTS SUPPLIED BY SUPPLIERS FROM PARIS. 
The query can be decomposed into the following 
five onerations. 
1. Q-1 =R 

CITY =“Paris” w 

The selection is performed in the VALUE memory 
and the GMRV bits in positions 2 and 3 are set 
to 1. Then the GMRV is transmitted to the PPU 
and converted into the relation QlCID] = { 2,3) ; 
this is the identifying transformation from a set 
of marked tuples into a set of pointers. In addi- 
tion, the equivalence Ql*CID] = S*CID] = 

{Se, S. NAME, STATUS, CITY} is established. 
2. 42 = QlPa SP 
This is a linking join of the class C. The relation 
QlCIDl is sent to the LINK memory where its 
values are compared with the attribute ST of the 
relation SP-C. As the result, the 4, 5, and 6 
bits of the GMRL are set. Next the GMRL state 
is converted into the relation Q2CID]= {L4, L5, L63 . 
Finally, the relation Q2*CIDl =Ql*CID]II SP” CID] = 
{Se, S.NAME, STATUS, CITY, P#, QTY, 

DATE] is created. 
3. 43 =x, (42) 

189 



This projection is executed in the following way. 
First, the relation Q2[L] is identified, i.e. the 
relation Q2[ID] is sent to the GMRL Decoder to 
mark the proper tuples. If the operation follows 
immediately after the operation 2 this step is 
unnecessary since the GMRL is properly set. 
Next, values of the attribute PP are sent from 
the marked tuples to the PPU throuht the I-L 
channel. In the PPU the values {ll, 12, 123 are 
sorted to remove duplica:ions and form the 
relation Q3[ID] = {ll, 12) . Finally, the rela- 
tion Q3”[ID] = { P#j is created. 
4. Q4 = Q3WP 
This is the identifying join of the chss A and 
its execution is reduced to establish the equiaa- 
lence Q4CID] = Q3CID] and create the relation 
Q4’cID] = Q3*[ID] u P*CID] = {P#, P.NAME, 
COLOR , WEIGHT 1. 
5. Q5=5 - COLOR=“Red” (a41 

This selection is executed in the VALUE memory. 
First, the relation Q4 is identified by loading the 
GMRV. Next, the selection is performed in the 
relation Q4cV] and a new GMRV state is determi- 
ned. After that, the GMRV state is converted into 
the relation Q5[ID] = {llj . Finally, the equiba- 
lence Q5*[ID] = Q4*[ID] is established. 

To summarise, the execution of the query 
began in the VALUE memory where the first 
selection was performed and its results were sent 
to the PPU using the GMRV. Next, the results 
(QlCID] ) were sent to the LINK memory (through 
the I-L channel) and used as the argument of the 
linking join, The projection in turn used the I-L 
channel to send the values of the attribute P$ of 
the relation Q2[L] from the LINK memory to the 
PPU. After properly formatting, the PPU sent 
the relation QUID] to the VALUE memory, 
using the GMRV, to assist in the final selection. 

7. Conclusion 

An approach to implement efficiently a 
relational data base is presented in the paper. 
We assume that three kinds of task are performed 
on data kept in a data base, i.e. identification, 
link, and value. According to the distinction the 
dispersed physical representation divides rela- 
tions into the identification, link, and value 
parts, and then disperses the parts among three 
separated devices specialised to store and pro- 
cess their part. The division of a data base 
depends on the set J of attributes, which is deter- 
mined by the user and contains the attributes 
destined to express the associations between 
relations. 

Next, the DBM architecture attempting to 

implement optimally the dispersed representation 
is proposed. The DBM uses cellular associative 
memories to store and process the value and link 
parts. The CAM’s are modified by providing a 
CAM with the global mark register, which can be 
quickly loaded and unloaded externally. Tuples 
stored in the CAM are tied to bits of the GMR 
allowing the GMR to be a powerful mechanism to 
perform the identifying tasks. The dispersed 
representation along with the novel DBM offers 
the following advantages. 
cli 

(2) 

A simple and economic method of storing the 
derived relations. Due to the efficiency of 
the marking mechanism the relations can be 
stored as a set of pointers to the composing 
tuples. 
The simultaneous execution of the three data 
base tasks and the specialisation of the DBM 
components. This is illustrated by analysing 
the execution of join operations. Joins are 
classified into identifying, linking, and 
associating types. The cost of the identifying 
joins is practically negligible. 
In addition to the aspe& discussed in the 
paper, the DBM provides some new facilities. 
The GMR along with its loading mechanism 
may be used as a hardware tool for realisa- 
tion such functions as data security and 
integrity. For example, security can be 
protected by establishing the relation 
R’ CID] defining an accessable part of rela- 
tion R for a specific access kind. Before 
accessing relation R, the proper R’ [ID] is 
converted into a GMR state to mark the allo- 
wed tuples. 
At the end we want to make the following 

remark. We assume that an entire data base is 
kept in the cellular associative memories (the 
VALUE and LINK memories ) which not always 
can be cost-effective. There are suggestions to 
use the CAM as a cache memory in the DBM 
systems. With some modification in controlling 
the GMRV and GRML the proposed architecture 
could also serve as the cache, 

(3) 

References 

C Baab791 E . Babb, “Implementing a Relational 
Database by Means of Specialized 
Hardware”, ACM Transactions on 
Database Systems, Vol. 4, No. 1, 
March 1979, pp.l-29. 

CBane79] J. B anerjee,D.K.Hsiao, K.Kannan, 
“DBC - A Database Computer for Very 
Large Databases”, IEEE Transac- 
tions on Computers, Vol. C-28, June 
1979, pp. 414-429. 

190 



CBerr79] P.B. Berra, E.Oliver, “The Role of 
Associative Array Processors in 
Data Base Machine Architecture”, 
IEEE Computer, Vo1.12, Mach 1979, 
pp.53-61. 

(1Bora821 H. Boral, D. J.DeWitt, D. Friedland, 
N . F . Jarrell, W. K . Wilkinson, “Imple- 
mentation of the Database Machine 
DIRECT”, IEEE Transactions on 
Software Engineering, Vol. SE-8, 
November 1982, pp. 533- 543. 

CChen761 P . P . Chen, “The Entity-Relationship 
Model: Toward a Unified View of 
Data”, ACM Transactions on Data 
Base Systems, Vol, 1, March 1976, 
pp.936. 

CCodd79] E. F. Codd, ” Extending the Database 
Relational Model to Capture Move 
Meaning”, ACM Transactions on 
Database Systems, Vo1.4, December 
1979, pp. 397-434. 

[Cope731 G.P.Copeland,G. J.Lipovski, S.Y. 
3% “The Architecture of CASSM : 
A Cellular System for Non-numeric 
Processing”, Proceedings 1st Annual 
Symposium on Computer Architecture, 
December 1973, pp.l21-128. 

CDeWi791 D. J.DeWitt, “DIRECT - A Multipro- 
cessor Organization for Supporting 
Relational Database Management 
Systems”, IEEE Transaction on Com- 
puters, Vol.C-28, June 1979, pp. 
395-406. 

CHawt821 P . Hawthorn, D. J. Dewitt, “Perfor- 
mance Evaluation of Database Machi- 
nes”, IEEE Transactions on Software 
Engineering, Vol. SE-8, January 
1982, pp.GI-75. 

CHsia831 D. K . Hsiao ( Editor ), “Advanced 
Database Machine Architecture”, 
Prentice-Hall Inc, 1983. 

CKits831 M . Kitsuregawa, H. Tanaka, T. Moto- 
oka, “Application of Hash to Data 
Base Machine and Its Architecture”, 
New Generation Computing, 1, 1983, 
pp.63-74. 

CMeno811 M.J.Menon,D.K.Hsiao, “Design and 
Analysis of a Relational Join Opera- 
tion for VLSI”, Proceedings 7th 
Conference on VLDB, Cannes 1981, 
pp.44-55. 

COzka831 E. A.Ozkarahan, “Implementations 
of the Relational Associative Pro- 
cessor (RAP) and Its System Confi- 
gurations”, Arizona State Univer- 
sity, Dep.of Computer Science, 

TR-82-005. 
COzka751 E. A.Ozkarahan, S . A. Schuster, 

K . C . Smith, “RAP - An Associative 
Processor for Data Base Management”, 
Proceedings of AFIPS NCC, Vol. 
h&,1975, pp.379-387. 

CSmit79] D .C .P. Smith, J.M . Smith, “Relational 
Database Machines”., IEEE Computer, 
Vo1.12, March 1979, pp.28-38. 

[Slot70] D . L. Slotnick, “Logic per Track 
Devices”, Advanc.es in Computers , 
Academoc Press, 1970, pp.291-296. 

CSchu791 S. A. Schuster, K.B.Nguyen, E.A. 
Ozkarahan,K.C.Smith, “RAP.2 - An 
Associative Processor for Databases 
and Its Applications.“, IEEE Transac- 
tions on Computers, Vol.C-28, June 
1979, pp.446-458. 

c su791 S.Y.W.Su, “Cellular- Logic Devices : 
Concepts and its Applications”, IEEE 
Computer, Vo1.12, March 1979,~~. 
ll- 25. 

C Su79al S.Y.W.Su,L.H.Nguyen,A.Emam, 
G.J.Lipovski, “The Architectural 
Features and Implementation of Mul- 
ticell CASSM”, IEEE Transactions 
on Computers. Vol.C-28, June 1979, 
pp. 430- 445. 

CUllm821 J.D. Ullman, “Principles of Database 
Systems”, Computer Science Press, 
Inc., Second Edition, 1982. 

191 


